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Abstract

We address the problem of detecting complex articulated
objects and their pose in 3D range scan data. This task
is very difficult when the orientation of the object is un-
known, and occlusion and clutter are present in the scene.
To address the problem, we design an efficient probabilis-
tic framework, based on the articulated model of an object,
which combines multiple information sources. Our frame-
work enforces that the surfaces and edge discontinuities of
model parts are matched well in the scene while respecting
the rules of occlusion, that joint constraints and angles are
maintained, and that object parts don’t intersect. Our ap-
proach starts by using low-level detectors to suggest part
placement hypotheses. In a hypothesis enrichment phase,
these original hypotheses are used to generate likely place-
ment suggestions for their neighboring parts. The proba-
bilities over the possible part placement configurations are
computed using efficient OpenGL rendering. Loopy belief
propagation is used to optimize the resulting Markov net-
work to obtain the most likely object configuration, which
is additionally refined using an Iterative Closest Point algo-
rithm adapted for articulated models. Our model is tested
on several datasets, where we demonstrate successful pose
detection for models consisting of 15 parts or more, even
when the object is seen from different viewpoints, and var-
ious occluding objects and clutter are present in the scene.

1. Introduction

The detection of articulated objects and their pose is a
difficult problem with multiple practical applications, in-
cluding human pose detection, intelligent interpretation of
surveillance and other video data, advanced user interfaces,
model-based coding of gestures, and more (see, for exam-
ple, [10] for a survey). Not surprisingly, the bulk of the work
on this topic has focused on this problem in the context of
2D images. However, with the increasing availability of 3D
sensors (including laser range finders and stereo-based sen-
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Figure 1. (a) An articulated object model consists of rigid parts,
whose motion is constrained by joints. Our goal is to detect the
model pose in (b) range scans containing clutter and occlusion.

sors), a treatment of this problem in 3D scenes is becom-
ing more and more relevant. As illustrated in Fig. 1, our
goal in this paper is to identify the pose of an articulated 3D
model within a range scan of a complex, cluttered scene,
even when significant portions of the model are occluded
from the field of view.

Our algorithm takes as input an articulated 3D object
model, made up of rigid parts whose motion is constrained
by joints, as shown in Fig. 1(a). Given a single range scan
of a scene (Fig. 1(b)), our goal is to find a consistent place-
ment of the model within that scene. This involves obtain-
ing a set of rigid transformations that place the model parts
in the scene, and respect the joints.

Following Ioffe and Forsyth [11], our method uses de-
tectors to provide initial hypotheses for the placement of
each object part. However, due to occlusion and the lack
of strong identifying features, it is surprisingly difficult to
identify, with any accuracy, individual object parts within
the scene. Some parts may have a very large number of
candidate placements, whereas others may not be detected
even by the best available methods. Therefore, the set of
conceivable placements of the articulated object within the
scene is combinatorially large.

We address this issue by using a probabilistic Markov
network model, which defines a joint distribution over the
placement of the individual parts. This model incorporates



a range of (soft) constraints: that the surfaces and edge dis-
continuities of model parts are matched well in the scene
and part placements respect the rules of occlusion, that joint
constraints and angles are maintained, and that object parts
do not intersect. We can then use loopy belief propaga-
tion [18, 16] to find the most likely object configuration in
this Markov network. Importantly, the elements in the dis-
tribution associated with possible part placement configura-
tions can be computed efficiently using OpenGL rendering,
greatly speeding up the inference.

However, this solution by itself is insufficient; as we dis-
cussed, for some parts, the correct placement may not be
in the initial set of hypotheses at all. We therefore utilize a
novel hypothesis generation procedure, which uses the ar-
ticulated model structure to produce new hypotheses for a
part, given the current hypotheses about its neighbors.

We test our method on two challenging data sets, con-
taining multiple poses of a puppet and a human, whose ar-
ticulated models consist of 15 parts or more. The scans are
obtained from different views, and contain various types of
clutter and occluding objects. Despite the difficulty and va-
riety in this data set, we show that our method is capable of
recovering the object pose correctly in many cases. Using a
third, synthetic data set, we show that we can successfully
place parts with a low error relative to the ground truth.

2. Related Work

Many researchers avoid the complexity of dealing with
explicit part-based models, and learn the mapping between
appearance and pose directly [25, 15, 24]. Such approaches
deal with the combinatorial explosion of possible poses, ob-
ject scale and scene clutter by requiring vast amounts of
training examples. The poses of new examples can be found
by nearest-neighbor search in high dimensions [20, 4], or
by training discriminative regressors [1, 22]. The drawback
with these approaches is that tens of thousands to millions
of examples are needed in order to obtain good predictions.

The bulk of the work on pose detection has focused
on detecting 2D models in 2D image data, typically mod-
eling the body as an assembly of 2D parts [8, 11, 26].
Most frequently, these approaches use a tree-shaped graph-
ical model to capture the geometric constraints between
the parts, which allows efficient and exact dynamic pro-
gramming methods to be applied. The hypotheses provided
to these methods are usually obtained from low-level de-
tectors [26, 11], or by enumerating all possible configura-
tions for pairs of adjacent parts, which is feasible in 2D,
as shown by Felzenszwalb and Huttenlocher [8]. More re-
cent work [6, 19] relaxes the tree-shaped constraint graph
assumption, which allows the model to discourage cases
when non-adjacent parts are overlapping. The resulting op-
timization problem can be solved efficiently with approxi-
mate methods such as loopy belief propagation [14, 12] and

constrained integer programming [19]. A key problem with
2D object models is that they are strongly view and scale-
dependent, and are prone to fail if the viewpoint relative to
the object changes.

In 3D, the problem becomes more difficult, since the di-
mensionality of the search space increases significantly. Be-
cause of this, current work on 3D articulated pose detection
has focused mainly on tracking, where temporal informa-
tion constrains the space of reasonable pose hypotheses. For
example, Sigal et al. [21] use a sampling-based version of
belief propagation for tracking the human body in video,
and a similar work by Sudderth et al. [23] is applied to the
problem of hand tracking. Their techniques can in princi-
ple be applied to the problem of pose detection, but are less
efficient than our approach, and in the absence of good ini-
tial hypotheses for all body parts, the sampling process may
take a very long time or fail to converge altogether.

There has been less work on object and pose detection
in 3D range data, which has become readily available only
recently. Most of the existing methods for range data fo-
cus on devising efficient descriptors for detecting rigid ob-
jects [13, 9]. Algorithms for dealing with more complex or
deforming objects usually make simplifying assumptions.
For example, the method of Anguelov et al. [3] makes the
registration of deformable 3D articulated objects tractable
by assuming that there is no clutter in the scene. This is an
overly strict assumption in most practical cases.

3. Probabilistic Model

Our goal is to detect the placement of all articulated
model parts in range scans containing that model. We define
a joint probability distribution over the possible configura-
tions of the articulated object using a Markov network [18].
In this network, we have a variable for every part, whose
domain consists of the possible configurations for that part;
these hypotheses are obtained by a mechanism described
in Section 5. The network contains local part potentials,
which evaluate the match between the part placements and
the observed data — they favor part placements where the
surface and edges are consistent with the observed scene. It
also contains part interaction potentials, which reflect the
constraints between the placements of pairs of parts in the
articulated object; these favor part placements where parts
do not intersect, distances at the joints are respected, and
angles around joints are appropriate.

3.1. Local Part Potentials

Each variable in our Markov network encodes the possi-
ble location hypotheses of a particular object part. For part
p, we consider the location hypotheses hp

1, . . . , h
p
K , where

each one corresponds to a transformation placing the part
somewhere in the scene. The local part potential represents
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Figure 2. Area explanation/occlusion score prefers placement of
parts that are (a) well aligned with surface as opposed to (b) those
that occlude surface.

the likelihood of a part placement. For each hypothesis k of
part p, this potential consists of two scores:

φ(hp
k) = φsurface-match(h

p
k) · φedge-match(h

p
k), (1)

where φsurface-match and φedge-match quantify how well the
model surfaces and edges match those in the scene. These
scores are described below.

3.1.1 Surface match score

In defining this score, we assume that the range scanner
provides surface connectivity information in addition to the
depth readings. This is not a restrictive assumption, as such
information is provided by many scanners [7], or can be ob-
tained by post-processing methods [17].

The surface match score favors placements of parts for
which the expected part surface — the surface we would
expect to see given the part placement — aligns with the ob-
served surface. In addition, it penalizes parts that protrude
in front of the observed surface, thereby occluding portions
of the scanned scene. Fig. 2 shows an example of a good
and a bad scoring placement of a lower leg part. The exam-
ple in Fig. 2(b) represents a not-so-likely lower leg match,
as the expected surface aligns poorly with the range scan
surface, and even occludes some of it.

To define the surface match score, we discretize the part
surface. For each point i on that surface (transformed ac-
cording to the hypothesis hk

i ), we focus on the line con-
necting it to the scanner viewpoint. If this line intersects
the observed surface, we examine the distance di between
the expected surface and the observed surface points on the
line. If di is small, we allow observed surface points to be
explained away using a 0-mean Gaussian distribution with
variance σ2

s . If the observed surface is far in front of the
expected surface, we assign a moderate uniform probabil-
ity α, as there is a reasonable chance that the part is sim-
ply behind some other object in the scene. Thus, for ob-

served points in front of expected points, we define δi =
max(α, exp(−di

2

2σs
2 )). When the observed surface is behind

the expected surface, we define δi = max(β, exp(−di
2

2σs
2 )).

Here the low uniform probability β < α accounts for the
unlikely case that we observe some surface behind the part,
despite our expectation that it should be occluded by the
part. Finally, we have to deal with cases where the expected
surface falls in a region where no surface was observed in
the scan. We cannot assume there is actually no surface
there, as the lack of readings could be due to physical limi-
tations of the scanner. Thus, we assign a moderate uniform
probability δi = γ to part points that fall within such re-
gions, representing the reasonable likelihood of observing
no surface where a part is placed in the scene.

The total score of a part then is the product of the point
scores weighted by the expected area of the points:

φsurface-match(hp) =
∏

i∈p

δi
area(i). (2)

This formulation is an approximation, which assumes dif-
ferent points within the same part are independent, and ig-
nores the possible correlations arising from the fact that
neighboring points tend to be occluded by the same object.

The surface match score is implemented using OpenGL,
which allows accurate calculation of surface occlusion that
can not be obtained from 3D point information alone. Fur-
thermore, we are able to leverage hardware accelerated 3D
rendering in the graphics card to score several hundred part
hypotheses per second. We do this by first rendering the
range scan in OpenGL, as seen from the scanner viewpoint.
Then each object part that we wish to score is rendered
separately. The graphics engine provides an automatic dis-
cretization of the scene into pixels. We can compare the
Z-buffer values between the part and the range scan to de-
termine where the two surfaces lie relative to each other.
This is sufficient for estimating the surface match score.

3.1.2 Edge match score

In our formulation, we use the term edges to refer to depth
discontinuities in the scene. The edge match score reflects
the idea that scene and part edges should align. The edges
in the scene can be computed efficiently by rendering it us-
ing OpenGL and applying the well-known Canny edge de-
tection algorithm on the OpenGL Z-buffer image. We can
identify the depth discontinuities of the object parts by ren-
dering the expected part surfaces in the same manner.

For each point along the edge of the expected part sur-
face, we find the closest edge point in the observed sur-
face. We prefer that the distance ei between these points
is small, which is enforced using a 0-mean Gaussian dis-
tribution over ei with variance σe

2. Because of noise and
missing surface in the range scans, we assign a uniform



probability γe in then cases when ei is large, resulting in
the following score for an individual edge point i:

εi = max(γe, exp(
−ei

2

2σe
2
)). (3)

As before, to obtain the score for the entire part, we weight
the score of each point by its size (here, its segment length):

φedge-match(hp) =
∏

i

εi
length(i). (4)

3.2. Articulated Object Prior

Our probabilistic model contains additional potentials
between pairs of articulated model parts, which are respon-
sible for enforcing the articulated model constraints. For
two parts p and q, we create a potential ψ(hp

i , h
q
j) for a joint

configuration where part p is transformed by hypothesis i
and part q by hypothesis j:

ψ(hp
i , h

q
j) = ψjoint(h

p
i , h

q
j) · ψintersection(h

p
i , h

q
j). (5)

The joint consistency score ψjoint and the part intersection
score ψintersection are described in more detail below.

3.2.1 Joint consistency score

In a connected articulated model, two neighboring parts
should meet at their shared joint. For the hypothesis hp

i , we

define v(p→q)
i to be location of the (p, q) joint point accord-

ing to hp
i ; we define v(q→p)

j correspondingly for hq
j . The

distance between these two points is simply:

d
(p,q)
i,j = ‖v(p→q)

i − v
(q→p)
j ‖2. (6)

We then introduce a Gaussian distribution over d(p,q)
i,j , with

mean 0 and variance σ2
j .

Similarly, we introduce a prior over the angle between
two adjacent parts, to bias against configurations where
neighboring parts are twisted in ways that are inconsistent
with the restrictions of the joint. The configuration of each
of the two parts determines a 3-dimensional vector describ-
ing one part’s rotation in the scene, relative to the position of
the joint with the neighboring part. We compute the angle
θ
(p,q)
i,j between the two parts using a dot-product operation.

We then compare that angle to the angle θ̃(p,q) defined by
the model. To avoid bias for normal motion around the joint,
we use a uniform potential for cases where |θ(p,q)

i,j − θ̃(p,q)|
is less than some threshold t; outside that range, we use a
Gaussian distribution with mean 0 and variance σl

2.

3.2.2 Part intersection score

Finally, our model enforces that in the detected pose, dif-
ferent parts do not overlap. In practice, we encounter cases

Figure 3. Top scoring placement hypotheses for upper torso ob-
tained by using spin-image detectors.

where both the upper left and right leg are explaining the
same observed surface. To prevent this, we need to intro-
duce potentials between all pairs of parts, which favor ob-
ject poses in which there is little overlap between the parts.

Our part intersection score is based on the amount of
overlapping volume between two parts. We discretize the
part volumes using a 3D grid, and for each pair of parts
compute the total number of grid points that lie in the in-
tersection of their volumes. We score the amount of inter-
sected volume using a Gaussian distribution with mean 0
and variance σv

2.

4. Probabilistic Inference

The probabilistic model in the previous section defines a
joint distribution over the possible placements of the artic-
ulated object in the scene. Our task is to find the joint as-
signment whose probability is highest. In other words, we
want to find the most likely (MAP) assignment in the pair-
wise Markov network defined above. Several algorithms
exist for solving the MAP inference problem. We chose to
use loopy belief propagation (LBP) [18], which has been
shown to work effectively in a broad range of applications.

As defined, the pairwise Markov network includes a po-
tential over all pairs of parts in the articulated model, repre-
senting the constraint that no two parts can overlap. Thus,
we have a densely connected graphical model, with a num-
ber of edges that grows quadratically with the number of
parts. This makes the inference process quite costly, and
can also lead to non-convergent behavior of LBP.

Fortunately, the intersection potentials are not necessary
between most non-adjacent parts, as it is rare that a config-
uration where they intersect has a high score. Thus, we de-
fine an incremental inference process (also proposed in [3]),
where we begin by including in the model only the inter-
section potentials for adjacent parts. We then run inference,
and examine the resulting MAP assignment. We introduce
intersection potentials only for pairs of parts that are over-



lapping in the MAP assignment, and then re-run inference.
This process is repeated until no parts intersect in the MAP
assignment. Note that, in some cases, inference may fail
to converge once an intersection potential is added. In this
case, we consider each of the two conflicting parts in turn,
fix its value to the one in the MAP assignment, and run in-
ference. This process gives rise to two configurations; we
select the one that has the higher likelihood in our model.

5. The Pose Detection Pipeline

Before building the probabilistic model, we must ini-
tialize variable domains with placement hypotheses for the
parts. Exhaustive search of the high-dimensional, continu-
ous space of possible part placements is not feasible. We
use low-level detectors to suggest part placement hypothe-
ses. In particular, we use very efficient spin-image fea-
tures [13] to find similar surfaces in the model and the
scene. In our data sets, the spin-image radius is chosen to
be approximately the size of the (puppet or human) head.
Following the work of Johnson and Hebert [13], we cluster
the spin-image matches to obtain coarse part placement hy-
potheses. These hypotheses are refined further using a stan-
dard method for rigid surface alignment [5]. This process
frequently produces good hypotheses, but also generates a
substantial number of incorrect ones (Fig. 3).

The spin-image suggestions can be used to define the
Markov network model, described in Sec. 3. Search in the
space of possible object poses is performed using the loopy
belief propagation algorithm, as described in Sec. 4. The re-
sult of this algorithm is an object pose which has the highest
or one of the highest scores in our model.

The pose obtained from the probabilistic inference can
be further refined using an algorithm called Articulated
ICP [2]. The original hypotheses provided to the probabilis-
tic inference are generated by detectors and aligned sepa-
rately to the range scan surface. Articulated ICP optimizes
the alignment of all parts simultaneously, and respects the
model joints. Specifically it computes the rigid transforma-
tions for all parts that minimize the distance between neigh-
boring parts and between each part and the nearby surface.
The result of this process is a more accurate placement of
the articulated model in the range scan.

6. Dealing with Missing Part Hypotheses

In the previous section, we avoided discussing a funda-
mental challenge. For many object parts, the detectors can
fail to get good placement hypotheses altogether, either be-
cause of the failure of the detector itself, or because the part
was not observed in the range scan. Because of this, joint
constraints can be severely violated, causing the inference
process to fail. One of the main contributions of this paper
is to provide a practical solution for this problem.

Our first strategy is to try to generate the missing hy-
potheses. Before running inference, we introduce a domain
enrichment phase, in which object parts propose placement
hypotheses for their neighbors. We do this in two different
ways. First, the hypotheses for each part are used to gener-
ate hypotheses for the part’s immediate neighbors. For each
neighbor part we consider transformations which preserve
the joint with the original part, and align the part surface
to similar surface in the scene (this similarity is quantified
using a spin-image score). In this way, a correctly-placed
arm can suggest a placement for a heavily occluded torso.
Second, we use hypotheses for two parts on either side of a
given part to suggest placements for it. For example, a cor-
rect torso and lower arm placement can suggest the place-
ment of a missing upper arm. In practice, the combination
of these two strategies is very effective in finding good hy-
potheses which have been missed by the detector.

However, this not sufficient to completely deal with the
problem. Our probabilistic model, described so far, requires
that all of the object parts are placed somewhere in the
scene. In scenes with significant occlusion, this constraint is
not necessarily desirable. When some parts are completely
hidden, there is no data from which to obtain placement hy-
potheses consistent with the rest of the puppet parts. Thus,
we may not have any good placement hypotheses in the do-
mains of those parts and they can only be placed in locations
inconsistent with other parts. Therefore, we relax the con-
straint that all parts must be placed in the scene, choosing
instead to obtain a high-scoring connected component in the
tree structure corresponding to the articulated object.

More precisely, we select a central root part r, which
is required to be present after the domain enrichment phase.
Other parts can be missing from the scene. Once we declare
a part p to be missing, all parts in the tree structure that are
linked to the root via a path involving p are also declared
to be missing. This follows the intuition that, if we cannot
place p in the scene, our placements for neighboring parts
are also likely to be wrong. In our experiments, the upper
torso appears to work well as a root part. In general, other
root parts can be tried in addition to it.

We augment our probabilistic model to allow missing
parts by including a part-missing hypothesis hp

null in the do-
main for each part p. The local part potential associated
with this hypothesis is designed so as not to score higher
than any hypothesis that explains an area or edge, but to
score higher than a part that occludes surface it should not.
The pairwise score ψ(hp

null, h
q
j) between a missing part p

and its upstream neighbor q is a neutral uniform poten-
tial, which does not impose any joint-consistency or part-
intersection penalties. The potential between a pair of part-
missing hypotheses ψ(hp

null, h
q
null) is simply 1. Finally, the

potential ψ(hp
null, h

q
j) between a missing part p and a non-

missing downstream neighbor q is 0. With this model a part



(a) Puppet kicking ball (b) Puppet kneeling next to cup (c) With smaller puppet on shoulders

(e) Puppet with a ring around it (f ) Puppet stepping on object(d) Puppet holding a ring

(g) Puppet with sticks (h) Puppet with wire snaking around

Figure 4. Sample of scenes and the resulting puppet embeddings

will always be added to the network as long as its addition
(or the addition of it and parts beneath it) have a positive
effect on the likelihood of the resulting configuration.

7. Experimental Results

We present results of running our algorithm on two data
sets: the model puppet described before and a set of hu-
man scans. We then present analytical results on a third,
synthetic data set based on the puppet.

We tested our algorithm on several scenes involving a
15 part puppet model, viewed in different poses and from
various directions. The scenes have various cluttering and
occluding objects. The dataset was obtained using a tem-
poral stereo scanner [7]. A sample of the scenes and the
resulting puppet embeddings are shown in Fig. 4.

We are able to correctly identify the torso and head of

the puppet in almost all cases, even in situations with sub-
stantial occlusion. In most cases, we are able to place the
limbs correctly. This is possible even in scenes with sub-
stantial occlusion. For example, in the scene of the puppet
kicking the ball (Fig. 4(a)), its own arm occludes much of it
from view. In the scene with the puppet holding two sticks
(Fig. 4(g)) much of the puppet is not visible, but the limbs
are placed generally correctly.

Even in situations where limbs are not placed correctly,
they are placed in a configuration consistent with the scene
data. For example, in the scene of the puppet holding the
ring (Fig. 4(d)), the leg is turned up and placed along the
surface of the ring. This is consistent with our model, where
we wish to place our object in such a way that it explains the
observed data. In the scene in which we obtain the worst re-
sults (Fig. 4(e)), the puppet is twisted in an unusual manner
in an attempt to fit the observed surface. This, in fact, high-
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Figure 5. Sample of 4 scenes and the resulting human poses. For each pair, the image on the left is the original scene and the image on the
right is the recovered human pose.

lights the power of our hypothesis generation mechanism
and the difficulty of distinguishing an object from similarly-
shaped nearby surfaces without additional knowledge of the
space of likely poses.

We also test our algorithm on a dataset of partial views of
a human. We matched a 16-part articulated model to data
produced using a Cyberware WRX scanner. This dataset
introduces an additional challenge because the individual
parts are now deformable since human bodies are non-rigid.
Fig. 5 shows 4 scenes and the corresponding pose recov-
ered for each one. These results were obtained with the
same model settings as those used for the puppet. The only
exception was the strength of the joint angle prior, which
differs for humans and puppets.

In the human scenes, we find correct placements of the
heads and torsos, as well as most of the limbs. For example,
in Fig. 5(d), we are able to correctly reconstruct the entire
skeleton, despite the fact that most of the torso is missing,
due to occlusion from the arms and missing data caused by
shadows. In the cases where the limbs are not placed in the
correct location, they are consistent with the observed data,
placed either behind an occluding object or in the unknown
area surrounding the person (this area occurs because there
are no readings in some parts of the scan). Overall, we
demonstrate a fairly robust performance in a variety of dif-
ficult settings including changes of the field of view, occlu-
sion and clutter.

Finally, to provide a quantitative analysis of our algo-
rithm, we created synthetic puppet scenes and tested our
detector. We generated 25 scenes with the puppet in ran-
dom non self-intersecting poses. Between 2 and 5 ellip-
soids of different sizes were randomly placed between the
puppet and the scanner viewpoint.The scene was created
by introducing Gaussian noise with standard deviation be-
tween 0.1 and 0.35, and keeping only the surfaces visible
from the scanner viewpoint. We then ran our detector on
the scenes, and compared the results to the ground truth

Figure 6. Synthetic scene examples. The algorithm achieves low
error relative to ground truth.

poses. The part placement error was measured by com-
paring the displacements of its centroid and its adjacent
joints in our result. Recognizing the symmetry of the pup-
pet parts, we allowed the upper torso and arms to flipped
without penalty, and did the same with the lower torso.On
average, we found placements for 13.84 of the 15 parts. For
the placed parts, the average displacement was 3.56% of the
puppet height.Fig. 6 shows the resulting placements in sam-
ple scenes. Finally, it is worth noting that this experiment
poses an easier problem than real-world object detection, as
(a) occluding spheres may look reasonably different from
the puppet parts in many cases and (b) an actual range scan-
ner may fail to capture some of the surfaces due to shad-
ows and dark colors. Nonetheless, the results demonstrate
the effectiveness of our algorithm, as we were successful in
finding the pose even when large object portions were oc-
cluded.

8. Conclusions and Future Directions

This paper focuses on the challenging problem of detect-
ing the pose of an articulated 3D object in range scans. Our
algorithm is based on a probabilistic framework that com-



bines a local model of occlusion and scene generation with
a global model enforcing consistency in the assignments
to different object parts. Our method utilizes spin-image
detectors to generate individual part-placement hypotheses,
and then performs inference in the probabilistic model to
determine a coherent articulated object configuration. A key
contribution of our work is its treatment of elusive parts —
those for which the low-level detector provides no reason-
able hypotheses. These cases are surprisingly common in
our data sets, due to the presence of occlusion and clutter.
We describe a systematic approach for generating reason-
able hypotheses for these missing parts by leveraging the
articulated model structure, as well as a graceful method
for backing off when this hypothesis generation fails. We
demonstrate that our method can successfully identify the
pose in data sets, consisting of complex, cluttered scenes
with significant occlusion.

There are several important directions for future work.
One obvious improvement is to introduce a more informed
prior over the space of likely object poses; such an extension
would allow us to prune more configurations that are con-
sistent with the data but place the object in highly unlikely
poses. Given a richer data set, we could also incorporate
additional appearance cues, such as color or texture. More
broadly, we would like to define a richer probabilistic model
of articulated object pose and its appearance in real images,
and learn (certain aspects of) this model from data.
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