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B Theorem 2.2: Near-optimality of optimal circular input for full
convolution

Theorem B.1 Let pv(x) denote the activation of a single pooling unit in a valid convolution, square-
pooling architecture in response to an input x, and let xoptv and xoptc denote the optimal norm-one
inputs for valid and circular convolution, respectively. Then if xoptc is composed of a single sinusoid,

lim
n→∞

∣∣pv (xoptv

)
− pv

(
xoptc

)∣∣ = 0.

Proof We proceed by first establishing that the maximal eigenvalues of V ∗p Vp limit to those of
C∗pCp. Then we show that the optimal input for circular convolution asymptotically attains the same
value when applied to valid convolution. We begin with some definitions.

The strong norm of a square matrix A is ||A|| = maxx 6=0
||Ax||
||x|| =

√
maxk λk, where λk are the

eigenvalues of the Hermitian positive semidefinite matrix A∗A.

The weak norm of a matrix A ∈ Rp×p is |A| =
(

1
p

∑p
i=1

∑p
j=1 |Aij |2

) 1
2

.

Two sequences of n× n matrices {Ap} and {Bp} are asymptotically equivalent if

1. Ap and Bp are uniformly bounded in the strong norm

||Ap||, ||Bp|| ≤M <∞, p = 1, 2, . . .

2. and Ap −Bp = Dp goes to zero in weak norm as p→∞,

lim
p→∞

|Dp| = 0.

Lemma B.2 Let Vp and Cp denote matrices performing valid and circular convolution of a filter
f ∈ Rk×k with an input of size p, respectively. The sequences of matrices

{
V ∗p Vp

}
and

{
C∗pCp

}
are asymptotically equivalent.

Proof Let Dp = V ∗p Vp −C∗pCp. First we will show that limp→∞ |Dp| = 0. We do this by showing
that the number of nonzero elements in Dp is proportional only to n, not n2. Note that both circular
and valid convolution compute the same n− k+ 1× n− k+ 1 filter responses in the interior of the
input. Hence nonzero entries inDp can come only from the n2−(n−k+1)2 = 2(k−1)n−(k−1)2
filter responses that circular convolution computes but valid convolution does not. Each of these filter
responses, when squared, will contribute at most Q = 2

(
k2

2

)
+ 2k2 terms to Dp, where the factor of

2 is due to the symmetry of the quadratic form. This is a significant overestimate, but importantly
is only a function of k and not p. Further, we note that for n > 2k, the maximum element of Dp is
independent of p, that is, maxi,j |dij | = M . Therefore

|Dp| =

√√√√ 1
n2

n2∑
i=1

n2∑
j=1

|dij |2 (1)

≤
(

1
n2

(
2(k − 1)n− (k − 1)2

)
QM2

) 1
2

(2)

≤ Kn−
1
2 (3)

where K is not a function of n. Hence limp→∞ |Dp| = 0. �

Next we show that the matrices are uniformly bounded in the strong norm. For Hermitian matrices,
||A||2 = maxk |αk|, the maximum magnitude eigenvalue of A. For the circular convolution case
this is simply the square of the magnitude of the maximal Fourier coefficient of f , and hence is
bounded for all p. For valid convolution, we note that ||Vpx||2 =

∑n−k+1
i

(
vTi x

)2
, where vTi is

the ith row of Vp. The vector vTi contains the filter coefficients f and is otherwise zero; hence it has
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only k2 nonzero entries. We can therefore form the vector x̃i ∈ Rk2
from just those elements of x

which will be involved in computing the dot product, such that vTi x = fT x̃i. Then we have
n−k+1∑

i

(
vTi x

)2
=

n−k+1∑
i

(
fT x̃i

)2
, (4)

≤ ||f ||2
n−k+1∑

i

||x̃i||2, (5)

≤ k2||f ||2||x||2, (6)

where the last inequality comes from the fact that each xi can appear at most k2 times in the sum.
The strong norm is therefore bounded, since ||V ∗p Vp|| = maxx 6=0

x∗V ∗
p Vpx

x∗x ≤ k2||f ||2. �

Next we appeal to the following theorem, which is a variation on that stated by [1].

Theorem B.3 Let αp,k and βp,k denote the eigenvalues of Vp and Cp respectively. Let f̂(ω1, ω2)
denote the 2D discrete time Fourier transform of the filter f ,

f̂(ω1, ω2) =
∞∑

j=−∞

∞∑
k=−∞

f [j, k]eijω1eikω2 .

Then
lim
p→∞

max
k

αp,k = lim
p→∞

max
k

βp,k = M|f̂ |2

where Mf̂ is the essential supremum of |f̂ |2, that is, the smallest number for which |f̂(x, y)|2 ≤
M|f̂ |2 except on a set of total length or measure 0.

Proof The proof is a straightforward generalization of that given in Theorem 4.2, Corollary 4.1, and
Corollary 4.2 of [1]. �

Hence we have established that the optimal pooling unit activity for valid and circular convolution
converges as p grows. Next we show that the optimal norm-one solution for circular convolution, xc,
is near-optimal for valid convolution provided that xc consists of a single sinusoid. The difference
between objective values is ∣∣∣∣x∗cV ∗p Vpxcx∗cxc

−
x∗cC

∗
pCpxc

x∗cxc

∣∣∣∣ = ∣∣∣∣x∗cDpxc
x∗cxc

∣∣∣∣
Recall that the number of nonzero elements in Dp can be written as Kn where K is not a function
of n. Now we establish a bound on each individual element of xc; because xc is a sinusoid that
spans the entire input, and the total norm is constrained, the individual elements diminish in size as
p grows. In particular,

|xc[j, l]| =

∣∣∣∣∣ 1n
n−1∑
m=0

n−1∑
q=0

z[m, q]ei2π( jm
n + lq

n )

∣∣∣∣∣ (7)

≤ 1
n

n−1∑
m=0

n−1∑
q=0

|z[m, q]| (8)

≤
√

2
n

(9)

provided there is only one maximum frequency and hence only one (if the zero, DC frequency
is maximal) or two (if a single nonzero frequency is maximal) nonzero entries in z. Let M be
the maximum magnitude entry in Dp, and let T = maxi,j,k,l |xc[i, j]xc[k, l]| be the maximum
magnitude of any pair of terms in xc. We note that T ≤ |xc[i, j]||xc[k, l]| ≤ 2

n2 . Hence

|x∗cDpxc| ≤ nKMT (10)

≤ 2KM
n

, (11)
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and so limp→∞ |x∗cDpxc| = 0. Therefore, since from Theorem B.3 we know circular and valid
convolution limit to the same value, and from the preceding analysis we know xoptc applied to Vp
attains the same objective when applied to Cp, we know that as p → ∞, xoptc attains the optimal
value for Vp. �
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