
LEARNING MODELS OF SHAPE FROM 3D RANGE

DATA

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dragomir Anguelov

December 2005

c© Copyright by Dragomir Anguelov 2006

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Daphne Koller
(Principal Advisor)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Andrew Ng

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Marc Levoy

Approved for the University Committee on Graduate Stud-

ies:

iii

iv

To my family and Olya.

Abstract

Constructing shape models of complex articulated and deformable objects is a fundamental

capability that enables a variety of applications in computer graphics, biomechanics, arts

and entertainment. Current approaches require a significant amount of manual intervention

in the model construction process.

In this thesis, we present algorithms for learning models of shape that reduce the need

for human input. First, we describe an unsupervised algorithm for registering 3D surface

scans of an object undergoing significant deformations. Our algorithm does not use mark-

ers, nor does it assume prior knowledge about object shape, the dynamics of its deforma-

tion, or scan alignment. It is based on a probabilistic model, which minimizes deformation

and attempts to preserve geodesic distances and local mesh geometry. Second, we describe

an algorithm whose input is a set of meshes corresponding to different configurations of an

articulated object. The algorithm automatically recovers a decomposition of the object into

approximately rigid parts, the location of the parts in the different object instances, and the

articulated object skeleton linking the parts.

We also address the problem of learning the space of human body deformations from

3D scans. Unlike existing example-based approaches, our model spans variation in both

subject shape and pose. We learn a model of surface deformation as a function of the joint

angles of the articulated human skeleton. We also learn a separate model of the variation

between different body shapes. We show how to combine these two models to produce

realistic deformation for different people in different poses. Finally, we show how our

framework can be used for shape completion – generating a complete surface mesh given

a limited set of markers specifying the target shape. We use this capability to complete

partial mesh geometry and to animate marker motion capture sequences.

vii

viii

Acknowledgements

I am profoundly grateful to my adviser Daphne Koller for many years of guidance and

support. She has been the most influential person in my academic career, responsible for

kindling my interest in research when I was a wide-eyed undergraduate, and for giving me

the opportunity to develop this interest. From my years as her advisee, I gleaned insights

into what kind of problems to tackle, how to go about addressing them and how to present

my results in a compelling manner. She set an example for me with her brilliance, high

standards and drive for excellence. In short, she has been a terrific adviser, and is the

primary culprit for me getting to the point of writing these acknowledgements.

I feel privileged for having Sebastian Thrun be my guide to the exciting world of proba-

bilistic robotics. I am forever indebted to his generosity — in practice he has been a second

adviser to me, spending countless hours to help develop the ideas in this thesis and provid-

ing valuable help and advice. His never-ending energy, flair and quick wit have truly been

an inspiration. It has been a joy to be around Sebastian; his research enthusiasm is truly

contagious.

My first graduate adviser, Carlo Tomasi, helped me with my first steps in graduate life,

and exposed me to the subject of computer vision. His kindness, generosity, and clarity of

thought have been a great example for me.

I would like to acknowledge the kind help of Marc Levoy, who on many occasions

shared his computer graphics expertise with this humble artificial intelligence student. He

provided valuable advice, which helped me to shape my research ideas, and present them in

a compelling manner to the computer graphics community. I would like to thank Andrew

Ng and Ron Fedkiw for valuable discussions and research suggestions, as well as Tom

Andriacchi for chairing my thesis defense committee and for generously providing me

ix

access to the wonderful facilities of the Stanford biomechanics lab.

I am grateful to James Davis, a 3D sensor guru and multimedia wizard, who was in-

strumental in providing the sensor data, which is the input to the algorithms in this thesis.

He is also responsible for taking the output of the algorithms and turning it into what I

personally think is a work of art. The work on SCAPE would not have been possible if

James Davis had not introduced me to two great Europeans in the Stanford biomechanics

lab – Lars M̈undermann and Stefano Corazza, who spent countless hours helping me with

the data acquisition process. Their passion for markerless motion capture is contagious,

which resulted in a great collaboration, which I hope will continue.

I feel privileged to be a member of our storied DAGS research group. I am greatly

thankful to have had a chance to work, hang around, travel with, spend time in interest-

ing discussions with, being motivated by the great work of: Pieter Abbeel, Alexis Battle,

Luke Biewald, Rahul Biswas, Vassil Chatalbashev, Gal Chechik, Gal Elidan, Lise Getoor,

Carlos Guestrin, Geremy Heitz, Uri Lerner, Uri Nodelman, Dirk Ormoneit, Jimmy Pang,

Evan Parker, Ron Parr, Jim Rodgers, Suchi Saria, Eran Segal, Christian Shelton, Praveen

Srinivasan, Simon Tong, David Vickrey, Haidong Wang and Ming Fai Wong.

I would like to say cheers mate! to my officemate Ben Taskar, friend in work and play,

with whom we faced early morning deadlines and grizzly bears, shared research ideas,

music, books and life experiences. I would like to say thank you! to Praveen Srinivasan, the

czar of morphing, whose steadfastness, dedication and insights always kept us on track for

the deadlines (meaning we would submit at the last moment after a mad scramble). I would

like to thank Pieter Abbeel, a remarkable researcher, and a serious disciple of the game of

tennis, for numerous interesting discussions that have enriched my understanding of many

a concept. I would like to thank Uri Lerner, chess and Diplomacy master, for taking an

inexperienced undergrad and showing him a thing or two in the ways of research. I would

like to thank Jimmy Pang, and Jim Rodgers — great guys, whom I enjoyed working with. I

would also like to thank Gal Elidan, an avid hiker and backpacker, a guy who knows how to

do great research and enjoy life, for many interesting conversations and for useful advice.

I thank Geremy Heitz for multiple discussions about various computer vision methods. I

would like to thank Mark Paskin, Brian Gerkey and Michael Montemerlo from Sebastian’s

group, whom I enjoyed talking robots, and not simply robots, with.

x

I would like to thank many friends from my ten years at Stanford, who did not have

direct impact on this thesis, but made my time here really memorable.

My parents, Irina and Dimitar, made everything possible for me to get a good education

while I was growing up, and supported me in my years-long foray into America and then to

grad school. Thank you mom and dad, I am truly grateful. I hope now that I am done I will

be able to see you more often. And last, but not the least — Olya, thank you for lighting up

these long months with your love and smile. Thank you for making me happy next to you.

xi

xii

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 3D Shape Models . 3

1.1.1 Artist-designed Models . 3

1.1.2 Anatomical Models . 5

1.1.3 Example-based Models . 5

1.2 Constructing a Deformation Model from Examples 6

1.3 Contributions . 7

1.4 Thesis Outline . 10

1.5 Previously published work . 11

2 Surfaces and Transformations 13

2.1 3D Surface Representations . 13

2.1.1 Explicit Representations . 14

2.1.2 Implicit Representations . 18

2.2 Rigid Body Transformations . 18

2.2.1 Exponential Coordinates for Rotation 20

2.2.2 Quaternions . 22

2.3 Aligning Two Corresponding Point Clouds 23

xiii

3 Probabilistic Graphical Models 27

3.1 Bayesian Networks . 28

3.1.1 Conditional Independence . 29

3.1.2 Model Definition . 31

3.2 Markov Networks . 32

3.2.1 Incorporating Directed Potentials 35

3.3 Inference . 36

3.3.1 Answering Conditional Probability Queries 37

3.3.2 Belief Propagation . 38

3.3.3 MAP Inference . 41

3.4 Parameter Learning . 45

3.4.1 Maximum Likelihood . 46

3.4.2 Expectation-Maximization . 48

4 Correlated Correspondence Algorithm 53

4.1 Traditional Non-rigid Surface Registration 55

4.1.1 Problem Definition . 55

4.1.2 Non-rigid Iterative Closest Point Algorithm 57

4.1.3 Local Maxima of Non-rigid ICP 58

4.2 Correlated Correspondence Algorithm . 60

4.3 Probabilistic Model . 62

4.3.1 Local Surface Signatures . 62

4.3.2 Deformation Potentials . 64

4.3.3 Geodesic Distances . 67

4.4 Optimization . 68

4.4.1 Dealing with Farness Preservation Potentials 69

4.4.2 Dealing with Local Minima of Loopy Belief Propagation 69

4.5 Surface Subsampling . 72

4.5.1 Subsampling the Scan Mesh . 73

4.5.2 Subsampling the Domains of the Correspondence Variables 74

4.6 Experimental Results . 75

xiv

4.7 Applications . 79

4.7.1 Obtaining Morphs . 79

4.7.2 Partial View Completion . 79

4.7.3 Animation . 81

4.8 Related Work . 85

4.9 Conclusion . 90

5 Recovering Articulated Object Models 93

5.1 Framework Overview . 94

5.1.1 Articulated Models . 94

5.1.2 Recovering Articulated Models 96

5.2 Segmentation into Rigid Parts . 97

5.2.1 Probabilistic Model . 98

5.2.2 Optimization . 102

5.2.3 Initializing the Model . 105

5.2.4 Simulated Annealing . 107

5.3 Estimating the Skeleton Joints . 108

5.4 Experimental Results . 109

5.5 Articulated Model Tracking . 115

5.5.1 Probabilistic Model . 116

5.5.2 Optimization . 117

5.5.3 Experimental results . 119

5.6 Related Work . 121

5.7 Conclusion . 124

6 Learning Deformable Models of Human Shape 125

6.1 Data Acquisition and Preprocessing . 129

6.2 Human Shape Model . 132

6.2.1 Model Overview . 133

6.2.2 Pose Deformation Model . 135

6.2.3 Body-Shape Deformation . 143

6.3 Shape Completion . 147

xv

6.3.1 Shape Completion Overview . 147

6.4 An Alternative Optimization Approach . 152

6.4.1 Partial View Completion . 155

6.4.2 Motion Capture Animation . 156

6.5 Related Work . 157

6.6 Discussion and Limitations . 160

7 Conclusions and Future Directions 163

7.1 Summary . 163

7.1.1 Unsupervised Registration . 163

7.1.2 Recovering Articulated Models 164

7.1.3 Learning the Space of Human Body Shapes 164

7.2 Extensions and Open Problems . 165

7.2.1 Real-time Implementations . 165

7.2.2 Registration in the Presence of Clutter and Occlusion 166

7.2.3 SCAPE for Markerless Motion Capture 167

7.2.4 Towards an Integrated Model of the Human Body 168

7.3 The Challenge Ahead . 169

Bibliography 171

xvi

List of Figures

1.1 Illustration of different 3D modeling paradigms 4

1.2 Example-based modeling pipeline . 7

1.3 Shapes of different people in different poses, synthesized from our learned

space of human body variations. 8

1.4 Animation of a motion capture sequence taken for a subject, of whom we

have a single body scan . 9

2.1 Surface discretization using point clouds and meshes. 16

2.2 Signed distance map example . 17

2.3 Rotation of a coordinate frame . 19

3.1 Bayesian network for the Alarm domain 30

3.2 Markov network for the surface partitioning problem 33

3.3 Markov network for the surface partitioning with evidence problem 35

3.4 Illustration of the Belief Propagation operations 39

3.5 Belief Propagation algorithm with parallel message updates. 40

3.6 Illustration of the likelihood optimization using EM 48

4.1 Generative model of the registration process 56

4.2 Non-rigid ICP algorithm . 58

4.3 Failure of the Non-rigid ICP algorithm . 59

4.4 Illustration of the Correlated Correspondence model 60

4.5 The induced Markov network encoding the correlations between the corre-

spondence variables. 61

xvii

4.6 Spin images . 63

4.7 Illustration of the link deformation process 64

4.8 Algorithm for providing multiple starting hypotheses for loopy belief prop-

agation . 70

4.9 Illustration of the mesh subsampling process 71

4.10 Simple algorithm for subsampling the mesh points 74

4.11 CC algorithm results . 76

4.12 A local minimum of the CC algorithm, due to shape symmetry 78

4.13 Running times of the CC algorithm. 79

4.14 Arm morphs obtained with the CC algorithm 80

4.15 Registration results for two meshes . 81

4.16 Partial view completion results . 82

4.17 Hole-filling of human body scans . 83

4.18 Comparison between our interpolation method and interpolation in Eu-

clidean space . 84

4.19 Interpolated quantities for animation between two scans. 85

4.20 Animations generated by interpolating pairs of scans 86

5.1 Overview of articulated model recovery 94

5.2 Probabilistic generative model for segmenting the template surface into

rigid parts . 96

5.3 Puppet segmentations obtained with two different initialization strategies . . 99

5.4 Graphs showing the number of parts of the final model and the log-likelihood

score using initialization with different number of parts in the puppet dataset.101

5.5 Recovered articulated model in the puppet dataset 105

5.6 Recovered articulated model in the arm dataset 108

5.7 Illustration of annealing on the Arm dataset 110

5.8 Articulated model, recovered in the human dataset 112

5.9 Tracking an articulated model in visual hull sequences 114

5.10 Tracking an automatically recovered articulated model in point cloud data . 120

6.1 Decomposition of the space of human deformations 127

xviii

6.2 Scape mesh processing pipeline . 129

6.3 Overview of the SCAPE model . 132

6.4 A plot of the eigenvalues obtained by performing PCA on the joint angles

of human pose examples . 137

6.5 Examples of muscle deformations that can be captured in the SCAPE pose

model. 139

6.6 Comparison of linear and non-linear pose regression 141

6.7 Numerical comparison of linear and non-linear regression for modeling

pose deformation . 142

6.8 The first four principal components in the space of body shape deformation 143

6.9 A variety of body shapes produced by the SCAPE model 145

6.10 Deformation transfer by the SCAPE model 146

6.11 Obtaining a reasonable starting point for the partial view completion process 149

6.12 Examples of view completion . 151

6.13 Motion capture animation . 158

xix

xx

Chapter 1

Introduction

Hamlet: Do you see yonder cloud that’s almost in shape of a camel?

Polonius: By the mass, and ’tis like a camel, indeed.

Hamlet: Methinks it is like a weasel.

Polonius: It is backed like a weasel.

Hamlet: Or like a whale?

Polonius: Very like a whale.

William Shakespeare (1564 - 1616), ”Hamlet”, Act 3 scene 2

Computers are increasingly used for modeling and interaction with the physical world.

Thanks to decades of research in computer graphics, computers can be utilized as animation

and rendering tools to enable the creation of compelling virtual realities. A multi-billion

industry specializes in conjuring up, creating and packaging these realities in the form of

movies and computer games. As a result, billions of people have been transported to new

worlds of fantasy, adventure and learning. Computers are also utilized for the creation of

intelligent agents, which are becoming increasingly sophisticated in their ability to navigate

the environment and to interact with people.

The tasks of modeling and interaction with the physical world are critically dependent

on the ability of the computer to represent and reason about shape. When humans perform

these tasks, they are able to transform the photon impulses hitting the eye’s retina into a

1

2 CHAPTER 1. INTRODUCTION

symbolic representation of the world (”Ouch! The dog ate my chocolate!”). We tend to

think of the world in terms ofobjects(dog, chocolate), which are entities with coherent

properties (dogs like chocolate).Shapeis one of the most fundamental properties, that is

used to describe the 3D surface geometry of objects. The ability to acquire and reason about

this geometry enables multiple practical applications in the entertainment, biomedical and

robotics industries which include animation of scenes and characters, motion capture and

analysis, and scene understanding.

Humans are able to perform sophisticated reasoning about shape on many levels. We

are able to recognize various objects andclasses of objectsbased on their shape, and many

artists and sculptors possess uncanny ability to reproduce the shapes that they have previ-

ously seen. We can reason about object classes from nature such as giraffes, jellyfish and

cobras, to name a few, and multiple human-made objects such as cars, chairs and text. Fur-

thermore, we can deal rather effortlessly with the significantshape variationwhich may be

present in a particular object class. Consider the familiar shape of the human body, which

is remarkably diverse in spanning African pygmies and North American couch potatoes,

as well as males and females. Another common object, the chair, comes in an incredibly

rich set of shapes limited only by the designer’s imagination, while somehow remaining

distinctly recognizable.

To make matters more difficult, the shape of each object can change (deform) over time.

In order to animate humans, snakes and puffer-fish, we need to be able to represent these

deformations. For many objects, the shape changes are often easier to understand if the

object is viewed as acollection of parts. For example, we think of a human body in terms

of head, torso, arms and legs, while a chair can have a seat, legs and a back. For many

objects (giraffes, chairs), the configuration of the object parts relative to each other can

change significantly and account for most of the shape deformation. The parts themselves

can deform (when humans flex their muscles and cats stretch) and faithful models need to

capture these deformations as well.

Most state-of-the-art algorithms for shape modeling, animation and tracking bypass

the inherent complexity of the shape-modeling task by relying on significant amount of

human input. For example, algorithms for finding the correspondence between two shapes

often require that dozens of corresponding points on the shapes are specified by a human.

1.1. 3D SHAPE MODELS 3

Algorithms for shape tracking often assume that the shape model and its decomposition

into parts is provided, and rarely generalize to other instances in the object class. Shape-

completion algorithms often assume that the object is placed in a particular pose.

In this thesis, we present a framework for learning complex shape models from exam-

ple surfaces acquired with a 3D scanner. The framework consists of several algorithms,

based on the theory of probabilistic graphical models, which allow us to learn complex

shape models of different objects with minimal human intervention. First, we address the

fundamental problem of non-rigid registration and describe an unsupervised algorithm for

computing the correspondences between two drastically deforming surfaces. Then, we

show how to automatically decompose a shape into its constituent parts, and find the joints

between the parts. We also show how to combine the information from the registered sur-

faces and the part decomposition in order to learn the space of deformations for an entire

object class. We demonstrate this approach by learning the space of human body deforma-

tions spanning different body physiques and different poses. Finally, we show applications

of the learned shape models to popular tasks such as animation, shape completion and

tracking.

1.1 3D Shape Models

We will start by giving a brief overview of the main shape-modeling paradigms.

1.1.1 Artist-designed Models

Most 3D character models, which are used in movies and games, are designed by graphics

artists. The design process is known ascharacter modelingand consists of several stages

(Fig. 1.1(a)). First, specialized software is used to model the surface geometry of the char-

acter, using many possible approaches such as subdivision surfaces, nurbs or constructive

solid geometry [46]. Other surface properties such as color, texture and reflection charac-

teristics may also be defined at this time. In the next stage of the process calledrigging, the

character may be fitted with a skeleton, which allows easy editing of its poses and move-

ment. The model can also be equipped with specific controls to make animation easier and

4 CHAPTER 1. INTRODUCTION

(a)

1. 2. 3. 4.

(b)

(c)
(c)

[Joann Patel]

[Sifakis et al. 2005]

[Allen et al. 2002]

[Sifakis et al. 2005]

Figure 1.1: Different 3D modeling paradigms. (a) Artist-designed models are created by
specifying the geometry and defining the skeleton and the facial expressions of the charac-
ter. (b) Anatomical models simulate the deformation of the underlying muscle and tissue.
(c) Example-based models are learned from scans of real-world objects.

more intuitive. For example, the character Woody from the movie Toy Story has about one

hundred pre-defined facial expression controls and mouth shapes used for lip-synching.

Many memorable characters such as Yoda1, Shrek and Buzz Lightyear and some less

memorable ones such as Jar-Jar Binks have been generated in such a manner. The scope

of different characters that can be created with the existing tools for 3D animation is truly

astounding; the main limitation being the imagination of the designer. The other main

limitation is time. The process is very labor-intensive, and may take months and many

people to design a novel character. Specialized software helps to decrease design time for

1Yoda is computer-generated in Star Wars episodes I-III only.

1.1. 3D SHAPE MODELS 5

commonly-used models such as humans [94], but the process still can take many days.

1.1.2 Anatomical Models

A different paradigm for obtaining accurate surface deformation is based on anatomical

modeling of the major bones, muscles and other interior structures of the body (Fig. 1.1(b)).

As the body moves, the deformation of these underlying structures induces a corresponding

deformation of the skin that is wrapped over them. There is a large body of work on such

physically-realistic models, including Wilhelms and Gelder [124], Scheeperset al. [100],

and Aubel and Thalmann [9]. The primary strength of anatomical approaches is their ability

to simulate dynamics and object interactions in a realistic way. However, such detailed

physical models are difficult to construct, and computationally expensive to use. In each

animation frame, one must perform a physical simulation of the entire body anatomy, while

taking care to conserve muscle volumes, and stretch the skin appropriately.

1.1.3 Example-based Models

An increasingly popular approach is to learn shape models directly from examples, which

can be acquired with a 3D scanner (Fig. 1.1(c)). This approach has been used to model face

deformations [15, 120], human body deformations due to changes in pose [108, 123, 80]

and human body deformations between different people [2, 102]. Example-based ap-

proaches produce realistic models that closely mimic the appearance of the scanned ob-

jects. Constructing them requires relatively little human involvement. Finally, they are

considerably more efficient than anatomical approaches because they only model the ob-

ject’s surface but not its interior. These factors make example-based approaches the method

of choice for objects which can be easily scanned. Example-based approaches for model-

ing shape will be the focus of this thesis. They merit a more detailed description, which is

provided in the next section.

6 CHAPTER 1. INTRODUCTION

1.2 Constructing a Deformation Model from Examples

Most example-based modeling methods use the same basic data-processing pipeline. The

process usually begins with a human-designed shape template of the object (Fig. 1.2(a)). In

the case when pose deformations are modeled, this template includes the articulated object

skeleton— a decomposition of the object surface into parts and the joints between these

parts. Depending on the actual surface representation, additional controls for deforming

the surface may be provided as well.

Then 3D scans of the object are acquired. In order to integrate the information present

in the scan surfaces, they need to be brought into correspondence — a process also known

as registration. Registration is usually performed between the object template and each

scan [1, 2]. The output is a mapping between every point on the template surface and its

corresponding point in the scan. Current registration algorithms need to be initialized with

a subset of the point-to-point correspondences between the model and each scan. These

correspondences can be obtained by placing markers on the scanned object (Fig. 1.2(b)) or

by having a human click on corresponding points in a special software tool. The number

of correspondences required is usually quite large — Allenet al. [2] needed more than 70

matching point pairs for the registration of two human body scans. Accurate placement of

physical or virtual markers is usually time-consuming, and for full-body models can easily

exceed half an hour per subject.

Now we have a set of registered scans, which specify the deformations of the tem-

plate shape for a variety of object instances or poses. These deformationsY are associ-

ated with some intrinsic parametrizationX of the object template, producing the tuples

(X1, Y1), . . . , (Xn, Yn). For example, if we are modeling pose deformations, the vectorsX

will contain the joint angles of the articulated skeleton. If we are modeling the space of

human facial expressions,X may correspond to the parameters of some lower-dimensional

subspace. Most commonly, these subspace parameters are obtained by performingPrinci-

pal Component Analysis (PCA)on the deformation vectorsY .

We can predict the deformations of new object instances by interpolating from nearby

examples (Fig. 1.2(c)). In particular, given a set of parametersX ′ defining a new shape

instance, we can obtain the shape template deformationsY ′ by looking at the examples

1.3. CONTRIBUTIONS 7

(a) (b)

(c)

Figure 1.2: The pipeline for learning a shape model from examples (example courtesy of
Allen et al.[1]). (a) A shape template for the object is defined, which includes an articulated
skeleton and a deformable subdivision template. (b) Markers are placed on the object’s
surface and scans of the object are acquired. (c) After the shape template is registered with
the scans, new examples can be generated by interpolation from existing ones.

whose parametersX are similar toX ′. A variety of different methods exist, that differ

only in the details of representing the deformation, and in the way the interpolation is done

[70, 108, 123, 80, 102]. Many of these interpolation methods are very efficient, and can be

used for real-time animation.

1.3 Contributions

This focus of this thesis is on algorithms which allow us to learn complex models of shape

with little or no human supervision. We present novel algorithms for all stages of the

modeling process.

8 CHAPTER 1. INTRODUCTION

Figure 1.3: Shapes of different people in different poses, synthesized from our learned
space of human body variations.

◦ Registration of 3D surfaces

We propose an unsupervised algorithm for 3D surface registration. When the sur-

faces undergo significant deformations, previous approaches rely on the presence of

markers on the scans, or on significant object-specific knowledge. In contrast, our

algorithm does not need markers, nor does it assume prior knowledge about object

shape, the dynamics of its deformation, or scan alignment. The algorithm registers

two meshes by optimizing a joint probabilistic model over all point-to-point corre-

spondences between them. This model enforces preservation of local mesh geometry,

as well as more global constraints that capture the preservation of geodesic distance

between corresponding point pairs. The algorithm applies even when one of the

meshes is an incomplete range scan; thus, it can be used to automatically fill in the

remaining surfaces for this partial scan, even if those surfaces were previously only

seen in a different configuration. Our algorithm has certain limitations — it does not

address the cases when there are significant changes in surface topology, nor does it

offer a way of preserving the volume enclosed by the surface.

◦ Articulated model recovery We address the problem of learning a complex artic-

ulated object models from registered 3D scans. The algorithm automatically recov-

ers a decomposition of the object into approximately rigid parts, the location of the

parts in the different object instances, and the articulated object skeleton linking the

1.3. CONTRIBUTIONS 9

Figure 1.4: Animation of a motion capture sequence taken for a subject, of whom we have
a single body scan. The muscle deformations are synthesized automatically from the space
of pose and body shape deformations.

parts. The decomposition into parts is obtained by using the EM algorithm, using

a graphical model that explicitly enforces the spatial contiguity of each part. Al-

though the graphical model is densely connected, the object decomposition step can

be performed optimally and efficiently, allowing us to identify a large number of ob-

ject parts while avoiding local maxima. We demonstrate the algorithm on real world

datasets, recovering complex models with up to 18 parts, even in the presence of non-

trivial part deformations. To the best of our knowledge, this is the first algorithm to

recover such complicated articulated models in a completely unsupervised manner.

◦ Modeling the space of human body shapesWe introduce a data-driven method

for building a human shape model that spans variation in both subject shape and

pose. The method is based on a representation that incorporates both articulated

and non-rigid deformations. We learn apose deformation modelthat derives the

non-rigid surface deformation as a function of the pose of the articulated skeleton.

We also learn a separate model of variation based on body shape. Our two models

can be combined to produce 3D surface models with realistic muscle deformation

for different people in different poses, when neither appear in the original set of

examples (see Fig. 1.3). We show how the model can be used for animation and

shape completion— generating a complete surface model given a limited set of

markers that specify the target shape (Fig. 1.4). We present applications of shape

completion to partial view completion and motion capture animation.

10 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

Below is a summary of the rest of chapters in this thesis.

Chapter 2. Surfaces and transformations:We discuss and contrast the basic surface rep-

resentations, including point clouds, meshes and sign distance maps. Then we review

rigid surface transformations, and describe different representations of rotation such

as twists and quaternions. We review how to compute the optimal alignment between

two corresponding point sets.

Chapter 3. Probabilistic graphical models: We introduce and compare the Bayesian net-

work and Markov network formalisms. Then we discuss inference algorithms for

answering conditional probability and maximum a-posteriori (MAP) queries. We

describe in detail the Belief Propagation algorithm and its performance on singly-

connected and loopy graphs. We also present a linear programming algorithm for

inference in Associative Markov networks. We describe maximum-likelihood pa-

rameter estimation for Bayesian networks when the data is fully observed. We also

describe the Expectation-Maximization algorithm for parameter learning in the pres-

ence of hidden variables and missing data.

Chapter 4. Surface registration: We define the problem of surface registration, and de-

scribe the Non-rigid Iterative Closest Point (non-rigid ICP) paradigm for addressing

it. We analyze the failures of non-rigid ICP and propose a novel algorithm for unsu-

pervised surface registration, which works even when the surface undergoes drastic

deformation. We describe this Correlated Correspondence algorithm and evaluate it

experimentally on several real-world datasets. Finally, we present applications of the

algorithm to the problems of partial view completion and interpolation between two

registered scans.

Chapter 5. Recovering articulated object models:We define the problem of articulated

model recovery. We present a novel algorithm for partitioning the object into ap-

proximately rigid parts and evaluate it experimentally. Then we describe a way of

recovering the joints between the parts. We present an application of the learned

models to the problem of articulated model tracking.

1.5. PREVIOUSLY PUBLISHED WORK 11

Chapter 6. Learning deformable models of human shape:We describe a method for learn-

ing the space of deformations for an entire object class. In particular, we show how

to learn the space of human shapes which spans changes in pose and physique. We

present applications of the space to the problems of animation and shape completion.

Chapter 7. Conclusions and future directions: We review the main contributions of the

thesis and summarize their significance, applicability and limitations. We discuss

extensions and future research directions not addressed in the thesis.

1.5 Previously published work

Most of the work described in this thesis has been published in conference proceedings.

In particular, the Correlated Correspondence algorithm for surface registration and its ap-

plication to animation and partial view completion was published in Anguelov, Srinivasan,

Koller, Thrun, Pang and Davis [6]. The method for articulated object recovery was pub-

lished in Anguelov, Koller, Pang, Srinivasan and Thrun [4]. Finally, the method for mod-

eling human deformations and its applications for animation and shape-completion was

published in Anguelov, Srinivasan, Koller, Thrun, Rodgers and Davis [7]. The algorithm

for articulated object tracking was submitted as a conference abstract [5], along with a

separate experimental validation study [84].

12 CHAPTER 1. INTRODUCTION

Chapter 2

Surfaces and Transformations

In this chapter, we describe the basics of 3D surface models: how to represent surfaces

and how to manipulate them in three-dimensional space. This discussion provides the

foundation for the shape-modeling algorithms, which are the contribution of this thesis.

We also introduce the standard notation for various surface properties, which will be used

in the subsequent thesis chapters.

First, we present standard 3D surface representations such aspoint cloudsandmeshes,

which are the representations of choice in our learning algorithms. We will motivate

briefly their advantages over other surface representations, such assigned distance maps

andsplines.

Then we discuss how to apply rigid transformations to our surfaces. We place particular

emphasis on different ways of parameterizing rotations in three dimensional space. We

introduce the standardunit quaternionandexponential maprepresentations of rotation and

discuss the relative benefits of each. We also describe how to compute the optimal rigid

alignment between two clouds of corresponding points.

2.1 3D Surface Representations

Ideally, 3D surfaces are continuous manifolds with an infinite number of degrees of free-

dom, requiring an equally infinite number of parameters for their representation. However,

most practical applications require only a certain degree of modeling accuracy. In addition,

13

14 CHAPTER 2. SURFACES AND TRANSFORMATIONS

current 3D sensors provide only a finite amount of readings, in the form of point samples

describing the surface. Thus, a discretization of the continuous 3D surface at an appro-

priate resolution is sufficient for our purposes. Below we present several tractable ways

of discretizing the surface. In general, there are two classes of discretizations.Explicit

representations model the surface directly. Recently,implicit representations in the form of

scalar fields have also gained popularity [33, 69]. These fields assign values to all points in

3D space — surfaces are obtained by looking at the isosurfaces of the field.

2.1.1 Explicit Representations

3D acquisition devices have become a popular source for the creation of 3D geometric data.

They provide information about object shape in terms of unstructured clouds of sample

surface readings. These readings are obtained either by performing matching in stereo

data, or by emitting rays and measuring the time of travel from the sensor to the object

and back. Each reading usually contains information about the coordinates of a point on

the scanned surface. Usually, an estimate of the normal vector to the surface the point

can also be obtained. This can be done either in a post-processing step by interpolation

from adjacent sensor readings [79] or by using shape-from-shading and photometric stereo

information [125]. The resultingpoint cloud, which contains the surface readings and the

point normals, is the simplest representation of the surface.

Definition 2.1.1 A point cloud is a description of the surfaceX as a collection of sensor

readings, where each reading contains the coordinate of a surface point, and an estimate

of the surface normal at that point. The point cloud is denoted asPX = (VX ,NX).

Here,VX = (x1, . . . , xNX
) is a set of 3D surface point coordinates, whileNX =

(n1, . . . , nNX
) are the corresponding unit-length normal vectors. An example point cloud

can be seen in Fig. 2.1.

Point clouds are very useful for representing 3D sensor data. However, they provide

only incomplete information about the underlying continuous surface. Most importantly,

point clouds do not explicitly model surface connectivity, and hence, topology. Many dif-

ferent continuous surfaces can be a plausible fit to the samples of a point cloud. The shape

2.1. 3D SURFACE REPRESENTATIONS 15

uncertainty is further increased by measurement noise, which cannot be avoided in any

physical acquisition process.

We find it useful to define another standard surface representation called amesh, which

explicitly models surface connectivity.

Definition 2.1.2 A meshMX is a tessellation of a continuous 3D surfaceX into a set of

polygons. It can be represented as a collection of points and polygons:MX =
(VX ,PX

)
.

Here,VX = (x1, . . . , xNX
) represents the coordinates of the polygon vertices. The set

of polygons covering the surface is denoted byPX = (p1, . . . , pMX
). In general, polygons

containing an arbitrary number of vertices can be used. Without loss of representation

power, we will assume thatPX only contains triangles. This assumption simplifies the

notation and streamlines the treatment of meshes; its only drawback is a slight increase in

model size. Every trianglepk is a defined as a set of three natural numbers(p1,k, p2,k, p3,k),

corresponding to the indexes of the triangle points in the listVX . An example of a surface

represented by a triangle mesh is displayed in Fig. 2.1.

The mesh representation defined above is sufficient for estimating the normal vectors

to the surface. For example, the normalnpk
at trianglepk can be estimated by taking the

cross-product of the triangle edges:

npk
=

u

‖u‖ , u = (xk,2 − xk,1)× (xk,3 − xk,1). (2.1)

To avoid ambiguity, convention requires that the vertices of each trianglepk are specified in

a counter-clockwise order (the opposite order flips the direction of the normal). The normal

nxi
at a pointxi can be estimated by simply averaging the adjacent triangle normals.

We will also define the set of meshedgesEX , which contains the edges of all mesh

triangles, without repetition. Formally, this can be represented as follows:

EX .
=

(
ei,j | ∃pk ∈MX ; i, j ∈ pk; i ≺ j

)
. (2.2)

The set of mesh trianglesPX and edgesEX both contain essentially the same information

about surface connectivity. For several machine learning tasks, either of these sets can be

used. For example, surface deformation can be quantified by looking at the deformation

16 CHAPTER 2. SURFACES AND TRANSFORMATIONS

a) Surface b) 5000 Point Cloud c) 500 Point Cloud

d) 5000 Point Mesh e) 500 Point Mesh

Figure 2.1: Surface discretization using point clouds and meshes.

of the edgesEX (in the method of Ḧahnelet al. [52]), or by looking at the deformation of

the trianglesPX (in the method of Sumner and Popović [111]). In general, edges connect

pairs of points rather than triples, and can be more efficient in combinatorial search methods

(see Chapter 4). On the other hand, triangles are more convenient for expressing certain

specialized constraints about the mesh surface. These design choices will be elaborated

later when we introduce specific probabilistic models.

Meshes are very general representations – they can approximate any continuous surface

arbitrarily well given a fine enough polygon tessellation. The surface connectivity infor-

mation they contain is useful for a variety of purposes, such as extraction of high-level

topological information about the surface, visualization, and editing of surface shape or

appearance. Still, meshes tile the surface with a set of planar patches, and therefore are

piecewise-linear surface representations. The resulting surfaces are only C0-continuous

2.1. 3D SURFACE REPRESENTATIONS 17

Figure 2.2: Signed distance map of a chair. The image on the right shows a cross-section
of the chair, illustrating how the signed distance function protrudes into the object interior.

(non-differentiable at the triangle edges). In order to obtain nice smooth-looking shapes, a

large number of triangles may be needed.

For this reason, many of the geometry editing tools use surface models that preserve

a higher-order of surface continuity. These models are also known assplines– models of

piecewise quadratic, cubic or higher-order polynomials that pass through a set of interpo-

lation nodes and keep the derivative (and possibly, the second derivative of the surface)

continuous everywhere. Among the many spline models,b-splinesand Bezier surfaces

are especially popular [46]. How to use these representations successfully in a machine

learning setting is largely an open research question. These models come with an increased

degree of complexity, as higher degree polynomials are used to represent the surface model.

This causes the optimization problems for important tasks such as shape-completion and

animation to become considerably more difficult for splines than for meshes.

18 CHAPTER 2. SURFACES AND TRANSFORMATIONS

2.1.2 Implicit Representations

The most popular implicit surface representation is thesigned distance map (SDM)[103].

The SDM is a function that measures, for every point in 3D space, the distance to the

nearest surface of the object. The distance is positive on the outside, and negative on the

inside. Fig. 2.2 illustrates the SDM of a particular object. The SDM is represented over

a discrete grid and can be efficiently computed from a mesh using just two passes over

the grid [69]. It is also easy to extract any of the SDM isosurfaces [74]. For example, the

isosurface containing all points in space for which the signed distance is zero corresponds

to the original mesh surface.

The advantage of the SDM for representing object models is twofold. First, the SDM

is defined everywhere in 3D space relative to an object. This property facilitates general-

ization, as it makes it straightforward to relate SDM representations of different objects to

each other. Second, the SDM is smooth, which is essential for smooth interpolation be-

tween objects, and for well-behaved shape averaging. For the above reasons, SDMs have

been used for a very popular scan merging algorithm by Curless and Levoy [33], as well

as for CT-scan segmentation [69].

Unfortunately, signed distance maps also have several drawbacks. First, the SDM has to

be defined for the entire 3D space, which tends to make it a more computation and memory-

intensive representation than meshes. Second, averaging of SDMs produces reasonable

surfaces only for largely convex shapes, and does not work for articulated objects such as

humans. Finally, SDMs do not explicitly model the surface, making it difficult to model

and enforce surface properties such as smoothness and contiguity.

For all of the reasons stated above, we will focus on meshes as our surface representa-

tion of choice for the rest of this thesis.

2.2 Rigid Body Transformations

Consider an object moving in the three-dimensional world. This movement can be de-

scribed in terms of a series oftransformations. Each transformation is a map, which de-

scribes the displacement of all object points between two moments in time.Rotationand

2.2. RIGID BODY TRANSFORMATIONS 19

x

y

z

r1

r2

r3

�ω

Figure 2.3: Rotation of a coordinate system around its origin and around the axisω. The
directions of the rotated main axes becomer1, r2, r3. These three orthonormal vectors
comprise the columns of the rotation matrixR which was applied to the coordinate system.

translationare the simplest transformations, which preserve the object shape. We will use

the termrigid transformationto denote any combination of rotational and translational mo-

tion. Because rigid transformations preserve the object shape, they can be expressed very

compactly. Each object pointxi is rigidly transformed into pointyi as follows:

yi = T (xi) = R · xi + t, R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , t =

t1

t2

t3

 . (2.3)

Above,T denotes the rigid transformation,R is a matrix that accounts for the object rota-

tion, andt is a vector corresponding to the object translation.

The rotation matrixR above has special properties. The best way to visualize this ma-

trix is to consider the rotation of a particular coordinate frame around its origin (Fig. 2.3).

The columns ofR are three orthonormal vectorsr1, r2, r3 which correspond to the direc-

tions of the three principal coordinate axes after the rotation. Since the vectorsr1, r2, r3

form a right-handed frame, we further have the condition that the determinant ofR must

be1. Formally, the space of all rotation matrices is denoted as follows:

SO(3)
.
= {R ∈ R3×3 | RT R = I, det(R) = 1}. (2.4)

20 CHAPTER 2. SURFACES AND TRANSFORMATIONS

The matrix representation of rotation, which we introduced so far, contains3 × 3 = 9

entries. However, these 9 entries are not free parameters because they have to satisfy the

orthonormality constraintsRT R = I. There are in fact 6 such constraints for the 9 entries,

suggesting that we need a total of 3 free parameters in order to represent rotation.

2.2.1 Exponential Coordinates for Rotation

Here we will introduce an explicit parametrization for the space of rotations which uses

only three parameters. Each rotation can be encoded with a three-dimensional vector

ω = [ω1, ω2, ω3]
T . Such a vector, known as anexponential map, has a clear and intuitive

interpretation. The direction of the vectorω represents the axis around which the rotation

will take place (see Fig. 2.3). The magnitude‖ω‖ of the vector corresponds to the angle of

rotation around that axis.

Given an exponential mapω, the corresponding rotation matrixR(ω) can be uniquely

determined. In order to define this mapping, we will first introduce the concept of askew-

symmetric matrix.

Definition 2.2.1 A skew-symmetric matrix U is a matrix of size3 × 3 for which the

equationUT = −U holds. Each skew-symmetric matrix has 3 free parameters. Ifu =

[u1, u2, u3]
T is a 3-dimensional vector containing these parameters, the corresponding

skew-symmetric matrix is defined as follows:

û
.
=

0 −u3 u2

u3 0 −u1

−u2 u1 0

 ∈ R3×3. (2.5)

The space of all skew-symmetric matrices is commonly denoted asso(3)
.
= {û ∈ R3×3 |

u ∈ R3}.

A 3-dimensional vectorω can be mapped to a rotation matrixR(ω) by taking the expo-

nent of its corresponding skew-symmetric matrixω̂:

R(ω) = exp(ω̂) = I + ω̂ +
ω̂2

2!
+ ... +

ω̂n

n!
+ . . . (2.6)

2.2. RIGID BODY TRANSFORMATIONS 21

This equation is the reason for the vectorω to be calledexponential map. It is also some-

times referred to as theexponential coordinatesof the rotation.

Of course, an infinite series is not a practical way of obtaining rotation matrices from

the exponential coordinates. An efficient way of doing this is provided by the following

useful theorem:

Theorem 2.2.2 (Rodrigues’ formula) Given ω ∈ R3, the matrix exponentialR(ω) is

given by:

R(ω) = exp(ω̂) = I +
ω̂

‖ω‖ sin(‖ω‖) +
ω̂2

‖ω‖2
(1− cos(‖ω‖), (2.7)

whereω̂ is a3× 3 skew-symmetric matrix, defined as in Eqn. (2.5).

The reverse is also possible: we can express each rotation matrixR in its exponential

form. Intuitively, this is true because each rotation matrix can be realized by rotating around

some axisω by angle‖ω‖. However, many ways of doing this are possible, therefore the

mapping fromR to some parameterŝω ∈ so(3) is not one-to-one. To see why, recall that

rotation by angle2π+θ has the same effect as rotation byθ. A compact way of performing

this inverse mapping is provided in the next theorem.

Theorem 2.2.3 (Logarithm of SO(3)) For anyR ∈ SO(3), there exists (a not necessarily

unique)ω ∈ R3 such thatR = exp(ω̂). The inverse of the exponential map is denoted as

ω̂ = log(R). The exponential map parameters are given by

‖ω‖ = cos−1

(
trace(R)− 1

2

)
,

ω

‖ω‖ =
1

2 sin(‖ω‖)

r32 − r23

r13 − r31

r21 − r12

 , (2.8)

whererij are corresponding entries from the rotation matrixR, as defined in Eqn. (2.3).

The exponential coordinates introduced in this section provide a simple and intuitive

parametrization of rotation matrices. One of its important uses of this representation is that

it provides a simple algebraic way of ”linearizing” the rotation matrix (in other words, for

obtaining a locally linear estimate of the space of rotation matrices). Recall Eqn. (2.6),

22 CHAPTER 2. SURFACES AND TRANSFORMATIONS

which maps exponential coordinates to rotation matrix parameters. If we take only the first

two terms from that series, we obtain the following linear approximation:

R0(ω) ≈ I + ω̂. (2.9)

This approximation is most accurate for matrices numerically similar to the identity matrix

I = R(0), and its predictions worsen as‖ω‖ increases. To obtain a good local estimate of

rotation in the vicinity of some other set of exponential coordinatesϑ, we can compose the

rotation matrices as follows:

Rϑ(ω) ≈ (I + ω̂)R(ϑ). (2.10)

This algebraically simple formula is frequently used in problems where optimization over

rotation is required. The gracious reader will see examples of this further on in this thesis.

2.2.2 Quaternions

Here we will briefly describe an alternative representation of rotation in terms ofunit

quaternions. A more extensive discussion of quaternions can be found in Maet al. [75].

Definition 2.2.4 The group of unit quaternions contains all vectors from a 4-dimensional

unit sphere:

S3 .
= {q ∈ R4 | ‖q‖2 = q2

0 + q2
1 + q2

2 + q2
3 = 1}. (2.11)

Unit quaternions are a popular representation of rotation in terms of 4 parameters and

a constraint. A rotation around axisω = [ω1, ω2, ω3] by angler is represented by the unit

quaternion

q = [q0 q1 q2 q3]
T = [cos(r/2) sin(r/2)ω1 sin(r/2)ω2 sin(r/2)ω3]

T . (2.12)

In intuitive terms, the relative size of coefficientq0 encodes the amount of rotation, while

the vector[q1 q2 q3]
T points along the axis of rotation. Because of this, it is easy to see

that the unit quaternionsq and−q correspond to the same rotation matrix. In fact, it can

be shown that each rotation matrix can be described with exactly 2 such quaternions, and

2.3. ALIGNING TWO CORRESPONDING POINT CLOUDS 23

consequently that the groupS3 is a double covering of the group of rotationsSO(3). Com-

pare this to the exponential coordinate representation, where each rotation matrix can be

associated with an infinite amount of exponential maps (all related by periodicity).

There exists a straightforward mapping from unit quaternions to rotation matrix param-

eters:

Theorem 2.2.5 A unit quaternionq is associated with the following rotation matrix:

R(q) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 − q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2

 (2.13)

The most remarkable thing about this mapping is that each matrix coefficient can be rep-

resented in as a second degree polynomial function in terms of the quaternion parameters.

This property comes in very handy in some optimization problems.

2.3 Aligning Two Corresponding Point Clouds

For example, consider the very useful problem of aligning two point clouds, when the

point-to-point correspondences between them are known. It turns out that using the unit

quaternion representation of rotation, this problem can be solved in a straightforward man-

ner [13]. Below we briefly describe the solution. For simplicity, we will assume that point

cloudsPX andPY have the same number of pointsN and that we know pointx1 corre-

sponds toy1, x2 to y2 and so on. The objective is to find the rigid transformationT (unit

quaternionsq and translationt) that best aligns the corresponding points. This objective

can be written as:

min F (q, t) =
N∑

i=1

‖R(q)xi + t− yi‖2, s.t. ‖q‖2 = 1. (2.14)

24 CHAPTER 2. SURFACES AND TRANSFORMATIONS

First, the translation vectort can be expressed simply as the difference between the point

cloud centroids

t =
1

N

N∑
i=1

yi −R(q)
1

N

N∑
i=1

xi = µY −R(q)µX . (2.15)

We can substitute fort in the resulting Lagrangian function:

L(q) = F (q, t) + λ(1− ‖q‖2) =

=
N∑

i=1

‖R(q)(xi − µX) + (µY − yi)‖2 + λ(1− q2
0 − q2

1 − q2
2 − q2

3).

We expand the first term in the Lagrangian:

N∑
i=1

‖R(q)(xi − µX) + (µY − yi)‖2 =

=
N∑

i=1

{(xi − µX)T R(q)T R(q)(xi − µX) + 2(µY − yi)(xi − µX)T R(q)T + (µY − yi)
T (µY − yi)} =

=
N∑

i=1

{(xi − µX)T (xi − µX) + 2(µY − yi)(xi − µX)T R(q)T + (µY − yi)
T (µY − yi)}

Above we used the fact that rotation matrices are orthonormal and henceRT R = I. The

resulting Lagrangian is onlylinear in terms of the rotation matrix parameters, and only

quadratic in terms of the quaternion parametersq (recall the rotation matrix definition

in Eqn. (2.13)):

L(q) =
N∑

i=1

{2(µY − yi)(xi − µX)T R(q)T + (xi − µX)T (xi − µX) + (µY − yi)
T (µY − yi)}+

+ λ(1− q2
0 − q2

1 − q2
2 − q2

3). (2.16)

Now, when we take the derivative∂L/∂q we obtain an equation of the form:

Aq = λq, (2.17)

2.3. ALIGNING TWO CORRESPONDING POINT CLOUDS 25

whereA is a symmetric4 × 4 matrix andλ is a positive scalar. The largest eigenvector of

matrixA corresponds to the quaternionsq which minimize our objective.

26 CHAPTER 2. SURFACES AND TRANSFORMATIONS

Chapter 3

Probabilistic Graphical Models

In a world of shifting shapes and imprecise sensors, we need to be able to deal with the

underlying uncertainly of everything that surrounds us. Probabilistic graphical models pro-

vide a means of encoding the inherent structure of the world’s complex environments in a

compact fashion. They are representations of the joint probability distribution over a set

of variables, and their structure can be utilized to perform efficiently the tasks of reasoning

and learning. In particular, the theory of graphical models provides us with the capability to

reason about the assignments to a large number of variables simultaneously. This capability

allows us to tackle difficult combinatorial problems such as registration and segmentation,

which will be explored in depth later in this thesis.

In this chapter, we will present the basics of the probabilistic framework that under-

lies our models. We will briefly describe two different representations of uncertainty,

directed and undirected graphical models, which are both used in our algorithms. Then

we present the computational tools which we will employ for reasoning and learning in

such networks. We will describe inference methods such as belief propagation, and lin-

ear programming relaxations for maximum-a-posteriori inference in an important subclass

of Markov networks. We will also review maximum-likelihood learning and describe the

expectation-maximization algorithm for learning in networks that contain hidden variables.

27

28 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

3.1 Bayesian Networks

We are often interested in modeling thejoint probability distributionP (X) over a set of

variablesX = {X1, . . . , XN}. Each variableXi can take a set of possible values, which is

called thedomainof Xi, and is denoted asdom(Xi). In our notation, theinstantiationof

variableXi to some valuexi ∈ dom(Xi) will be denoted asXi = xi.

Assuming the variables inX are discrete, the joint distribution can be represented sim-

ply as a table, which associates aprobability valueP (X = x) with each instantiation

{X = x} ≡ {X1 = x1, . . . , Xn = xn}. Given this table, we can answer different kinds of

queries about the variables. Most often, we are interested in asking conditional probability

queries, of the form: give me the probabilityP (Z = z | Y = y), for any subsetsY andZ
of the complete setX . The answers can be computed simply by summing the appropriate

probabilities in our table:

P (Z = z | Y = y) =
P (Z = z,Y = y)

P (Y = y)
=

∑
x:(z,y⊂x) P (X = x)∑
x:(y⊂x) P (X = x)

, (3.1)

where the notationy ⊂ x is used to express that the instantiationy is part of the instantia-

tion x. The problem with this representation is that a distribution overN binary variables

requires a table containing2N − 1 independent parameters.

Joint probability distributions can also be represented as a product of conditional proba-

bility distributions. Aconditional probability distribution(CPD)P (X | Y) defines the con-

ditional probabilitiesP (X = x | Y = y) for all possible valuesx ∈ dom(X), y ∈ dom(Y).

A CPDP (X | Y) over a set of discrete variables is a table containing the conditional prob-

abilities for all possible assignments to the variables inX andY. Joint probability distri-

butions can be represented in terms of conditional probability distributions using the chain

rule:

P (X1, X2, . . . Xn) = P (X1)P (X2 | X1) . . . P (Xn | X1, . . . Xn−1) (3.2)

The chain rule is a mathematical equivalence; for binary discrete variables we still need to

specify2N − 1 independent parameters in the conditional probability tables.

Above we showed that as the number of variables in the domain grows, the general dis-

tribution representations very quickly become intractable. This can be addressed by using

3.1. BAYESIAN NETWORKS 29

theBayesian Network(BN) framework, which can encode the qualitative properties of the

domain, resulting in much more compact representations of joint probability distributions.

3.1.1 Conditional Independence

The Bayesian network formalism is based on the notion ofconditional independence. We

explain this concept using the classical example from Pearl’s book [90]. The setting for

the example is a simple domain, in which a house alarm (A) can be triggered either by

burglary (B) or by an earthquake (E). If the alarm is triggered by any of these causes or

spontaneously, a call (C) from the neighbor can be expected. In addition, an earthquake is

usually followed by a radio report (R).

There is inherent structure in this domain, which the general probability distribution

representation (joint or conditional probability tables) does not capture. For example, the

events of burglary (B) and earthquake (E) are generally deemed to occur independently of

each other1. Our belief that the neighbor will call (C) is independent of a cause that might

trigger the alarm if we already know that the alarm (A) was activated. Similarly, if the

alarm (A) has been activated, the radio report (R) of an earthquake may change our belief

whether burglary (B) occurred, but is no longer relevant if we actually felt the earthquake

(E).

The concept ofconditional independenceallows us to formalize these properties.

Definition 3.1.1 We say thatX is conditionally independentofY givenZ if

P (X | Y ,Z) = P (X | Z) whenP (Z) > 0

and we denote this statement byP |= (X ⊥ Y | Z).

We can represent a subset of conditional independence assumptions associated with a par-

ticular domain using a directed graph.

1The recent events connected with the hit of hurricane Katrina on New Orleans cast some doubt on the
lack of connection between natural disasters and increased criminal activity.

30 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

E arthquake

Radio

Burglary

A larm

Call

X
No n

Descenden t

Descendan

Parent

Non

Descendant

Descend t

Parent

(a) (b)

Figure 3.1: (a) An example of a simple Bayesian network structure for the Alarm do-
main. This network structure implies several conditional independence statements:(E ⊥
B),(A ⊥ R | B, E),(R ⊥ A,B, C | E), and(C ⊥ B, E, R | A). (b) Markov indepen-
dence statements in a Bayesian network.X is independent of all its non-descendant nodes
in the graphG, given its parent nodes.

Definition 3.1.2 Let G be adirected acyclic graph (DAG) whose vertices correspond to

random variablesX = {X1, . . . , XN}. We say theG encodes a set ofMarkov inde-

pendence statements: Each variableXi is independent of its non-descendants, given its

parents inG.

∀Xi (Xi ⊥ NonDescendantsXi
| Pai) (3.3)

and we denote the set of these statements asMarkov(G).

The DAG corresponding to our Alarm example is displayed in Fig. 3.1(a), while Fig. 3.1(b)

illustrates the concept of the Markov independence statements.

Using the rules of probability, we can infer additional independence statements from

Markov(G). For example, in Fig. 3.1, we can say that(A ⊥ R | E). This follows from

(R ⊥ A,B, C | E) ⇒ (R ⊥ A | E) and theSymmetry of Independenceproperty of

conditional probabilities. Similarly, it is easy to see that all the independence statements

3.1. BAYESIAN NETWORKS 31

we made in the case of the burglary alarm domain follows directly from the Markov in-

dependence statements encoded in the graph from Fig. 3.1(a). The set of conditional in-

dependence statements encoded by the DAG structure is fairly easy to elicit using a set

of graph-theoretic criteria, known asd-separation. We will omit a detailed discussion of

d-separation here, but refer the reader to Pearl’s book [90].

3.1.2 Model Definition

We can now formally define the Bayesian network model.

Definition 3.1.3 A Bayesian networkB = 〈G, θ〉 is a representation of a joint probability

distribution over a set of random variablesX = {X1, . . . , XN}, consisting of two com-

ponents: A directed acyclic graphG whose vertices correspond to the random variables

and that encodes the Markov independence assumptionsMarkov(G); a set of parameters

θ that describe a conditional probability distribution (CPD)P (Xi | Pai) for each variable

Xi given parents in the graphPai. The probability distribution defined by the graphG and

parametersθ can be written as follows:

P (X1, . . . , XN) =
n∏

i=1

P (Xi | PaGi). (3.4)

Eqn. (3.4) is known as thechain rule for Bayesian networks. The CPDs in this product

are smaller than those in the original chain rule from Eqn. (3.2). As an example, consider

the joint probability distributionP (B, E, R, A,C) represented in Fig. 3.1(a). By the chain

rule of probability, without any independence assumptions:

P (B,E, R,A, C) = P (B)P (E | B)P (R | B, E)P (A | B,E, R)P (C | B,E, R, A,C)

Assuming we have binary event variables, this representation requires1+2+4+8+16 = 31

parameters. Taking the conditional independencies into account we can write

P (B,E, R, A,C) = P (B)P (E)P (R | E)P (A | B, E)P (C | A)

32 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

which only requires1 + 1 + 2 + 4 + 2 = 10 parameters. More generally, ifG is defined

overN binary variables and its in-degree (i.e., maximal number of parents) is bounded by

K, then instead of representing the joint distribution with2N − 1 independent parameters

we can represent it with at most(2K − 1)N independent parameters.

3.2 Markov Networks

Bayesian networks are an appropriate fit for many domains, which can benefit from their

directed graph structure. This is often the case for domains whose variables are representing

cause and effect relationships between events. Bayesian networks whose links follows the

causal structure are usually compact and intuitive (although Baysian networks themselves

make no claim to encode causal relationships). In other domains, there is no natural way

to exploit the link directionality of Bayesian networks. For example, surfaces are complex

manifolds in 3D space, for which the surface directionality notion is largely irrelevant in

the vast majority of cases, and can even be a nuisance.

In this section, we review undirected graphical models known asMarkov networksor

Markov random fields(MRFs) [53, 90]. MRFs offer an alternative approach for encoding

independence structure in joint probability distributions. We introduce them using a simple

example, and will then generalize it into a formal MRF definition.

In our example, we will define a distribution over the possible segmentations of a sur-

face intoK regions. We want this distribution to prefer segmentations in which adjacent

pointspi andpj are assigned to the same region. The surface is represented as a discrete

sampling of points, in which adjacent points are connected by links. Each pointpi is asso-

ciated with a discrete variableXi which can takeK values, assigning the point to one of

the respective regions. To represent our preference that adjacent points are assigned to the

same region formally in the model, we will associate a measure, called apotential, with

pairs of variables(Xi, Xj).

Definition 3.2.1 LetY be a set of random variables, and letdom(Y) be their joint domain.

A potential (or factor) ψ(Y) is a mapping fromdom(Y) toR+.

This notion is very similar to that of a probability function, in the sense that each assignment

3.2. MARKOV NETWORKS 33

X1

X2

X3

X4

X5

X6

X7

X8

X9

ψ(X1,X4) ψ(X4,X7)

ψ(X7,X8)

ψ(X5,X8)

ψ(X6,X9)ψ(X3,X6)

ψ(X2,X5)

ψ(X8,X9)

ψ(X1,X2)

ψ(X2,X3) ψ(X5,X6)

ψ(X4,X5)

X

neighbor

other

(a) (b)

Figure 3.2: (a) A Markov network for our surface partitioning problem. The surface is
represented by 9 points, connected in a grid. (b) Conditional independence in the Markov
network: variableX is independent of the rest of the network variables, given its immediate
neighbors.

is mapped to a score correlated with our belief about its likelihood. Unlike probability

distributions, potentials do not need to be normalized. In our example, the potential assigns

higher preference values to cases when adjacent pointspi andpj belong to the same region.

A plausible potential for theK = 2 case is displayed below:

Xi Xj ψ(Xi, Xj)

1 1 10

1 2 1

2 1 1

2 2 10

(3.5)

As we will see shortly, Markov random fields represent joint probability distributions

in terms of a product of such potentials. Each potential is associated with a fully-connected

group of variables, called aclique. The set of connections between the variables of all

cliques induces an undirected graphU . This graph can be used to encode a set of condi-

tional independence assumptions in the underlying distribution.

34 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

Definition 3.2.2 LetU be an undirected graph whose vertices correspond to random vari-

ablesX = {X1, . . . , XN}. We say theU encodes a set ofMarkov independence state-

ments: Each variableXi is independent of all other variables in the network, given all its

neighbors inU :

∀Xi (Xi ⊥ {X \Xi} | Neighbors(Xi)) (3.6)

We denote the set of all such independence properties asMarkov(U).

As a consequence of this definition, theMarkov blanketMBXi
of each variableXi in

the graph is simply the set of its neighbors in the graph. Fig. 3.2(b) illustrates a specific

example of the Markov blanket concept in undirected graphs.

We are now ready to formally define the concept of Markov networks.

Definition 3.2.3 A Markov network (or Markov random field) F = 〈U , Ψ〉 is a rep-

resentation of a joint probability distribution over a set of variablesX = {X1, . . . , Xn},
consisting of two components. The undirected graphU has vertices that correspond to the

variables, and encodes a set of Markov independence assumptionsMarkov(U). The set of

potentialsΨ is associated with cliques in the graph, and is used to define the distribution

P (X) =
1

Z

∏
c

ψc(Xc) (3.7)

The valueZ is the normalization factor (also known as thepartition function), defined as

Z =
∑
X

∏
c

ψc(Xc). (3.8)

A Markov network is a factored representation of a joint probability distribution as a prod-

uct of small local factors. A subset of the class of Markov networks, calledpairwise

Markov networks, contains factors only over single variables and pairs of variables. Pair-

wise Markov networks will be sufficient for the problems tackled in this thesis. An ex-

ample of a pairwise Markov network for our surface partitioning example is displayed in

Fig. 3.2(a).

3.2. MARKOV NETWORKS 35

X1

X2

X3

X4

X5

X6

X7

X8

X9

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

X1

X2

X3

X4

X5

X6

X7

X8

X9

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

(a) (b)

Figure 3.3: (a) A model combining directed and undirected links, for oursurface partition-
ing with evidenceexample. Different evidenceY is generated depending on which region
of the surface it is linked to (determined by the variablesX). (b) The Markov network
encoding the same conditional independencies.

3.2.1 Incorporating Directed Potentials

Despite the fact that in this dissertation we will be reasoning about surfaces, which are

more intuitively modeled with Markov networks, there is cause-and-effect structure in our

models as well. All the algorithms in this thesis are based on aprobabilistic generative

framework— for each problem, we define a probabilistic model which describes our beliefs

about how the world works and how the evidence provided to the algorithm was obtained.

The cause-and-effect relationships between events in the world and the evidence are nat-

urally represented using conditional distributions (which are usually part of the Bayesian

network definition). For this reason, throughout this thesis our graphical models will be

defined in terms of both undirected potentials and conditional distributions. Probabilis-

tic graphical models that combine directed and undirected interactions are calledchain

graphs[20]. However, the mixed models that we will be exploring in this thesis are easily

converted to Markov networks — hence, we will not be exploring in detail the machinery

of chain graphs.

36 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

In our models, a set of variablesX that define a surface prior are connected with undi-

rected edges. We have another set of variablesY, in which each variableYi is connected

using a set of directed links a single parentXi ∈ X . An example of such a model is

displayed in Fig. 3.3(a). In this extension of the original surface partitioning example

from Fig. 3.2(a), each evidence variableYi is connected to only a single surface variable

Xi in the graph. The conditional probabilitiesP (Yi | Xi) capture the fact that different

regions of the surface tend to produce different evidence. The joint probability distribution

becomes

P (X = x,Y = y) = P (X = x)P (Y = y | X = x) (3.9)

=

[
1

Zx

∏
c

ψc(xc)

][∏
i

P (yi | xi)

]

Note that the partition functionZx is defined by sum over all assignments toX (as in

Eqn. (3.8)). The conditional probabilitiesP (Yi | Xi) do not contribute to the partition

function, because
∑

yi
P (yi | Xi) = 1, and can be factored out. The joint probability

distribution remains unchanged if these conditional probability tables are treated as poten-

tials in a Markov network. The equivalent Markov network for our example on surface

partitioning with evidence is displayed in Fig. 3.3(b).

3.3 Inference

Inference is a fundamental task in graphical models. Both the Bayesian and the Markov

network formalisms represent joint probability distributions, and contain sufficient infor-

mation to answer any question about these distributions. We can askconditional probability

queries, in which we want to computeP (Y | Z = z), the probability of a set of variables

Y given some evidenceZ = z. We can also askmaximum a-posteriori (MAP)queries,

which ask for the most likely assignment to all the non-evidence variables. Here we want

arg maxY P (Y | Z), and we will assume that if there are several most-likely assignments

any of them will suffice.

In this section, we will describe several inference algorithms that are used in this thesis.

3.3. INFERENCE 37

Because the algorithms for answering conditional probabilities and MAP queries differ, we

will introduce them separately. First, in Sec. 3.3.1 we give a general overview of the prob-

lem of answering conditional probability queries, and review a specific inference algorithm

for solving the problem. In Sec. 3.3.2 we review a specific inference algorithm for the

problem, calledBelief Propagation. The problem of answering MAP queries is discussed

separately in Sec. 3.3.3. There we introduce a special subclass of Markov networks, called

associativeMarkov networks, for which MAP-inference can be performed efficiently. We

describe two specific algorithms for inference in associative Markov networks (based on

linear programming relaxation and minimum-cuts in a graph, respectively).

3.3.1 Answering Conditional Probability Queries

As an example of a conditional probability query, consider the task of evaluating the prob-

ability of getting a call from our neighborP (C) in the Alarm network from Fig. 3.1. By

the complete probability formula

P (C) =
∑

b,e,a,r

P (b, e, a, r, C)

We can improve on this by utilizing the decomposition of the joint probability in the

Bayesian network:

P (C) =
∑

a

P (C|a)
∑

e

P (e)
∑

b

P (b)P (a|b, e)
∑

r

P (r|e). (3.10)

The resulting equation allows us to compute the probability much more efficiently, using

dynamic programming. We can sum the variables in order (from right to left), and keep the

summation results in intermediate cliques. This process is known asvariable elimination,

and it allows us to avoid computing the same summations multiple times. Most exact

inference algorithms (e.g.,Junction Trees(e.g., [59] andBucket Elimination[38]) exploit

the above idea.

It has been shown, however, that the general inference problem in Bayesian networks

is NP-hard [30] (in fact, it is #P-complete). The related problem of performing inference

38 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

in a Markov network is also NP-hard. The difficulty of the problem is correlated to the

structure of the underlying graphical model. For example, exact inference takes linear time

for graphical models whose underlying graph is a tree (such graphs are also calledsingly-

connected). The difficulty of the inference task tends to increase as the underlying graph

structure gets more complex. In some graphical models with many cycles, exact inference

is infeasible.

Sometimes we may be willing to accept an approximate answer. In these cases, we

resort to approximate inference methods. These include instance or particle based meth-

ods such asGibbs sampling(see [88] for an overview of inference sampling techniques),

variational approximation method such as theMean Fieldapproximation (see [61] for an

introduction) andLoopy Belief Propagation(e.g., [86] and references within). While these

methods have shown great success in different scenarios, like exact inference, approximate

inference in general is also NP-hard [34] and choosing the best method of inference for a

particular task remains a challenge. In the next section, we will review the Belief Propaga-

tion method which will be used later in this thesis.

3.3.2 Belief Propagation

TheBelief Propagation (BP)algorithm was originally proposed by Pearl [90]. It performs

exact inference in singly-connected graphical models, but also provides good empirical

results on graphical models with cycles [86] (in those cases, it is known asLoopy Belief

Propagation (LBP)). In this section, we describe a special case of the algorithm, which

can be executed on pairwise Markov networks. This is not a strong restriction, because all

graphical models can be converted to such Markov networks [127]. Furthermore, it will be

sufficient to restrict our attention to cases when all variables in the network are discrete.

The input to this variant of the Belief Propagation (BP) algorithm is a Markov network

F with discrete variables, containing single and pairwise potentialsψi(Xi) andψi,j(Xi, Xj),

respectively. We are interested in obtaining the marginal beliefsP (Xi) for all variables

Xi ∈ X . In the BP algorithm, this goal is accomplished by scheduling a set of local com-

putations, in which variables sendmessagesto their neighbors in the network in order to

update their beliefs. These messages are tables associated with the edges of the Markov

3.3. INFERENCE 39

X

ψ(X)

m3

m4

m1

m2

a) b)

Xj Xi

ψ(Xj)

m3

m1

m2

ψ(Xi,Xj)

mj→i(Xi)

Figure 3.4: Belief Propagation operations. a) Illustration of the belief updatebi(xi) =
kψi(xi)

∏
j∈Neighbors(Xi)

mj→i(xi). b) Illustration of the message updatem′
j→i(xi) =∑

j ψj(xj)ψi,j(xi, xj)
∏

k∈{Neighbors(Xj)\i} mk→j(xj).

network. We will usemi→j(Xj) to denote the message sent by nodeXi to update the belief

of its neighborXj.

At any point in time, the BP algorithm maintains an estimate of the marginal probabil-

ities at all Markov network nodes. We call such estimatesbeliefsand usebi(xi) to denote

the estimate of the probability thatXi = xi. Naturally, we require that
∑

xi
bi(xi) = 1.

The entire set of beliefs associated with a nodeXi is denoted asbi(Xi). The beliefs can be

computed from the incoming messages sent by the node’s neighbors using the following

belief updaterule:

bi(xi) = kψi(xi)
∏

j∈Neighbors(Xi)

mj→i(xi). (3.11)

Here,ψi(xi) denotes the single potential associated with nodeXi, which also needs to be

factored in. The normalization constantk ensures that the beliefs sum to 1. The belief

computation process is illustrated in Fig. 3.4(a).

The messages themselves are computed from the following recursive message update

rule (which is also known as theSum-productrule):

mj→i(xi) =
∑

j

ψj(xj)ψi,j(xi, xj)
∏

k∈{Neighbors(Xj)\Xi}
mk→j(xj) (3.12)

40 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

Algorithm Belief Propagation
Input: Pairwise Markov networkF .
Output: P (Xi) for all variablesXi in F .

1: Start with uniform messagesmj→i(xi) = 1 and beliefsbi(xi) = 1.
2: Recompute the messages:

m′
j→i(xi) =

∑
j

ψj(xj)ψi,j(xi, xj)
∏

k∈{Neighbors(Xj)\i}
mk→j(xj)

3: Compute the new node beliefsb′i(Xi):

b′i(xi) = kψi(xi)
∏

j∈Neighbors(Xi)

m′
j→i(xi).

4: If for somexi, |b′(xi) − bi(xi)| > ε, repeat steps 2 and 3 using the new messages and
beliefs.

5: return Beliefsb(Xi).

Figure 3.5: Belief Propagation algorithm with parallel message updates.

In this equation, the right-hand size includes the messages from all neighbors ofXj except

Xi. This is illustrated in Fig. 3.4(b). Intuitively, the messagemj→i(xi) conveys information

from nodeXj and its neighbors to nodeXi.

The Belief Propagation algorithm is defined in Fig. 3.5. In each BP stage, we compute

the messages in the network using the update rule from Eqn. (3.12). Because the rule is

recursive, during the computation we use the old estimates of the messages remaining from

the previous stage. Given a new set of messages, we can estimate the beliefs at the network

nodes using Eqn. (3.12). The process is repeated until the updates stop changing the beliefs

in the network. The algorithm may not converge in some cases, in which case we stop after

a predefined maximum number of iterations. A discussion of the some of the algorithm’s

convergence properties can be found in Yedidiaet al. [127].

Different versions of the algorithm are possible, depending on the way message updates

are scheduled. The updates can be done in parallel (where all messages are estimated at

the same time), or in a sequence (where the each subsequent update uses the message

estimates available at that moment). Sequential message updates offer some computational

savings as well as better convergence, but require the algorithm designer to come up with

3.3. INFERENCE 41

an appropriate order for computing the messages. In this thesis, we use BP with parallel

message updates.

3.3.3 MAP Inference

MAP inference is the problem of answeringmaximum a-posterioriqueriesarg maxY P (Y |
{X\Y}). Here we give a brief overview of the problem, and describe a special subclass of

Markov networks, calledassociativeMarkov networks, in which efficient inference with

performance guarantees is possible. Then we describe two different algorithms for infer-

ence in associative Markov networks, which are used in this thesis.

First, we revisit our favorite Alarm network example. Assume we know that the Alarm

is on(A = a1), and the neighbor didn’t call(C = c0). The most likely joint assignment to

the remaining variables can be computed in a straightforward manner:

arg max
b,r,e

P (b, r, e | a1, c0) = arg max
b,r,e

P (b, r, e, a1, c0)

P (a1, c0)
= arg max

b,r,e
P (b, r, e, a1, c0)

Above we used Bayes’ rule and the fact thatP (a1, c0) is constant relative to thearg max

variables. As a result, the answer can be obtained from a full joint probability table, by

looking up the most probable entry consistent with the evidenceA = a1, C = c0.

In general Markov and Bayesian networks, MAP inference is NP-hard [32]. Because

the problems are related, many inference techniques for answering conditional probability

queries can be modified to answer MAP queries. For example, recall theSum-product

message update rule for BP, defined in Eqn. (3.12). It can be changed to the following

max-productrule:

mj→i(xi) = max
j

ψj(xj)ψi,j(xi, xj)
∏

k∈{Neighbors(Xj)\i}
mk→j(xj) (3.13)

The BP algorithm using this rule is known asmax-productBP, and produces exact answers

to MAP queries for singly-connected networks. While it can also be used to obtain in

approximate answers in general loopy graphs, in our experience it is less likely to converge

to a good local minimum than the originalsum-productBP from Sec. 3.3.2.

42 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

Another way to keep inference tractable and efficient is to limit the form of the poten-

tials in the network. Below we describe an important subclass of models, calledassociative

Markov networks[114].

Definition 3.3.1 Anassociative Markov network(AMN) contains discrete variables with

K labels and arbitrary-size clique potentials withK parameters that favor the same labels

for all variables in the clique. In particular, for a cliquec over variablesX1, . . . , Xn, we

have

ψc(xc) =

{
λk

c if x1 = . . . = xn = k;

1 otherwise

with the additional requirement that∀c, k λk
c ≥ 1. Potentials of this form will be called

attractive potentials.

AMN potentials can be used to capture positive interactions, in which connected (associ-

ated) variables tend to have the same label. In particular, they are a natural fit for our surface

partitioning model from Fig. 3.2(a). The model for our surface partitioning example, which

contains only pairwise potentials, is also known as thegeneralized Potts model[93].

Inference in such networks has been studied extensively. For binary-valued Potts mod-

els, Greiget al. [50] show that the MAP problem can be formulated as a min-cut in an

appropriately constructed graph. Thus, the MAP problem can be solved exactly for this

class of models in polynomial time. ForK > 2, the MAP problem is NP-hard but a method

based on a relaxed linear program guarantees a factor 2 approximation of the optimal so-

lution [17, 63]. Below we describe two different inference methods for MAP inference in

AMNs, which are used further in this thesis.

LP Inference

The MAP problem in AMNs can be expressed as an integer linear program [63]. We

associate binary variablesµk
i with each nodeXi and labelk. The case when nodeXi has

valuek is expressed by settingµk
i = 1, and∀k′ 6=k µk′

i = 0. We also associate binary

variablesµk
c with each cliquec and labelk, which represent the case when all variables in

3.3. INFERENCE 43

the clique are assigned that label. The MAP objective (expressed in terms of log-likelihood)

can be represented by the followinginteger program(IP):

max
∑
xi

K∑

k=1

µk
i log ψi(xi = k) +

∑
c∈C

K∑

k=1

µk
c log ψc(xc = k) (3.14)

s.t. µk
c ∈ {0, 1}, ∀c ∈ C, k;

K∑

k=1

µk
i = 1, ∀xi ∈ X;

µk
c ≤ µk

i , ∀c ∈ C, xi ∈ X, k.

Note that, in the definition above, the natural constraintµk
c =

∧
i∈c µk

i is replaced with

the linear inequality constraintsµk
c ≤ µk

i . This works because we have only attractive

potentials in the network cliques, for whichlog ψc(xc = k) ≥ 0. Therefore, at optimum we

haveµk
c = mini µ

k
i , but since theµk

i variables are binary and discrete, this is equivalent to

the statementµk
c =

∧
i∈c µk

i .

We can obtain a linear relaxation of the integer program from Eqn. (3.14), by replacing

the integer constraintsµk
c ∈ {0, 1} with the linear constraintsµk

c ≥ 0. The resultinglinear

program (LP) can be solved using any standard LP package, such as CPLEX [92]. The

LP solution can be used to obtain solutions for the original IP. It can be shown that in the

binary-valued case, the LP is guaranteed to produce an integer solution.

Theorem 3.3.2 If K = 2, for any associative Markov networkF , the LP relaxation

of Eqn. (3.14) is guaranteed to produce an integer solution. Therefore, optimizing the

LP produces the optimal solution for the MAP inference problem in that network.

See [114] for the proof. This result states that the MAP problem in binary AMNs is

tractable, regardless of network topology or clique size. In the non-binary case (K > 2),

the linear program can produce fractional solutions and we use a rounding procedure to get

an integral solution.

Theorem 3.3.3 If K > 2, and` is the log-likelihood obtained by solving the LP relaxation

of Eq. (3.14), there exists a rounding procedure for the LP result that produces integer

solutions with log-likelihood of at least`/2 for pairwise AMNs, and̀/T for AMNs whose

44 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

largest cliques are of sizeT . Therefore, rounding the LP solution produces a solution

within a factor of1/T of the optimal MAP objective.

See [114] for the proof and a description of the rounding procedure. Although artificial

examples with fractional solutions can be easily constructed by using symmetry, it seems

that in real data such symmetries are often broken. In fact, in all our experiments with

K > 2 on real data, we have not encountered fractional solutions.

Min-cut Inference

Instead of using an LP solver, the objective in Eqn. (3.14) can be optimized using efficient

min-cut algorithms. It has been long known that for pairwise AMNs withK = 2, the

MAP inference problem can be reduced to the problem of finding the minimum-cut in an

appropriately constructed graph [50]. Thus, the MAP problem can be solved exactly for

this class of models using efficient minimum-cut algorithms in polynomial time.

In pairwise AMNs withK > 2, inference can be performed using the local search

algorithm calledα-expansionby Boykovet al. [16]. Here we give a brief overview of the

approach; we refer the reader to the work of Boykovet al.[16] for a detailed discussion. For

the purposes of this thesis, it is sufficient to limit the discussion to pairwise AMNs, although

theα-expansion method can be generalized to AMNs with arbitrary-sized cliques [114].

Theα-expansion algorithm performs a series of expansion moves in order to optimize

the MAP objective. In particular, consider an existing labelingµ of the variables and a

particular labelk ∈ {1, . . . , K}. A k-expansion from the current labelingµ is allowed to

reassign some of the those labels tok. Thek-expansion move is essentially an optimization

of the MAP-objective over two labels — it either allows a variable to retain its current label,

or to switch to labelk. This optimization is similar to performing MAP inference in a two-

class AMN. Similarly, it can be also reduced to the problem of finding a minimum-cut

in a graph [16]. Theα-expansion algorithm cycles through all labelsk in either a fixed

or random order, performing expansion moves which find new labelings of higher log-

likelihood. It terminates when there is no expansion move for any labelk that produces a

labeling with higher log-likelihood.

Theorem 3.3.4 Theα-expansion algorithm converges inO(N) iterations, whereN is the

3.4. PARAMETER LEARNING 45

number of AMN variables.

The proof of this theorem can be found in Veksler’s thesis [118]. As noted by Boykovet

al. [16], and as we observed in our experiments, the algorithm terminates after a few itera-

tions with most of the improvement occurring in the first2− 4 iterations.

Theα-expansion algorithm converges to a local minimum of the MAP objective. The

quality of this local minimum is described in the following theorem [118]:

Theorem 3.3.5 For MAP inference in pairwise AMNs withK > 2, theα-expansion algo-

rithm converges to a factor of1/2 of the optimal MAP objective.

This guarantee is identical to the one that can be obtained for the results of the linear

programming relaxation method, which we described earlier in this section.

In our experiments, we found theα-expansion algorithm to be very efficient. For our

problem,theα-expansion method performed up to 15 times faster than direct optimization

of the linear program using the CPLEX solver, and is therefore our preferred method of

MAP inference in associative Markov networks.

3.4 Parameter Learning

In many problems, we are given a set of observations, and want to learn about the struc-

ture of the domain that generated these observations. More formally, we are interested

in inducing the underlying distributionP ∗ over properties, events and our evidence in the

domain. Probabilistic graphical models are a natural and compact way of representing the

distributionP ∗. Hence, the task of learning reduces to one of estimating the structure and

parameters of a probabilistic graphical model from data.

During learning, we face a fundamental problem: rather than having access toP ∗, or

equivalently to an infinite number of samples generated by it, we are given a finitetraining

setof samplesD = {x[1], . . . , x[M]}, that are independently drawn fromP ∗. Using the

limited knowledge available to us viaD, our goal is to somehow learn a model that best

approximatesP ∗. This may require us to take into account particular phenomena that arise

in D and are solely due to its finite nature. In particular, one should be very careful about

46 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

the problem ofoverfitting: we can learn a model that fits the training data perfectly and yet

has poor generalization performance on new samples from the distribution.

The problems which we address in this thesis are a subset of the complete learning

task, because the structure of the probabilistic model is known beforehand. Therefore, here

we need to discuss only methods forparameter learningof models with known structure.

Moreover, it will be sufficient to limit our discussion to the learning of Bayesian networks

with discrete variables. First we describe amaximum likelihoodapproach for learning

the conditional probability parametersθ, which assumes that acompletetraining set is

available (all variables in all examples were observed). Then we describe theExpectation-

Maximizationalgorithm, which can be used for parameter estimation in cases with missing

data and hidden variables, and discuss the complications that arise in that scenario.

3.4.1 Maximum Likelihood

Themaximum likelihood estimation(MLE) approach is widely used in all fields of learning.

At its core is the intuition that a good model is one that fits the dataD well. In other words,

we prefer models that are likely to have generated the data.

Definition 3.4.1 Thelikelihood function , L(θ : D), is the probability of the independently

sampled instances ofD given the parameterizationθ

L(θ : D) =
M∏

m=1

P (x[m] | θ) (3.15)

whereP (x[m] | θ) is the probability of them’th complete instance given the parameter of

the network. The log of this function is known as thelog-likelihood:

`(θ : D) =
M∑

m=1

log P (x[m] | θ) (3.16)

In the MLE approach, we want to choose parametersθ̂ that maximize the likelihood of the

data:

θ̂ = max
θ

L(θ : D) (3.17)

3.4. PARAMETER LEARNING 47

Eqn. (3.17) describes optimization in a high dimensional space even for relatively simple

network structures since we need to jointly optimize over the parameters of all the condi-

tional probability distributions. As in the case of representation and inference, the Bayesian

network representation offers a decomposition of this optimization task. We can use the de-

composition property of Eqn. (3.4) to write

L(θ : D) =
M∏

m=1

P (x[m] | θ) (3.18)

=
M∏

m=1

N∏
i=1

P (xi[m] | ui[m], θXi|Pai
) (3.19)

=
N∏

i=1

[
M∏

m=1

P (xi[m] | ui[m], θXi|Pai
)

]
(3.20)

=
N∏

i=1

Li(θXi|Pai
: D) (3.21)

whereθXi|Pai
are the parameters that encode the conditional probability distribution ofXi

given its parentsPai and

Li(θXi|Pai
: D) ≡

M∏
m=1

P (xi[m] | ui[m], θXi|Pai
) (3.22)

is the local likelihood functionfor Xi. Thus, the global optimization problem is decom-

posed into significantly smaller problems, where we optimize the parameters of each con-

ditional probability distributionP (Xi | Pai) independently of the rest. In the case of

Bayesian networks with discrete variables, the parameters can be estimated in closed form:

θ̂xi|ui
=

S[xi,ui]∑
xi

S[xi,ui]
, (3.23)

whereS[xi,ui] denotes the empirical counts of the instances{xi[m] = xi,ui[m] = ui} in

the dataset.

48 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS
L(Θ

|D
)

Θ

L(Θ
|D

)

Θ

(a) (b)

Figure 3.6: Illustration of likelihood optimization using: (a) Gradient Ascent that proceeds
in the direction of maximal change; (b) the Expectation Maximization (EM) algorithm
that locally approximates the likelihood using a concave function and then optimizes this
concave lower-bound.

3.4.2 Expectation-Maximization

In the case of missing data, each training samplex[m] = {o[m],H[m]} contains a set of

observed variablesO[m] = o[m], but also a set of variablesH[m] whose values are not

provided to us. In this section, we assume that the variables inH[m] are discrete. It is

usually assumed that these values aremissing at random– given the observationso[m],

there is no correlation between the fact that the variablesH[m] are not observed, and their

actual values.

Definition 3.4.2 The log-likelihood function in the case of missing data is:

`(θ : D) =
M∑

m=1

log
∑

h[m]

P (h[m], o[m] | θ). (3.24)

This is the objective we are interested in optimizing. Unfortunately, here there is no

closed-form solution for the maximum-likelihood estimate of the parametersθ. This re-

sults from the fact that the different parameters become correlated in the presence of miss-

ing data. The correlations between the parameters preclude us from decomposing the gen-

eral problem into local estimation problems. Consequently, the optimization needs to be

performed in very high-dimensional space. Furthermore, the parameter space typically

contains many local maxima. When some of the variables are hidden (not observed in any

of the training instances), we also face the problem of multiplicity of both global and local

3.4. PARAMETER LEARNING 49

maxima that arises from possible permutations of the values of these variables.

TheExpectation Maximization(EM) algorithm [39, 67] is a popular approach for learn-

ing with missing data. EM and its variants are typically used when the local distribution

functions are in theexponential family[29] and sufficient statistics exist. The idea of EM

in Bayesian networks with discrete hidden variables is straightforward: since parameter

estimation is easy when the data is complete, we first complete the training set using the

current model parameters, and then use this completed set to update the parameters them-

selves. The resulting model is then used to repeat the data completion step and the process

is repeated until convergence.

Before we introduce the EM objective function, we define two helper quantities. We

useQ(H) to denote some posterior distribution over the missing variables:

Q(H) =
M∏

m=1

Q(H[m]) =
M∏

m=1

P (H | O = o, θ), (3.25)

whereH = {H[1], . . . ,H[M]} is the set of missing variables, whileO = {O[1], . . . ,O[M]}
are the observed variables. We also define the log-likelihood of a completed data set{o, h},
in which all hidden variables are instantiated to some set of valuesh = {h[1], . . . , h[M]}:

`(θ : o, h) =
M∑

m=1

log P (h[m], o[m] | θ). (3.26)

Given these definitions, it is easy to write the EM objective, which is the expected log-

likelihood:

EQ(H) [log `(θ : o, h)] =
M∑

m=1

∑

h[m]

Q(h[m]) log P (h[m], o[m] | θ). (3.27)

In optimizing this objective, the EM algorithm begins with some initial parameter as-

signmentθ0, which can either be chosen randomly or using some other approach. Then it

alternates between the following two steps:

◦ In theExpectation step(E-step), we use the current parameter estimatesθt to compute

the posterior distributionsQt+1(h[m]) = P (h[m] | o[m], θt).

50 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

◦ In theMaximization step(M-step), we find the parametersθt+1 which maximize the

expected log-likelihood
∑M

m=1

∑
h[m] Q

t+1(h[m]) log P (h[m], o[m] | θ). Because in

the M-step we are using a completed dataset, this optimization reduces to comput-

ing a maximum-likelihood parameter estimate, which can usually be done in closed

form. The details of the optimization depend on the specific definition of the condi-

tional probability distributions in the model.

It is fairly straightforward to show that both the E-step and the M-step cannot de-

crease the expected log-likelihood objective from Eqn. (3.27). Furthermore, a fundamental

link between this objective, and the log-likelihood objective in Eqn. (3.24) was proven by

Dempsteret al. [39]:

Theorem 3.4.3 (Dempsteret al.) During any consecutive iterationst andt + 1 of the EM

procedure we have

`(θt+1 : D) ≥ `(θt : D).

Moreover,

`(θt+1 : D)− `(θt : D) ≥ EQt+1(H) [`(θt+1 : o, h)]− EQt(H) [`(θt : o, h)] .

This theorem shows that each iteration of EM improves the log-likelihood until conver-

gence to a (typically) local maximum. Furthermore, we are guaranteed that an increase

in expected log-likelihood results in at least as large an increase of the log-likelihood. It

can also be shown (see [39]), that the expected log-likelihood is a concave function which

lower-bounds the actual log-likelihood. For each setting of the model parametersθt, the

EM algorithm maximizes this lower bound, as illustrated in Fig. 3.6.

In this thesis we will also mention a version of EM, calledhard-EM, which is sometimes

used for simplicity and speed. The algorithm makes hard assignments for the variablesH,

unlike the soft posterior assignmentsQ(H) done in standard EM. Hard-EM maximizes the

following log-likelihood function over both the parametersθ and the data-set completions

h of H:

`(θ : o, h) =
M∑

m=1

log P (h[m], o[m] | θ). (3.28)

3.4. PARAMETER LEARNING 51

In the hard E-step, we compute the most likely assignments for the missing variablesH
using the current parameters:

ht+1 = arg max
h

`(θt : o, h). (3.29)

Then, in the M-step we use the assignmentsht+1, to re-estimate the parametersθ as follows:

θt+1 = arg max
θ

`(θ : o, ht+1). (3.30)

The well-known K-means clustering algorithm is an instance of hard-EM, while its soft

EM counterpart is used to learn Gaussian mixture models [14].

Similar to standard gradient descent methods [14], the EM algorithm also suffers from

the problem of local maxima and its performance depends on the initial starting conditions.

A straightforward method often used to cope with this is simply to run EM from multiple

starting points and choose the best of the local maxima solutions. While there are no guar-

antees as to the number of random restarts needed for an effective solution, this method,

and EM in general, can be surprisingly effective and is being used in a large number of

practical applications.

52 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

Chapter 4

Correlated Correspondence Algorithm

In this chapter, we address the fundamental problem ofnon-rigid 3D registration, which

is the problem of finding the point-to-point correspondences between two deforming sur-

faces. Non-rigid registration is an essential capability for the task of example-based learn-

ing of deformable models. The examples are usually meshes (or point clouds) produced by

3D scanners, which capture the deformable shapes from which we are to derive a model.

These meshes are often missing parts of the surface, usually have different topologies, and

can capture a variety of shapes in different configurations. The registration task is crucial

for obtaining a common parametrization of all the scan examples before information from

all of them can be aggregated by the learning process. Because we are often interested in

learning shape models for object classes with significant intra-class deformations, or mod-

els of objects with significant pose changes, it is desirable that the registration algorithm

can handle those cases successfully with minimal human intervention.

The registration problem requires search in the space of possible alignments between

two surfaces. This problem is easiest when we deal with rigid surfaces, because the space

of alignments has only six degrees of freedom. Another relatively easy case occurs when

the deformation between the two surfaces is rather small — then we can assume that a point

in one surface can only match to a few nearby points in the other. In the presence of large

deformations, such an assumption is no longer warranted, and the set of potential matches

for a point in one surface includes all points in the other. Local surface appearance can be

used to prune these large sets of potential point-to-point matches. However, usually it is

53

54 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

not distinctive enough, and not persistent enough in the presence of deformation to allow

significant pruning. Therefore, in the general case, determining the correspondence for all

object points results in a combinatorially large search problem.

The existing algorithms for deformable surface registration make this problem tractable

by assuming significant prior knowledge about the objects being registered. Some rely on

the presence of markers on the object [2, 111], while others assume prior knowledge about

the object dynamics [72], or about the space of nonrigid deformations [69, 15]. Algorithms

that make neither restriction [105, 52] simplify the problem by de-correlating the choice of

correspondences for the different points in the scan. However, this approximation is only

good in the case when the object deformation is small; otherwise, it results in poor local

maxima as nearby points in one scan are allowed to map to far-away points in the other.

In this chapter, we present a novel algorithm calledCorrelated Correspondence, which

can be used to register significantly deforming surfaces in an unsupervised manner. The

algorithm can produce reasonable results even in the absence of prior knowledge about

object deformations and initial surface alignment. Its only limitation is its assumption that

the surfaces being registered do not undergo significant topology changes. The algorithm

is based on a probabilistic model over the set of possible point-to-point correspondences,

which prefers registrations that match similar-looking surface areas, minimize surface de-

formation and preserve distances along the surface. The search in the combinatorial space

of correspondence assignments is done using probabilistic inference [128], which produces

a registration which (approximately) maximizes the score of the probabilistic model.

The rest of this chapter is organized as follows. First, we formally define the problem

of non-rigid registration. Then we describe an important class of non-rigid registration

algorithms, calledNon-rigid Iterative Closest Point (Non-rigid ICP)algorithms1. These

algorithms (e.g. [105, 28, 2, 52, 111]) simplify the registration problem by assuming that

the choice of correspondences for different scan points can be de-correlated. We examine

the cases when this assumption leads to poor registrations, and derive insights which will be

used to obtain theCorrelated Correspondence (CC)algorithm. Then we describe in detail

the CC algorithm, and demonstrate successful registration in several datasets containing

1The moniker ’Iterative Closest Point’ is borrowed from the famous algorithm for registration of rigid
bodies by Beslet al. [13].

4.1. TRADITIONAL NON-RIGID SURFACE REGISTRATION 55

different objects and exhibiting different kinds of deformation.

Finally, we demonstrate two applications for our unsupervised registration capability.

In our first application, we show how a partial scan of an object can be registered onto

a fully specified model in a different configuration. The resulting registration allows us to

use the model to “complete” the partial scan in a way that preserves local surface geometry.

In our second application, we produce believable animation sequences by interpolating

between two poses of an object. Both of these applications can be done in an unsupervised

way, using the results of the Correlated Correspondence algorithm.

4.1 Traditional Non-rigid Surface Registration

4.1.1 Problem Definition

The registration problem is one of determining point-to-point correspondences between

two surfaces. We assume we are given a complete model of the surface of the object,

which we will call themodel meshand will denote asMX . We are also given a model

of the surface in a different configuration. This surface is usually a mesh acquired with a

3D range scanner. We refer to it as ascan meshand denote itMZ . The scan mesh can

be a complete, or partial model of the surface (scanners generally fail to acquire the entire

surface due to occlusion and reflectance problems).

The goal of registration is to match the corresponding parts of the two meshes, and

to bring those parts together with minimal deformation. The registration problem can be

defined formally in terms of a generative process, which is displayed in Fig. 4.1. The model

meshMX is first deformed using a non-rigid transformationΘ. This transformation places

the points and polygons of the mesh in a new configuration producing the transformed mesh

MY = Θ(MX). The pointsVY of the transformed mesh are then resampled to generate

the scan mesh pointsVZ . The resampling process is guided by a set of correspondence

variablesC. Each pointzk in the scan meshMZ is associated with a correspondence

variableck. This variableck has a discrete domain containing all model point indexes

{1, . . . , NX}. Settingck = i picks pointyi to generate scan pointzk.

Our generative model of registration is fully specified when we define the probability

56 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Model mesh X

Transformation

Transformed mesh Y

Transformation Θ

Scan mesh Z

 Resampling /

Correspondences C

y

x

zi

i

k

Figure 4.1: The generative process of registration. First, a non-rigid transformation is ap-
plied to the model meshMX , producing the transformed versionMY , which contains the
same points and polygons, but placed in new locations. Then, the transformed surface is
resampled, producing the scan meshMZ . The resampling is guided by the set of corre-
spondence variablesC — each pointzk in meshZ is associated with a correspondence
variableck that specifies which point inMY generated it.

distributions involving the deformationΘ and correspondencesC. First, we need to assign

a penalty for deformation, in the form of the conditional distributionP (Θ | MX). This

distribution will assign high likelihood to cases with small deformation, and low likelihood

otherwise. Many different choices are possible [105, 52, 2], but we omit giving a precise

definition of this probability score until the next section. Second, we need to associate a

probability distribution with the resampling step. Most existing approaches assume each

scan point is generated from its corresponding point in the transformed model with Gaus-

sian noise. In particular, we define the conditional probability:

P (zk | ck = i, yi) = N (zk; yi, ΣC) (4.1)

whereΣC is a diagonal3× 3 matrix specifying the Gaussian variance. Finally, we assume

uniform prior distributionP (C) over the correspondence variables, reflecting the lack of

prior information about the correspondences.

Given the probabilistic model described above, the registration problem can be cast as

likelihood maximization — finding the most likely set of values for theΘ andC given the

4.1. TRADITIONAL NON-RIGID SURFACE REGISTRATION 57

original meshesMX andMZ :

arg max
Θ,C

P (Θ, C | MX ,MZ) = arg max
Θ,C

P (MZ | C, Θ)P (Θ | MX)P (C). (4.2)

The equality above follows from Bayes’ rule. Now we are ready to summarize our discus-

sion in the following definition:

Definition 4.1.1 Thenon-rigid registration of model meshMX and scan meshMZ re-

covers correspondencesC between the meshes and the non-rigid transformationΘ that

align the meshes and minimizes the amount of the necessary deformation of model mesh

MX .

4.1.2 Non-rigid Iterative Closest Point Algorithm

Defining the generative model allows us to score different instantiations of the deforma-

tion Θ and correspondencesC. However, the space of possible deformations is infinite,

while the set of possible assignments to the correspondence variables is exponential. A

standard way to search this space is theNon-rigid Iterative Closest Point (non-rigid ICP)

algorithm [52, 111, 105], which is an adaptation of the Iterative Closest Point method of

Beslet al. [13] used for aligning rigid objects.

This algorithm starts with a reasonable initial estimate of the deformationΘ, and tries

to maximize the objectivelog P (C, Θ | MX ,MZ). Unfortunately, this is difficult to do in

closed form, because of the complex correlations between the variablesΘ andC. Instead,

all non-rigid ICP algorithms are based on the insight that it is much easier to optimize

the log-likelihood by iteratively optimizing eitherC or Θ, while keeping the other set of

variables fixed.

The algorithm can be viewed as an instance of hard Expectation-maximization (for a

refresher please refer to Sec. 3.4.2). It aims to maximize the log-likelihoodlog P (C, Θ |
MX ,MZ). This objective is optimized by iterating between two steps. The hard E-step

solves for the most likely assignment for the correspondencesC, assumingΘ is fixed; in

other words, forarg maxC P (C | Θ,MX ,MZ). Given the transformationΘ, the trans-

formed meshMY is uniquely determined. With this in mind, it is easy to infer from the

58 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Algorithm Non-rigid Iterative Closest Point
Input: MeshesMX andMZ , initial alignmentΘ∗.

1: while MY = Θ(MX) andMZ not sufficiently closedo
2: Hard E-Step: GivenΘ, compute the set of correspondencesC:

For each scan pointzk, find the nearest pointyi in MY , and setck = i.
3: M-step: GivenC, compute a new transformation estimateΘ:

Solve forarg maxΘ log P (Θ | C,MX ,MZ).
4: end while
5: return deformed meshMY = Θ(MX) and correspondencesC.

Figure 4.2: A description of the Non-rigid ICP algorithm.

probabilistic model that the correspondence variable assignments are conditionally inde-

pendent of each other given a known deformationΘ and the scan meshMZ . Thus, the

E-step objective can be optimized independently for each correspondence variable. In the

M-step, the correspondences computed in the E-step are used to update the deformation

Θ = arg maxΘ P (Θ | C,MX ,MZ), and the process is iterated until convergence. The

Non-rigid ICP algorithm is displayed in Fig. 4.2. The algorithms is often used in con-

junction with a simulated-annealing style strategy which starts with a strong penalty on

deformation and gradually decreases it in subsequent iterations. Such a strategy is more

likely to produce a good solution.

A soft version of EM has also been explored by the work of Chui and Rangarajan [28],

which maintains distributions over the variablesC (instead of taking the most likely as-

signment) at an increased computational expense. Both the soft and the hard EM versions

converge to a point where changing correspondences or deformation alone cannot improve

the joint likelihood.

A specific instance of the Non-rigid ICP algorithm is described in the paper of Hähnelet

al. [52].

4.1.3 Local Maxima of Non-rigid ICP

Non-rigid ICP is only guaranteed to get to a local maximum of the energy in Eqn. (4.2). As

displayed in Fig. 4.15, an attempt to register two different puppet poses yields a monstrous

4.1. TRADITIONAL NON-RIGID SURFACE REGISTRATION 59

Model X Scan Z Rigid Alignment

(a) (b) (c) (d) (e) (f)

Figure 4.3: Non-rigid ICP fails to deal with large deformations. Model mesh (a) is reg-
istered with Scan mesh (e). Meshes (b)-(d) are intermediate Non-rigid ICP results, each
subsequent result was produced by weakening the prior on link deformations. The algo-
rithm is initialized with the best rigid alignment between the model and scan meshes, shown
in (f). De-correlating the correspondence assignments in the E-step causes points on the
same leg in the model mesh to be mapped to two different legs in the scan mesh.

result — the right puppet arm turns into a head, and a new head grows from the left shoul-

der. Such a poor local maximum is due in large part to an inability to obtain a good initial

transformation estimate. The best rigid alignment between the two meshes is displayed on

the right of Fig. 4.15. Using it in conjunction with the Non-rigid ICP algorithm causes the

poor result.

Non-rigid ICP uses the transformation estimate to decorrelate the correspondence vari-

ables — each scan point is assigned its nearest transformed model point. The de-correlation

assumption makes non-rigid ICP computationally tractable even for large model meshes.

However, this assumption is clearly incorrect when the transformation estimate is poor.

The rightmost picture in Fig. 4.15 demonstrates that two points which lie on the same

leg in the scan mesh get associated with twodifferent legs in the model mesh. This prob-

lem is never corrected in subsequent iteration of non-rigid ICP, as poor transformation and

correspondence estimates reinforce each other.

60 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Figure 4.4: Illustration of the Correlated Correspondence model. Setting the valuesck = i
andcl = j picks a model mesh link that matches the scan mesh link(zk, zl). Single poten-
tials φ(ck) compare the local surface appearance of the possible point matches. Pairwise
potentialsφ(ck, cl) quantify the deformation of suitable matching links, and ensure they
satisfy geodesic distance constraints.

4.2 Correlated Correspondence Algorithm

The main insight from Sec. 4.1.3 is that in the absence of a good alignment hypothesis, the

correspondence variables associated with the scan mesh points arecorrelated. An example

of this correlation is the requirement that nearby points on the scan mesh should be mapped

to nearby points on the model mesh. Determining the correspondence for all object points,

while taking into account their correlations, results in a combinatorially large search prob-

lem. The idea behind our algorithm is to explicitly model the correlations between the

correspondence variables, and to search for a consistent solution directly in the resulting

combinatorial space.

We view non-rigid registration as the task of finding a deformable embedding of the

scan meshMZ into the model meshMX . Unlike most other embedding methods [40,

116, 10], our algorithm can be used to register a partial scan to a complete model. Usually

the meshes obtained by 3D scanners have holes caused by occlusion and self-occlusion,

which makes this property desirable in practice. The embedding is defined by providing a

4.2. CORRELATED CORRESPONDENCE ALGORITHM 61

Figure 4.5: The induced Markov network encoding the correlations between the correspon-
dence variables.

complete assignment to all correspondence variablesC = (c1, . . . , cK). If the dependencies

between the correspondence assignment are modeled correctly, we can make sure that the

embedding avoids the problems exhibited by Non-rigid ICP in Fig. 4.3.

In order to find a consistent embedding, we need to define a model that captures the

correspondence variable correlations. For this task, we use a pairwise Markov network

(see Chapter 3). The network contains single potentialsψ(ck) which prefer embeddings

that match similar-looking areas in the two surfaces. The network also contains probabilis-

tic potentialsψ(ck, cl) associated with pairs of correspondence variables(ck, cl). These

potentials model the variable correlations that enforce a preference for embeddings that

minimize surface deformation, and conform to geodesic distance constraints. The result-

ing Markov network is a model of a joint probability distribution of the formp(C) =
1
Z

∏
k ψ(ck)

∏
k,l ψ(ck, cl) which contains only single and pairwise potentials. A sketch of

the Correlated Correspondence model is displayed in Fig. 4.4, while the induced pairwise

Markov network is displayed in Fig. 4.5.

The task of registration is thus reduced to one of performing probabilistic inference in

the Markov network, in order to find the most likely joint assignment to the entire set of

correspondence variablesC. The inference problem for a general Markov network is NP-

hard, but extensive literature on approximate Markov net inference is available. We apply

the algorithm calledloopy belief propagation (LBP)[128], which is an efficient search in

62 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

the exponential space of correlated variable assignments (see Chapter 3.3.2). In contrast,

the Non-rigid ICP algorithm requires that an initial alignment hypothesis for the entire

surface is given to the algorithm. Generally, there are exponentially many such hypotheses,

and the non-rigid ICP algorithm lacks a mechanism to perform efficient search in that space.

4.3 Probabilistic Model

In this section, we describe in detail our probabilistic model of registration, which takes the

form of a Markov network over the correspondence variables. This network contains the

following kinds of pairwise and single potentials:

1. Singlelocal surface signature potentialsψs(ck, cl), which prefer to match similar-

looking parts of the surface.

2. Pairwisedeformation potentialsψd(ck, cl), which encode a preference for small de-

formation during the embedding.

3. Pairwisegeodesic distance potentialsψn(ck, cl) andψf (ck, cl), which enforce ap-

proximate preservation of geodesic distance during the embedding.

Below we describe how to define and compute each of these potentials in detail.

4.3.1 Local Surface Signatures

We encode a set of potentials that correspond to the preservation of local surface properties

between the model mesh and scan mesh. The use of local surface signatures is important,

because it helps guide the optimization in the exponential space of assignments. We mainly

experimented with spin-image features [60], although other features can be used as well.

A spin-image is an oriented histogram associated with a pointp on the surface; an example

is displayed in Fig. 4.6. The point normaln defines the planeTp, tangent to the surface

at p. Each pointq in the neighborhood ofp is associated with two statistics: the signed

distanceβ betweenq and the planeTp and the distanceα from p to q’s projection in the

planeTp. The spin-image is a 2D histogram, which partitions the space of possibleα and

4.3. PROBABILISTIC MODEL 63

Mesh
Surface Spin

Image

P

β

α

System
N

αP

Q

β
pT

Coordinate

N

Figure 4.6: Spin images are two-dimensional histograms computed at an oriented pointP
on the surface mesh of an object.

β values into bins, and counts how many neighboring surface points fall in each bin. When

the surfaces around scan and model points are similar, we expect their spin-images to be

similar as well.

The spin-image signatures are invariant to surface rotations around the point normaln

(since the statisticsα andβ are invariant to such rotations). As a result, spin-images offer

an efficient way of comparing the surfaces around two points without requiring their rota-

tional alignment, which is usually unknown. We compress the spin-images using principal

component analysis (PCA) to produce a low-dimensionalsignaturesx of the local surface

geometry around a pointx. Two low-dimensional signaturessxi
andszk

can be compared

simply by using their L2 distance:di,k = ‖sxi
− szk

‖. Our surface similarity potentials are

defined as a Gaussian distribution over these distances:

ψs(ck = i) = N (di,k; 0, ΣS),

whereσS is a diagonal covariance matrix.

In our experience, we found spin-images to be highly efficient features, which per-

formed well for registration of articulated objects. In that case, the surface around the

joints undergoes significant deformation, but the rest of the surface is usually deformed

only slightly, comparable to the spin-image resolution. The spin-images were sufficient to

obtain high-quality registrations in this case.

64 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

a) b)

Figure 4.7: a) Illustration of the link deformation process b) The CC algorithm which uses
only deformation potentials can violate mesh geometry. Near regions can map to far ones
(segment AB) and far regions can map to near ones (points C,D).

There are limits as to how well features, such as spin-images, can perform in a com-

pletely unsupervised setting. For example, when we register scans of human bodies, we

need to deal with large deformations in some parts of the shape, and small deformations

in others. Whenever the resolution of the spin-image bins was small relative to the de-

formation, we got poor results. Increasing the spin-image resolution impaired the feature

accuracy in areas which don’t deform as much (human head and fists). This suggests that in

the presence of additional knowledge, we can adapt the size and scale of the local surface

signatures for different parts of the scan and achieve even better registration results.

4.3.2 Deformation Potentials

We want our model needs to encode a preference for embeddings of meshMZ into mesh

MX that minimize the amount of deformationΘ induced by the embedding. In order to

quantify the deformation amount, we borrow ideas from the model of Hähnelet al. [52].

We model deformation using pairwise potentialsψd(ck, cl) between the correspondence

variables associated with adjacent scan mesh points (points connected by an edge inMZ).

4.3. PROBABILISTIC MODEL 65

We introduce a separate potential associate with each edge2 in the scan mesh. The defor-

mation potential is a table, assigning values for each possiblejoint assignment to its corre-

spondence variables. Because of this, there is a distinct benefit of using pairs of variables

(instead of triples or larger groups). A particular valueψd(ck = i, cl = j) in the potential

table denotes the preference given to the assignmentck = i, cl = j. Intuitively, the value

corresponds to the amount of deformation that model edge(i, j) incurs to transform into

scan edge(k, l).

Importantly, the set of possible matches for scan edge(k, l) is not limited only to the set

of model mesh edgesEX . That set of edges is sparse and local, and therefore insufficient

to cover the space of deformations we want. Instead, we will allow any two points in the

model meshMX to implicitly define a matching link for edge(k, l).

To quantify the amount of deformation, we treat the model mesh links as springs, which

resist stretching and twisting at their endpoints. Consider a particular model link(i, j). Its

stretching is easily defined by looking at changes in the link lengthli,j. Link twisting,

however, is ill-specified by looking only at the Cartesian coordinates of the points alone.

Similar to Ḧahnelet al. [52], we attach an imaginarylocal coordinate systemto each point

on the model (see Fig. 4.7(a)). This local coordinate system allows us to quantify the

amount of link twisting: no twisting occurs if the orientation of the link endpoints in their

neighbors’ coordinate systems is preserved. This orientation will be captured by defining

the unit vectordi→j, which describes the orientation of pointxj in the local coordinate

system of pointxi (and similarly, we can definedj→i):

di→j =
u

‖u‖ , u = Ri · (xj − xi). (4.3)

Above,Ri is the matrix describing the rotation of the coordinate system centered on point

xi. For simplicity, we will assume that in the original model mesh the rotation is simply

the identity matrixI.

The set of deformation-related parameters for a particular model link are denoted as

eX
i,j = (li,j, di→j, dj→i), and are displayed in Fig. 4.7. After applying a non-rigid defor-

mationΘ to the mesh, the local coordinate systems associated with the mesh points are

2We will also refer to mesh edges aslinks, to emphasize the variable correlations they entail.

66 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

rotated, and the edge parameters are transformed intoeZ
i,j = (l̃i,j, d̃i→j, d̃j→i). Our model

penalizes stretching and twisting independently:

P (eZ
i,j | eX

i,j) = P (l̃i,j | li,j) P (d̃i→j | di→j) P (d̃j→i | dj→i). (4.4)

Furthermore, we assume a zero-mean Gaussian noise model for each parameter:

P (l̃i,j | li,j) = N (l̃i,j; li,j, σ
2
L), P (d̃i→j | di→j) = N (d̃i→j; di→j, ΣD). (4.5)

Prior information can be introduced into this model in the form of link-specific standard

deviation parametersσL and covariancesΣD. However, such information is usually not

readily available, so in our experiments we assume all links share the same parameter

values.

In order to quantify the deformation induced by the embeddingC, we need to include

a potentialψd(ck, cl) for each linkeZ
k,l ∈ EZ . Every potential valueψd(ck = i, cl = j)

captures the amount of deformation needed to transform linkeX
i,j into link eZ

k,l. The precise

value is defined as follows:

ψd(ck = i, cl = j) = P (eZ
k,l | eX

i,j). (4.6)

Unfortunately, we cannot directly estimate the quantityP (eZ
k,l | eX

i,j), since the link

parameterseZ
k,l depend on extra information about the local coordinate systems, which is

not given as part of the input. The key issue is estimating the (unknown) coordinate system

rotations. In effect, this rotation is an additional latent variable, which must also be part of

the probabilistic model. To remain within the realm of discrete Markov networks, allowing

the application of standard probabilistic inference algorithms, we discretize the space of

the possible rotations, and fold it into the domains of the correspondence variables.

For each candidate matchck = i, we need to select a small set of candidate rotations,

that are consistent with local geometry. We do this by aligning the local surface patches

around the pointsxi andzk. For each patch, we run PCA on its point cloud to obtain the

direction of its largest eigenvector. For a particular candidate point match(xi, zk), we align

the point normals and eigenvector directions to obtain two opposite candidate alignments.

4.3. PROBABILISTIC MODEL 67

We additionally refine the alignments using rigid ICP. The current implementation performs

well using only two candidate rotation alignments per pair. A larger number of candidate

alignments per pair can be easily computed, but we did not see the need for doing this in

practice.

Using these alignment estimates, we extend the domain of each correspondence vari-

ableck. Each value in the domain encodes a matching pointanda particular rotation from

the precomputed set for that point. Given assignments to the correspondence variables in

this extended domain, the quantitiesP (eZ
k,l | eX

i,j) and all the values of the deformation

potentials can be computed.

We point out that the Correlated Correspondence algorithm can easily incorporate dif-

ferent deformation models. Most implementations of Non-rigid ICP use a carefully chosen

definition of deformation, which can be easily linearized and results in a least-squares op-

timization objective. The probabilistic inference employed by the Correlated Correspon-

dence algorithm does not rely on the continuity or differentiability of the deformation-

scoring function. Different models of deformation can be introduced without need for

changing the optimization algorithm, simply by replacing the values in the deformation

potentials.

4.3.3 Geodesic Distances

Our proposed approach raises the question as to what constitutes the best constraint be-

tween neighboring correspondence variables. The literature on scan registration — for

rigid and non-rigid models alike — relies on preserving the Euclidean distance. While the

Euclidean distance is meaningful for rigid objects, it is very sensitive to deformations, es-

pecially those induced by moving parts. For example, in Fig. 4.7(b), we see that the two

puppet legs are fairly close together, allowing the algorithm to map adjacent points in the

scan mesh to the two separate legs, with minimal deformation penalty. In the complemen-

tary situation, especially when object symmetries are present, two distant yet similar points

in one scan might get mapped to the same region in the other. For example, in the same

figure, we see that points in both an arm and a leg in the scan mesh get mapped to a single

leg in the model mesh.

68 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

We therefore want to introduce constraints that preserve the distance along the mesh

surface (geodesic distance). Our probabilistic framework can treat such constraints as cor-

relations between pairs of correspondence variables. We encode anearness preservation

constraintwhich prevents adjacent points in meshMZ to be mapped to geodesically dis-

tant points inMX . For adjacentpointszk, zl in the scan mesh, we define the following

potential:

ψn(ck = i, cl = j) =

{
0 distGeodesic(xi, xj) > αρ

1 otherwise
(4.7)

whereρ is the scan mesh resolution andα is a constant, chosen to be3.5.

The farness preservationpotentials encode the complementary constraint. Forevery

pair of pointszk, zl whose geodesic distance is more than5ρ on the scan mesh, we have a

potential:

ψf (ck = i, cl = j) =

{
0 distGeodesic(xi, xj) < βρ

1 otherwise
(4.8)

whereβ is also a constant, chosen to be2 in our implementation. The intuition behind this

constraint is fairly clear: ifzk, zl are far apart on the scan mesh, then their corresponding

points must be far apart on the model mesh.

4.4 Optimization

In the previous section, we defined a Markov network, which encodes a joint probability

distribution over the correspondence variables as a product of single and pairwise poten-

tials. Our goal is to find a joint assignment to these variables that maximizes this proba-

bility. This problem is one of standard probabilistic inference over the Markov network.

However, the Markov network is quite large, and contains a large number of loops, so that

exact inference is computationally infeasible. We therefore applySum-product loopy belief

propagation (LBP)(see Sec. 3.3.2), which is an approximate inference method that has been

shown to work in a wide variety of applications. Running LBP until convergence results

in a set of probabilistic assignments to the different correspondence variables, which are

locally consistent. We then simply extract the most likely assignment for each variable to

obtain a correspondence.

4.4. OPTIMIZATION 69

4.4.1 Dealing with Farness Preservation Potentials

One complication arises from the form of our farness preservation constraints. In general,

most pairs of points in the mesh are not close, so that the total number of such potentials

grows asO(NZ
2), whereNZ is the number of points in the scan mesh. This can easily be

the bottleneck of the algorithm, because the number of all other potentials scales linearly

with the number of scan mesh points. However, rather than introducing all these potentials

into the Markov net from the start, we can introduce them as needed. First, we run LBP

without any farness preservation potentials. We can easily check whether the solution

violates a set of farness preservation constraints. This is done efficiently by checking if

nearby points in our solution on the model mesh are indeed nearby on the scan mesh as

well. If this is not true in all cases, we add the geodesic potentials associated with the

violated constraints and rerun BP. In practice, this approach adds a small number of farness

preservation constraints.

4.4.2 Dealing with Local Minima of Loopy Belief Propagation

In some cases LBP inference may converge to a local minimum of the energy defined by

the Markov network — there may be another solution with a higher log-likelihood than

the one found by the algorithm. In practice we observed that this can happen when the

object shape contains symmetries. These cases most frequently include the presence of

several identical object parts such as chair legs or car tires. Another popular case is that

of planar (or mirror) symmetry, which is also frequently observed in many objects such

as people, cars and chairs. To deal with the local minima problem, we need to run LBP

with different starting conditions, which will cause the algorithm to explore different parts

of the energy landscape. Below we are going to describe how to provide these different

starting conditions in a completely unsupervised manner. In general, the algorithm below

is not very efficient, hence we ran it only in the case when straightforward application of

LBP got stuck in a local minimum.

Our CC algorithm provides the capability to embed the scan mesh, which can contain

any subset of the surface, into the model mesh. Thus, it also provides the capability to

embed any subset of the scan mesh into the model mesh, as well. We consider breaking up

70 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Algorithm MultipleStartingHypotheses
Require: Part sizeR, K embeddings per part.
Output: A set ofN starting hypotheses for LBP.

1: Find a set of scan mesh partsPZ = (p1, . . . , pS).
2: Find the pointzC on the scan mesh surface, which is nearest to the mesh centroid.
3: Compute the geodesic distance mapDG from zC to all mesh points.
4: Get a set of extrema pointsV = (v1, . . . , vS) that correspond to local maxima

of DG with non-trivial support.
5: Each partps then contains the subset of the surface within a radiusR around

extremum pointvs.
6: Use the CC algorithm to findK different embeddings of each partps into the model

mesh, and their likelihood.
7: Find the set ofN highest-likelihood hypotheses which embed all parts into the model

in a non-overlapping way. If no such hypotheses exist return∅.
Figure 4.8: Algorithm for providing multiple starting hypotheses for loopy belief propaga-
tion

the scan mesh into parts, and using CC to find several different embeddings for each part.

In the extreme case when the part contains a single point, and the embedding algorithm

needs to only consider its local surface signature, there is a lot of ambiguity and hence

many possible matches in the model. On the other hand, we expect that object parts of

a non-trivial size will have only a few good candidate matches. Our algorithm will thus

rely on computing the embeddings of a few medium-sized scan mesh parts. From these,

we can obtain several high-scoring hypotheses that embed all parts into the model in a

non-overlapping way. Each such hypothesis can then be used to initialize a different run of

LBP inference. At a high level of abstraction, this approach is similar to RANSAC-style

algorithms [44], only we are looking to use entire subsets of the scan mesh as features. The

algorithm is sketched in Fig. 4.8 in more detail.

Each embedding hypothesisH i, obtained with the algorithm above, contains a candi-

date match pointxi
s in the model for each extremum pointvi

s. We initialize LBP for each

hypothesis, by requiring that the extrema points are embedded in the vicinity of the matches

found by the algorithm in Fig. 4.8 (this is accomplished by allowing each pointvi
s to match

only points nearxi
s in the model mesh). We compare all LBP results obtained using the

different initialization hypotheses, and pick the solution with the highest log-likelihood.

4.4. OPTIMIZATION 71

a) Original scan mesh

d) Feature on scan mesh

b) Subsampling to 62 points c) Subsampling to 220 points

Coarse Sampling Fine Sampling

e) ~250 matching model

 points

f) ~100 matching model

 points

Figure 4.9: Illustration of the mesh subsampling process. The top row displays the sub-
sampling of the (a) scan mesh points at a (b) coarse resolution and (c) fine resolution. The
bottom row displays the decimation of the correspondence domain, associated with (d) a
point on the subject’s nose. (e) The coarse subsampling phase covers the model mesh with
250 possible matches for that point. (f) The fine subsampling phase uses the coarse solution
to restrict the correspondence domain to about 100 points on the head.

72 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

4.5 Surface Subsampling

In the previous two sections, the problem of non-rigid registration was reduced to one

of performing inference in a Markov network over the correspondence variablesC. In

practice, we are often faced with the task of registering very large meshes that contain tens

of thousands of points and polygons. For such meshes, our algorithm can still be directly

applied since we can build very large Markov networks, and perform LBP inference to

compute the correspondence assignments. However, this direct scheme has the following

drawbacks:

1. Large Markov networks occupy a substantial chunk of computer memory, and LBP

in them takes a long time and many iterations to converge.

2. The CC algorithm computes an embedding of the scan mesh points into the model

mesh points. For this embedding to make sense, we implicitly assumed that the point

sampling of the model mesh surface is denser than that of the scan mesh surface.

Otherwise, our solution can have many scan points mapped to the same model point.

3. In practice, we observed that as the Markov network size keeps increasing, at some

point the solution quality tends to worsen. This is due to the fact that a growing

number of variables in the network also causes a growing number of possible local

minima where LBP inference can get stuck.

Our solution for this is to subsample the set of scan mesh points and the domains of

their associated correspondence variables. In practice the benefits of such an approach

outweigh the considerations that in the process we may be ignoring some of the original

information about surface geometry. Many algorithms in computer vision (e.g. [64, 105])

have benefited from such a subsampling approach.

Our implementation employs a coarse-to-fine subsampling strategy. First, we subsam-

ple the scan meshMZ to about 60-100 points. Then we appropriately subsample the

domains of the correspondence variables as well. The LBP inference is run on the resulting

Markov network which embeds the subsampled point set into the model mesh. Our second

iteration of the algorithm uses a finer-resolution subsampling resulting in about 200-250

4.5. SURFACE SUBSAMPLING 73

scan mesh points. Their correspondence domains are then decimated in a way, which uses

the coarse registration results.

Below we describe the subsampling process in more detail. We would like to point

out that the approach we present is one of many reasonable choices, and is simply a pre-

processing step to our registration algorithm.

4.5.1 Subsampling the Scan Mesh

Our goal is to take the meshMZ and obtain a sparse set of points covering its surface,

along with a set of links connecting these points.

First, we describe a simple and efficient way of subsampling the set of mesh pointsVZ .

We assign apreference scorebk to each scan mesh pointzk, which describes the desirability

of that point. We would like to keep points where the surface is distinct; by a simple rule of

thumb, these are points in areas of high mesh curvature. We also prefer points that are far

from the mesh boundaries, where spin-image features and surface normals are not as accu-

rate. We use a very simple method to obtain likely high-curvature points. The preference

score for each scan point is defined as the ratio between the area of mesh triangles incident

to the point and the length of the triangle edges that do not contain the point. While this

simple rule of thumb was enough for our purposes, more sophisticated mesh curvature esti-

mation methods [68, 3] can be used as well. We assign these preference scores to all points

zk that lie at least a distanceρ from the scan mesh boundary. The points that are close

to the mesh boundary are assigned a uniform negative score, rendering them most unde-

sirable. Given the scores, we use a simple algorithmSubsampleMeshPoints(MZ , B, dZ)

(described in Fig. 4.10) that greedily covers the mesh with high-preference points, while

ensuring they are spaced at least a distancedZ apart. The results of applying this algorithm

to the scan mesh of Fig. 4.9(a) at two different resolutionsdZ are displayed in Fig. 4.9(b,c).

Having determined the subsetS of points to keep, we also need to determine the links

between them. We keep only links between adjacent points in the surface. Connecting

non-adjacent surface points can impair our capability to deal with articulated models, and

74 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Algorithm SubsampleMeshPoints(M, B, d)

Require: MeshM, preference scoresB = (b1, . . . , bN), distanced.
Produce: A subsetS of the mesh points, spaced at leastd apart.

1: Construct a heapH = {(b1, z1), . . . , (bN , zN)} of score-point tuples.
2: Allocate a bit arrayU of sizeN , set all bits tofalse.
3: while H not emptydo
4: Extract the highest-scoring pair(bk, zk) from H.
5: if U [k] = false then
6: S = S ∪ zk.
7: U [k] = true.
8: for all pointszl within a distanced from zk along the surface ofM do
9: SetU [l] = true.

10: end for
11: end if
12: end while

Figure 4.10: Simple algorithm for subsampling the mesh points

is more computationally expensive. We chose to keep the links consistent with the Delau-

nay triangulation over the points inS. Delaunay triangulations result in few sliver trian-

gles [37], which are undesirable because they contain short edges that can in some cases be

flipped by the registration algorithm. In obtaining the triangulation, we use the distances

along the surface of the scan mesh. We point out that the CC algorithm can also be used

with a set of links that does not correspond to a valid triangulation of the mesh surface.

4.5.2 Subsampling the Domains of the Correspondence Variables

Since each correspondence variableck has2×NX values in its domain (corresponding to

theNX model mesh points, with two orientations for each), we get a substantial computa-

tional benefit from decimating these domains for large meshes. Subsampling the surface of

meshMX using standard software such asQslim [47] is not appropriate in this case. The

reason for this is that standard mesh subsampling solutions naturally focus on obtaining

good polygon tessellations of the surface, which can result in a very non-uniform point

sampling. This is a problem for our registration algorithm, which essentially embeds one

set of point samples into another. Consider planar areas in the original model mesh, which

4.6. EXPERIMENTAL RESULTS 75

will be tessellated with very few polygons(and hence, very few points as well) by the stan-

dard approaches. If the areas deform, that may cause the scan mesh to be much more

densely sampled in the same regions. This causes a problem for our registration algorithm,

which will try to embed a densely sampled surface region into a sparsely sampled one. We

previously discussed the requirement that for good algorithm performance, the point sam-

pling of the model surface is denser than that of the scan surfacein all surface areas. Below

we describe a solution that achieves this requirement.

We are going to decimate the values in the domain of each correspondenceck separately,

using the local surface appearance of its associated point. For each possible assignment

ck = i, we compute the its local signature scorebk
i = log ψs(ck = i). We then execute the

greedy algorithmSubsampleMeshPoints(MX , Bk, 1
2
dZ) from Sec. 4.5.1. The algorithm

greedily prunes the domain ofck, and as a result, we obtain the a subset of the mesh points

which locally maximizes the signature scores, and is spaced at least1
2
dZ distance apart.

Recall that the scan mesh was subsampled using the resolution parameterdZ using the

same algorithm. Our decimated domains cover the entire model mesh, to ensure that we

do not miss the correct solution as a result of this pre-processing step. In the presence

of additional domain knowledge, the correspondence variable domains can be decimated

further.

In practice, during the first subsampling phase of the algorithm that leaves 60 scan

mesh points, we end up with correspondence domains containing about 250 points, with

2 alignments per point (Fig. 4.9(e)). In the fine subsampling phase, we end up with about

100 possible model point candidates, because we restrict the solution to be close to the

correspondences found during the first phase (Fig. 4.9(f)).

4.6 Experimental Results

We applied our registration algorithm to three different datasets, containing meshes of a

human arm (7 meshes), wooden puppet (7 meshes) and a CAESAR dataset of whole human

bodies (10 meshes), all acquired by a 3D range scanner. The meshes were not complete

surfaces, but several techniques exist for filling the holes (e.g., [35]).

We ran the Correlated Correspondence algorithm using the same probabilistic model

76 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

c)

1

10

2

3

4

5 9

6

7

8 10

1

2
6

7

8

95

4

3

Model Scan

d)

Model Scan

1

2

3

6

4

5

10

7

8
9

1

6

2

3

8

7

9

10

4

5

a)

Model

Scan

1

1

2

2

3

3

4

4

b)

1 1
2 23

4 4

3

5 5

Model Scan

Figure 4.11: Results obtained by running the CC algorithm on pairs of scans in a com-
pletely unsupervised fashion. The algorithm finds 200-300 matching point pairs, which are
displayed as colored spheres on the meshes — matching points are assigned the same color.
Select correct and incorrect correspondences were numbered, and highlighted in yellow or
red, respectively.

4.6. EXPERIMENTAL RESULTS 77

and the same parameters on all data sets. We use the coarse-to-fine subsampling strategy,

outlined in Sec. 4.5. Our spin-image features contain6 × 12 bins, the total spin-image

size is1.2 × d1
Z , whered1

Z is the resolution of the scan mesh features at the coarse scale

of subsampling. The spin-images are compressed using PCA, of which we keep the first

15 principal components. The standard deviations of our Gaussian distributions are set as

follows: σL = 0.7× dZ , ΣD = 0.7 · I, ΣS = (1.2× e1) · I, wheree1 is the size of the largest

eigenvalue in the PCA used to compress the spin-images, andI is the identity matrix.

We run Loopy belief propagation, and as a result obtain the point-to-point correspondences

between the two meshes. We did not use the multiple-initializations strategy from Sec. 4.4.2

unless explicitly stated.

The Correlated Correspondence algorithm successfully aligned all mesh pairs in our

human arm data set containing 7 arms. The most difficult registration case, when the arm

goes from a completely extended to a bent position, is displayed in Fig. 4.11(a). In the

puppet data set we picked one of the meshes to be the template mesh, and registered it

to the remaining 6 puppets. The algorithm correctly registered 4 out of 6 scan meshes to

the model mesh. One of those correct registrations is displayed in Fig. 4.11(b). In the

two remaining cases, the algorithm produced a registration where the torso was flipped, so

that the front was mapped to the back. This problem arises from ambiguities induced by

the puppet symmetry, whose front and back are almost identical; one of these problematic

cases is displayed in Fig. 4.12. However, in both of these cases, our probabilistic model

assigns a higher likelihood score to the correct solution. Thus, the incorrect registration is

a consequence of local maxima in the LBP algorithm. Using the approach in Sec. 4.4.2, we

re-ran loopy BP for all puppets several times, with different initializations. This modified

algorithm correctly registered the template mesh to all the remaining ones in the dataset.

We also applied the CC algorithm to 6 pairs of human body scans from the CAESAR

dataset. It performed well in challenging cases involving both articulated motion and de-

formations (Fig. 4.11(c)), as well as body shape deformation and (small) changes in scale

(Fig. 4.11(d)). The algorithm made only one significant error, which is located around

the belly-button in Fig. 4.11(c) and is highlighted in red. No multiple initializations were

needed in these cases.

78 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Model Front Scan Front Scan Back

1 2

3

4

5 6

12

5
6

1

23

4

5 6

Figure 4.12: Illustration of a local minimum found by the algorithm, which is due to the
symmetry of the puppet shape. The front of the puppet in the model mesh to the back of
the puppet in the scan mesh.

Overall, the algorithm performed robustly in a variety of cases, producing close-to-

optimal registrations even for pairs of meshes that involve large deformations, articulated

motion or both. The registration is accomplished in an unsupervised way, without any

prior knowledge about object shape, dynamics, or alignment. In the experiments above we

demonstrate that the algorithm performance is fairly robust to the parameter settings, as we

used the same settings for all the experiments.

Our unoptimized implementation of the CC algorithm ran on an Intel Xeon 2.4 GHz

platform. The running times on the examples from Fig. 4.11 are displayed in the table

in Fig. 4.13. The results show that it takes significantly longer to compute spin-images and

the Markov network potentials (denoted asSetupin the table) than to run LBP inference.

Also, the variable domains during theFine Subsamplingphase are smaller, since they are

computed using the result from the coarse phase. Hence, that phase of the algorithm runs

faster despite having to deal with many more correspondence variables. We believe that an

optimized implementation on a parallel hardware architecture can run in close to real-time.

4.7. APPLICATIONS 79

Arm Puppet Caesar1 Caesar2
Spin Images 97s 49s 42s 48s
Coarse Subsampling

Setup 145s 99s 118s 121s
LBP 45s 75s 55s 43s

Fine Subsampling
Setup 82s 53s 70s 108s
LBP 22s 6s 8s 14s

Figure 4.13: Running times of the CC algorithm.

4.7 Applications

4.7.1 Obtaining Morphs

The set of correspondences obtained by the CC algorithm can be used to morph the model

mesh onto the scan mesh. We used the corresponding point pairs as markers in the non-rigid

ICP algorithm of Ḧahnelet al. [52]. In one example, we ran the CC algorithm to register

a pair of puppet scans for which direct application of non-rigid ICP failed (Fig. 4.3). The

correspondences obtained with the CC algorithm were sufficient to obtain a good morph

(displayed in Fig. 4.15), although with a small defect on the right shoulder (inset). We also

computed morphs for a set of arms, and display some of them in Fig. 4.14.

4.7.2 Partial View Completion

The Correlated Correspondence algorithm allows us to register a partial scan of an object

to a known complete surface model of the object. We can then use non-rigid ICP to morph

the template mesh onto the partial scan. The result is a mesh that matches the scan surface,

while completing the unknown portion of the surface using the template geometry.

We take a partial mesh, which is missing the entire back part of the puppet in a particular

pose. The resulting partial model is displayed in Fig. 4.16(a); for comparison, the correct

complete model in this configuration (which was not available to the algorithm), is shown

in Fig. 4.16(b). We register the partial mesh to a model of the object in a different pose

(Fig. 4.16(c), and compare the completions we obtain (Fig. 4.16(d), to the ground truth

represented in Fig. 4.16(b). The result demonstrates a largely correct reconstruction of the

80 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Figure 4.14: Arm morphs obtained automatically by registering the model mesh (center) to
a set of meshes representing different arm poses.

complete surface geometry from the partial scan and the deformed template.

We also registered the partial mesh to a different object model (Fig. 4.16(e) in a more

extreme pose. This registration results in a different completion (Fig. 4.16(f), which re-

tains some of the model shape in the right shoulder area. The example demonstrates that

the choice of model can affect the completion quality, particularly in the places that are

occluded in the partial view. The example also demonstrates the limitations of an approach

that relies on asingle shape template for its completions.

We also used the CC algorithm to hole-fill Cyberware human body scans. Unlike the

previous CC results, which were obtained in a completely unsupervised manner, here we

used 4 additional markers to resolve the problem of body symmetries. We hole-filled 70

scans of the same person in a variety of poses. Several shape-completions and the model

template used to obtain them are displayed in Fig. 4.17. The figure demonstrates that the

shape-completion process produces reasonable results for a very rich set of poses using a

4.7. APPLICATIONS 81

Figure 4.15: Registration results for two meshes. Nonrigid ICP and its variant augmented
with spin images get stuck in local maxima. Our CC algorithm produces a largely correct
registration, although with an artifact in the right shoulder (inset).

single template model. Cyberware scans are acquired from four different points of view

simultaneously and therefore contain only fairly small holes. The extensive partial view

surface data minimized the effect of the original template shape prior and constrained it to

fit the local surface in practically all cases.

4.7.3 Animation

Our second application generates smooth and believable animations by interpolating be-

tween a pair of registered meshes. When the meshes undergo significant deformations, sim-

ple linear interpolation of the mesh point locations produces incorrect results (Fig. 4.18).

82 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

a) e)d)c)b)b)

Figure 4.16: Partial view completion results. The missing parts of the surface were es-
timated by registering the partial view to a complete model of the object in a different
configuration.

Traditional animation techniques circumvent the problem by utilizing additional knowl-

edge, usually in the form of an articulated skeleton underlying the surface [1, 123, 80].

Some of those approaches can also end up with significant interpolation artifacts [70]. In

this section, we will present an approach that can handle relatively large deformations and

yet is purely data-driven, using no external information except the meshes themselves.

We wish to interpolate between two registered meshes: the source meshMX and the

target meshMY , which have the same mesh topology. The key idea in our solution is to use

an alternative mesh parametrization. As described in Sec. 4.3, meshes with the same topol-

ogy asMX can be described using a set of local coordinate system rotations(t1, . . . , tNX
),

and edge length and twisting parameters(li,j, di→j, dj→i). The above parameters are suffi-

cient to recover the point locations of the original mesh, except for a translational degree

of freedom. This degree of freedom can be removed by specifying the location of a single

point on the mesh.

A linear interpolation of the above parameters produces believable animations for many

articulated objects. The main problem with point location interpolation in Euclidean space

is that link lengths get foreshortened in the process. Preserving the link lengths is at the

core of the current representation, which tends to produce better animations. Letα ∈ [0, 1]

be the linear interpolation coefficient, whereα = 0 corresponds toMX , andα = 1 to

the target meshMY . The interpolated parameter values are a function ofα and are listed

4.7. APPLICATIONS 83

Model

Cyberware scans

Completions

Figure 4.17: Hole-filling of human body scans. The missing parts of the surface were
estimated by registering the scans to a complete model of the object in a different configu-
ration.

in Fig. 4.19.

Having described how to interpolate the relevant parameters, we will now discuss how

to use them in reconstructing a meshMα. First, the values of the interpolated parameters

for someα ∈ (0, 1) do not have to define a consistent mesh. The mesh point locations

impose consistency constraints on the parameter values, but our interpolation method treats

each parameter separately and essentially ignores these constraints. These constraints thus

have to be enforced during the mesh reconstruction step. We do this by solving for the

point locations that satisfy the parameter settings in the best least-squares sense. IfVα =

84 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

Point Interpolation in Euclidean Space

Our Interpolation

Mesh 1 Mesh 2

Figure 4.18: Illustration that point interpolation in Euclidean space produces undesirable
limb foreshortening effects (top). On the other hand, our interpolation technique produces
reasonable results even for strongly deforming scans (bottom).

{v1, . . . , vNX
} denote these point locations, our objective becomes:

arg min
Vα

∑

(i,j)∈EX

(vj − vi→j)
>(vj − vi→j) + (vi − vj→i)

>(vi − vj→i) (4.9)

vi→j = vi + lαi,j R(tαi) dα
i→j (4.10)

(4.11)

whereR(tαi) is the rotation matrix induced by the twisttαi . The objective in (4.9) forces the

point locations of the reconstructed mesh to be placed in accordance with the local edge

parameter predictions, defined in (4.10). The above objective is similar to the logarithm

4.8. RELATED WORK 85

Interpolation parameter Source mesh valueTarget mesh value
tαi = αti 0 ti
lαi,j = (1− α)li,j + αl̃i,j li,j l̃i,j
dα

i→j = u
‖u‖ ; u = (1− α)di→j + αd̃i→j di→j d̃i→j

dα
i→j = u

‖u‖ ; u = (1− α)di→j + αd̃i→j di→j d̃i→j

Figure 4.19: Interpolated quantities for animation between two scans.

of the non-rigid deformation estimate in (4.4), and can be solved by any suitable least-

squares solver. As discussed, we can remove the translational degrees of freedom by setting

v1 = (0, 0, 0)>.

Some of our results are displayed in Fig. 4.20. There we demonstrate reasonable ani-

mations between two poses of a puppet, an arm and entire human bodies, which undergo

significant deformations. All the animations were produced automatically from pairs of

meshes, registered with the Correlated Correspondence algorithm. No knowledge of the

articulated object structure was used in producing these animations. Our algorithm is ap-

plicable whenever the point coordinate system rotations are less that 180 degrees. Our

interpolation tries to find the shortest rotation path, and whenever 180 degrees of rotation

are exceeded the correct path is no longer the shortest. In this case, although the source

and the target meshes are still faithfully reconstructed, the interpolated meshes may cause

some object parts to fold upon themselves.

Finally, we note that while our choice of mesh parametrization is one of the simplest

options resulting in good animations, several other choices are possible. However, we

believe that the information contained in the local coordinate system alignments is essential

for obtaining good interpolations and any reasonable method for animation must maintain

it.

4.8 Related Work

Surface registration is a fundamental building block in computer graphics. The classical

solution for registering rigid surfaces is the Iterative Closest Point algorithm (ICP) [13,

24, 98]. It is based on the insight that while solving for the correspondences and for the

86 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

a)

b)

c)

d)

e)

Figure 4.20: Animation frames generated by interpolating pairs of scans, which were reg-
istered with the Correlated Correspondence algorithm.

4.8. RELATED WORK 87

transformation simultaneously is quite difficult, solving for each in turn (while holding the

other fixed) is much simpler. Recently, there have been many approaches that extend the

ICP paradigm to non-rigid surface and image models [105, 28, 52, 2, 19].

These algorithms differ mainly in their definition of surface deformation. The most

related approaches define deformation relative to a template shape, usually represented as

a mesh. Allenet al.[2] look at the affine transformations that move the model mesh points,

and introduce a rather weak prior that requires that the transformations of adjacent points

are similar. Sumneret al. [111] enforce a similar smoothness on the deformation of adja-

cent mesh polygons, but strengthen the prior by requiring that the original polygon shape

and orientation are also preserved. Shelton [105] treats the model mesh links similar to

Hähnelet al., but defines all link displacements in the same global coordinate system. Chui

and Rangarajan [28] use a deformation model called athin-plate spline(originally devel-

oped by Wahba [121]). This model is defined for a point set (hence does not exploit the

topology information contained in a mesh) and defines a measure based on the Euclidean

distances between all point pairs. While all the above algorithms perform well for a large

set of template deformations, they are not designed to deal with articulated body parts such

as arms. Arms can be placed in a variety of different configurations relative to the global

coordinate system, but most of the local appearance remains unchanged (and ideally will

not be penalized by the deformation model). To capture this, one needs to penalize dis-

placements relative to the local coordinate frames on the surface, which is done by Hähnel

et al.[52]. None of the above algorithms model local coordinate systems, however, and

penalize all parts of the surface for deviating from the original template. This idea of local

coordinate systems was only recently explored in the computer graphics community by the

work of Lipmanet al.[73] on rotation-invariant mesh editing.

Another set of approaches assumes that a set of previously registered meshes of the

same object is available in order to define a measure of surface deformation. They ap-

ply principal component analysis (PCA) either to a set of registered meshes [15, 2] or to

aligned volumetric representations such as active level sets [69]. Registration for this class

of approaches is also done by iterating between finding the correspondences and finding

the rigid alignment and the principal components describing the shape deformation. Un-

fortunately, the types of deformations that can be encoded through linear PCA interpolation

88 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

over points in Euclidean space is quite restricted — these approaches often work well for

largely convex objects, but have problems with articulated object parts. All these models

are applicable only when a set of registered surfaces is available.

All approaches mentioned above can be viewed as instances of the Non-rigid ICP reg-

istration framework. As discussed in Sec. 4.1.3, all these algorithms are likely to end in

poor local maxima in the absence of a good initial alignment hypothesis. Several strategies

for avoiding these undesirable local minima have been used to address this issue.

The local maximum problem is usually circumvented by assuming that select point-

to-point correspondences, or markers, are provided to help the algorithm [1, 2]. These

markers can be obtained by placing distinct textures on select areas of the scanned objects,

or — even more frequently — by having a human pick corresponding points between the

surfaces. In a preprocessing step, the model surface is deformed to fit the markers in order

to obtain an acceptable initial transformation estimate. After this, the standard non-rigid

ICP algorithm can be applied. A drawback of this solution is that a non-trivial amount of

human effort is required for marker placement. For example, the work of Allenet al. [2],

which registers scans of humans with different physiques, uses more than 70 markers for

each pair of scans.

In the absence of markers, several other techniques have been found to alleviate the

problem of incorrect initialization. [105] performs registration in a multi-resolution pyra-

mid, and employs local features, such as color (other features such as curvatures, surface

normals and spin-images can be helpful as well). Performing soft-EM, which maintains

beliefs over the correspondence estimates [28] can lead the algorithm to a better local max-

imum at an increased computational expense. While generally helpful, these techniques

generally cannot resolve the cases when significant object deformation is taking place.

Several algorithms which represent alternative registration paradigms are worth men-

tioning as well. Belongieet al. [11] register 2D shape templates by using shape context

features and casting the registration problem as relatively easier bipartite matching prob-

lem (rather than the general NP-complete graph matching problem). Since the geometric

relationships between the points are only captured via the features (and are ignored in the

bipartite matching) this approach can cause poor registrations in challenging cases. Kim-

mel et al. [40] construct bending-invariant surface signatures, by embedding the surfaces

4.8. RELATED WORK 89

in a low-dimensional Euclidean space, where the original geodesic distances are preserved

as much as possible. Two shapes can be compared (and coarsely registered) by aligning of

the signatures in the Euclidean space. However, this framework cannot incorporate surface

features which help accurate registration, and can only register complete surface models.

Finally, we should mention discriminative algorithms for human pose detection in com-

puter vision [109, 81, 104]. These algorithms rely on hundreds of supervised examples

to learn a mapping from object appearance to the angles of a known articulated skeleton.

Given a new instance of the same object, this mapping function can provide a reasonable

estimate of the skeleton pose. Unlike our algorithm, these discriminative approaches can

only be applied after a set of training examples have been obtained beforehand.

Our algorithm is most closely related to combinatorial algorithms for deformable tem-

plate matching in computer vision. The idea that many objects can be represented in

terms of a set of parts arranged in deformable configurations has been around since the

1970’s [45]. Since then, different kinds of spatial priors (that capture the relationships be-

tween the object parts) and associated strategies for object detection in images have been

proposed.

A popular set of approaches define a joint Gaussian model over the object part locations

in the image, which captures explicit dependencies between all pairs of parts [21, 22, 43].

Detection algorithms that use these models until very recently have relied on search heuris-

tics, which limit the number of parts that computationally feasible models can contain (for

example, the models of Ferguset al. [43] contain 6 parts).

Tree-structured graphical models have also been very popular. They have primar-

ily been used for detection and localization of articulated objects such as human bod-

ies [56, 58, 107], consisting of rigid parts connected by joints. Such algorithms assume

that the articulated model is provided, and that its spatial dependency graph has no loops.

Under these conditions, efficientdynamic programming (DP)methods can be applied to

find the globally optimal (or nearly optimal) part placement. The main challenge for such

algorithms lies in keeping the domains of the correspondence variables tractable. This can

be done by defining a 2D template model, which has fewer degrees of freedom [56], or

by assuming that a set of detectors has been predefined for all articulated parts [107], or

both [58]. Tree-structured graphical models have also been used for localizing deformable

90 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

2D shapes in images [42]. The algorithm is limited to a special class of 2D shapes that

consist of triangles whose adjacency graph is a tree. Unfortunately, general 3D meshes

induce graphs that contain loops and do not allow exact optimization methods such as DP

to be applied.

Dynamic programming techniques are subsumed bybelief propagation (BP)— an opti-

mization technique that provides good empirical solutions on a variety of graphical models

with loops. Before our publication, Coughlan and Ferreira [31] employed loopy belief

propagation for detection of 2D loopy curves in images. At the time of writing this the-

sis, loopy graphical models are becoming the state-of-the-art for detection of objects and

classes of objects in images. These models are optimized either with loopy belief propa-

gation [65, 66], or integer programming [12]. However, all of the approaches address the

problem of 2D object detection in images, and cannot be easily extended to the problem of

deformable 3D registration. In the field of computer graphics and 3D modeling, discrete

graph optimization methods such as loopy belief propagation are not yet popular — we

hope that our algorithm contributes toward the adoption of these methods.

4.9 Conclusion

The contribution of this chapter is an algorithm for unsupervised registration of non-rigid

3D surfaces in significantly different configurations. The algorithm was not provided with

markers or other cues regarding correspondence, and makes no assumptions about object

shape, dynamics, or alignment. Our results show that the algorithm can deal with artic-

ulated objects subject to large joint movements and with non-rigid surface deformations.

We show the quality and the utility of our registration results by using them as a starting

point for compelling computer graphics applications: partial view completions and anima-

tions obtained by interpolation between registered scans. Importantly, all these results were

generated in a completely unsupervised manner from pairs of input meshes.

The main limitation of our approach is the fact that it makes the assumption of (approx-

imate) preservation of geodesic distance. Although this assumption is desirable in many

cases, it is not always warranted. In some cases, the mesh topology may change drastically,

for example, when an arm touches the body. We can try to extend our approach to handle

4.9. CONCLUSION 91

these cases by trying to detect when they arise, and eliminating the associated constraints.

However, even this solution is likely to fail on some cases. A second limitation of our ap-

proach is that it assumes that the scan mesh is a subset of the model mesh. If the scan mesh

contains clutter, our algorithm will attempt to embed the clutter into the model. We feel that

the general nonrigid registration problem becomes under-specified when significant clutter

and occlusion are present simultaneously. In order to obtain reasonable solutions in such

cases, we would need to make some assumptions about the object deformation space.

The most straightforward way of extending our algorithm is to design more sophisti-

cated local surface signatures. Spin-images are features that are very efficient to use, and

we demonstrated that they perform well in a variety of cases. However, spin-images are

sensitive to choice of histogram resolution and invariant to mirror symmetries, which con-

tributed to our problem of local minima for objects possessing such symmetries, such as

humans. In these cases, more sophisticated features such as shape contexts [11] and in

particular features based Earthmover’s distance [91] are possible. Earthmover’s distance

(EMD) is a metric which is particularly useful for general shape comparison, and has been

used for contour matching [49] and color histogram matching [97]. If used appropriately, it

can address the two technical drawbacks of spin-images — difficulty of choosing the appro-

priate histogram resolution, and inability to directly model occlusion. The main challenge

lies in making the feature computationally tractable. Recent work of Indyket al. [57],

which shows how to perform efficient lookup of similar EMD shapes using projections

into L1-distance space and locality-sensitive hashing, may lead to an efficient EMD feature

comparison strategy.

The ability to register pairs of scans without making object-specific assumptions pro-

vides an automatic way of dealing with novel object shapes. There are limitations as to

what can be accurately learned about an object from just two registered scans. However,

this capability is a necessary step for obtaining an entire collection of registered scans of

the same object. The set of registered scans can be used as the foundation for learning

models of object shape and dynamics. For example, we can learn the deformation penalty

associated with the different model links, and bootstrap the algorithm to obtain even better

registrations. Also, we can learn the correlations between the deformations of different ob-

ject parts, which helps the tasks of animation and shape-completion. The possibilities and

92 CHAPTER 4. CORRELATED CORRESPONDENCE ALGORITHM

implications of learning deformable object models will be explored further on in Chapter 6

of this thesis.

Chapter 5

Recovering Articulated Object Models

Articulated objects consist of approximately rigid parts, which are linked by joints to form

an object skeleton; examples include the human body, most animals, office chairs, cars

and many others. Articulated models have been used for popular tasks such as charac-

ter animation [70, 1, 80] and object tracking in video [55, 18, 129, 107] and in 3D data

streams [72, 25]. In the vast majority of applications, the articulated skeleton structure and

its parameters need to be specified by hand. In this chapter, we describe an algorithm that

can recover complex articulated models from 3D scans in a completely unsupervised man-

ner. This capability eliminates the need for human effort during the model construction and

provides insight into the structure of different objects.

Given registered 3D scans of an object in different configurations, our algorithm au-

tomatically recovers a decomposition of the object into approximately rigid parts, as well

as the location of the parts in the different object instances. The joints linking adjacent

object parts are then obtained using a post-processing step. An overview of the approach

is given in Sec. 5.1. In Sec. 5.2, we show how we can segment the object surface using a

graphical model that captures the spatial contiguity of parts. We describe an Expectation-

Maximization algorithm, which iterates between finding a decomposition of the object into

rigid parts, and finding the location of the parts in the object instances. In Sec. 5.3, we show

how to use the resulting segmentation to estimate the locations of the joints connecting the

parts. We test the algorithm on real world datasets, and show that we can successfully

obtain complex models containing many parts, even in cases when the surfaces undergo

93

94 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

Registered Scans a) b)

Figure 5.1: Overview of articulated model recovery. The algorithm is given a set of regis-
tered scan instances. (a) First, it segments the surface of the template mesh into approxi-
mately rigid parts and estimates their location for all instances. (b) Using the segmentation
and the part location estimates, the joints between adjacent parts are estimated.

non-trivial deformation. Finally, we describe a simple method for tracking the acquired

articulated models in 3D data streams, which is useful for capturing the natural kinematics

of humans and animals.

5.1 Framework Overview

In this section, we will introduce our notation for dealing with articulated models, and

define the task of articulated model recovery from 3D scans. Then we give a general outline

of our approach.

5.1.1 Articulated Models

Articulated models consist of a set of rigid parts connected by joints and provide a conve-

nient representation for a rich set of real-world object shapes. These involve many man-

made objects such as vehicles, office chairs, laptops, and flip-top cell phones, which indeed

consist of fairly rigid parts. Articulated models are also useful for modeling the shape of

many natural objects, such as humans and other animals, for which the part deformations

5.1. FRAMEWORK OVERVIEW 95

are relatively small. The use of articulated models for such objects is twofold. In track-

ing applications we may want a representation that simply ignores subtle part deformation

effects for simplicity and computational reasons. In animation applications, articulated

models account for a large part of the deformation of an object. The more subtle defor-

mations can be correlated to the parameters of the articulated skeleton, which provide a

natural low-dimensional representation for the space of object configurations.

Below we provide precise definitions for concepts related to articulated models. We

start with the fundamental notions ofrigid part andjoint, then define the termsarticulated

modelandarticulated model pose.

Definition 5.1.1 A rigid part Pn is a subset of the mesh surface whose shape is preserved

over time. IfMX is the original mesh defining the object shape,PX
n = (VX

n , EX
n) contains

a subsetVX
n of the original mesh points, as well as the edgesEX

n ⊆ EX connecting these

points.

Definition 5.1.2 A joint gn,m ∈ R3 is a point constraining the motion of two adjacent

rigid parts Pn andPm. The existence of a jointgn,m imposes a constraint on the rigid

transformationsTn andTm, which can be applied to its incident parts:

Tn(gn,m) = Tm(gn,m). (5.1)

Intuitively, a jointgn,m is a point that moves with both partPn and partPm simultaneously.

Definition 5.1.3 An articulated model (or skeleton) SX = (MX ,PX , GX) is an object

shape representation, consisting of the following components:

◦ A meshMX defining the object shape.

◦ A set of rigid partsPX = (PX
1 , . . . ,PX

NP
) defined on the meshMX .

◦ A set of jointsGX between pairs of adjacent parts.

Since at any moment in our discussion we will have no more than a single articulated

model, we will simplify the notation, and denote it simply asSX = (MX ,P , G). We

find it useful to define the mappingB = (b1, . . . , bNX
), which encodes the assignment of

surface mesh points to rigid parts. Settingbj = p assigns mesh pointxj to rigid partp.

96 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

y1 yN…

b1

x1

bN

xN

…

…

Part labels

Points

z1

c1Point corrs

Points z1

c1Point corrs

Points

ModelModel

zK

cK

… zK

cK

…

Transformed

Model

Transformed

Model

Transformed

Model

InstanceInstance

Transformations

T1

TP

…

jbj xTy
j

=

),|(),|(Σ=
kckkk yzNYczP

Figure 5.2: Probabilistic generative model for segmenting the template surface into rigid
parts. The parts of template shapeMX are transformed by their respective rigid transforms,
and then are resampled to generate the points of meshMZ .

Definition 5.1.4 An articulated modelpose(or transformation) T = (T1, . . . , TNP
) is a

placement of all skeleton parts in space. A rigid transformation matrixTn is associated with

each rigid partPn; the set of transformations must be consistent with the joint constraints,

which are defined in Eqn. (5.1).

We would like to point out that deformable models are in effectarticulated models with

very many rigid parts. For the deformable models introduced in Sec. 4, each mesh edge

can be thought of as a separate rigid part. As a result of this, there are natural parallels

in the use of deformable and articulated models. Nevertheless, the language of articulated

models will prove useful, as it allows us to define meaningful regions on the object surface

and their relationships.

5.1.2 Recovering Articulated Models

Here we will describe the problem of recovering an articulated from a set of scans. We start

with a set of regular scansMD1 , . . . ,MDN , represented as meshes, and corresponding to

5.2. SEGMENTATION INTO RIGID PARTS 97

different configurations of the same object. From these we can obtain a set of registered

scansMZ1 , . . .MZN as follows. First, we pick the scan with the most complete surface

MD1 to be our template meshMX . Then, we use the Correlated Correspondence algorithm

presented in Chapter 4 to automatically register this template with all the remaining meshes

in our dataset. We provide the obtained mesh correspondences to the method of Hähnelet

al. [52], which then morphs the template mesh onto each scan. As a result, we obtain a

set of scan meshesMZ1 , . . . ,MZN which have the same mesh topology. In particular,

each pointzi
j in scan meshMZi corresponds to pointxi in the template meshMX . This

step of bringing meshes into correspondence is only a pre-processing step to the algorithm

presented in this chapter, which is independent of the particular registration method used.

Our goal is to recover an articulated modelSX = (MX ,P , G) from our registered

scans. In doing so, our algorithm has to deal robustly with noisy scan readings and small

errors introduced by the registration process. Furthermore, we want to be able to recover

articulated models of real-world objects such as humans and animals, for which the ar-

ticulated model assumptions in Defn. refdefn:articulated-model hold only approximately.

Our solution is based on the language of probabilistic models, which allows us to deal with

these issues in a principled manner. Our strategy for obtaining an articulated model consists

of the following successive steps:

1. Partition the template mesh surfaceMX into contiguous rigid parts, which can be

posed to fit well the scan instances.

2. Given the rigid parts and their positions, estimate the set of articulated model joints.

This strategy is visualized in Fig. 5.1. It is motivated by the fact that we do not really need

to know the joint locations in order to partition the mesh into rigid parts. The next two

sections describe in detail how to perform each of the above steps.

5.2 Segmentation into Rigid Parts

In this section, we describe a solution to the combinatorial problem of segmenting the sur-

face of the template meshMX into approximately rigid parts. We describe a probabilistic

98 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

graphical model which defines our objective function and then show how to optimize this

function efficiently.

5.2.1 Probabilistic Model

Generating the Instance Meshes

First, we describe the generative process that transforms the template meshMX into the

instance meshesMZ1 , . . . ,MZN . We assume that the surface ofMX is made up of the set

of P = (1, . . . , NP) rigid parts. Each template mesh pointxj is associated with a part label

bj which denotes the rigid part to which the point belongs. Each part labelbj can take one

of NP possible values.

The template mesh is associated with a set of articulated model transformationsT 1, . . . , TN .

For each scan instancei, there is a different set of rigid part transformationsT i = (T i
1, . . . , T

i
NP

).

All points assigned to partp share this set of transformations for that instance. More pre-

cisely, yi
j = T i

bj
(xj) = Ri

bj
xj + si

bj
, whereyi

j denotes the transformed location ofxj in

instancei, andR is a rotation matrix whiles is a translation vector.

We want to model objects which are not perfectly rigid, so we allow the point locations

zi
j in the meshesMZi to deviate from these predicted locations. We assume that each point

locationzi
j is generated fromyi

j by a Gaussian process:

P (zi
j | yi

j) = N (zi
j; y

i
j,diag(σ2)) (5.2)

whereσ2 is the variance, chosen to be a multiple of the resolution of meshMX . In the

above equation, we used the assumption that meshesMX andMZi are registered, hence

scan pointzi
j corresponds to template mesh pointyi

j. The part of the generative model

described here, which transforms the template mesh into a scan mesh instance, is captured

by the black edges in Fig. 5.2.

Introducing Part Contiguity Constraints

So far, our model allows a part to be composed of an arbitrary set of points interspersed

throughout the mesh. What we actually want is that each part is comprised of a set of points

5.2. SEGMENTATION INTO RIGID PARTS 99

Figure 5.3: Puppet segmentations obtained with two different initialization strategies.
(A),(a) Template mesh. (B) Initialization obtained by clustering the rigid point transfor-
mations using Gaussian Mixture Modeling, different parts are color-coded. (b) Initializa-
tion obtained by randomly dividing the mesh into small patches of similar size. (C),(c)
Results of our part segmentation algorithm initialized with the initialization from (B),(b)
respectively. (D),(d) Estimated skeleton joints.

in a connected region.

We choose to enforce this preference by usingsoft contiguity constraints. These con-

straints penalize cases when neighboring points in the template mesh have different part

labels. More formally, we define two labelsbj and bk to be neighboring if their corre-

sponding pointsxj andxk are connected by an edge inMX . Soft contiguity constraints

are probabilistic potentialsφ(bj, bk) between all neighboring pairs of part labelsbj andbk.

They are displayed with red edges in Fig. 5.2.

The simplest way to enforce contiguity constraints is with the following potential:

φ1(bj, bk) =

{
exp{N(1− τ)} : bj = bk

exp{Nτ} : bj 6= bk

(5.3)

whereN is the number of scan instances andτ < 0.5. These potentials introduce a sepa-

rate penalty for each mesh edge that spans different rigid parts. We chose that the potential

strength grows with the number of example scansN , with the goal of balancing it against

the likelihood terms in Eqn. (5.2), whose number grows linearly withN . In all experimen-

tal results, except when explicitly stated, we will be using this kind of soft potential.

More sophisticated contiguity potentials are also possible. For example, we can enforce

100 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

a preference that rigid part boundaries are placed in the areas that undergo larger surface

deformation. Consider the model mesh link(xj, xk). Since the template mesh is registered

to all instance meshes, link deformation is easy to estimate. We could use the link defor-

mation measure defined in Eqn. (4.4), but we opted for an even simpler measure. We look

at the dot-productnT
xj

nxk
of the link endpoint normals. The same quantity can be estimated

in all scan instances. Letσj,k denote its variance over the meshes. Our contiguity potential

will prefer to place boundaries at a link whose point normals twist relative to each other,

resulting in a large varianceσj,k:

φ1(bj, bk) =

{
exp{N max(1− λσj,k, τ)} : bj = bk

exp{Nτ} : bj 6= bk

(5.4)

whereτ < 0.5.

The soft contiguity constraints (from either of the alternative definitions above) bias

us toward a partitioning of the template mesh into contiguous regions. Importantly, they

introduce an implicit preference for models which have fewer parts: the more parts there

are, the more edges there are between mesh parts, the larger the penalty introduced by the

pairwise contiguity potentials. Finally, the soft contiguity constraints induce a probabilistic

model which can be optimized efficiently (as we will shortly discuss).

However, the soft contiguity constraints can still allow each part to be comprised of

several disjoint components. For example, if the arms of an office chair always get raised

and lowered together, they can be assigned to the same part by this model. Such results can

be preferable in some situations but they are not appropriate for recovering an articulated

object skeleton: the notion of a joint between parts is not well-defined when each part

consists of several disconnected regions on the template mesh. In order to model the object

articulation correctly, we need to disallow such cases. We explicitly detect them during the

optimization, and assign a different part identity to each separate region. We discuss this

straightforward procedure in more detail in Sec. 5.2.2.

5.2. SEGMENTATION INTO RIGID PARTS 101

6

9

12

15

18

6 9 12 15 18 21 24 27 30

Initial Number of Parts

N
u

m
b

er
 o

f
P

ar
ts

 F
o

u
n

d

-12000

-9000

-6000

-3000

0

6 9 12 15 18 21 24 27 30

Initial Number of Parts

M
o

d
el

 L
o

g
lik

el
ih

o
o

d

Figure 5.4: Graphs showing the number of parts of the final model and the log-likelihood
score using initialization with different number of parts in the puppet dataset.

Expressing the Model as a Markov Network

Ignoring the hard contiguity constraints, the framework described in Sec. 5.2 defines a

Markov networkover the part labelsB. The Markov network encodes the joint distribution

over these variables as a product of single and pairwise potentials:

PT (B) =
1

Z

∏
j

φT (bj)
∏

j,k

φ(bj, bk) (5.5)

whereZ is a normalization constant.

The singleton potentialsφT (bj) correspond to the probabilities that a template pointxj

generates its corresponding pointsz1,j, . . . , zN,j, as follows:

φT (bj = p) =
N∏

i=1

P (zi
j | bj = p, T i

p). (5.6)

The potential values depend onT , the set of rigid part transformations. The pairwise poten-

tials in the Markov network correspond to the soft contiguity constraints, which are defined

in (5.3) or (5.4).

102 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

5.2.2 Optimization

We want to find a joint assignment to the part labelsB and the transformationsT which

maximizes the log-likelihood of the model:

log P (B, T) = const +
∑

(j,k)∈EX

log φ(bj, bk)− 1

2σ2

n∑
i=1

NX∑
j=1

‖zi
j − T i

bj
[xj]‖2 (5.7)

whereNX is the number of points in meshesMX ,MZ1 , . . . ,MZN . Note that our objec-

tive is defined as optimizing both the part assignment and transformations simultaneously,

rather than marginalizing over the (hidden) part assignment variables. A hard assignment

of points into parts is very appropriate for our application, and it also allows the use of

efficient global optimization steps, as we discuss below. Note that the hard contiguity con-

straints are not accounted for in the above equation, and have to be enforced separately.

The objective in (5.7) is non-convex in the set of variablesB, T . We optimize it using

hard Expectation-Minimization (EM)to find a good assignment forB, T in an iterative

fashion. EM iterates between two steps: theE-stepcalculates a hard assignment for all part

labelsB given an estimate of the transformationsT . TheM-stepimproves the estimate for

the parametersT using the labelsB obtained in the E-step.

E-Step

Our goal in the E-step is to find the MAP assignment to the part labels maximizing (5.7) for

a given set of transformationsT . It turns out that this is an instance of the Uniform Labeling

problem [63], which can be expressed as an integer program. Following Kleinberg and

Tardos [63], we introduce indicator variablesbjp for the eventbj = p, and associated the

constraintsbjp ∈ {0, 1} and
∑P

p=1 bjp = 1 with them. These integer constraints imply that

we have only a singlep for which bjp = 1, and the others are all0. The log-cost associated

with a particular single potential can then be expressed as
∑P

p=1 c(j, p) · bjp where

c(j, p) = − 1

2σ2

N∑
i=1

‖zi
j − Ti,p[xj]‖2 (5.8)

5.2. SEGMENTATION INTO RIGID PARTS 103

Theseparation costof an edge in meshMX can also be defined in terms of the variables

bjp. The difference between the labels of the edge endpoints can be expressed as

αjk =
1

2

P∑
p=1

|bjp − bkp| = 1

2

P∑
p=1

αjkp

whereαjkp = |bjp − bkp|. The cost associated with an edge is therefores(j, k) · αjk,

where depending on the definition of the soft contiguity potential, we can haves1(j, k) =

N(1− 2τ) or s2(j, k) = N max(1− λj,k − τ, 0).

We can now rewrite our optimization problem as an integer program:

max

NX∑
j=1

P∑
p=1

c(j, p) · bjp +
∑

(j,k)∈EX

s(j, k) · αjk

s.t.
P∑

p=1

bjp = 1, j = {1, . . . , NX}

αjk =
1

2

P∑
p=1

αjkp, (j, k) ∈ EX ,

αjkp ≥ bjp − bkp, (j, k) ∈ EX , p ∈ P
αjkp ≥ bkp − bjp, (j, k) ∈ EX , p ∈ P
bjp ∈ {0, 1}, j = {1, . . . , NX}, p ∈ P

In general, solving an integer program optimally is NP-hard. However, we can define a

linear programming relaxation of the above problem by replacing the integrality constraints

bjp ∈ {0, 1} with bjp ≥ 0. This relaxation allows fractional solutions for the labelsbj. The

linear program can be solved very efficiently by a solver such as CPLEX.

For problems of this type, Kleinberg and Tardos [63] describe a method for rounding the

fractional solution, losing at most a factor of 2 in the objective function. In our experiments

we did not need to perform this rounding because the relaxed linear formulation always

returned integer solutions. In this case, we are guaranteed that our solution is the optimal

104 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

assignment of template mesh points to parts, which maximizes (5.7) given a set of rigid

transformationsT .

The inference can also be performed using a procedure proposed by Boykovet al. [16],

which employs a multiway-cut algorithm augmented with an iterative procedure called

alpha-expansion. This algorithm still provides the quality guarantees enjoyed by the linear

programming formulation above, and our experiments showed that it performs about 10

times faster in practice. Our final implementation uses this algorithm for maximum effi-

ciency. More information about how to perform inference in Markov networks is provided

in Sec. 3.3.3.

As we discussed in Sec. 5.2.1, our soft contiguity constraints allow a part to consist of

several disconnected regions on the surface of the template mesh. However, we can easily

detect such cases by examining the part labels returned by the Markov network inference.

Whenever a part is made of several disconnected regions, we break it up and assign each

region to a separate part. This step satisfies our preference that each rigid part is a single

connected component of the surface, while preserving the value of the objective function

in Eqn. (5.7).

M-Step

The goal of the M-step is to find the set of rigid part transformationsT which maximize

the log-likelihood in (5.7), given the part label assignmentsB supplied by the E-step. The

objective function decomposes into a separate equation for eachT i
p:

argmin
T i

p

NX∑
j=1

I(bj = p) · ‖zij − T i
p(xj)‖2 (5.9)

whereI(·) is the indicator function. This problem is isomorphic to the registration problem

studied extensively in the ICP literature. We adapt the canonical solution to this problem,

proposed by Besl and Mckay [13], where 3D rotations are represented as quaternions, and

a closed form estimate ofT i
p is obtained by solving a small system of linear equations.

5.2. SEGMENTATION INTO RIGID PARTS 105

Figure 5.5: Four different poses from the puppet dataset display the 15 rigid parts and the
articulated skeleton, both of which are recovered automatically.

5.2.3 Initializing the Model

The optimization criterion for our model is a complex non-convex function in terms of the

transformationsT and part labelsB. Our hard EM algorithm is only capable of getting to

a local minimum of this function. Therefore, it is dependent on a good starting point. Here

we address the problem of providing the EM algorithm with a good starting point.

Obtaining Transformation Estimates

One way of initializing the algorithm is by performing clustering in the space of rigid

transformations, as suggested by Cheunget al.[25]. Since the correspondences between the

template meshMX and all instance meshesMZi are known, we can estimate the local rigid

transformation between a pointxj and its counterpartzi
j. To do so, we look at small local

patches centered atxj andzi
j, and assume that the local transformation between the patches

is rigid. Using ICP [13], the optimal rigid transformationtij registering these patches can

be computed. Everytij can be represented as a vector in 6 dimensional Euclidean space.

106 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

Each pointxj becomes associated withN such vectors, corresponding to its transformation

in each instance mesh. The resulting stacked vectors can then be clustered by applying

adaptive PCA [8], a variant of Gaussian Mixture Modeling. The cluster labels serve as an

initial set of part labels to the pointsxj. A result of this step is demonstrated in Fig. 5.3(B).

As it does not exploit the connectivity of the mesh surface, it can serve as initialization to

our main algorithm, but is not good enough by itself.

Using a Matlab implementation of adaptive PCA available on the web [8], clustering

a set of 7 puppet poses (4000 points each) into 15 rigid parts takes about an hour on a

Sun Blade 2000 dual-processor machine. Surprisingly, this pre-processing step becomes

the bottleneck of the whole part-finding pipeline. Here we propose a more efficient way of

initializing the model that gives comparable or even better results than clustering.

The main insight we will exploit is that the soft contiguity constraints introduce a pref-

erence for models which have fewer parts: The more parts there are, the more edges there

are between mesh parts, the larger the penalty introduced by the pairwise contiguity poten-

tials. Thus, we can start the model with a large number of possible parts, and redundant

part hypotheses will be automatically pruned.

We therefore initialize the model by dividing the mesh into small surface patches, all of

which have approximately the same area. This is done by uniformly subsampling the mesh,

and assigning each point on the original mesh to the nearest point on the subsampled mesh.

All points on the original mesh that are given the same assignment are grouped together

to form a patch. This process takes a fraction of a second, compared to an hour for our

previous initialization scheme.

When the subdivision into patches is fine enough, some rigid parts will contain patches

that lie completely inside them, and the transformations for those patches from the model

meshMX to the morphed meshesMZ will closely approximate the corresponding trans-

formations for the actual rigid parts. Using the patches as initial part assignments for our

algorithm, we get a good starting point for the first M-Step.

Determining the Initial Number of Parts

The idea of initializing the algorithm by subdividing the surface of meshMX into patches

leads to the question of how many initial patches are necessary. In principle, it is sensible

5.2. SEGMENTATION INTO RIGID PARTS 107

to choose an initial number of patchesNP to be larger than the actual number of rigid parts

we expect. The largerNP is, the more likely it is to get a patch that lies completely inside a

rigid part. As we discussed, our model encodes a preference for having fewer parts, so that

redundant part hypotheses are pruned automatically. Indeed, our experiments (Fig. 5.4)

show that, initially, as we increase the number of model partsNP , the number of selected

parts increases; but once the optimal number of parts is reached, increasingNP further does

not increase the number of parts found.

In the case of rigid objects, the final number of parts found by our algorithm is gener-

ally the correct number of parts in the articulated objects. When the object parts undergo

some non-rigid deformations, the number of parts found depends on the tradeoff between

allowing more deformation within a part and splitting into more parts to preserve part

rigidity. These preferences depend on the edge potentialτ and the varianceσ2.1 As their

ratio κ = σ2/ log(τ) increases, we allow instance mesh point to deviate more from their

predicted locations.

5.2.4 Simulated Annealing

Whenκ is large, the problem becomes less constrained, with multiple possible solutions

that are plausible and have similar scores. This large hypothesis space makes the relaxed

integer program considerably more difficult to solve, especially in the absence of good

transformation estimates. To address the problem, we start with a low value ofκ, and grad-

ually increase it in subsequent algorithm iterations. The intuition behind this approach is

that we separate the error due to random initialization from the error due to non-rigidity.

During the early stages of the algorithm, there is a great deal of error due to random initial-

ization; we therefore start with a smaller-than-desiredκ, heavily penalizing discrepancies

from the rigid part assumption. As a side effect, our algorithm will tend to split a non-rigid

part into several rigid parts, resulting in more parts than we want. As the algorithm con-

verges, the noise from random initialization becomes less significant, so we can gradually

relax the rigidity assumptions and anneal the value ofκ; this process results in the merging

1For this discussion, we will assume that we are using the simpler soft contiguity potential from Eqn. (5.4).
In the case when our contiguity potential depends on link deformation, there are additional link deformation
parameters to be considered.

108 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

Figure 5.6: Four different poses from the arm dataset display four (approximately) rigid
parts and the articulated skeleton, both of which are recovered automatically

(and modification) of parts, and the elimination of unnecessary part hypotheses.

5.3 Estimating the Skeleton Joints

Once we obtain the part labels for every point in a mesh, it is easy to recover the joint

between two adjacent rigid parts. We adapt the solution by Cheunget al. [25]. Suppose we

want to find the joint between two adjacent partsp andq. Let the coordinates of the joint

in the model mesh begp,q. Since the joint belongs to two object parts simultaneously, it

should satisfy the equation:

T i
p(gp,q) = T i

q(gp,q), i = 1 . . . N (5.10)

5.4. EXPERIMENTAL RESULTS 109

Putting together the equations for all instance meshes,gp,q is the solution to the follow-

ing problem:

arg min
gp,q

N∑
i=1

‖T i
p(gp,q)− T i

q(gp,q)‖2 (5.11)

The rigid part transformationT i
p, T

i
q are known from the previous stage in our algorithm,

this equation is a particularly easy least-squares problem.

Sometimes, the solution to the above equation can be an entire subspace of points.

Suppose the joint only allows one degree of movement, such as the knee joint of a human

leg. Then any point on the line perpendicular to the plane of allowed movement is a solution

candidate. We chose to resolve this problem by introducing an additional regularization

term, which likes to place the joint close to where the two parts meet (and inside the body).

We require that the joint is close to the centroidcp,q of the set of points that lie on the

boundary between the two partsp and q in meshMX . Thengp,q is the solution to the

following least-squares problem:

arg min
gp,q

N∑
i=1

‖Tip(gp,q)− Tiq(gp,q)‖2 + γ‖gp,q − cp,q‖2 (5.12)

With the above formulation, we can compute the joint between any two adjacent parts

on the template surface, which completes our automatic recovery of the skeletonSX =

(MX ,P , G).

5.4 Experimental Results

We applied our algorithm to meshes from three different datasets. In one data set, we used

a range scanner based on temporal stereo [36] to acquire a set of seven different complete

surface meshes of a wooden puppet in different positions. Each mesh was constructed from

ten range scans taken from different viewing angles, composed using the method of Curless

and Levoy [33], and subsampled to contain∼4000 points and 8000 triangles.

We automatically aligned one puppet mesh to the remaining six meshes in our puppet

110 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

Figure 5.7: Illustration of annealing on the Arm dataset. The sequence above is obtained
by starting with lowκ, and gradually increasing it after each iteration of EM, until our
desiredκ is reached. The algorithm anneals part hypotheses and eventually converges at
four parts (D). Setting the value ofκ to be too large (E) focuses more on the soft contiguity
constraints and less on the underlying geometric structure. This results in partitions which
reduce the number of links between parts.

dataset using the Correlated Correspondences algorithm (Chapter 4). We experimented

with both initialization approaches described in Sec. 5.2.3. Results shown in Fig. 5.3

demonstrate that both initialization methods performed equally well. However, the method

where we initialize the M-step by partitioning the meshMX into small surface patches

is preferable because of its simplicity and overwhelming computational advantage. The

correct model containing 15 parts was found whenever the number of surface patches in

the initialization was equal to or greater than 16 (Fig. 5.4). More instances of the final

model superposed onto the recovered articulated skeleton are displayed in Fig. 5.5. To our

knowledge, this is the first implementation that estimates such a complex skeleton from

real world data with very few poses, in a completely unsupervised way.

Our second data set consisted of eight meshes of a human arm, acquired and used by

Allen et al. [1]. We used a standard hole filling technique (unpublished implementation

similar to [35, 71]) to fill the scan holes in a pre-processing step. This dataset is more

challenging than the puppet dataset because the arm undergoes significant deformations

as it bends, so that it is not purely an articulated model composed of rigid parts. Fig. 5.7

5.4. EXPERIMENTAL RESULTS 111

demonstrates the progress of our algorithm as the parameterκ is increased, until we end up

with four parts, which is the intuitively correct number of parts for the arm (see Fig. 5.6).

The partition of the object depends on the exact setting of the parameterκ (see Fig. 5.7 D

and E). Setting the value ofκ to be too large over-emphasizes the soft contiguity constraints.

The part boundaries are shifted to a configuration minimizing the number of links between

parts, ignoring the underlying geometric structure (Fig. 5.7 E). Our results on the arm

dataset suggest that, even in the presence of significant non-rigidity like twisting of the

forearm and bulging of the biceps, our algorithm performs quite well.

Our third dataset was the most challenging, as it contains 65 scans of a particular indi-

vidual placed in a variety of poses, which was acquired with a Cyberware WRX scanner.

These meshes were all registered with the Correlated Correspondence algorithm, aided

with a few handpicked markers for each mesh. Each of the registered meshes contains 12K

points and 25K polygons, and exhibits non-trivial muscle deformation (see Fig. 5.1 for ex-

amples). Our unoptimized implementation easily scales to a dataset of such size, and takes

about three minutes to obtain the articulated model. We experimented with our two differ-

ent soft contiguity potentials, which were defined in equations (5.3) and (5.4). In Fig. 5.8

(1a) and (1b), we show the rigid parts obtained by using the first potential, which penalizes

all links that lie on part boundaries by the same amount. The algorithm automatically finds

an intuitive decomposition of the object into 17 articulated parts, including a compelling

decomposition of the human torso itself. Upon closer inspection, however, one can see

that there are non-intuitive artifacts near some part boundaries (top left insets). The main

cause is that our rigid transformation estimatesT are most inaccurate near part boundaries,

where the deformation is usually the largest. As a result, points on the top of the thigh

and at the bottom of the neck get assigned to the closer, yet intuitively incorrect articulated

part. (We confirmed this hypothesis, by starting from the result in Fig. 5.8 (1a) and (1b),

and executing several more iterations by a version of our EM algorithm which ignores the

soft contiguity potentials. The boundary was still placed in a similar, visually suboptimal

place.) In addition, our first soft contiguity potential introduces a bias toward shorter part

boundaries. This is confirmed by the results — the part boundaries in the top insets are

shorter than those of their counterparts at the bottom.

Our second soft contiguity potential prefers to place the part boundaries in areas which

112 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

1a) 1b) 1c) 1d)

2d)2c)2b)2a)

Figure 5.8: Results of the algorithm on the human dataset. (1a) and (1b) Segmentation into
parts obtained using the soft contiguity potential from Eqn. (5.3). The different parts are
color-coded. (1c) Recovered joints between adjacent parts on the surface. (1d) Recovered
tree-shaped skeleton. (2a) and (2b) Segmentation into parts using the soft contiguity po-
tential from Eqn. (5.4). (2c) Recovered joints between adjacent parts on the surface. (2d)
Recovered tree-shaped skeleton.

5.4. EXPERIMENTAL RESULTS 113

undergo larger deformation. Using this potential with a setting ofλ = 2 recovers an

articulated skeleton consisting of 18 parts — Fig. 5.8 (2a) and (2b). In particular, the

buttock and crotch area are split into two separate parts. From the bottom row insets we

can see that this potential produces an intuitively better-looking segmentation. In particular,

this potential clearly fixes the problem with the upper thigh boundaries and produces a

considerably more symmetric partitioning of the upper chest. It is not as biased towards

short part boundaries, which can be seen by looking at the neck and the upper thighs. The

resulting model contains the parts one would expect, and nice intuitive boundaries between

them.

We applied our joint estimation algorithm to the two segmentation results. In Fig. 5.8

(1c) and 2c, we show the joints between all adjacent parts on the template surfaces. In com-

puting the joints, we use a very small value for the parameterγ to show the locations of the

joints as predicted by the rigid transformations. Interestingly, the resulting skeleton is not

tree-shaped in both cases. While this is not necessarily a problem in example Fig. 5.8 (1c),

it may be undesirable for two reasons. As the result in Fig. 5.8 (2c) shows, some parts can

become adjacent as a result of noise in the meshes, and small errors by the algorithm, re-

sulting in extra joints. Whether these extra joints are meaningful depends on the particular

application (for example, they might be useful for animating articulated models). The pre-

cise criteria on when to keep certain joints should be defined with a particular application

in mind, and are outside the scope of this chapter.

Still, many tracking and detection algorithms (e.g., [18]) require a tree-shaped articu-

lated structure, which allows the definition of part motion in terms of kinematic chains. By

introducing a post-processing step, which is allowed to merge parts, and to remove joints

which cause a fairly large error in Eqn. (5.12), we obtain the tree-shaped models shown

in Fig. 5.8 (1d) and (2d). The spine is not completely straight in both cases — the small

error most likely is a result of the fact that the algorithm was run on a set of random (and

hence non-symmetric) poses. But overall, the results are very satisfactory. To the best of

our knowledge, this is the first algorithm to recover such complex articulated models in a

completely unsupervised manner.

114 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

a) Visual hulls

b) Tracked articulated

 model

Marker

Markerless
Marker

Markerless

c) Comparison to ground truth

Figure 5.9: Tracking an articulated model in visual hull sequences. (a) The camera setup
and the visual hulls obtained by shape-from-silhouette computation. (b) Tracking results
by our algorithm c) The algorithm quality was compared to the ground truth obtained by
tracking photoreflective markers on the body of the walking subject. The algorithm recov-
ers well both degrees of freedom at the knee.

5.5. ARTICULATED MODEL TRACKING 115

5.5 Articulated Model Tracking

The capability to capture articulated motion has many possible applications. They include

biomechanical applications such as human gait analysis, where tracked human motions

can be examined to diagnose gait abnormalities and joint diseases. They also span en-

tertainment applications, where the movement of popular actors can be captured for use

in movies and games. Currently, these tasks are done with commercial motion capture

systems[82, 83], which attach optical or magnetic markers on the person whose motion

is to be tracked and use triangulation on the positions of the markers to achieve tracking.

Although these systems generally produce very good results, they are invasive and difficult

to use.

In recent years, researchers have proposed a variety of vision-based systems for tracking

human body motion in video sequences and silhouette image sequences (e.g., [95, 48, 18,

23, 106, 78, 107] among many others). All of these algorithms (with the exception of

the work by Cheunget al. [25]) assume that an articulated model of the tracked object is

available before the start of the algorithm. Such models are usually human-designed, and

often use cylinders to approximate the shape of the human body parts. The method in this

chapter provides an automatic way of recovering accurate articulated models, which can

reduce human effort substantially. In this section, we will demonstrate the suitability of our

recovered articulated models for the task of capturing articulated object kinematics.

We describe a simple algorithm which can be used to track our articulated models.

The algorithm is an extension of the standard Iterative Closest Point algorithm [13, 52],

which enforces the joint constraints during tracking. While it is a variation of existing

approaches, the exact formulation, to the best of our knowledge, is novel. Some previous

approaches for tracking articulated models (e.g., [25, 18]) enforce hard constraints on the

kinematic structure (joints of the skeleton must be preserved). Our approach allows small

movement at the joint, which is penalized in least-squares terms. As a result we obtain a

more anatomically correct model, and an objective function that can be optimized in an

efficient and straightforward manner. Our formulation can be used in a straightforward

way even when the skeleton structure contains loops. In contrast, the vast majority of the

tracking algorithms assume that the skeleton is tree-shaped and would require significant

116 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

modification if that assumption is violated.

5.5.1 Probabilistic Model

We are interested in tracking an articulated modelSX in 3D shape-from-silhouette data

(for a detailed discussion of shape-from-silhouette estimation, please refer to Cheunget

al. [26]). The output from the shape-from-silhouette estimation is a sampling of the object’s

surface at each point in timei, which can be represented as a 3D point cloudPZi. These

point clouds can be obtained using different shape-from-silhouette techniques [26, 85].

Our goal is to compute an alignmentT i that brings the articulated model surface into

close alignment with the point cloudPZi (from this point on, we omit the subscripti for

the benefit of clear notation). Our generative model assumes that each scan pointzk is

generated from its corresponding pointxj in the appropriately posed articulated model. To

express this formally, we associate a correspondence variableck with each pointzk in the

point cloudPZi. Settingck = j selects a corresponding pointxj in the skeleton mesh

MX . Because the shape-from-silhouette techniques are based on background subtraction

in video [26], they tend to produce many spurious readings, which have to be explicitly

dealt with in the model. We do this by associating an additionalvalidity variablevk with

each pointzk, which accounts for cases when the reading is generated by noise in the

acquisition process. Ifvk = 1, the pointzk is generated from some matching pointxj as

follows:

P (zk | vk = 1, ck = j, Tbj
, xj) = N (zk; Tbk

(xj), ΣC). (5.13)

Intuitively, this equation specifies that pointzk is generated from its corresponding template

mesh pointxj, transformed byTbk
in accordance with the current skeleton pose. Ifvk = 0,

the pointzk is generated from our noise model, which is a uniform distribution on point

locations:

P (zk | vk = 0) = α (5.14)

In addition, we assume a uniform priorP (vk) for all validity variables and a uniform prior

P (ck) for all correspondence variables.

5.5. ARTICULATED MODEL TRACKING 117

In posing the articulated model, our generative model needs to enforce the joint con-

straints as well. We treat the joints as elastic bands, which are allowed to stretch at a cost.

Our joint mismatch is associated with the amount of band stretching at the joint, and is

defined as

ψJ(Tp, Tq | SX) = exp{−1

2
(Tp(gp,q)− Tq(gp,q))

T Σ−1
J (Tp(gp,q)− Tq(gp,q))} (5.15)

The penalty is related to our definition of a joint in Eqn. (5.10). The covariance matrixΣJ

can be estimated from data, but in our experiments, we set it to the same value for all joints.

5.5.2 Optimization

The goal of tracking is to recover the poseT i of the model that best first the point cloud

PZi in each sequence framei. Our Expectation-Maximization algorithm aims to optimize

the following expected log-likelihood for each frame (superscriptsi omitted):

EP (C,V |SX ,PZ ,T)

[
log P (C, V, T | SX ,PZ)

]
(5.16)

Our iterative solution will alternate between an E-step which computes the probabilities

P (C, V | SX ,PZ , T), and an M-step which uses these probabilities to optimize the objec-

tive in Eqn. (5.16).

E-step

It is fairly straightforward to see that the probabilityP (C, V | SX ,PZ , T) decomposes into

a separate estimation for each scan pointzk:

P (vk, ck | zk, T,SX) ∝ P (zk | vk, ck, T,SX)P (vk, ck | SX , T) (5.17)

= P (zk | vk, ck, T,SX)P (vk)P (ck) (5.18)

= P (zk | vk, ck, T,SX) (5.19)

In this derivation, we used Bayes’ rule to obtain (5.17) and conditional independence as-

sumptions in the probabilistic model to obtain (5.18). The final expression in (5.19) follows

118 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

from the fact that the distributionsP (vk) andP (ck) are uniform in our model.

Now, we can define the E-step probabilities:

qk,j = P (vk = 1, ck = j | zk, T,SX) ∝ P (zk | vk = 1, ck = j, Tbj
, xj) (5.20)

qk,0 = P (vk = 0 | zk, T,SX) ∝ P (zk | vk = 0)

The conditional distributions on the right hand side are defined in Eqn. (5.13) and Eqn. (5.14)

and can be readily computed. The resulting values can be normalized to obtainqk,0 andqk,j

for j = {1, . . . , NX}.
The straightforward treatment of the E-step probabilities above ignores the issue of

efficiency. Naively computingNX probability values for each scan point is unnecessary,

especially because most of the probability mass is captured bymaxj qk,j, corresponding

to the nearest model point, andqk,0. The vast majority of the remainingqk,j values are

infinitesimally small and can be ignored.

M-step

In the M-step, we are given the expectationsq, and are interested in finding the pose pa-

rameters that optimize the objective in Eqn. (5.16). First we expand the quantity inside the

expectation:

P (T, V, C | SX ,PZ) ∝ P (PZ | V, C, T,SX)P (V,C | T,SX)P (T | SX)

= P (PZ | V, C, T,SX)P (T | SX). (5.21)

Here we made the same assumptions as the ones discussed in the derivation of Eqn. (5.17).

Using this result, and expanding Eqn. (5.16), the M-step objective becomes:

arg min
T

∑

k

∑
j

qk,j (zk − Tbk
(xj))

T Σ−1
C (zk − Tbk

(xj)) (5.22)

+
∑

(p,q)∈GX

(Tp(gp,q)− Tq(gp,q))
T Σ−1

J (Tp(gp,q)− Tq(gp,q))

Using the definition of rigid transformationTp(xj) = R(rp)xj + tp, we can express the

5.5. ARTICULATED MODEL TRACKING 119

objective directly in terms of the twist rotation parametersrp and translation vectorstp:

arg min
r,s

∑

k

max
j

qk,j (zk −R(rbk
)xj − tbk

)T Σ−1
C (zk −R(rbk

)xj − tbk
) (5.23)

+
∑

(p,q)∈GX

(R(rp)gp,q + tp −R(rq)gp,q − tq)
T Σ−1

J (R(rp)gp,q + tp −R(rq)gp,q − tq)

When we use the standard linearization of rotationR(rp) ≈ (I+ω̂p)R(rold
p) (see Sec. 2.2.1),

the above objective reduces to a least squares problem over the translation parameterst and

the exponential map parametersω, for a total of6×NP variables, and can be solved very

efficiently.

5.5.3 Experimental results

We experimented with this algorithm on several human movement sequences. The se-

quences were provided to us by the Stanford Biomotion Laboratory, which specializes in

studying diseases of the human knee. In our first experiment, the articulated model was

obtained from a single scan of the subject. The 15 rigid parts, and the 14 joints connecting

them were defined by a human (the process took about an hour). Seven cameras placed

around the viewing volume (shown in Fig. 5.9(a) provided images, in which background

differencing was performed in order to obtain silhouettes. The silhouettes were used to

construct a 3D visual hull [85]. Our algorithm was applied to the point clouds that were

obtained from the visual hulls. For each new frame in the sequence, the algorithm was

initialized with the position obtained in the previous frame. The algorithm produced ex-

cellent results, shown in Fig. 5.9(b). The knee movement in that sequence was compared

to ground truth, obtained using photoreflective markers and standard motion capture hard-

ware. Our estimates proved close to the ground truth, especially for the main degree of

freedom at the knee, denoted as flex/extension in Fig. 5.9(c)-1. The algorithm performed

reasonably well in recovering even the second degree of freedom at the knee, denoted as

abduction in Fig. 5.9(c)-2. In contrast, some methods (e.g., Cheunget al. [27]) assume that

there is a single degree of freedom at the knee.

We then acquired a more difficult data set using the subject, whose articulated model

120 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

a) System setup

b) Tracking results

1) 2) 3) 4) 5)

Figure 5.10: Tracking an automatically recovered articulated model in point cloud data. (a)
The camera setup and the point cloud obtained for a particular frame by using the shape-
from-silhouette method of [27]. b) The results of our algorithm for some frames in the
sequence, superposed on the point clouds in those frames (shown in red).

5.6. RELATED WORK 121

was recovered automatically in Sec. 5.4. This sequence was obtained using an 8-camera

setup, shown in Fig. 5.10a. Background subtraction was less successful in this dataset, due

to faster camera shutter speed settings, and use of dark clothing. As a result, the com-

puted visual hulls exhibited large errors. We opted for the shape-from-silhouette method of

Cheunget al. [26], which uses additional image color cues. Our automatically recovered

model was tracked in the resulting point cloud sequence. Unfortunately, ground truth was

not available for this dataset, therefore we could only verify the results by observation. The

results are shown in Fig. 5.10(b), and demonstrate that even when the point clouds are fairly

sparse and inaccurate, our simple algorithm can track reasonably well. The only significant

error in this algorithm can be seen in the left wrist, whose joint performs some unnatural

rotations. This problem arises because our model does not constrain the rotations of the

joints, and this can become a problem with noisy data. Introducing such a joint rotation

constraint is a subject of future work.

5.6 Related Work

Because articulated models are used widely in animation and tracking applications, there

has been work in the past to automate their acquisition. For example, many applications

can take a predefined skeleton, and update the parameters of the individual joints using

image sequences [18, 78] or 3D data [48, 1]. The work of Taycheret al. [115] can estimate

tree-shaped skeleton models, but assumes that the rigid parts and their transformations are

provided. The work of Songet al. [110] demonstrates recovery of articulated human mod-

els from tracked 2D features in video streams. These models are represented in terms of

decomposable triangulated graphs — a limited class of graphs, unsuitable for representing

3D shapes and articulation in 3D. Additionally, recovering articulation in 2D is consid-

erably more challenging, due to the information loss arising from the projection of a 3D

scene to 2D. As a consequence, the models recovered using such procedures tend to be

very sparse (containing about a dozen points and triangles), and are fairly far from being

realistic human models [110].

Our approach is most directly related to the work of Cheunget al. [25], which shows

122 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

how to estimate articulated object models from 3D Shape-From-Silhouette (SFS) data, aug-

mented with information about object color. They report recovering an articulated human

model with 9 parts. However, their algorithm was applied only to sequences where a single

body part is moving at a time. Each sequence contains two articulated parts, and allows

the estimation of a single human joint. The final articulated model is generated by combin-

ing the joints estimated in all the two-part sequences. Despite the important cue of color

information, they did not demonstrate simultaneous recovery of multiple parts.

We believe that the reason for this limitation is the presence of local maxima in their

approach, arising for two reasons. First, they solve for the point correspondences between

the input meshes while solving for the articulated model. The approach is a generaliza-

tion of the Iterative Closest Point (ICP)algorithm [13] to multiple rigid parts. However,

ICP is known to be prone to local maxima (see a discussion of the problems with ICP in

Chapter 2). The additional degrees of freedom provided by the possible part decompo-

sitions make the problem more severe. By contrast, we take a two-phase approach, first

solving the correspondence problem using a non-rigid registration technique that allows

large deformations, and then learning the articulated object model. Our approach has the

potential limitation of ignoring information about coherent part motion in solving the reg-

istration problem. Nevertheless, its ability to circumvent many local maxima appears to

significantly offset that potential disadvantage.

A second source for local maxima arises from the choice of constraints enforcing that

parts are contiguous regions of the object surface. The approach of Cheunget al. [25]

enforces part contiguity with discrete constraints between assignments to mesh points and

their neighbors. This type of model does not allow the application of efficient global opti-

mization steps. By contrast, our algorithm enforces part contiguity using soft probabilistic

constraints, which allow us to violate these constraints locally as long as it is maximizing

the log-likelihood of the model as a whole. Moreover, we can apply efficient global opti-

mization methods to determine the optimal part decomposition. These two properties allow

us to be less sensitive to initialization, and to avoid local maxima even if a large number of

parts is present.

Our algorithm is also related to segmentation approaches, designed to partition image

(or video) input from a scene into coherent regions. Standard segmentation approaches

5.6. RELATED WORK 123

compute local features at all image points, and cluster these features to obtain a segmenta-

tion [122, 87, 76]. While good image segmentations usually contain spatially contiguous

clusters, they do not usually correspond to a highly distinctive group of feature vectors,

and can be missed by the above feature-space clustering approaches. Some early methods

attempt to enforce a measure of spatial contiguity by using a strategy called superpixels.

They perform a finely-grained initial segmentation, and compute feature vectors directly

from these regions [96, 41]. This can be problematic if the superpixels themselves cross

boundaries of objects, and still exhibits the original problem because clustering in super-

pixel feature space may not produce contiguous regions.

Expectation-Maximization methods have been applied to the problem of clustering with

spatial constraints. The technique proposed by Weiss and Adelson [126] appears to be one

of the first such approaches. More recently, Markov Random Fields have been applied to

the problem as well (e.g., [77, 132]). Most of the existing approaches use soft class mem-

bership in the E-step, however this causes the inference task to become intractable. This has

forced the use of approximate inference methods such as mean field approximations [126],

Iterated Conditional Modes [132] and Hidden Markov Measure Fields [77]. In contrast,

the algorithm presented in this chapter computes themaximum-a-posterioriestimate of the

E-step part labels. This allows inference to be performed with the multiway graph-cuts

algorithm, which is very efficient and produces solutions whose score is within a factor

of the optimal score. The algorithm most similar to our approach is the work of Zabih

and Kolmogorov [130] on image segmentation. Their method, developed at the same time

as ours, models spatial image contiguity with pairwise associative potentials. The image

segmentation is obtained using an EM-algorithm, whose E-step uses a graph cut algorithm

to segment the image. The difference between the two methods is mainly in the model

optimized in the M-step: our algorithm is designed to segment 3D objects into rigid parts,

while theirs focuses on 2D image segmentation.

124 CHAPTER 5. RECOVERING ARTICULATED OBJECT MODELS

5.7 Conclusion

We describe an algorithm which automatically recovers articulated object models given a

set of registered 3D meshes of the object in different configurations. The algorithm iter-

atively estimates the part assignments for all points on the template surface, and the rigid

transformations of all object parts. Once the part assignments are recovered, the joints are

estimated by articulation constraints. We apply the algorithm to three challenging real-

world datasets, containing a large number of parts, deforming parts, or both. We demon-

strate that the algorithm can recover complex articulated models even from a small number

of example meshes, and that it easily scales to large datasets as well. In all experiments,

our algorithm not only recovers the parts and joints, but also figures out the optimal number

of parts automatically. For the first two datasets (puppet and arm), the articulated models

were constructed completely automatically, starting with the original scans, and without

making any object-specific assumptions.

In our approach, we have decoupled the registration algorithm from the algorithm which

recovers the articulated object structure. While ideally both steps could be executed simul-

taneously, this decoupling allows us to apply robust global inference strategies during the

registration process (e.g., the Correlated Correspondence algorithm) and during the in-

ference step partitioning the object surface into parts. The ability to perform robust and

efficient global inference is very important, because it helps us to circumvent many local

maxima during both steps. Our approach can be bootstrapped in a fairly straightforward

way to use the computed rigid parts and their transformations to improve the registration.

However, there was little to be gained from such bootstrapping on these data sets given the

quality of our initial registration results.

There are many interesting directions in which this work can be extended. For exam-

ple, it would be interesting to automatically learn a model of the allowable deformations

at different joints, and to incorporate these joint limits in our markerless motion capture

application. Probably the most compelling extension would be to model the deformations

that the object parts undergo, in addition to their rigid motion. This extension would allow

us to obtain realistic-looking shapes, and is addressed in the next chapter of this thesis.

Chapter 6

Learning Deformable Models of Human

Shape

In this chapter, we describe a data-driven method for constructing a deformable model of

the human body. Such a model, which spans deformations due to changes in both human

pose and physique, has a variety of possible uses. It can be used for producing compelling

animations of different realistic characters in computer games and movies. It can also be

used for automatic tracking and analysis of the movement of different people, with appli-

cations to clinical diagnosis and rehabilitation. While human bodies will be our particular

example, we attempt to keep the methodology general enough so that many other shapes

can be modeled in a similar manner.

Learning a complex deformable model from range scans presents several difficult chal-

lenges. The fundamental tasks of scan registration and articulated model acquisition have

already been explored in depth in Chapter 4 and Chapter 5 of this thesis, respectively. The

main focus of this chapter is on modeling deformation. The deformation space which we

are interested in modeling is complex — we come in a variety of sizes and girths, can be

male and female, and our bodies themselves deform as a result of changing our pose or

flexing our muscles. This raises the following interesting question: what is a suitable shape

representation that can capture all this variation?

In the previous chapter on articulated models, we represented shape in terms of a col-

lection of rigid body parts, connected by joints. While the resulting models are compact

125

126 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

and easy to use, they lack the power to model muscle deformations, and changes in shape

due to different body physiques. On the other hand, the deformable models we presented in

Chapter 2 and Chapter 4 are based on the appearance of a single shape template. In these

models, each link is allowed to deform independently of the others, and as a result, they

cannot capture the correlations between the deformation of different parts on the surface.

Some examples of correlations that we would like to capture are that long legs probably

mean long arms, bodies tend to be symmetric, and lifting the arm causes the pectoral mus-

cles to stretch.

The problem of modeling human bodies from examples has already received significant

attention in the computer graphics literature. Recent approaches represent the deformation

of an example shape in terms of the displacements of its points from some generic tem-

plate shape. For example, approaches that model deformations due to changes in pose

[70, 108, 1, 123, 80] represent deformation as point displacements relative to an underly-

ing articulated model. On the other hand, approaches that model body shape deformation

across different humans [2, 102] compute point displacements relative to an average shape.

Unfortunately, it is difficult to combine two of the above approaches in order to obtain an

integrated model of human poseandbody shape variation (which may explain why no such

model had been proposed up to this point). The main challenge lies in finding a good way

to combine two distinct deformation models based on point displacements. Point displace-

ments are vectors and cannot be multiplied in a meaningful way. Adding them ignores an

important notion of scale — pose displacements learned on a large individual cannot be

added to the shape of a small individual without undesirable artifacts.

In this chapter, we introduce the SCAPE method (Shape Completion and Animation of

PEople) — a data-driven method for building a human shape model. Our model is based on

a representation of deformation that allows us to model pose and body shape deformation

separately, and combine them in a natural way to produce 3D surface models with realistic

muscle deformations of different people in different poses.

The pose deformation component of our model is acquired from a set of dense 3D scans

of a single person in multiple poses. A key aspect of our pose model is that it decouples

deformation into a rigid and a non-rigid component. The rigid component of deformation

127

Figure 6.1: Human shape deformations can be decomposed along two axes, corresponding
to variations due to pose and body shape. These can be arranged in a matrix as shown.
We use examples from a column and a row from this matrix to train separate models of
pose and body shape deformation. The two models can be combined, which allows us to
generate shapes corresponding to various people in various poses.

is described in terms of a low degree-of-freedom rigid body skeleton. The non-rigid com-

ponent captures the remaining deformation such as flexing of the muscles. In our model,

the deformation for a body part is dependent only on the adjacent joints. Therefore, it is

relatively low dimensional, allowing the shape deformation to be learned automatically,

from limited training data.

Our representation also models shape variation that occurs across different individuals.

This model component can be acquired from a set of 3D scans of different people in differ-

ent poses. The shape variation is represented by using principal component analysis (PCA),

which induces a low-dimensional subspace of body shape deformations. Importantly, the

128 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

model of shape variation does not get confounded by deformations due to pose, as those

are accounted for separately. The two parts of the model form a single unified framework

for shape variability of people. The framework can be used to generate a realistic complete

surface mesh given only a succinct specification of the desired shape — in our case, 33

angles of the human skeleton and 20 eigen-coefficients describing the body shape.

We apply our model to two important graphics tasks. The first is partial view comple-

tion. Most scanned surface models of humans have significant missing regions. Given a

partial mesh of a person for whom we have no previous data, our method finds the shape

that best fits the observed partial data in the space of human shapes. The model can then be

used to predict a full 3D mesh. Importantly, because our model also accounts for non-rigid

pose variability, muscle deformations associated with the particular pose are predicted well

even for unobserved parts of the body.

The second task is producing a full 3D animation of a moving person from marker

motion capture data. We approach this problem as a shape completion task. The input

to our algorithm is a single scan of the person and a time series of extremely sparse data

— the locations of a limited set of markers (usually between 50 and 60) placed on the

body. For each frame in the sequence, we predict the full 3D shape of the person, in a pose

consistent with the observed marker positions. Applying this technique to sequences of

motion capture data produces full-body human 3D animations. We show that our method

is capable of constructing high-quality animations, with realistic muscle deformation, for

people of whom we have a single range scan.

The rest of this chapter proceeds as follows. In Sec. 6.1 we briefly describe our pipeline

for acquisition and pre-processing of the example meshes which are used to train our mod-

els. In Sec. 6.2 we show how human body deformations are represented and learned in

our model. Finally, in Sec. 6.3, we demonstrate how our model can be applied for com-

pelling shape-completion applications, including partial view completion and producing

3D animations from marker motion capture sequences.

6.1. DATA ACQUISITION AND PREPROCESSING 129

Figure 6.2: The mesh processing pipeline used to generate our training set. (a) We acquired
two data sets spanning the shape variability due to different human poses and different
physiques. (b) We select a few markers by hand, mapping the template mesh and each of
the range scans. (c) We apply the Correlated Correspondence algorithm, which computes
numerous additional markers. (d) We use the markers as input to a non-rigid registration
algorithm, producing fully registered meshes. (e) We apply a skeleton reconstruction algo-
rithm to recover an articulated skeleton from the registered meshes. (f) We learn the space
of deformations due to pose and physique.

6.1 Data Acquisition and Preprocessing

The SCAPE model acquisition is data driven, and all the information about the shape is de-

rived from a set of range scans. This section describes the basic pipeline for data acquisition

and pre-processing of the data meshes. This pipeline, displayed in Fig. 6.2, consists largely

of a combination of previously published methods. The specific design of the pipeline is

inessential for the main contribution of this chapter; however, we demonstrate that most of

the processing in the pipeline can be done using methods presented in this thesis, which

minimize the need for human involvement.

130 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Range ScanningWe acquired our surface data using a Cyberware WBX whole-body

scanner. The scanner captures range scans from four directions simultaneously and the

models contain about 200K points. We used this scanner to construct full-body instance

meshes by merging the four scan views [33] and subsampling the instances to about 50,000

triangles [47]. Using the process above, we obtained two data sets : apose data set, which

contains scans of 70 poses of a particular person in a wide variety of poses, and abody

shape data set, which contains scans of 37 different people in a similar (but not identical)

pose. We also added eight publicly available models from the CAESAR data set [2] to our

data set of individuals.

We selected one of the meshes in the pose data set to be thetemplate mesh; all other

meshes will be calledinstance meshes. The function of the template mesh is to serve as a

point of reference for all other scans. The template mesh is hole-filled using an algorithm

by Daviset al. [35]. In acquiring the template mesh, we ensured that only minor holes

remained mostly between the legs and around the armpits. The template mesh and some

sample instance meshes are displayed in Fig. 6.2(a). Note that the head region is smoothed

in some of the figures, in order to hide the identity of the scan subjects; the complete scans

were used in the learning algorithm.

CorrespondenceThe next step in the data acquisition pipeline brings the template

mesh intocorrespondencewith each of the other mesh instances. Current non-rigid regis-

tration algorithms require that a set of corresponding markers between each instance mesh

and the template is available (the work of Allenet al.[2] uses about 70 markers for registra-

tion). We obtain the markers using the Correlated Correspondence algorithm (Chapter 4).

The CC algorithm computes the consistent embedding of each instance mesh into the tem-

plate mesh, which minimizes deformation, and matches similar-looking surface regions.

To break the scan symmetries, we initialize the CC algorithm by placing 4–10 markers by

hand on each pair of scans. The result of the algorithm is a set of 140–200 (approximate)

correspondence markers between the two surfaces, as illustrated in Fig. 6.2(c).

Non-rigid Registration Given a set of markers between two meshes, the task of non-

rigid registration is well understood and a variety of algorithms exist [1, 52, 111]. The task

is to bring the meshes into close alignment, while simultaneously aligning the markers.

We apply the non-rigid ICP algorithm described in Chapter 2 to register the template mesh

6.1. DATA ACQUISITION AND PREPROCESSING 131

with all of the meshes in our data set. As a result, we obtain a set of meshes with the

same topology, whose shape approximates well the surface in the original Cyberware scans.

Several of the resulting meshes are displayed in Fig. 6.2(d).

Recovering the Articulated SkeletonAs discussed in the introduction, our model uses

a low degree-of-freedom skeleton to model the articulated motion. We construct a skeleton

SX for our template mesh automatically, using only the meshes in our data set. We use

the algorithm from Chapter 5, which automatically recovers a decomposition of the object

into approximately rigid parts, the location of the parts in the different object instances, and

the articulated object skeleton linking the parts. The experiment was already discussed at

length in that chapter, and the results are shown in Fig. 5.8. As discussed, we obtain an

articulated model with 18 parts, which is displayed in Fig. 5.8(2c). The algorithm broke

both the crotch area and the chest area into two symmetric parts, resulting in a skeleton

which was not tree-structured. To facilitate pose editing, we combined the two parts in

each of these regions into one. The result was a tree-structured articulated skeleton with 16

parts, displayed in Fig. 6.2(e).

Data Format and AssumptionsAs a result of our preprocessing, we obtain a data set

consisting of a model meshX and a set of instance meshesMY = {MY1 , . . . ,MYN}.
All of these meshes have the same set of points and triangles as the model mesh, albeit in

different configurations. We also compute the alignments of the rigid parts of our model

SX to all the mesh instances. For each partp, we compute its rigid alignmentT i
p in instance

i, simply by using the known point correspondences in the meshes. The rigid alignment

for each part is computed separately using the alignment method originally proposed by

Beslet al. [13] and described in Sec. 2.3. In computing the alignment, the joint constraints

between the parts are ignored. As will be seen shortly, we will only be using the rotation

componentRi
p of these transformations for our model of human deformation.

The data acquisition and pre-processing pipeline provides us with exactly this type of

data; however, any other technique for generating similar data will also be applicable to our

learning and shape completion approach.

132 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Figure 6.3: Overview of the SCAPE model. We model how template trianglespk get
transformed to generate a new human shape instance. Our model accounts for several
sources of triangle deformation: non-rigid muscle deformationsQk due to changes in pose,
non-rigid body shape deformationsDk accounting for changes between different humans,
and articulated part rotationsR. The transformations are represented as3× 3 matrices and
are applied in order, which preserves proper deformation scaling. Our model correlates
the values of matricesQk to the nearby joint angles, and leans a low-dimensional linear
manifold for the values of matricesDk.

6.2 Human Shape Model

This section describes our model of human shape, in which deformations due to changes

in pose and body shape are modeled separately. First, we show how these models can be

combined to produce complete surface meshes of different people in different poses. Then,

we describe in detail how to represent and learn the two models, accounting for pose and

body shape variation.

6.2. HUMAN SHAPE MODEL 133

6.2.1 Model Overview

We want to model the deformations which align the templateMX with each meshMYi

in the data set, which corresponds to some pose of a particular human. We will model the

deformations for each trianglepk of the template in a way, which was inspired by the work

of Sumner and Popović [111] on mesh deformation transfer. In our model, we will account

for the polygon deformations arising from three separate sources:

1. Rigid transformationsR resulting from placing the articulated model in a different

pose.

2. Non-rigid transformationsQ resulting from changes in pose, such as bulging of the

muscles, and sticking out of elbows.

3. Non-rigid transformationsD accounting for changes in body shape between different

individuals.

The above transformations are modeled in terms of3 × 3 matrices, which are applied in

order to transform the template triangle into its counterpart in mesh instanceMYi. Let

trianglepk contain the points(xk,1, xk,2, xk,3). We apply our deformations in terms of the

triangle’s local coordinate system, obtained by translating pointxk,1 to the global origin.

Thus, the deformations will be applied to the triangle edgesv̂k,j = xk,j − xk,1, j = 2, 3.

First, we apply a3 × 3 linear transformation matrixQi
k to the triangle. This matrix,

which corresponds to a non-rigid pose-induced deformation, is specific to each triangle

pk and each poseMYi. Then, we apply a linear transformation matrixDi
k, which is also

triangle-specific, and accounts for deformations between the shape of different individuals.

The deformed triangle is then rotated byRi
b[k], the rotation of its rigid part in the articulated

skeleton. Here,b[k] denotes the body part associated with trianglepk. The same rotation

will be applied to all triangles that belong to that part. Combining the three transformation

matrices, we write:

vi
k,j = Ri

b[k]D
i
kQ

i
kv̂k,j, j = 2, 3. (6.1)

The triangle deformation process is sketched in Fig. 6.3. A key feature of this model is

that it combines an element modeling the movement of the rigid skeleton, with an element

134 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

that allows for arbitrary local deformations. Importantly, the application of consecutive

transformation matrices to each triangle maintains proper scaling of pose and body shape

deformation.

The order in which the matrices are applied matters. Multiplying a vectorv̂ by a linear

matrix produces different results depending on the direction of the vector. Let’s examine the

order of deformationQkDkv̂k,j. If Dkv̂k,j is a vector with a significantly different direction

thanv̂k,j, the effect of applying matrixQk to Dkv̂k,j is different from applyingQk to v̂k,j.

This is undesirable, as it means that changes in body shape influence the effects of the

pose model. Because it is advantageous to multiply the vectorv̂k,j first by the matrices that

change its direction least, and body shape deformations are usually orders of magnitude

larger than pose deformations, we chose the orderDkQk in the paper. At this stage, we do

not have conclusive experimental evidence as to which matrix order yields better results.

The rotation matrixRb[k], associated with the articulated model orientation, can change the

direction of a vector it multiplies arbitrarily much, therefore it is important forRb[k] to be

the last one in the multiplication order.

Given a set of transformation matricesQ, D for all template triangles, and the rotations

of all the articulated partsR, our method’s predictions can be used to synthesize a mesh for

that pose. For each individual triangle, our method makes a prediction for the edges ofpk

asRb[k]DkQkv̂k,j. In general, the predictions for the edges in adjacent triangles are not con-

sistent. We solve for the set of point locationsy1, . . . , yN that minimize the reconstruction

error for the predicted triangle edges:

arg min
y1,...,yN

∑

k

∑
j=2,3

‖Ri
b[k]D

i
kQ

i
kv̂j,k − (yj,k − y1,k)‖2 (6.2)

Note that, as translation is not directly modeled, the problem has a translational degree of

freedom. By anchoring one of the pointsy (in each connected component of the mesh) to a

particular location, we can make the problem well-conditioned, and reconstruct the mesh.1

The objective can be decomposed along each dimension of the pointsy, resulting in three

separate least-squares problems. In particular, let the column vectorsyx,yy,yz contain the

1See the paper of Sumner and Popović [111] for a very related discussion on mesh reconstruction from a
set of deformation matrices. In their reconstruction formulation, the reconstruction error is defined over the
transformation matrices themselves, which results in a much larger least-squares problem.

6.2. HUMAN SHAPE MODEL 135

x, y andz coordinates of the pointsVy, respectively. The objective can be easily expressed

in terms of three separate problems of the following form:

arg min
yx

‖Ayx − bx‖2, arg min
yy

‖Ayy − by‖2, arg min
yz

‖Ayz − bz‖2. (6.3)

Importantly, the sparse matrixA is the same for all three subproblems; furthermore, the

values ofA does not depend on the values ofD, Q, orR. The vectorsbx, by, bz are the only

quantities above that depend on the values of the transformation matricesD, Q andR.

In order to solve the above subproblems, we need to compute

yx = (AT A)−1AT bx, yy = (AT A)−1AT by, yz = (AT A)−1AT bz (6.4)

These three subproblems require performing the same matrix inversion(AT A)−1, which

needs to be computed only once. Computing the inverse, using the sparse matrix package

umfpack, takes approximately 1 second on a 2.4 GHz Intel Xeon processor for meshes

consisting of 25K polygons.

Once the inverse has been computed, we can animate in close to real time, because a

change in the matricesR, D andQ only induces a change in the vectorsbx, by, bz. The

new shape can be computed by multiplying those vectors with the precomputed matrix

(AT A)−1AT . Thus, our model can be used for real-time animation of synthesized or cached

motion sequences.

6.2.2 Pose Deformation Model

So far, we showed that given a set of transformation estimatesQ andD, we can reconstruct

complete human meshes. Now we show how we can learn deformation models, which can

provide these estimates.

Learning the Model

We showed how to model pose-induced deformations using a set of matricesQi
k for the

template trianglespk. We want to predict these deformations from the articulated human

pose, which is represented as a set of relative joint rotations. We learn a regression function

136 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

for each trianglepk which predicts the transformation matricesQi
k as a function of the

rotations of its two nearest joints4ri
b[k],1 and4ri

b[k],2. These two joints can be grouped to

form the 6-dimensional vector4ri
b[k] = (4ri

b[k],1,4ri
b[k],2)

T . By assuming that a matrixQi
k

can be predicted in terms of these two joints only, we greatly reduce the dimensionality of

the learning problem.

The joint rotations are computed easily from the absolute rotation matrices of the two

rigid parts adjacent to that joint. If those rotations areRi andRj, then the relative joint

rotation matrix is simply4Ri,j = RT
i Rj. Joint rotations are conveniently represented with

their exponential map coordinates (see Sec. 2.2.1). Briefly, letM denote any3× 3 rotation

matrix, and letmij be its entry ini-th row andj-th column. The exponential mapt for the

joint angle is a 3D vector, and can be computed from the following formula [75]:

t =
θ

2 sin(θ)

m32 −m23

m13 −m31

m21 −m12

 , θ = cos−1

(
tr(M)− 1

2

)
.

The direction of the exponential mapt represents the axis of rotation, and its magnitude

represents the rotation angle about that axis. We denote the exponential map parameters of

a joint rotation matrix4R as4r.

Each joint rotation can be thus specified using three parameters, so altogether we are

predicting from the vector4ri
b[k], which has six parameters. Adding a term for the constant

bias, we associate a7× 1 regression vectorak,lm with each of the 9 values of the matrixQ,

and write:

qi
k,lm = aT

k,lm ·
[
4ri

b[k]

1

]
l,m = 1, 2, 3 (6.5)

Thus, for each trianglepk, we have to fit9 × 7 entriesak = (ak,lm : l,m = 1, 2, 3). The

reconstruction of the entire matrix is denoted asQi
k = Qak

(4ri
b[k]), whereQak

(4r) is a

shorthand for the operation which predicts all the entries of a matrixQ from the rotation

parameters4r, and arranges them appropriately.

Our goal now is to learn these parametersak,lm. If we are given the transformation

Qi
k for each instanceMYi and the rigid part rotationsRi, solving for the regression values

6.2. HUMAN SHAPE MODEL 137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

Figure 6.4: A plot of the eigenvalues obtained by performing PCA on the joint angles of the
human pose examples. Each joint contributes three different eigenvalues, whose magnitude
describes the amount of joint rotation, and whose associated eigenvectors describe the joint
rotation axes. The red line shows our chosen cut-off point for ignoring rotational degrees
of freedom, for which observed rotation was small.

(using a quadratic cost function) is straightforward. It can be carried out for each triangle

k and matrix valueqk,lm separately:

arg min
ak,lm

∑
i

(
[4ri 1]ak,lm − qi

k,lm

)2
. (6.6)

In practice, we can save on model size and computation by identifying joints which

have only one or two degrees of freedom. Allowing those joints to have three degrees of

freedom can also cause overfitting in some cases. We performed PCA on the observed

angles of the joints4ri, removing axes of rotation whose eigenvalues are smaller than

0.03. The associated entries in the vectorak,lm are then not estimated. The value 0.03

was obtained by observing a plot of the sorted eigenvalues (Fig. 6.4). We found that the

pruned model minimally increased cross-validation error, while decreasing the number of

parameters by roughly one third.

To train our pose model, we only use the instance meshesMYi which correspond to dif-

ferent poses of the human in the template (hence, all matricesDi will be identity and will

be ignored in the discussion below). The rigid part rotations, and hence the joint rotations

138 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

are computed as part of our preprocessing step. Unfortunately, the transformationsQi
k for

the individual triangles are not known. We estimate these matrices by fitting them to the

transformations observed in the data. However, the problem is generally underconstrained.

We follow Sumneret al. [111] and Allenet al. [2], and introduce a smoothness constraint

which prefers similar deformations in adjacent polygons that belong to the same rigid part.

Specifically, we solve for the correct set of linear transformations with the following equa-

tion for each meshMYi:

arg min
{Qi

1,...,Qi
P }

∑

k

∑
j=2,3

‖Ri
b[k]Q

i
kv̂k,j − vi

k,j‖2 +

ws

∑

k1,k2 adj

I(b[k1] = b[k2]) · ‖Qi
k1
−Qi

k2
‖2, (6.7)

wherews = 0.001ρ and ρ is the resolution of the model meshX. Above, I(·) is the

indicator function. The equation can be solved separately for each rigid part and for each

row of theQ matrices.

Given the estimatedQ matrices, we can solve for the (at most)9× 7 regression param-

etersak for each trianglek, as described in Eqn. (6.6).

Application to Our Data Set

We applied this method to learn a SCAPE pose deformation model using 65 training in-

stances from our pose data set. The learned model contains 33 free joint angle parameters

(out of possible 45). Fig. 6.5 shows examples of meshes that can be represented by our

learned model. Note that these examples do not correspond to meshes in the training data

set; they are new poses synthesized completely from a vector of joint rotationsR, using

Eqn. (6.5) to define theQ matrices, and Eqn. (6.2) to generate the mesh.

The model captures well the shoulder deformations, the bulging of the biceps and the

twisting of the spine. It deals reasonably well with the elbow and knee joints, although

example (k) illustrates a small amount of elbow smoothing that occurs in some poses. The

model exhibits an artifact (flat surface) in the armpit area (l), which is caused by hole-filling

in the template mesh.

6.2. HUMAN SHAPE MODEL 139

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.5: Examples of muscle deformations that can be captured in the SCAPE pose
model.

140 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Comparison to Non-linear Regression

Our simple regression performs remarkably well in reconstructing the body shape for a

large variety of poses. However, it is a model with limited expressivity, and may pro-

duce visibly suboptimal shapes in some cases. Intuitively, these cases should include some

extreme angle configurations, which are close to the joint limits. We examined all the

reconstructions produced by our model, and found such an instance, in which the arm

was close to the body, and twisted about 45 degrees. This instance was already displayed

in Fig. 6.5(l), and exhibits an unnatural widening of the shoulders.

This instance motivated us to compare our results to a more complicated regression

model, which can capture non-linear deformation effects. Many model choices are possi-

ble, but we picked Support Vector Machine (SVM) regression. For detailed description of

the regression model, please refer to the tutorial of Schölkopf and Smola [101]. Just like

in the linear case, we learn predictorsf(·), which map joint angles to the values of the

matricesQ:

qi
k,lm = f

(4ri
b[k]

)
l, m = 1, 2, 3. (6.8)

In our implementation, this mapping is done in non-linear feature space, using a radial basis

function kernelK(x, x′) = e
− ‖x−x′‖2

2γ2 with a setting ofγ = 2.5. We use a separate regressor

for each valueqk,lm, although a solution that regresses on entire groups of parameters is

also possible.

Fig. 6.6(a) shows that the non-linear regression model fixes the widening of the shoul-

ders artefact. However, in most cases the difference between the shapes reconstructed by

the non-linear and the linear models is hardly visible (Fig. 6.6(b)). Fig. 6.7(a)-(b) show that

the non-linear regression model, which has a greater expressive power, produces smaller

reconstruction errors (defined in Eqn. (6.2)) on the training set. However, using 5-fold

cross-validation, we determined that the non-linear regression model provides only min-

imal improvements in the prediction for unseen shapes. Fig. 6.7(c)-(d) shows the point

distance errors (distance between corresponding points on the ground truth and recon-

structed shape) decrease minimally when non-linear regression is used. In those cases,

reconstruction errors even tended to slightly increase when non-linear regression was used.

The reasons for such limited generalization capability of the non-linear regression model

6.2. HUMAN SHAPE MODEL 141

2. Linear Regression1. Ground Truth 3. Non-linear regression

(b) Other examples (linear / non-linear regression)

(a) Poor linear regression example

Figure 6.6: Comparison of linear and non-linear pose regression. In this particular pose
example (a)-1, the linear regression model produces a ”widening” of the shoulders (a)-2,
which is fixed by a non-linear model (a)-3. (b) In the vast majority of reconstructions the
difference between the linear and the non-linear regression is hardly visible.

142 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Linear Sqr Error

N
o

n
li
n

e
a

r
S

q
r

E
rr

o
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

o
r

A
m

o
u

n
t

Linear

Nonlinear

(a) Reconstruction errors on training set (b) Avg. reconstruction error on training set

(c) Point distance errors on testing set

0.3

0.32

0.34

0.36

0.38

0.4

0.42

E
rr

o
r

A
m

o
u

n
t

Linear

Nonlinear

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

Linear Sqr Error

N
o

n
li
n

e
a

r
S

q
r

E
rr

o
r

(d) Avg. point distance error on testing set

Figure 6.7: Numerical comparison of linear and non-linear regression for modeling pose
deformation. (a)-(b) Non-linear regression performs noticeably better in decreasing the
reconstruction errors on the training set. (c)-(d) Non-linear regression did not contribute to
a noticeable improvement in generalizing to new examples.

can be twofold. One reason is that our regression model needs to be trained with more ex-

amples. Another, and more likely reason, is that the shape examples used for training and

testing have some errors introduced by our data-processing. These data-processing errors

prevent the model from achieving higher scores on unseen testing examples.

Overall, for all reconstructions except the one we discussed above, the differences be-

tween the linear and non-linear models are barely discernible with a naked eye. Because

our linear model results in a formulation which is considerably more efficient to train and

to use for the tasks of animation and shape-completion, the discussion in the rest of the

chapter will focus on that model.

6.2. HUMAN SHAPE MODEL 143

Figure 6.8: The first four principal components in the space of body shape deformation

6.2.3 Body-Shape Deformation

The SCAPE model also encodes variability due to body shape across different individuals

in terms of the transformation matricesDi. We now assume that the scans of our training

setMYi correspond to different individuals.

Learning the Model

To map out the space of body shape deformations, we view the different matricesDi as

arising from a lower dimensional subspace. For each example mesh, we create a vector of

size9 × N containing the parameters of matricesDi. We assume that these vectors are

144 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

generated from a simple linear subspace, which can be estimated by using PCA:

Di = DU,µ(βi) = Uβi + µ (6.9)

whereUβi + µ is a (vector form) reconstruction of the9 × N matrix coefficients from

the PCA, andUβi + µ is the representation of this vector as a set of matrices. PCA is

appropriate for modeling the matrix entries, because body shape variation is consistent and

not too strong. We found that even shapes which are three standard deviations from the

mean still look very much like humans (see Fig. 6.8).

If we are given the affine matricesDi
k for eachi, k we can easily solve for the PCA

parametersU , µ, and the mesh-specific coefficientsβi. However, as in the case of pose

deformation, the individual shape deformation matricesDi
k are not given, and need to be

estimated. We use the same idea as above, and solve directly forDi
k, with the same smooth-

ing term as in Eqn. (6.7):

arg min
Di

∑

k

∑
j=2,3

‖Ri
b[k]D

i
kQ

i
kv̂k,j − vi

k,j‖2 + ws

∑

k1,k2 adj

‖Di
k1
−Di

k2
‖2. (6.10)

Importantly, recall that our data preprocessing phase provides us with an estimateRi for

the joint rotations in each instance mesh, and therefore the joint angles4ri. From these

we can compute the predicted pose deformationsQi
k = Qak

(4ri
b[k]) using our learned pose

deformation model. Thus, the only unknowns in Eqn. (6.10) are the shape deformation

matricesDi
k. The equation is quadratic in these unknowns, and therefore can be solved

using a straightforward least-squares optimization.

Application to Our Data Set

We applied this method to learn a SCAPE body shape deformation model using the 45

instances in the body shape data set, and taking as a starting point the pose deformation

model learned as described in Sec. 6.2.2. We used only the top 20 principal components

found in our PCA decomposition of the shape space. Fig. 6.8 shows the mean shape and the

variation of the first four principal components. These components represent very reason-

able variation in weight and height, gender, abdominal fat and chest muscles, and bulkiness

6.2. HUMAN SHAPE MODEL 145

Figure 6.9: A variety of body shapes produced by the SCAPE model. The input to the
model is a concise description of the shape in the form of joint angles and PCA body
coefficients.

146 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Figure 6.10: Deformation transfer by the SCAPE model. The figure shows three subjects,
each in four different poses. Each subject was seen in a single reference pose only

of the chest versus the hips.

Our PCA space spans a wide variety of human body shapes. Put together with our pose

model, we can now synthesize realistic scans of various people in a broad range of poses.

Assume that we are given a set of rigid part rotationsR and person body shape parameters

β. The joint rotationsR determine the joint angles4R. For a given trianglepk, the pose

model now defines a deformation matrixQk = Qak
(4rb[k]). The body shape model defines

a deformation matrixDk = DU,µ(β). As in Eqn. (6.2), we solve for the verticesMY that

minimize the reconstruction error:

EH [Y] =
∑

k

∑
j=2,3

‖Rb[k]DU,µ(β)Qak
(4rb[k])v̂j,k − (yj,k − y1,k)‖2 (6.11)

Using this approach, we can generate a mesh for any body shape in our PCA space in any

6.3. SHAPE COMPLETION 147

pose. Fig. 6.9 shows some examples of different synthesized scans, illustrating variation in

both body shape and pose. We can also apply pose deformations to shape of subjects, for

whom we have a single scan only. This capability, called deformation transfer, is demon-

strated in Fig. 6.10. The above figures show that realistic muscle deformation is achieved

for very different subjects, and for a broad range of poses.

6.3 Shape Completion

6.3.1 Shape Completion Overview

So far, we have focused on the problem of constructing the two components of our SCAPE

model from the training data: the regression parameters{ak : k = 1, . . . ,MX} of the pose

model, and the PCA parametersU, µ of our body shape model. We now show how to use the

SCAPE model to address the task of shape completion, which is the main focus of our work.

We are given sparse information about an instance mesh, and wish to construct a full mesh

consistent with this information; the SCAPE model defines a prior on the deformations

associated with human shape, and therefore provides us with guidance on how to complete

the mesh in a realistic way.

Assume we have a set of markersZ = z1, . . . , zL which specify known positions in

3D for some pointsx1, . . . , xL on the model mesh. We want to find the set of pointsMY

that best fits these known positions, and is also consistent with the SCAPE model. In this

setting, the joint rotationsR and the body shape parametersβ are also not known. We

therefore need to solve simultaneously forMY , R, andβ minimizing the objective:

∑

k

∑
j=2,3

‖Rb[k]DU,µ(β)Qak
(4rb[k])v̂j,k − (yj,k − y1,k)‖2 + wZ

L∑

l=1

‖yl − zl‖2, (6.12)

where the first term represents the reconstruction error, andwZ is a weighting term that

trades off the fit to the markers against the reconstruction error.

A solution to this optimization problem is acompleted meshMY [Z] that both fits the

observed marker locations and is consistent with the predictions of our learned SCAPE

model. It also produces a set of joint rotationsR and shape parametersβ. Note that these

148 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

parameters can also be used to produce apredicted meshMỸ [Z], as in Sec. 6.2. This

predicted mesh is (by definition) constrained to be within our PCA subspace of shapes;

thus it generally does not encode some of the details unique to the new (partial) instance

mesh to be completed. As we shall see, the predicted meshMỸ [Z] can also be useful for

smoothing certain undesirable artifacts.

Eqn. (6.12) is a general non-linear optimization problem to which a number of existing

optimization techniques can be applied. The approximate solution method, which we used

for our SIGGRAPH paper and in our implementation, is described below. Then in Sec. 6.4

we describe another, mathematically more elegant way of optimizing this objective.

Our specific implementation of the optimization is intended to address the fact that

Eqn. (6.12) is non-linear and non-convex, hence is subject to local minima. Empirically,

we find that care has to be taken to avoid local minima. Hence, we devise an optimization

routine that slows the adaptation of certain parameters in the optimization, thereby avoiding

the danger of converging to sub-optimal shape completions. In particular, optimizing over

all of the variables in this equation using standard non-linear optimization methods is not a

good idea. Our method uses an iterative process, where it optimizes each of the three sets

of parameters (R, β, andMY) separately, keeping the others fixed.

The resulting optimization problem still contains a non-linear optimization step, due to

the correlation between the absolute part rotationsR and the joint rotations4R, both of

which appear in the objective of Eqn. (6.12). We use an approximate method to deal with

this problem. Our approach is based on the observation that the actual joint rotationsR

influence the point locations much more than their (fairly subtle) effect on the pose defor-

mation matrices via4R. Thus, we can solve forR while ignoring the effect on4R, and

then update4R and the associated matricesQa(4R). This approximation gives excellent

results, as long as the value of4R does not change much during each optimization step.

To prevent this from happening, we add an additional term to the objective in Eqn. (6.12).

The term penalizes steps where adjacent parts (parts that share a joint) move too differently

from each other.

6.3. SHAPE COMPLETION 149

Figure 6.11: Obtaining a reasonable starting point for the shape-completion process. We
place a few markers by hand and then run the Correlated Correspondence algorithm, which
produces∼ 100− 150 markers. We use the markers on each object part to solve for a good
rigid alignment for that part. As a result, we obtain an initial set of part rotations, which
are used to initialize our shape-completion optimization.

Specifically, when optimizingR, we approximate rotation using the standard approxi-

mationRnew≈ (I + t̂)Rold, wheret = (t1, t2, t3) is anexponential map, and

t̂ =

0 −t3 t2

t3 0 −t1

−t2 t1 0

 (6.13)

Let tb denote the exponential map for a partb. The term preventing large joint rotations

then is simply
∑

{b[1],b[2] adj} ‖tb[1] − tb[2]‖2.

We are now ready to describe the overall optimization technique applied in our work.

This techniques iteratively repeats three steps:

150 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

◦ We updateR, using the following equation:

arg min
t

∑

k

∑
j=2,3

‖(I + t̂)RoldDQv̂j,k − (yj,k − y1,k)‖2 (6.14)

+wT

∑

b[1],b[2] adj

‖tb[1] − tb[2]‖2

HereD = DU,µ(β) according to the current value ofβ, Q = Qak
(4r) where4r is

computed fromRold, andwT is an appropriate trade-off parameter.

After all rotationsR are thus updated, we recompute the joint angles4r accordingly.

◦ We updateMY to optimize Eqn. (6.12), withR andβ fixed. In this case, theD and

Q matrices are determined, and the result is a simple quadratic objective that can be

solved efficiently using standard methods:

arg min
y1,...,yNX

∑

k

∑
j=2,3

‖RDQv̂j,k − (yj,k − y1,k)‖2 + wZ

L∑

l=1

‖yl − zl‖2 (6.15)

◦ We updateβ to optimize Eqn. (6.12). In this case,R and theQ matrices are fixed,

as are the point positionsMY , so that the objective reduces to a simple quadratic

function ofβ:

arg min
β

∑

k

∑
j=2,3

‖Rb[k](Uβ + µ)kQv̂j,k − (yj,k − y1,k)‖2 (6.16)

This optimization process converges to a local optimum of the objective in Eqn. (6.12).

The surface reconstruction step from Eqn. (6.15) can be executed very efficiently, as long

as the set of matching pairs(yl, zl) remains unchanged during the iterations (as is the case

described here). Similar to our approach for solving Eqn. (6.2) earlier, this objective de-

composes into three subproblems, requiring the computation of the same matrix inverse,

which can be precomputed once and then used in all iterations of the above algorithm.

6.3. SHAPE COMPLETION 151

Figure 6.12: Examples of view completion, where each row represents a different partial
view scan. Subject (i) is in our data set but not in the this pose; neither subjects (ii) and
(iii) nor their poses are represented in our data set. (a) The original partial view. (b) The
completed mesh from the same perspective as (a), with the completed portion in yellow.
(c) The completed mesh from a view showing the completed portion. (d) A true scan of the
same subject from the view in (c).

152 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

6.4 An Alternative Optimization Approach

Here we describe an alternative optimization scheme for the shape-completion objective

defined in Eqn. (6.12). Briefly, the shape-completion task is: given a set of markersZ =

z1, . . . , zL which specify known positions in 3D for some pointsx1, . . . , xL on the model

mesh, recover the body shape parametersβ, rigid part rotationsR and the mesh point

locationsY which minimize the objective:

∑

k

∑
j=2,3

‖Rb[k]DU,µ(β)Qak
(4rb[k])v̂j,k − (yk,j − yk,1)‖2 + wZ

L∑

l=1

‖yl − zl‖2. (6.17)

The main difficulty in the above equation is that it features both the absolute rigid part

rotationsRb[k], and the relative joint rotations4rb[k] in the same product. These entities

are correlated, since changing the absolute rotations also changes the joint angles. Our

optimization scheme in Sec. 6.3.1 ignores the effect of this correlation, and solves directly

for the absolute rotations while assuming the angles get preserved.

The key to avoiding that approximation is to use only the relative joint rotations. Here

we assume that our articulated model is tree-structured. Then, we can pick one of our parts

as a root, and represent the absolute rotations in terms of a sequence of joint angle rotations

(going outwards from that root). For example, for a part which isM joints removed from

the root, we can write this as follows:

Rb[k] = R(4rb[k],M) . . . R(4rb[k],1)Rroot (6.18)

In such a manner, all absolute rotations can be replaced in the objective. Now, let us

solve for an update of the exponential map parameters of a specific joint rotation4ri. To

simply the notation here we will just denote it asui = 4ri. The update can be expressed

asu′i = ui + ti, whereu′i is the new estimate of that rotation, andti is the update for which

we will be solving.

6.4. AN ALTERNATIVE OPTIMIZATION APPROACH 153

The rotation matrix around that joint can be expressed as follows [75]:

R(u′i) = I + û′i +
(û′i)

2

2!
+ . . . +

(û′i)
n

n!
+ . . . (6.19)

= I + ûi + ti +
(ûi + ti)

2

2!
+ . . . (6.20)

= {I + ûi +
(ûi)

2

2!
+ . . .}+ t̂i +

ûit̂i + (t̂i)
2

2!
+ . . . (6.21)

= R(ui) + t̂i +
ûit̂i + (t̂i)

2

2!
+ . . . (6.22)

Since our update step is chosen to be small, we can use the following linear approximation:

R(u′i) ≈ R(ui) + t̂i +
1

2
ûit̂i. (6.23)

Our goal is to iteratively optimize the rotation parametersu′i of each joint, while holding

the others fixed. We will define several quantities in the objective from Eqn. (6.17) to make

the dependence onu′i more explicit. First, we will assume that the rotation matrix associ-

ated with parametersu′i appearsm-th in the kinematic chainR(4rb[k],M) . . . R(4rb[k],1)Rroot

for polygonpk. We denote this rotation matrix asR(u′i) to emphasize this dependence. We

also define:

Ak = R(4rb[k],m−1) . . . R(4rb[k],1)RrootDU,µ(β) (6.24)

Bk = R(4rb[k],M) . . . R(4rb[k],m+1). (6.25)

Intuitively, matrix Ak denotes the product of rotation matrices that come beforeR(u′i) in

the kinematic chain (pre-multiplied by the body shape deformation matrix, which does not

depend onu′i). Matrix Bk, on the other hand, contains product the rotation matrices that

come afterR(u′i). These quantities can be substituted into the shape completion objective,

as follows:

∑

k

∑
j=2,3

‖BkR(u′i)AkQak
(u′i)v̂j,k − (yj,k − y1,k)‖2 + wZ

L∑

l=1

‖yl − zl‖2. (6.26)

154 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Above we introduce another expressionQak
(u′i) to show that the pose deformation ma-

trix may be (a linear) function of the rotation parametersu′i. In many cases, in will be

independent ofu′i altogether, but we will ignore this in the current notation.

Replacingu′i = ui + ti anddk,j = (yj,k − y1,k) in the above equation, we obtain our

new objective:

∑

k

∑
j=2,3

‖BkR(ui + ti)AkQak
(ui + ti)v̂j,k − dk,j‖2 + wZ

L∑

l=1

‖yl − zl‖2. (6.27)

This new objective needs to be minimized for the parametersti, as follows:

arg min
ti

∑

k

∑
j=2,3

‖BkR(ui + ti)AkQak
(ui + ti)v̂j,k − dk,j‖2. (6.28)

We use the identityRT R = I, which is valid for all rotation matrices, in expanding this

expression. In particular,(AkR(u′i))
T AkR(u′i) = I, which eliminates second order depen-

dence on the matrixR(u′i). After some tedious algebraic transformations resulting from

expanding the norm, we obtain the following expression:

arg min
ti

∑

k

∑
j=2,3

v̂T
j,kQak

(ui + ti)
T AT

k AkQak
(ui + ti)v̂j,k + (6.29)

2dT
k,j(R(ui + ti)AkQak

(ui + ti)v̂j,k. (6.30)

The important thing to notice in this complicated expression, is the fact that it is at most

a quadratic expression in terms ofti. First of all, we use the linear approximation of the

rotation matrixR(ui +ti) from Eqn. (6.23). Second,Qak
(ui + ti) is a linear function of the

updateti. Therefore, we can obtain the value ofti using simple least-squares optimization

of the equation above.

Given that we now have a way to solve for the rotation of each joint separately, our

entire optimization schedule consists of a set of phases, where we solve for each joint

rotationui (as well as for the orientation of the rootRroot) separately, then for parameters

β, and finally for the shapeY , each time while holding all other parameters fixed.

6.4. AN ALTERNATIVE OPTIMIZATION APPROACH 155

6.4.1 Partial View Completion

An obvious application of our shape completion method is to the task of partial view com-

pletion. Here, we are given a partial scan of a human body; our task is to produce a full 3D

mesh which is consistent with the observed partial scan, and provides a realistic completion

for the unseen parts.

Our shape completion algorithm of Sec. 6.3 applies directly to this task. We take the

partial scan, and manually annotate it with a small number of markers (4–10 markers, 7 on

average). We then apply the CC algorithm [4] to register the partial scan to the template

mesh. The result is a set of 100–150 markers, mapping points on the scan to corresponding

points on the template mesh. This number of markers is sufficient to obtain a reasonable

initial hypothesis for the rotationsR of the rigid skeleton. We then iterate between two

phases. First, we find point-to-point correspondences between the partial view and their

nearest neighbor points in our current estimate of the surfaceMY [Z]. Then we use these

correspondences as markers and solve Eqn. (6.12) to obtain a new estimateMY [Z] of the

surface. Upon convergence, we obtain a completion meshMY [Z], which fits the partial

view surface as well as the SCAPE model. The steps of the partial view completion process

are shown in Fig. 6.11.

We would like to point out that every time we re-compute the point-to-point corre-

spondences between the meshes, the set of matching pairs(yl, zl) that are provided to the

shape-completion algorithm changes. This change necessitates the re-computation of a ma-

trix inverse necessary for the solution of Eqn. (6.15), which takes about one second in our

implementation. Thus, our partial view completion implementation is not real-time.

In Fig. 6.12, we show the results of this algorithm in completing three partial views of

different humans. Row (i) shows partial view completion results for a subject who is present

in our data set, but in a pose that is not in our data set. The prediction for the shoulder blade

deformation is very realistic; a similar deformation is not present in the training pose for

this subject. Rows (ii) and (iii) show completion for subjects who are not in our data set,

in poses that are not in our data set. The task in row (ii) is particularly challenging, both

because the pose is very different from any pose in our data set, and because the subject

was wearing pants, which we cut out (see Fig. 6.12(ii)-(d)), leading to the large hole in the

156 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

original scan. Nevertheless, the completed mesh contains realistic deformations in both the

back and the legs.

6.4.2 Motion Capture Animation

Our shape completion framework can also be applied to produce animations from marker

motion capture sequences. In this case, we have a sequence of frames, each specifying

the 3D positions for some set of markers. We can view the set of markers observed in

each frame as our inputZ to the algorithm of Sec. 6.3, and use the algorithm to produce a

mesh. The sequence of meshes produced for the different frames can be strung together to

produce a full 3D animation of the motion capture sequence.

Note that, in many motion capture systems, the markers protrude from the body, so

that a reconstructed mesh that achieves the exact marker positions observed may contain

unrealistic deformations. Therefore, rather than using the completed meshMY [Z] (as in

our partial view completion task), we use the predicted meshMỸ [Z]. As this mesh is

constrained to lie within the space of body shapes encoded by our PCA model, it tends to

avoid these unrealistic deformations.

We applied this data to two motion capture sequences, both for the same subject S.

Notably, our data set only contains a single scan for subject S, in the standard position

shown in the third row of Fig. 6.2(a). Each of the sequences used 56 markers per frame,

distributed over the entire body. We took a 3D scan of subject S with the markers, and

used it to establish the correspondence between the observed markers and points on the

subject’s surface. We completed this scan using the algorithm from Sec. 6.4.1 to obtain the

body shape parametersβ for that subject; these parameters will be held constant during the

rest of the optimization. We then applied the algorithm of Sec. 6.3 to each sequence frame.

In each frame, we used the previous frame’s estimated poseR as a starting point for the

shape-completion optimization.

The animation was generated from the sequence of predicted scansMỸ [Zf]. Using our

(unoptimized) implementation, it took approximately 3 minutes to generate each frame.

Fig. 6.13 demonstrates some of our results. We show that realistic muscle deformation was

obtained for subject S (Fig. 6.13(c)). Additionally, we show that motion transfer can be

6.5. RELATED WORK 157

performed onto a different subject in our data set (Fig. 6.13(d)) and that the subject can be

changed during the motion sequence (Fig. 6.13(e)).

6.5 Related Work

The recent example-based approaches for learning deformable human models represent

deformation by point displacements of the example surfaces, relative to a generic template

shape. For modeling pose deformation, the template shape is usually assumed to be an

articulated model. A popular animation approach calledskinning(described in Lewiset

al. [70]) assumes that the point displacements are generated by a weighted set of (usually

linear) influences from neighboring joints. A more sophisticated method was presented by

Allen et al. [1], who register an articulated model (represented as a posable subdivision

template) to scans of a human in different poses. The displacements for a new pose are

predicted by interpolating from a set of example scans with similar joint angles. A variety

of related methods [70, 108, 123, 80] differ only in the details of representing the point

displacements, and in the particular interpolation method used. Models of pose deforma-

tion are learned not only from 3D scans, but also by combining shape-from-silhouette and

marker motion capture sequences [99]. However, none of the above approaches learn a

model of the shape changes between different individuals.

To model body shape variation across different people, Allenet al. [2] morph a generic

template shape into 250 scans of different humans in the same pose. The variability of

human shape is captured by performing principal component analysis (PCA) over the dis-

placements of the template points. The model is used for hole-filling of scans and fitting a

set of sparse markers for people captured in the standard pose. Another approach, by Seo

and Thalmann [102], decomposes the body shape deformation into a rigid and a non-rigid

component, of which the latter is also represented using PCA over point displacements.

Neither approach learns a model of pose deformation. However, they demonstrate pre-

liminary animation results by using expert-designed skinning models. Animation is done

by bringing the space of body shapes and the skinning model into correspondence (this

can be done in a manual or semi-automatic way [54]), and adding the point displacements

accounting for pose deformation to the human shape. Such skinning models are part of

158 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Figure 6.13: Motion capture animation. (a) Subject wearing motion capture markers (b)
motion capture markers in a single frame (c) An animation of a subject based on a motion
capture sequence, with the markers from which the animation was derived superimposed
on the meshes. (d) An example of motion transfer to a different subject in our data set. (e)
Animation based on motion capture, but where we change the body shape parameters in
PCA space as we move through the sequence.

6.5. RELATED WORK 159

standard animation packages, but since they are usually not learned from scan data, they

usually do not model muscle deformation accurately.

An obvious approach for building a data-driven model of pose and body shape defor-

mation would be to integrate two existing methods in a similar way. The main challenge

lies in finding a good way to combine two distinct deformation models based on point dis-

placements. Point displacements cannot be multiplied in a meaningful way; adding them

ignores an important notion of scale. For example, pose displacements learned on a large

individual cannot be added to the shape of a small individual without undesirable artifacts.

This problem has long been known in the fields of deformation transfer and expression

cloning [89]. In thinking how to address it, we were inspired by the deformation transfer

method of Sumner and Popović [111], which shows how to retarget the deformation of

one mesh to another, assuming point-to-point correspondences between them are available.

The transfer maintains proper scaling of deformation, by representing the deformation of

each polygon using a3 × 3 matrix. It suggests a way of mapping pose deformations onto

a variety of human physiques. However, it does not address the task of representing and

learning a deformable human model, which is tackled in our work.

Multilinear models, which are closely related to our work, have been applied for mod-

eling face variation in images [117]. A generative model of human faces has to address

multiple factors of image creation such as illumination, expression and viewpoint. The

face is modeled as a product of linear appearance models, corresponding to influences of

the various factors. Multilinear approaches have also been used to model 3D face defor-

mation [120]. However, this work uses point displacements from a template shape as a

representation of face deformation. We believe our representation of deformation, based

on modeling the polygon transformation matrices, is more suitable for the task. It is the

subject of interesting future work to compare the two representations in the context of face

expression modeling. Of course, our method cannot be applied directly for face modeling,

because we correlate the deformations of an individual to the underlying skeleton angles,

while a significant part of the face deformations is purely muscle-based (the jaw movement

being the exception). However, it is not difficult to modify our approach by learning a suit-

able space of facial expression deformations (by doing PCA over the face expressions of a

particular individual, for example).

160 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Our shape-completion application is related to work in the area of hole-filling. Surfaces

acquired with scanners are typically incomplete and contain holes. A common way to

complete these holes is to fill them with a smooth surface patch that meets the boundary

conditions of the hole [33, 35, 71]. These approaches work well when the holes are small

compared to the geometric variation of the surface. Our application, by contrast, requires

the filling of huge holes (e.g., in some experiments more than half of the surface was not

observed; in others we are only provided with sparse motion capture data) and we address it

with a model-based method. Other model-based solutions for hole filling were proposed in

the past. K̈ahleret al. [62] and Szeliski and Lavallée [113] use volumetric template-based

methods for this problem. These approaches work well for largely convex objects, such as

a human head, but are not easily applied to objects with branching parts, such as the human

body. While the work of Allenet al. [2] can be used for hole-filling of human bodies, it can

only do so if the humans are captured in a particular pose.

Marker motion capture systems are widely available, and can be used for obtaining

high-quality 3D models of a moving person. Existing animation methods (e.g. [1, 102]) do

not utilize the marker data and assume the system directly outputs the appropriate skeleton

angles. They also do not handle body shape variation well, as previously discussed. Both

of these limitations are lifted in our work.

6.6 Discussion and Limitations

This chapter presents the SCAPE model, which captures human shape deformation due

to both pose variation and to body shape variation over different subjects. Our results

demonstrate that the model can generate realistic meshes for a wide range of subjects and

poses. We showed how the SCAPE model can be used for shape completion, and cast two

important graphics tasks — partial view completion and motion capture animation — as

applications of our shape completion algorithm.

Our current approach requires a set of scans of a single person in different poses to

learn the space of pose deformations. Once we have done this, we can use scans of dif-

ferent people in different poses to learn the space of body shapes. We currently do not

provide a method to learn both spaces from a random mix of scans from different people

6.6. DISCUSSION AND LIMITATIONS 161

in different poses. Our assumption on the training set structure is not particularly restric-

tive, and it simplifies our data collection and learning procedures. We could try to learn

our model from a non-uniform data set, by iterating between estimating either the pose or

the body shape model while keeping the other one fixed. This process would result in a

local minimum in the joint space of deformations. We cannot predict how good this local

minimum would be; it depends specifically on the training data we are given, and on the

search method used.

The pose deformation in our model is determined by regression from adjacent joint

angles. We found that the linear regression model provides surprisingly good animation

results, and simplifies the task of shape completion. For many instances of partial view

completion, a more accurate model may not be necessary, because our solution is allowed

to deform outside of SCAPE space in order to fit the observed surface. Thus, partial view

data can correct some of the (fairly small) errors resulting from the assumption of a linear

regression model. When the SCAPE model is used purely for animation, the linear regres-

sion model is not sufficient for obtaining high-quality meshes in all cases. We demonstrated

that in such cases, non-linear regression approaches can be used.

The SCAPE model is focused on representing muscle deformations resulting from ar-

ticulated body motion. Deformations resulting from other factors are not encoded. One

such factor is deformation resulting from pure muscle activity. Thus, the model is not ex-

pressive enough to distinguish between a flexed bicep muscle and a lax one in cases where

the joint angle is the same. For the same reason, it is not appropriate to deal with faces,

where most of the motion is purely muscle-based. Another factor leading to muscle defor-

mation is tissue perturbations due to motion (e.g., fat wiggling), which our model also does

not represent.

Currently, our framework includes no prior over poses. Thus, when encountering oc-

clusions, we cannot use the observed position of some body parts to constrain the likely

location of others. Our model can easily be extended to encompass such a prior, in a modu-

lar way. For example, in the case of static scans, a kinematic prior such as that of Grochow

et al.[51] could simply be introduced as an additional term into our optimization. When

animating dynamic sequences, we can use a tracking algorithm (e.g., a Kalman filter) to

generate a pose prior for any frame given all or part of the observation sequence.

162 CHAPTER 6. LEARNING DEFORMABLE MODELS OF HUMAN SHAPE

Finally, we note that our approach is purely data driven, generating the entire model

from a set of data scans. Human intervention is required only for placing a small set of

markers on the scans, as a starting point for registration. Thus, the model can easily be

applied to other data sets, allowing us to generate models specific to certain types of body

shapes or certain poses. Moreover, the framework applies more generally to cases where

surface deformation is derived from articulated motion. Thus, if we could solve the data

acquisition problem (e.g., using shape from silhouette [131]), we could use this framework

to learn realistic deformation models for creatures other than humans.

Chapter 7

Conclusions and Future Directions

In this final chapter, we summarize the contributions of this thesis, discuss a number of its

limitations, and present some challenges and future research directions that build on top of

the work in this thesis.

7.1 Summary

We present a framework for learning complex shape models from range scan data. The

framework consists of several algorithms, based on the theory of probabilistic graphi-

cal models, which allow us to learn complex shape models of different objects and ob-

ject classes with minimal human intervention. We also describe applications of these al-

gorithms, as well as the learned models, to the tasks of tracking, animation and shape-

completion.

7.1.1 Unsupervised Registration

We present an algorithm for unsupervised registration of two non-rigid 3D surfaces. Our

Correlated Correspondence algorithm can register surfaces that undergo significant defor-

mations, without making prior assumptions about initial alignment, or object shape and

dynamics. It performs efficient combinatorial search in the space of possible surface align-

ments, preferring registrations that preserve the surface appearance and geometry. We

163

164 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

demonstrate successful registration for articulated objects subject to large joint movements,

as well as for other kinds of non-rigid surface deformations. In contrast, previous surface

registration algorithms avoid tackling the combinatorial nature of the non-rigid registration

problem, and as a result are more prone to becoming stuck in poor local minima in such

cases. We show the quality and the utility of our registration results by using them as a

starting point for compelling computer graphics applications: partial view completion and

interpolation between pairs of scans.

7.1.2 Recovering Articulated Models

We address the problem of learning a complex articulated object models from registered

3D scans. The algorithm automatically recovers a decomposition of the object into ap-

proximately rigid parts, the location of the parts in the different object instances, and the

articulated object skeleton linking the parts. The decomposition into parts is obtained by

using the Expectation-Maximization algorithm, using a graphical model that explicitly en-

forces the spatial contiguity of the object’s parts. Although the graphical model is densely

connected, the object decomposition step can be performed optimally and efficiently, al-

lowing us to identify a large number of object parts while avoiding local maxima. We

demonstrate the algorithm on three real world datasets, recovering complex models with

up to 18 parts, even in the presence of non-trivial part deformations. Our algorithm not only

recovers the parts and joints, but also figures out the optimal number of parts automatically.

We also describe an efficient algorithm, which can be used to track the recovered models

in shape-from-silhouette data.

7.1.3 Learning the Space of Human Body Shapes

Finally, we present a method named SCAPE, which learns a model of human shape de-

formation due to both pose variation and to body shape variation over different subjects.

Most methods for modeling deformations represent them in terms of point displacements

from a shape template. However, it is difficult to combine such displacement-based mod-

els in a way that scales deformations correctly. We address this problem by representing

deformations as consecutive3 × 3 matrices that deform the polygons of the mesh. Our

7.2. EXTENSIONS AND OPEN PROBLEMS 165

pose deformation model derives the values of these deformation matrices as a function of

the skeleton pose. Our body shape deformation model induces a low-dimensional space

over another set of polygon transformation matrices, associated with the deformations oc-

curring between people with different physiques. The two models can be combined in a

natural way to produce 3D surface models with realistic muscle deformation for different

people in different poses, when neither appear in the original set of examples. We also

show how the SCAPE model can be used for shape completion, and cast two important

graphics tasks — partial view completion and motion capture animation — as applications

of our shape completion algorithm. We demonstrate shape-completion and motion capture

animation results for a variety of different people and poses.

7.2 Extensions and Open Problems

It is our hope that this thesis demonstrates the utility of probabilistic models for studying

key problems in the shape modeling domain. Here we describe several possible extensions

to our work, and discuss some exciting directions for future research. Some of the most

straightforward extensions were already discussed in the relevant chapters.

7.2.1 Real-time Implementations

Our current unoptimized implementation of the Correlated Correspondence algorithm for

non-rigid registration takes about two minutes to register a pair of scans. Because of the

size of the induced Markov network in which we perform inference, the algorithm cannot

be made to run in close to real time on current single-processor machines. However, the

algorithm is ideally suited for a distributed multi-processor architecture. The computation

of the Markov node and edge potentials can be executed in parallel. Moreover, loopy belief

propagation consists of simple local updates of the beliefs over each variable, which can

be executed in parallel as well, even asynchronously. Therefore we believe, that an imple-

mentation of the Correlated Correspondence algorithm on a distributed parallel system can

run in close to real-time.

Another interesting direction is to optimize the partial view completion application of

166 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

SCAPE from Chapter 6.4.1. In our current implementation, updating the point-to-point

correspondences between the human body model and the scan, or the strength of these

correspondences, leads to a recomputation of the matrix inverse, necessary for solving the

equation Eqn. (6.15). In practice, the cost of this computation is about one second. In-

tuitively, this cost is excessive, because even though point-to-point correspondences tend

to change little between iterations, we are doing the entire work of computing the matrix

inverse from scratch. Therefore, an interesting direction of exploration is to find a suitable

way of exploiting the previous matrix values in the new computation. The most straight-

forward way is to use the conjugate gradient algorithm, although in some cases it tends to

converge too slowly. A different direction would try to exploit the structure of the matrix,

as Sumneret al. [112] have done for a related problem.

7.2.2 Registration in the Presence of Clutter and Occlusion

One of the main limitations of our Correlated Correspondence algorithm is its assumption

that the scan mesh is a subset of the model mesh. Thisno-clutterassumption is essential in

making the algorithm tractable, because it allows us to avoid reasoning about cases when

points or edges in the scan mesh have no counterparts in the model. It is also important

for another reason. When we refrain from imposing an object-specific shape prior, and

both occlusion and clutter are present in the scene simultaneously, the registration problem

becomes ill-defined. In the presence of significant deformation, there are too many different

possible ways of aligning surfaces in such cases. We consciously chose the no-clutter

assumption as a way to constrain this space, without making the algorithm object-specific.

When prior object-specific knowledge is available, we can tackle cases when both oc-

clusion and clutter are present in the scene. Of particular interest is the problem of detecting

the pose of an articulated model in a range scan that contains both clutter and occlusions.

The Correlated Correspondence methodology cannot be used directly in such cases, be-

cause in the presence of occlusion, articulated parts can be placed even in parts of the scene

where no corresponding surface is available. Thus, enumerating all possible part locations

is no longer feasible. In a separate work (currently in submission), we show how to ex-

tend our methodology in order to address this case. Our approach starts by using low-level

7.2. EXTENSIONS AND OPEN PROBLEMS 167

spin-image based detectors to suggest possible part placement hypotheses. However, the

detectors are not guaranteed to find good hypotheses for all object parts. Therefore, we

introduce a separate hypothesis-enrichment phase, in which the original part location hy-

potheses are used to generate likely placement suggestions for their neighboring parts. The

set of expanded part domains can be used to construct a Markov network, which scores

the quality of the part placements and enforces the articulated model constraints. Unlike

the Correlated Correspondence model, here we explicitly allow some parts to be completely

missing in the scene. The resulting model can be optimized using loopy belief propagation,

to obtain the most likely object con figuration in the scene.

7.2.3 SCAPE for Markerless Motion Capture

Markerless motion capture is a compelling application, enabling the acquisition of human

motion trajectories for use in entertainment (games and movies) and clinical applications

(human movement analysis). Current applications require the placement of photoreflective

markers on the tracked object, which is a precise and very time-consuming activity, as

well as installation of specialized hardware (infrared cameras), which makes the systems

expensive.

In Chapter 5 we described an algorithm for tracking rigid bodies in shape-from-silhouette

data, which can be used for human motion acquisition. However, the algorithm has several

important limitations. The most important one is that the algorithm currently requires that

the articulated model for the specific person being tracked is available. Obtaining such an

articulated model is very time-consuming in most cases, limiting the impact of the applica-

tion. Another limitation of that model is that it treats the human body parts as completely

rigid, and cannot account properly for their deformations.

Both of these problems are addressed in our SCAPE model of the human body. We be-

lieve that using the SCAPE template for tracking in shape-from-silhouette data will enable

the automatic motion capture of different people, and increase the accuracy of the track-

ing relative to that produced by tracking purely articulated models. The optimization of

the SCAPE model in this case is very similar to our partial view completion application

from Sec. 6.4.1. Further work on making the partial view completion run in real time will

168 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

only make this application even more compelling.

7.2.4 Towards an Integrated Model of the Human Body

In Chapter 6 of this thesis, we learn a human appearance model that captures the body

deformations due to changes in physique and pose. However, many exciting aspects of

the human modeling task are yet to be addressed. Below we describe briefly some of the

possible new directions.

◦ Modeling the correlations between pose and body shape deformations

Our SCAPE model decouples the pose deformation model and the body shape defor-

mation model. This design choice greatly simplifies the mathematical formulation,

improves the identifiability of the model from data, and makes the learning algorithm

more efficient. However, it also prevents us from capturing phenomena where there

is a strong correlation between body shape and muscle deformation. For example,

as the same muscle deformation model is used for all people, we do not capture the

fact that more muscular people are likely to exhibit greater muscle deformation than

others, and, conversely, that muscle deformation may be obscured in people with sig-

nificant body fat. To address this, we need to learn a model that explicitly captures

this dependence between body shape and pose deformations. There are different

possible ways for modeling these correlations, the most straightforward of which is

an extension of our model, where the pose deformations are dependent on the body

shape parameters. A necessary prerequisite for learning such a model is the avail-

ability of a dataset that contains scans of multiple people, in which each person is

captured in several different poses.

◦ Integrating body and face models

The space of human shapes is not complete without incorporating an accurate model

of the most expressive body part — the face. There is an extensive body of work on

shape modeling, both in image and 3D data. One of the latest methods, by Vlasić et

al. [119], uses multi-linear models to model 3D face deformation. Their work uses

point displacements from a template shape as a representation of face deformation.

7.3. THE CHALLENGE AHEAD 169

Our representation of deformation, based on modeling the polygon transformation

matrices, could be more suitable for the task. It would be very interesting to use it in

conjunction with multi-linear models, and to compare the results to those obtained

by Vlasíc et al.

◦ Informed models of kinematics and dynamics

Another interesting direction is to add a temporal dimension to the shape model-

ing task. The movement of a person causes a set of body deformations, such as fat

wiggling and muscle contractions. Knowledge about the movement can help in pre-

dicting the body deformations more accurately. The main limitation to exploring this

idea is the difficulty of real-time range data acquisition. One avenue for exploration

would be to track and refine our SCAPE model in shape-from-silhouette data [26].

Another possibility is to use recent advances in real-time scanning technology, such

as the work of Zhanget al. [131] on real-time acquisition of face scans.

Also, our SCAPE framework currently does not include a temporal prior over poses.

Such a prior can be very useful in tracking scenarios, where we can reason about the

position of occluded body parts using the position and velocity of the observed parts.

Learning of such kinematic priors for 3D articulated models has been addressed in

the work of Grochowet al.[51], as well as the work of Sminchisescuet al.[109]. Our

current model can be easily extended to encompass such a prior, in a modular way.

The benefits of such a combination for the tracking task are yet to be explored.

7.3 The Challenge Ahead

We have presented a framework for learning complex shape models, which consists of

several algorithms for performing key shape modeling tasks with minimal human interven-

tion. We hope that our methods demonstrate the utility and applicability of probabilistic

graphical models for addressing key problems related to reasoning about object shape. We

are looking forward to applying our methods for other different object and object class

modeling problems.

In the future, we expect an explosion in the amount of available range scan data, and

170 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

an integration of range data with camera input, which will bring about an expanded set of

learning problems and applications. We hope that continued research, of which the meth-

ods presented in this thesis are but a start, will help tackle these evermore sophisticated

learning problems on the way to creating autonomous robotic agents, and compelling vir-

tual realities.

Bibliography

[1] Brett Allen, Brian Curless, and Zoran Popović. Articulated body deformation from

range scan data.ACM Transactions on Graphics, 21(3):612–619, 2002.

[2] Brett Allen, Brian Curless, and Zoran Popović. The space of human body shapes:

reconstruction and parameterization from range scans.ACM Transactions on Graph-

ics, 22(3):587–594, 2003.

[3] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu

Desbrun. Anisotropic polygonal remeshing.ACM SIGGRAPH, 22(3), 2003.

[4] D. Anguelov, D. Koller, H. Pang, P. Srinivasan, and S. Thrun. Recovering articu-

lated object models from 3d range data. InProceedings of the 20th conference on

Uncertainty in artificial intelligence, pages 18–26, 2004.

[5] D. Anguelov, L. Mündermann, and S. Corazza. An iterative closest point algorithm

for tracking articulated models in 3d range scans. InASME/Summer Bioengineering

Conference, Vail, Colorado, 2005.

[6] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, H. Pang, and J. Davis. The corre-

lated correspondence algorithm for unsupervised registration of nonrigid surfaces.

In Advances in Neural Information Processing Systems 17, pages 33–40, 2005.

[7] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. Scape:

Shape completion and animation of people.ACM Transactions on Graphics, 24(3),

2005.

171

172 BIBLIOGRAPHY

[8] C. Archer and T.Leen. Adaptive principal component analysis. InTechnical Report

CSE-02-008. Department of Computer Science and Engineering, Oregon Health and

Science University, 2002.

[9] A. Aubel and D. Thalmann. Interactive modeling of the human musculature. In

Proc. Computer Animation, 2001.

[10] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques

for embedding and clustering. InNeural Information Processing Systems, pages

585–591, 2001.

[11] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using

shape contexts.IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(1), 2002.

[12] Alexander C. Berg, Tamara L. Berg, and Jitendra Malik. Shape matching and object

recognition using low distortion correspondence. InIEEE Conference on Computer

Vision and Pattern Recognition, 2005.

[13] P. Besl and N. McKay. A method for registration of 3d shapes.Transactions on

Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[14] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

Oxford, United Kingdom, 1995.

[15] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. InSIG-

GRAPH, 1999.

[16] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. InICCV, 1999.

[17] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approxi-

mations. InCVPR, 1999.

[18] C. Bregler and J. Malik. Tracking people with twists and exponential maps. InProc.

IEEE CVPR, 1998.

BIBLIOGRAPHY 173

[19] Benedict Brown and Szymon Rusinkiewicz. Non-rigid range-scan alignment using

thin-plate splines. InSymposium on 3D Data Processing, Visualization, and Trans-

mission., September 2004.

[20] W. Buntine. Chain graphs for learning. InProc. Eleventh Conference on Uncertainty

in Artificial Intelligence (UAI ’95), 1995.

[21] M. C. Burl and P. Perona. Recognition of planar object classes. InComputer Vision

and Patter Recognition(CVPR), 1996.

[22] M. C. Burl, M. Weber, and P. Perona. A probabilistic approach to object recognition

using local photometry and global geometry. InProceedings of European Confer-

ence on Computer Vision (ECCV), 1998.

[23] T. Cham and J. Rehg. A multiple hypothesis approach to figure tracking. InPro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition, June

1999.

[24] Y. Chen and G. Medioni. Object modeling by registration of multiple range images.

In Proc. IEEE Conf. on Robotics and Automation, 1991.

[25] Kong Man Cheung, Simon Baker, and Takeo Kanade. Shape-from-silhouette of

articulated objects and its use for human body kinematics estimation and motion

capture. InConference on Computer Vision and Pattern Recognition (CVPR), pages

77–84, 2003.

[26] Kong Man Cheung, Simon Baker, and Takeo Kanade. Shape-from-silhouette across

time part i: Theory and algorithms.International Journal of Computer Vision,

62(3):221 – 247, May 2005.

[27] Kong Man Cheung, Simon Baker, and Takeo Kanade. Shape-from-silhouette across

time: Part ii: Applications to human modeling and markerless motion tracking.In-

ternational Journal of Computer Vision, 63(3):225 – 245, August 2005.

174 BIBLIOGRAPHY

[28] H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registra-

tion. In Proceedings of the Conference on Computer Vision and Pattern Recognition

(CVPR), 2000.

[29] D. Clark and C. Thayer. A primer on the exponential family of distributions. InCall

Paper Program on Generalized Linear Models, pages 118–148, 2004.

[30] G.F. Cooper. The computational complexity of probabilistic inference using

bayesian belief networks.Artificial Intelligence, 42:393–405, 1990.

[31] J. Coughlan and S. Ferreira. Finding deformable shapes using loopy belief propaga-

tion. In Proc. ECCV, volume 3, pages 453–468, 2002.

[32] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter.Probabilistic Net-

works and Expert Systems. Springer, New York, 1999.

[33] B. Curless and M. Levoy. A volumetric method of building complex models from

range images.Proceedings of SIGGRAPH 1996, pages 303–312, 1996.

[34] P. Dagum and M. Luby. An optimal approximation algorithm for bayesian inference.

Artificial Intelligence, 93(1–2):1–27, 1997.

[35] J. Davis, S. Marschner, M. Garr, and M. Levoy. Filling holes in complex surfaces

using volumetric diffusion. InSymposium on 3D Data Processing, Visualization,

and Transmission, 2002.

[36] J. Davis, R. Ramamoothi, and S. Rusinkiewicz. Spacetime stereo : A unifying

framework for depth from triangulation. InProc. CVPR, 2003.

[37] M. de Berg, M. van Kreveld, O. Overmars, and O. Schwarzkopf.Computational

Geometry - Algorithms and Applications. Springer Verlag, 1997.

[38] R. Dechter. Bucket elimination: a unifying framework for probabilistic inference. In

Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ’96), pages

211–219, 1996.

BIBLIOGRAPHY 175

[39] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the em algorithm.Journal of the Royal Statistical Society, B, 39:1–39, 1977.

[40] A. Elad (Elbaz) and R. Kimmel. On bending invariant signatures for surfaces.IEEE

Trans. on PAMI, 25(10):1285–1295, 2003.

[41] M. Etoh and Y. Shirai. Segmentation and 2d motion estimation by region fragments.

In Proceedings of International Conference on Computer Vision (ICCV), pages 192–

199, 1993.

[42] Pedro Felzenszwalb. Representation and detection of shapes in images.PhD Thesis,

2003.

[43] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised

scale-invariant learning. InProceedings of IEEE Conference on Computer Vision

and Patter Recognition(CVPR), 2003.

[44] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography.Comm. of the

ACM, 24:381–395, 1981.

[45] M.A. Fischler and R.A. Erschlager. The representation and matching of pictorial

structures.IEEE Trans. Computers, C-22, 1973.

[46] J. Foley, A. van Dam, S. Feiner, and J. Hughes.Computer Graphics: Principles and

Practice, 2nd ed.Addison Wesley, 1996.

[47] Michael Garland and Paul S.Heckbert. Surface simplification using quadric error

metrics. InProceedings of SIGGRAPH 97, pages 209–216, August 1997.

[48] D. Gavrila and L. Davis. Tracking of humans in action: a 3-d model-based approach.

In In ARPA Image Understanding Workshop, 1996.

[49] K. Grauman and T. Darrell. Fast contour matching using approximate earth mover’s

distance. InProceedings IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2004.

176 BIBLIOGRAPHY

[50] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori esti-

mation for binar images.J. R. Statist. Soc. B, 51:271–279, 1989.

[51] Keith Grochow, Steve L. Martin, Aaron Hertzmann, and Zoran Popović. Style-based

inverse kinematics.ACM Transactions on Graphics, 23(3):522–531, 2004.

[52] D. Hähnel, S. Thrun, and W. Burgard. An extension of the ICP algorithm for mod-

eling nonrigid objects with mobile robots. InProc. IJCAI, Acapulco, Mexico, 2003.

[53] J. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. InUn-

published Manuscript, 1971.

[54] A. Hilton, J. Starck, and G. Collins. From 3d shape capture to animated models. In

First International Symposion on 3D Data Processing, Visualization and Transmis-

sion (3DVPT2002), 2002.

[55] D. Hogg. Model-based vision: A program to see a walking person.Image and Vision

Computing, 1(1):5–20, 1983.

[56] D. Huttenlocher and P. Felzenszwalb. Efficient matching of pictorial structures. In

CVPR, 2003.

[57] P. Indyk and N. Thaper. Fast image retrieval via embeddings. InThird International

Workshop on Statistical and Computational Theories of Vision, Nice, France, 2003.

[58] S. Ioffe and D. A. Forsyth. Probabilistic methods for finding people.International

Journal of Computer Vision, 43(1), 2001.

[59] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in causal prob-

abilistic networks by local computations.Computational Statistics Quarterly,

5(4):269–282, 1990.

[60] Andrew Johnson.Spin-Images: A Representation for 3-D Surface Matching. PhD

thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August 1997.

BIBLIOGRAPHY 177

[61] M.I. Jordan, Z. Ghahramani, T. Jaakkola, and K.G. Olesen. An introduction to

variational approximation methods for graphical models. In M.I. Jordan, editor,

Learning in graphical models, Dordrecht, Netherlands, 1998. Kluwer.

[62] Kolja Kähler, J̈org Haber, Hitoshi Yamauchi, and Hans-Peter Seidel. Head shop:

generating animated head models with anatomical structure. InACM SIGGRAPH

Symposium on Computer Animation, pages 55–64, 2002.

[63] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems

with pairwise relationships: Metric labeling and Markov random fields. InProc.

IEEE Symposium on the Foundations of Computer Science (FOCS), 1999.

[64] Stefan Kruger and Andrew Calway. Motion estimation and tracking using multires-

olution affine models. InProceedings of the IEEE Colloquium on Motion Analysis

and Tracking, pages 50–55, May 1999.

[65] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Extending pictorial structures for

object recognition. InProceedings of the British Machine Vision Conference, pages

789–798, 2004.

[66] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Obj cut. InProceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pages 18–25, 2005.

[67] S. L. Lauritzen. The em algorithm for graphical association models with missing

data.Computational Statistics and Data Analysis, 19:191–201, 1995.

[68] C. H. Lee, A. Varshney, and David Jacobs. Mesh saliency.ACM SIGGRAPH, 24(3),

2005.

[69] Michael Leventon. Statistic models in medical image analysis.PhD Thesis, 2000.

[70] J. P. Lewis, M. Cordner, and N. Fong. Pose space deformation: a unified approach

to shape interpolation and skeleton-driven deformation.Proceedings of ACM SIG-

GRAPH 2000, pages 165–172, 2000.

178 BIBLIOGRAPHY

[71] P. Liepa. Filling holes in meshes. InProc. of the Eurographics/ACM SIGGRAPH

symposium on Geometry processing, pages 200–205. Eurographics Association,

2003.

[72] Michael H. Lin. Tracking articulated objects in real-time range image sequences. In

ICCV, volume 1, pages 648–653, 1999.

[73] Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen. Linear rotation-

invariant coordinates for meshes. InACM SIGGRAPH, pages 479–487, 2005.

[74] W. Lorensen and H. Cline. Marching cubes: a high resolution 3d surface construc-

tion algorithm. InComputer Graphics Proceedings, Annual Conference Series, Pro-

ceedings of SIGGRAPH 87, pages 163–169, 1989.

[75] Y. Ma, Stefano Soatto, J. Kosecka, and S. Sastry.An Invitation to 3D Vision. Springer

Verlag, 2004.

[76] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image

segmentation.International Journal of Computer Vision, 43(1), June 2001.

[77] J. Marroquin, E. Santana, and E. Botello. Hidden markov measure fields for image

segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,

25(11), 2003.

[78] I. Mikic, M. Triverdi, E. Hunter, and P. Cosman. Articulated body posture estimation

from multi-camera voxel data. InIn Proc. CVPR, 2001.

[79] Niloy J. Mitra and An Nguyen. Estimating surface normals in noisy point cloud

data. InProc. of Symposium on Computational Geometry, pages 322 – 328, 2003.

[80] Alex Mohr and Michael Gleicher. Building efficient, accurate character skins from

examples.ACM Transactions on Graphics, 22(3):562–568, 2003.

[81] G. Mori and J. Malik. Estimating human body configurations using shape context

matching. InProceedings of European Conference on Computer Vision (ECCV),

2002.

BIBLIOGRAPHY 179

[82] Meta motion. http://www.metamotion.com.

[83] Vicon motion systems. http://www.vicon.com.

[84] L. Mündermann, S. Corazza, D. Anguelov, and T. P. Andriacchi. Estimation of

the accuracy and precision of 3d human body kinematics using markerless motion

capture and articulated icp. InASME/Summer Bioengineering Conference, Vail,

Colorado, 2005.

[85] Lars Mündermann, Stefano Corazza, Ajit M. Chaudhari, Eugene J. Alexander, and

Thomas P. Andriacchi. Most favorable camera configuration for a shape-from-

silhouette markerless motion capture system for biomechanical analysis. InVideo-

metrics VIII, pages 278–287, January 2005.

[86] K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference: An

empirical study. InProc. Fifteenth Conference on Uncertainty in Artificial Intelli-

gence (UAI ’99), pages 467–475, 1999.

[87] David Murray and Bernard Buxton. Scene segmentation from visual motion using

global optimization. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 9(2), 1987.

[88] R. M. Neal. Probabilistic inference using markov chain monte carlo methods. In

Technical Report CRG-TR-93-1, Department of Computer Science, University of

Toronto, 1993.

[89] Jun Noh and Ulrich Neumann. Expression cloning.Proceedings of ACM SIG-

GRAPH 2001, pages 277–288, 2001.

[90] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Francisco, 1988.

[91] S. Peleg, M. Werman, and H. Rom. A unified approach to the change of resolu-

tion: Space and gray-level.IEEE Transactions on Pattern Analysis and Machine

Intelligence, 11:739–742, 1989.

180 BIBLIOGRAPHY

[92] ILOG CPLEX: High performance software for mathematical programming and op-

timization. http://www.ilog.com/products/cplex/.

[93] R. B. Potts. Some generalized order-disorder transformations.Proc. Cambridge

Phil. Soc., 48, 1952.

[94] Poser: The premier 3D figure design and animation solution. http://www.e-

frontier.com/go/poserhpl.

[95] J. Rehg and T. Kanade. Model-based tracking of self-occluding articulated objects.

In Proceedings of International Conference on Computer Vision (ICCV), pages 612–

617, June 1995.

[96] Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmentation.

In Proceedings of International Conference on Computer Vision (ICCV), 2003.

[97] Y. Rubner, C. Tomasi, and L. Guibas. The earth movers distance as a metric for

image retrieval.International Journal of Computer Vision, 40(2):99–121, 2000.

[98] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. InProc.

3DIM, Quebec City, Canada, 2001. IEEEComputer Society.

[99] Peter Sand, Leonard McMillan, and Jovan Popović. Continuous capture of skin

deformation.ACM Transactions on Graphics, 22(3):578–586, 2003.

[100] F. Scheepers, R. E. Parent, W. E. Carlson, and S. F. May. Anatomy-based modeling

of the human musculature. InSIGGRAPH ’97: Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, 1997.

[101] Bernhard Scḧolkopf and Alex Smola. A tutorial on support vector regression. In

Technical Report NC2-TR-1998-030. NeuroCOLT2, 1998.

[102] Hyewon Seo and Nadia Magnenat-Thalmann. An automatic modeling of human

bodies from sizing parameters. InACM Symposium on Interactive 3D Graphics,

pages 19–26, 2003.

BIBLIOGRAPHY 181

[103] J. Sethian.Level Set Methods and Fast Marching Methods. Cambriedge Univ. Press,

1999.

[104] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter

sensitive hashing. InProceedings of International Conference on Computer Vision

(ICCV), 2002.

[105] Christian Shelton. Morphable surface models. InInternational Journal of Computer

Vision, 2000.

[106] H. Sidenbladh, M. Black, and D. Fleet. Stochastic tracking of 3d human figures

using 2d image motion. InProceedings of European Conference on Computer Vision

(ECCV), June 2000.

[107] Leonid Sigal, Michael Isard, Benjamin H. Sigelman, and Michael J. Black. Attrac-

tive people: Assembling loose-limbed models using non-parametric belief propaga-

tion. In NIPS, 2003.

[108] Peter-Pike J. Sloan, Charles F. Rose, and Michael F. Cohen. Shape by example. In

2001 Symposium on Interactive 3D Graphics, pages 135–144, 2001.

[109] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Discriminative density prop-

agation for 3d human motion estimation. InIEEE Conference on Computer Vision

and Pattern Recognition, 2005.

[110] Y. Song, L. Goncalves, and P. Perona. Unsupervised learning of human motion. In

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003.

[111] Robert W. Sumner and Jovan Popović. Deformation transfer for triangle meshes.

Proceedings of ACM SIGGRAPH 2004, 23(2):399–405, 2004.

[112] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jovan Popović. Mesh-

based inverse kinematics.Proceedings of ACM SIGGRAPH 2005, 24(3), 2005.

[113] R. Szeliski and S. Lavallee. Matching 3-d anatomical surfaces with non-rigid de-

formations using using octree-splines.International Journal of Computer Vision,

18(2):171–186, 1996.

182 BIBLIOGRAPHY

[114] Ben Taskar. Learning structured prediction models: A large margin approach. In

PhD Thesis. Stanford University, 2004.

[115] L. Taycher, J. Fisher III, and Trevor Darrell. Recovering articulated model topology

from observed motion. InProc. NIPS, 2002.

[116] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric

framework for nonlinear dimensionality reduction.Science, pages 2319–2323, Dec

2000.

[117] M. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Ten-

sorfaces. InEuropean Conference on Computer Vision (ECCV), pages 447–460,

2002.

[118] O. Veksler. Efficient Graph-Based Energy Minimization Methods in Computer Vi-

sion. PhD thesis, Cornell University, 1999.

[119] D. Vlasic, H. Pfister, M. Brand, and J. Popović. Face transfer with multilinear mod-

els. ACM Transactions on Graphics, 24(3), 2005.

[120] Daniel Vlasíc, Matthew Brand, Hanspeter Pfister, and Jovan Popović. Face transfer

with multilinear models.ACM Transactions on Graphics, 24(3), 2005.

[121] G. Wahba. Spline models for observational data. InSIAM, 1990.

[122] J. Wang and E. Adelson. Representing moving images with layers. InProc. IEEE

on Image Processing Special Issue: Image Sequence Compression, 1994.

[123] Xiaohuan Corina Wang and Cary Phillips. Multi-weight enveloping: least-squares

approximation techniques for skin animation. InACM SIGGRAPH Symposium on

Computer Animation, pages 129–138, 2002.

[124] J. Wilhelms and A. V. Gelder. Anatomically based modeling.Proceedings of ACM

SIGGRAPH 97, pages 173–180, 1997.

[125] R. Woodham. Photometric method for determining surface orientation from multiple

images.Optical Engineering, 19(1):139–144, 1980.

BIBLIOGRAPHY 183

[126] Weiss Y and E.H. Adelson. A unified mixture framework for motion segmenta-

tion: Incorporating spatial coherence and estimating the number of models. InIEEE

Conference on Computer Vision and Pattern Recognition, pages 321–326, 1996.

[127] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free energy approximations

and generalized belief propagation algorithms. InTechnical Report TR-2002-35.

Mitsubishi Electric Research Laboratories, 2002.

[128] J. Yedidia, W. Freeman, and Y Weiss. Understanding belief propagation and its

generalizations. InExploring Artificial Intelligence in the New Millennium. Science

& Technology Books, 2003.

[129] S. Yu, R. Gross, and J. Shi. Concurrent object recognition and segmentation with

graph partitioning. InProc. NIPS, 2002.

[130] Ramin Zabih and Vladimir Kolmogorov. Spatially coherent clustering using graph

cuts. InIEEE Conference on Computer Vision and Pattern Recognition, 2004.

[131] Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Spacetime faces:

High-resolution capture for modeling and animation. InACM Annual Conference

on Computer Graphics, pages 548–558, August 2004.

[132] Y. Zhang, M. Brady, and S. Smith. Segmentation of brain mr images through a

hidden markov random field model and the expectation-maximization algorithm.

IEEE Transactions on Medical Imaging, 20(1), 2001.

