B Theorem 2.2: Near-optimality of optimal circular input for full convolution

Theorem B. 1 Let $p_{v}(x)$ denote the activation of a single pooling unit in a valid convolution, squarepooling architecture in response to an input x, and let $x_{v}^{\text {opt }}$ and $x_{c}^{o p t}$ denote the optimal norm-one inputs for valid and circular convolution, respectively. Then if $x_{c}^{o p t}$ is composed of a single sinusoid,

$$
\lim _{n \rightarrow \infty}\left|p_{v}\left(x_{v}^{o p t}\right)-p_{v}\left(x_{c}^{o p t}\right)\right|=0
$$

Proof We proceed by first establishing that the maximal eigenvalues of $V_{p}^{*} V_{p}$ limit to those of $C_{p}^{*} C_{p}$. Then we show that the optimal input for circular convolution asymptotically attains the same value when applied to valid convolution. We begin with some definitions.
The strong norm of a square matrix A is $\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}=\sqrt{\max _{k} \lambda_{k}}$, where λ_{k} are the eigenvalues of the Hermitian positive semidefinite matrix $A^{*} A$.

The weak norm of a matrix $A \in \mathbb{R}^{p \times p}$ is $|A|=\left(\frac{1}{p} \sum_{i=1}^{p} \sum_{j=1}^{p}\left|A_{i j}\right|^{2}\right)^{\frac{1}{2}}$.
Two sequences of $n \times n$ matrices $\left\{A_{p}\right\}$ and $\left\{B_{p}\right\}$ are asymptotically equivalent if

1. A_{p} and B_{p} are uniformly bounded in the strong norm

$$
\left\|A_{p}\right\|,\left\|B_{p}\right\| \leq M<\infty, p=1,2, \ldots
$$

2. and $A_{p}-B_{p}=D_{p}$ goes to zero in weak norm as $p \rightarrow \infty$,

$$
\lim _{p \rightarrow \infty}\left|D_{p}\right|=0
$$

Lemma B. 2 Let V_{p} and C_{p} denote matrices performing valid and circular convolution of a filter $f \in \mathbb{R}^{k \times k}$ with an input of size p, respectively. The sequences of matrices $\left\{V_{p}^{*} V_{p}\right\}$ and $\left\{C_{p}^{*} C_{p}\right\}$ are asymptotically equivalent.

Proof Let $D_{p}=V_{p}^{*} V_{p}-C_{p}^{*} C_{p}$. First we will show that $\lim _{p \rightarrow \infty}\left|D_{p}\right|=0$. We do this by showing that the number of nonzero elements in D_{p} is proportional only to n, not n^{2}. Note that both circular and valid convolution compute the same $n-k+1 \times n-k+1$ filter responses in the interior of the input. Hence nonzero entries in D_{p} can come only from the $n^{2}-(n-k+1)^{2}=2(k-1) n-(k-1)^{2}$ filter responses that circular convolution computes but valid convolution does not. Each of these filter responses, when squared, will contribute at most $Q=2\binom{k^{2}}{2}+2 k^{2}$ terms to D_{p}, where the factor of 2 is due to the symmetry of the quadratic form. This is a significant overestimate, but importantly is only a function of k and not p. Further, we note that for $n>2 k$, the maximum element of D_{p} is independent of p, that is, $\max _{i, j}\left|d_{i j}\right|=M$. Therefore

$$
\begin{align*}
\left|D_{p}\right| & =\sqrt{\frac{1}{n^{2}} \sum_{i=1}^{n^{2}} \sum_{j=1}^{n^{2}}\left|d_{i j}\right|^{2}} \tag{1}\\
& \leq\left(\frac{1}{n^{2}}\left(2(k-1) n-(k-1)^{2}\right) Q M^{2}\right)^{\frac{1}{2}} \tag{2}\\
& \leq K n^{-\frac{1}{2}} \tag{3}
\end{align*}
$$

where K is not a function of n. Hence $\lim _{p \rightarrow \infty}\left|D_{p}\right|=0$.
Next we show that the matrices are uniformly bounded in the strong norm. For Hermitian matrices, $\|A\|^{2}=\max _{k}\left|\alpha_{k}\right|$, the maximum magnitude eigenvalue of A. For the circular convolution case this is simply the square of the magnitude of the maximal Fourier coefficient of f, and hence is bounded for all p. For valid convolution, we note that $\left\|V_{p} x\right\|^{2}=\sum_{i}^{n-k+1}\left(v_{i}^{T} x\right)^{2}$, where v_{i}^{T} is the $i^{\text {th }}$ row of V_{p}. The vector v_{i}^{T} contains the filter coefficients f and is otherwise zero; hence it has
only k^{2} nonzero entries. We can therefore form the vector $\tilde{x}_{i} \in \mathbb{R}^{k^{2}}$ from just those elements of x which will be involved in computing the dot product, such that $v_{i}^{T} x=f^{T} \tilde{x}_{i}$. Then we have

$$
\begin{align*}
\sum_{i}^{n-k+1}\left(v_{i}^{T} x\right)^{2} & =\sum_{i}^{n-k+1}\left(f^{T} \tilde{x}_{i}\right)^{2} \tag{4}\\
& \leq\|f\|^{2} \sum_{i}^{n-k+1}\left\|\tilde{x}_{i}\right\|^{2} \tag{5}\\
& \leq k^{2}\|f\|^{2}\|x\|^{2} \tag{6}
\end{align*}
$$

where the last inequality comes from the fact that each x_{i} can appear at most k^{2} times in the sum. The strong norm is therefore bounded, since $\left\|V_{p}^{*} V_{p}\right\|=\max _{x \neq 0} \frac{x^{*} V_{p}^{*} V_{p} x}{x^{*} x} \leq k^{2}\|f\|^{2}$.

Next we appeal to the following theorem, which is a variation on that stated by [1].
Theorem B. 3 Let $\alpha_{p, k}$ and $\beta_{p, k}$ denote the eigenvalues of V_{p} and C_{p} respectively. Let $\hat{f}\left(\omega_{1}, \omega_{2}\right)$ denote the $2 D$ discrete time Fourier transform of the filter f,

$$
\hat{f}\left(\omega_{1}, \omega_{2}\right)=\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} f[j, k] e^{i j \omega_{1}} e^{i k \omega_{2}}
$$

Then

$$
\lim _{p \rightarrow \infty} \max _{k} \alpha_{p, k}=\lim _{p \rightarrow \infty} \max _{k} \beta_{p, k}=M_{|\hat{f}|^{2}}
$$

where $M_{\hat{f}}$ is the essential supremum of $|\hat{f}|^{2}$, that is, the smallest number for which $|\hat{f}(x, y)|^{2} \leq$ $M_{|\hat{f}|^{2}}$ except on a set of total length or measure 0 .

Proof The proof is a straightforward generalization of that given in Theorem 4.2, Corollary 4.1, and Corollary 4.2 of [1].

Hence we have established that the optimal pooling unit activity for valid and circular convolution converges as p grows. Next we show that the optimal norm-one solution for circular convolution, x_{c}, is near-optimal for valid convolution provided that x_{c} consists of a single sinusoid. The difference between objective values is

$$
\left|\frac{x_{c}^{*} V_{p}^{*} V_{p} x_{c}}{x_{c}^{*} x_{c}}-\frac{x_{c}^{*} C_{p}^{*} C_{p} x_{c}}{x_{c}^{*} x_{c}}\right|=\left|\frac{x_{c}^{*} D_{p} x_{c}}{x_{c}^{*} x_{c}}\right|
$$

Recall that the number of nonzero elements in D_{p} can be written as $K n$ where K is not a function of n. Now we establish a bound on each individual element of x_{c}; because x_{c} is a sinusoid that spans the entire input, and the total norm is constrained, the individual elements diminish in size as p grows. In particular,

$$
\begin{align*}
\left|x_{c}[j, l]\right| & =\left|\frac{1}{n} \sum_{m=0}^{n-1} \sum_{q=0}^{n-1} z[m, q] e^{i 2 \pi\left(\frac{j m}{n}+\frac{l q}{n}\right)}\right| \tag{7}\\
& \leq \frac{1}{n} \sum_{m=0}^{n-1} \sum_{q=0}^{n-1}|z[m, q]| \tag{8}\\
& \leq \frac{\sqrt{2}}{n} \tag{9}
\end{align*}
$$

provided there is only one maximum frequency and hence only one (if the zero, DC frequency is maximal) or two (if a single nonzero frequency is maximal) nonzero entries in z. Let M be the maximum magnitude entry in D_{p}, and let $T=\max _{i, j, k, l}\left|x_{c}[i, j] x_{c}[k, l]\right|$ be the maximum magnitude of any pair of terms in x_{c}. We note that $T \leq\left|x_{c}[i, j]\right|\left|x_{c}[k, l]\right| \leq \frac{2}{n^{2}}$. Hence

$$
\begin{align*}
\left|x_{c}^{*} D_{p} x_{c}\right| & \leq n K M T \tag{10}\\
& \leq \frac{2 K M}{n} \tag{11}
\end{align*}
$$

and so $\lim _{p \rightarrow \infty}\left|x_{c}^{*} D_{p} x_{c}\right|=0$. Therefore, since from Theorem B. 3 we know circular and valid convolution limit to the same value, and from the preceding analysis we know $x_{c}^{o p t}$ applied to V_{p} attains the same objective when applied to C_{p}, we know that as $p \rightarrow \infty, x_{c}^{o p t}$ attains the optimal value for V_{p}.

References

[1] R. M. Gray. Toeplitz and Circulant Matrices: A review. Foundations and Trends in Communications and Information Theory, 2(3), 2005.

