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Abstract

Independent Components Analysis (ICA) and its variantehmsaen successfully
used for unsupervised feature learning. However, standadrequires an or-
thonoramlity constraint to be enforced, which makes it ciffi to learn overcom-
plete features. In addition, ICA is sensitive to whitenifthese properties make
it challenging to scale ICA to high dimensional data. In thégper, we propose a
robust soft reconstruction cost for ICA that allows us tadaighly overcomplete
sparse features even on unwhitened data. Our formulati@aleformal connec-
tions between ICA and sparse autoencoders, which haveopidyibeen observed
only empirically. Our algorithm can be used in conjunctiothvoff-the-shelf fast
unconstrained optimizers. We show that the soft recontstrucost can also be
used to prevent replicated features in tiled convolutioralral networks. Using
our method to learn highly overcomplete sparse featuregitudconvolutional
neural networks, we obtain competitive performances onde wariety of object
recognition tasks. We achieve state-of-the-art test acoes on the STL-10 and
Hollywood?2 datasets.

1 Introduction

Sparsity has been shown to work well for learning featureasgntations that are robust for object
recognition [1, 2, 3, 4, 5, 6, 7]. A number of algorithms haweb proposed to learn sparse fea-
tures. These include: sparse auto-encoders [8], Restftitzmann Machines (RBMs) [9], sparse
coding [10] and Independent Component Analysis (ICA) [10A, in particular, has been shown
to perform well in a wide range of object recognition task&][1In addition, ISA (Independent
Subspace Analysis, a variant of ICA) has been used to leatorfes that achieved state-of-the-art
performance on action recognition tasks [13].

However, standard ICA has two major drawbacks. First, iifficdlt to learn overcomplete feature
representations (i.e., the number of features cannot exceed the dimen#ipoéthe input data). This
puts ICA at a disadvantage compared to other methods, be€amtes et al. [6] have shown that
classification performance improves for algorithms sucksse autoencoders [8], K-means [6]
and RBMs [9], when the learned features are overcompleteorféie ICA is sensitive tevhitening

(a preprocessing step that decorrelates the input datagaambt always be computed exactly for
high dimensional data). As a result, it is difficult to scaliAlto high dimensional data. In this paper
we propose a modification to ICA that not only addresses thlesgcomings but also reveals strong
connections between ICA, sparse autoencoders and spalisg.co

Both drawbacks arise from a constraint in the standard |GAédation that requires features to be
orthogonal. This hard orthonormality constraiit}¥’ " = I, is used to prevent degenerate solutions
in the feature matri¥y (where each feature is a row @f). However, ifi¥ is overcomplete (i.e., a
“tall” matrix) then this constraint can no longer be satidfi particular, the standard optimization
procedure for ICA, ISA and TICA (Topographic ICA) uses puaig gradient descent, where W is



orthonormalized at each iteration by solvifig := (WWT)‘%W. This symmetric orthonormal-
ization procedure does not work whé# is overcomplete. As a result, this standard ICA method
can not learn more features than the number of dimensioieiddta. Furthermore, while alterna-
tive orthonormalization procedures or score matching eaml overcomplete representations, they
are elxpensive to compute. Constrained optimizers alsottebhd much slower than unconstrained
ones.

Our algorithm enables ICA to scale to overcomplete reptasiens by replacing the orthonormal-
ization constraint with a linear reconstruction penaltirfdo the one used in sparse auto-encoders).
This reconstruction penalty removes the need for a congtabptimizer. As a result, we can im-
plement our algorithm with only a few lines of MATLAB, and it directly into unconstrained
solvers (e.g., L-BFGS and CG [14]). This results in very tastvergence rates for our method.

In addition, recent ICA-based algorithms, such as tiledsotutional neural networks (also known as
local receptive field TICA) [12], also suffer from the diffity of enforcing the hard orthonormality
constraint globally. As a result, orthonormalization ipitally performed locally instead, which
results in copied (i.e., degenerate) features. Our reaarigin penalty, on the other hand, can be
enforced globally across all receptive fields. As a resuit,oethod prevents degenerate features.

Furthermore, ICAs sensitivity to whitening is undesiralilecause exactly whitening high dimen-
sional data is often not feasible. For example, exact whitgnsing principal component analysis
(PCA) for input images of size 200x200 pixels is challengipecause it requires solving the eigen-
decomposition of a 40,000 x 40,000 covariance matrix. Otiethods, such as sparse autoencoders
or RBMs, work well using approximate whitening and in somsesawork even without any whiten-
ing. Standard ICA, on the other hand, tends to produce ndisysfunless the data is exactly white.
Our soft-reconstruction penalty shares the property af-eacoders, in that it makes our approach
also less sensitive to whitening. Similarities between |@Ato-encoders and sparse coding have
been observed empirically before (i.e., they all learn efiltgrs). Our contribution is to show a
formal proof and a set of conditions under which these allgor$ are equivalent.

Finally, we use our algorithm for classifying STL-10 imagésand Hollywood2 [15] videos. In
particular, on the STL-10 dataset, we learn highly overdetepepresentations and achieve 52.9%
on the test set. On Hollywood2, we achieve 54.6 Mean Averageiston, which is also the best
published result on this dataset.

2 Standard ICA and Reconstruction ICA

We begin by introducing our proposed algorithm for overctate ICA. In subsequent sections
we will show how our method is related to ICA, sparse autoeeres and sparse coding. Given

unlabeled datgz(}™,, 2() € R", regular ICA [11] is traditionally defined as the following
optimization problem:

m k
R ) . T _
minimize E E g(W;z*"), subject to WW I (1)

i=1 j=1

whereg is a nonlinear convex function, e.g., smodth penalty: g(.) := log(cosh(.)) [16], W is
the weight matrix¥’ € R**", k is number of components (features), did is one row (feature)
in . The orthonormality constrain¥’ W7 = I is used to prevent the baseslin from becoming
degenerate. We refer to this as “non-degeneracy contreliismpaper.

Typically, ICA requires data to have zero meah,.", ) = 0, and unit covariance,
% > @ (z(M)T = 1. While the former can be achieved by subtracting the empinzan,
the latter requires finding a linear transformation by saivihe eigendecomposition of the covari-
ance matrix [11]. This preprocessing step is also known atenihg or sphering the data.

For overcomplete representatioris & n) [17, 18], the orthonormality constraint can no longer
hold. As a result, approximate orthonormalization (e.g-ar®Schmidt) or fixed-point iterative

FastICA is a specialized solver that works well for complete or undeptets ICA. Here, we focus our
attention on ICA and its variants such as ISA and TICA in the context ofcoveplete representations, where
FastICA does not work.



methods [11] have been proposed. These algorithms are siftenand require tuning. Other

approaches, e.qg., interior point methods [19] or score niragd16] exist, but they are complicated
to implement and also slow. Score matching, for exampleificdt to implement and expensive

for multilayered algorithms like ISA or TICA, because it téigs backpropagation of a Hessian
matrix.

These challenges motivate our search for a better type oflegeneracy control for ICA. A fre-
qguently employed form of non-degeneracy control in autoeelers and sparse coding is the use
of reconstruction costs. As a result, we propose to replaedard orthonormal constraint in ICA
with a soft reconstruction cost. Applying this change tolegroduces the following unconstrained
problem:

m m k
Reconstruction ICA (RICA):  minjmize % ST wa — 23437 " g(w2®) ()

i=1 i=1 j=1
We use the term “reconstruction cost” for this smooth pgnadicause it corresponds to the recon-
struction cost of a linear autoencoder, where the encodiights and decoding weights are tied
(i.e., the encoding step 1&z(Y) and the decoding step 1§ 7 Wz ().

The choice to swap the orthonormality constraint with a nstaiction penalty seems arbitrary at
first. However, we will show in the following section that seetwo forms of degeneracy control

are, in fact, equivalent under certain conditions. Furttae, this change has two key benefits: first,
it allows unconstrained optimizers (e.g., L-BFGS, CG [20fl &GDs) to be used to minimize this

cost function instead of relying on slower constrainedrojzers (e.g., projected gradient descent)
to solve the standard ICA cost function. And second, thenrsitaction penalty works even when

W is overcomplete and the data not fully white.

3 Connections between orthonormality and reconstruction

Sparse autoencoders, sparse coding and ICA have beenysigviuspected to be strongly con-
nected because they learn edge filters for natural image datthis section we present formal

proofs that they are indeed mathematically equivalent uoelgain conditions (e.g., whitening and
linear coding). Our proofs reveal the underlying principie unsupervised feature learning that tie
these algorithms together.

We start by reviewing the optimization problems of two conmmmsupervised feature learning
algorithms: sparse autoencoders and sparse coding. licipart the objective function of tied-
weight sparse autoencoders [8, 21, 22, 23] is:

rnmlimze —ZHU Wro(Wz® +b) +¢) — D)3 + SEW, b}, 2, ... 2™) (3)
i=1
whereo is the activation function (e.g., sigmoid), c are biases, and is some sparse penalty
function. Typically, S is chosen to be the smooth; penalty S({W,b},z@, ... (™) =
Py Ele g(W;2") or KL divergence between the average activation and targagion [24].

Similarly, the optimization problem of Sparse coding [19] i

m k
mlmmlze Z WPz — )2 4 ZZg(z]m) subject to  [|[W;|3 < e, Vi=1,....k (4)

m) M
W,z 2 gt

From these formulations, it is clear there are links betwi€sh, RICA, sparse autoencoders and
sparse coding. In particular, most methods usd.thsparsity penalty and, except for ICA, most use
reconstruction costs as a non-degeneracy control. Thessvaltions are summarized in Table 1.

ICA's main distinction compared to sparse coding and awtoders is its use of the hard orthonor-
mality constraint in lieu of reconstruction costs. Howewee will now present a proof (consisting
of two lemmas) that derives the relationship between ICABanormality constraint and RICA's
reconstruction cost. We subsequently present a set of ttmmslunder which RICA is equivalent to
sparse coding and autoencoders. The result is a novel amalfproof of the relationship between
ICA, sparse coding and autoencoders.

We letI denote an identity matrix, anld an identity matrix of sizé x I. We denote the., horm
by |-/l and the matrix Frobenius norm Hy|| . We also assume that the ddtal”) }’* | has zero
mean.



Table 1: A summary of different unsupervised feature legninethods. “Non-degeneracy con-
trol” refers to the mechanism that prevents all bases framiag uninteresting weights (e.g., zero
weights or identical weights). Note that using sparsityganal in autoencoders.

[ Algorithm | Sparsity | Non-degeneracy control[ Activation function |
Sparse coding [10] L1 Lo reconstruction Implicit
Autoencoders and Optional: KL [24] | L. reconstruction Sigmoid
Denoising autoencoders [21] or L; [22] (or cross entropy [21, 8])

ICA[16] L1 Orthonormality Linear
RICA (this paper) L1 Lo reconstruction Linear

The first lemma states that the reconstruction cost and eohmhonormality costare equivalent
when data is whitened (see the Appendix in the supplementatgrial for proofs):

Lemma3.1 When the input data {x()}7, is whitened, the reconstruction cost
AN IWTWz® — 212 is equivalent to the orthonormality cost Al|W W — I||%.

Our second lemma states that minimizing column orthondtyreahd row orthonormality costs turns
out to be equivalent due to a property of the Frobenius norm:

Lemma 3.2 The column orthonormality cost A[|W7W — I,,||% is equivalent to the row orthonor-
mality cost A\||WWT — I ||% up to an additive constant.

Together these two lemmas tell us that reconstruction sajivalent to both column and row or-
thonormality cost for whitened data. Furthermore\agpproaches infinity the orthonormality cost
becomes the hard orthonormality constraint of ICA (see gégus 1 & 2) if IV is complete or un-
dercomplete. Thus, ICAs hard orthonormality constraimd & CA's reconstruction cost are related
under these conditions. More formally, the following reksaexplain this conclusion, and describe
the set of conditions under which RICA (and by extension I&A¢quivalent to autoencoders and
sparse coding.

1) If the data is whitened, RICA is equivalent to ICA for und@mplete representations and
approaching infinity. For whitened data our RICA formulatio

m m k
RICA: minimize % ; IWTwaz® — 23 + ; ;g(w,-x“)) (5)
is equivalent (from the above lemmas) to: .
minjmize NwTw —I||3T+izg(wjx“>), and (6)
z:Ll _]:1
minimize \|WW" —T|% + 3 > " g(W;a'”) @)

i=1 j=1

Furthermore, for undercomplete representations, in thié &f A approaching infinity, the orthonor-
malization costs above become hard constraints. As a yése§tare equivalent to:

m k
Conventional ICA: > > g(W;z'”) subject to W' =1 (8)

i=1 j=1
which is just plain ICA, or ISA/TICA with appropriate chois®f the sparsity function.
2) Autoencoders and Sparse Coding are equivalent to RICA if

e in autoencoders, we use a linear activation function) = «, ignore the biasés ¢, use the
soft L; sparsity for the activationsS({W, b}, 2, ... z(m) = S~ Z;“:l g(W;z®)
and

e in sparse coding, we use explicit encodi:ﬁ@) = W;z(® and ignore the norm ball con-
straints.

The column orthonormality cost is zero only if the columng#éfare orthonormal.



Despite their equivalence, certain formulations haveaieddvantages. For instance, RICA (eq. 2)
and soft orthonormalization ICA (eq. 6 and 7) are smooth ardbe optimized efficiently by fast
unconstrained solvers (e.g., L-BFGS or CG) while the cotiwaal constrained ICA optimization
problem cannot. Soft penalties are also preferred if we walgarn overcomplete representations
where explicitly constrainingy W7 = I is not possibl&

We derive an additional relationship in the appendix (s@p&mentary material), which shows that
for whitened data denoising autoencoders are equivaldiiGa with weight decay. Another inter-
esting connection between RBMs and denoising autoencéldesived in [25]. The connections,
between RBMs, autoencoders, denoising autoencoders aifactithat reconstruction cost captures
whitening (by the above lemmas), likely explains why whitgndoes not matter much for RBMs
and autoencoders in [6].

4 Effects of whitening on ICA and RICA

In practice, ICA tends to be much more sensitive to whiteriompared to sparse autoencoders.
Running ICA on unwhitened data results in very noisy baseshit section, we study empirically
how whitening affects ICA and our formulation, RICA.

We sampled 20000 patches of size 16x16 from a set of 11 natuagles [16] and visualized the
filters learned using ICA and RICA with raw images, as well ppraximately whitened images.
For approximate whitening, we use 1/f whitening with low pékering. This 1/f whitening trans-
formation uses Fourier analysis of natural image stasistid produces transformed data which has
an approximate identity covariance matrix. This procedioes not require pretraining. As a result,
1/f whitening runs quickly and scales well to high dimensibdata. We used the 1/f whitening
implementation described in [16].

(a) ICA on 1/f whitened images (b) ICA on raw images

l'- IIHHIIE -\ IHI!'EE

(c) RICA on 1/f whitened i |mages (d) RICA on raw images

Figure 1: ICA and RICA on approximately whitened and raw iemg(a-b): Bases learned with
ICA. (c-d): Bases learned with RICA. RICA retains some dinues of the data whereas ICA does
not (i.e., it learns noisy bases).

Figure 1 shows the results of running ICA and RICA on raw aridvbitened images. As can be
seen, ICA learns very noisy bases on raw data, as well asxpp@tly whitened data. In contrast,
RICA works well for 1/f whitened data and raw data. Our quatitie analysis with kurtosis (not
shown due to space limits) agrees with visual inspectio@Aearns more kurtotic representations
than ICA on approximately whitened or raw data.

Robustness to approximate whitening is desirable, be@as#ly whitening high dimensional data
using PCA may not be feasible. For instance, PCA on imageg®f200x200 requires computing
the eigendecomposition of a 40,000 x 40,000 covarianceixnathich is computationally expen-

sive. With RICA, approximate whitening or raw data can bedusstead. This allows our method
to scale to higher dimensional data than regular ICA.

5 Local receptive field TICA

The first application of our RICA algorithm that we examinedsal receptive field neural net-
works. The motivation behind local receptive fields is cotagianal efficiency. Specifically, rather

3Note that wherlV is overcomplete, some rows may degenerate and become zeros&duaueconstruc-
tion constraint can be satisfied with only a complete subset of rows. Vemrthis, we employ an additional
norm ball constraint (see the Appendix for more details regarding GBBnd norm ball constraints).



than having each hidden unit connect to the entire input @nagch unit is instead connected to a
small patch (see figure 2a for an illustration). This redubesnumber of parameters in the model.
As a result, local receptive field neural networks are fasterptimize than their fully connected
counterparts. A major drawback of this approach, howesehg difficulty in enforcing orthogonal-
ity across partially overlapping patches. We show that givepout locally enforced orthogonality
constraints with a global reconstruction cost solves #ggé.

Specifically, we examine the local receptive field networbpmsed by Le et al. [12]. Their for-
mulation constrains each feature (a rowl&) to connect to a small region of the image (i.e., all
weights outside of the patch are set to zero). This moditioadilows learning ICA and TICA with
larger images, becaus$® is now sparse. Unlike standard convolutional networksseheetworks
may be extended to have fully unshared weights. This petiméi® to learn invariances other than
translational invariances, which are hardwired in contiohal networks.

The pre-training step for the TCNN (local receptive field A)J12] is performed by minimizing
the following cost function:

m k
minimize E E v/ e+ H;j(Wz)2 subject to WW I 9)

i=1 j=1

whereH is the spatial pooling matrix and” is a learned weight matrix. The corresponding neural
network representation of this algorithm is one with twaeeswith weightdV, H and nonlinearities

(.)? and/(.) respectively (see Figure 2a). In additidi’, and H are set to be local. That is, each
row of W and H connects to a small region of the input data.

@&

@éz\‘ | | | a single map
\VARNVALA =

input image

(a) Local receptive field neural net (b) Local orthogonalization (c) RICA global reconstruc-
tion cost

Figure 2: (a) Local receptive field neural network with fullgtied weights. A single map consists
of local receptive fields that do not share a location (i.aly different colored nodes). (b & c)
For illustration purposes we have brightened the area df kmal receptive field within the input
image. (b) Hard orthonormalization [12] is applied at eamtation only (i.e., nodes of the same
color), which results in copied filters (for example, see filters outlined in red; notice that the
location of the edge stays the same within the image evergththe receptive field areas are differ-
ent). (c) Global reconstruction (this paper) is appliechbeithin each location and across locations
(nodes of the same and different colors), which preventgingmf receptive fields.

Enforcing the hard orthonormality constraint on the ergparsé?” matrix is challenging because it
is typically overcomplete for TCNNs. As a result, Le et aR]performed local orthonormalization
instead. That is, only the features (rowd®) that share a location (e.g., only the red nodes in figure
2) were orthonormalized using symmetric orthogonalizatio

However, visualizing the filters learned by a TCNN with looghonormalization, shows that many
adjacent receptive fields end up learning the same (copienfsfilue to the lack of an orthonormality
constraint between them. For instance, the green nodegimeé=2 may end up being copies of the
red nodes (see the copied receptive fields in Figure 2b).

In order to prevent copied features, we replace the lochbadrmalization constraint with a global
reconstruction cost (i.e., computing the reconstructst ¢ 7 W) — 2(*)||2 for the entire over-
complete spars&” matrix). Figure 2c shows the resulting filters. Figure 3 shidhat the recon-
struction penalty produces a better distribution of edgedater locations within the image patch
(this also holds true for frequencies and orientations).

6
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Figure 3: Location of each edge detector within the imagetpaymbols of the same color/shape
correspond to a single mapeft: local orthonormalization constrain®ight: global reconstruction
penalty. The reconstruction penalty prevents copied dilteroducing a more uniform distribution
of edge detectors.

6 Experiments

The following experiments compare the speed gains of RIG# standard overcomplete ICA. We
then use RICA to learn a large filter bank, and show that it warlell for classification on the
STL-10 dataset.

6.1 Speed improvements for overcomplete ICA

In this experiment, we examine the speed performance of Ri@Rovercomplete ICA with score
matching [26]. We trained overcomplete ICA on 20000 gragiesanage patches, each patch of size
16x16. We learn representations that are 2x, 4x and 6x ovgriete. We terminate both algorithms
when changes in the parameter vector drop below’. We use the score matching implementation
provided in [16]. We report the time required to learn thesgresentations in Table 2. The results
show that our method is much faster than the competing methgmarticular, learning features that
are 6x overcomplete takes 1 hour using our method, wheréasd@uires 2 days.

Table 2: Speed improvements of our method over score mat¢h&j.

[ [ 2x overcomplete | 4x overcomplete | 6x overcomplete |
[ Score matching ICA] 33000 seconds [ 65000 seconds [ 180000 seconds|
| | |
[ [ [

| RICA 1000 seconds 1600 seconds 3700 seconds |
[ Speed up 33x 40x 48X |

Figure 4 shows the peak frequencies and orientations fovdscomplete bases learned using our
method. The learned bases do not degenerate, and they cbvead range of frequencies and
orientations (cf. Figure 3 in [27]). This ability to learn averse set of features allows our algorithm
to perform well on various discriminative tasks.

Figure 4: Scatter plot of peak frequencies and orientatanSabor functions fitted to the filters
learned by RICA on whitened images. Our model yields a devesest of filters that covers the
spatial frequency space evenly.

6.2 Overcomplete ICA on STL-10 dataset
In this section, we evaluate the overcomplete featuresdéebby our model. The experiments are

carried out on the STL-10 dataset [6] where overcompleteesgmtations have been shown to work
well. The STL-10 dataset contains 96x96 pixel color imagden from 10 classes. For each



class 500 training images and 800 test images are provideatidition, 100,000 unlabeled images
are included for unsupervised learning. We use RICA to leaercomplete features on 100,000
randomly sampled color patches from the unlabeled imagésiisTL-10 dataset. We then apply
RICA to extract features from images in the same manner itbestin [6].

Using the same number of features (1600) employed by Coaéd@& on 96x96 images and 10x10
receptive fields, our soft reconstruction ICA achieves %2dh the test set. This result is slightly
better than (but within the error bars) of the best publistesailt, 51.5%, obtained by K-means [6].
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Figure 5: Classification accuracy on the STL-10 dataset ascaibn of the number of bases learned
(for a patch size of 8x8 pixels). The best result shown usssdihat are 8x overcomplete.

Finally, we compare classification accuracy as a functiothefnumber of bases. Figure 5 shows
the results for ICA and RICA. Notice that the reconstructtost in RICA allows us to learn over-
complete representations that outperform the completeseptation obtained by the regular ICA.

6.3 Reconstruction Independent Subspace Analysis for actn recognition

Recently we presented a system [13] for learning featur@® funlabelled data that can lead to
state-of-the-art performance on many challenging datesaéth as Hollywood?2 [15], KTH [28]
and YouTube [29]. This system makes use of a two-layeredoemigent Subspace Analysis (ISA)
network [16]. Like ICA, ISA also uses orthogonalization tiegeneracy contrdl.

In this section we compare the effects of reconstructiosugorthogonality on classification per-
formance using ISA. In our experiments we swap out the odhwmality constraint employed by
ISA with a reconstruction penalty. Apart from this chandes entire pipeline and parameters are
identical to the system described in [13].

We observe that the reconstruction penalty tends to workteritdan orthogonality constraints. In
particular, on the Hollywood2 dataset ISA achieves a mear4.6% when the reconstruction
penalty is used. The performance of ISA drops to 53.3% wh#rogonality constraints are used.
Both results are state-of-the art resuls on this datasét Y86 attribute the improvement in perfor-
mance to the fact that features in invariant subspaces ohkAl not be strictly orthogonal.

7 Discussion

In this paper, we presented a novel soft reconstructioncgapr that enables the learning of over-
complete representations in ICA and TICA. We have also ptesemathematical proofs that con-
nect ICA with autoencoders and sparse coding. We showedthaalgorithm works well even
without whitening; and that the reconstruction cost allmsgo fix replicated filters in tiled convo-
lutional neural networks. Our experiments show that RICAai and works well in practice. In
particular, we found our method to be 30-50x faster thanammaplete ICA with score matching.
Furthermore, our overcomplete features achieve statkesért performance on the STL-10 and
Hollywood?2 datasets.

“Note that in ISA the square nonlinearity is used in the first layer, and smpairis used in in second
layer [13].
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