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1 Proofs and Discussions of Lemmas
Proof of Lemma 3.1: We have:
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Note, since the data is whiteneBl{zz”] = L 3" 2@ (2T =1. |
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From the proof, it can also be seen that when the data is naeméd, - > W7 W20 —

m
23 = tw[(W'W — DTC,(W'W — I)]. Further, by diagonalizingC,, we have
Ly IwWTwa® —2@)2 = e [(WTW —T) EDET(WTW -1)7] = || [(WTW —~1)ED3 ||’j;.
Here,C,. denotes the covariance matrix of the ddfais the matrix whose columns are eigenvectors
of C,; andD is a diagonal matrix of eigenvalues ©f;.

This result also means that when the data is not whitenedretbenstruction cost becomes a
weighted linear regression in the space rotated by eigémngeand scaled by eigenvalues. The
cost is therefore weighted heavily in the principal vectwections and less so in the other direc-
tions. Also, note thab—2 ET is the well-known PCA whitening matrix. The optimizatioretifore
builds in an inverse whitening matrix such th&t will have to learn the whitening matrix to cancel
OutED?.

Proof of Lemma 3.2: We have
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Note, in step (3), we used the fact thdtlfy) = k£ and t(1,,) = n. In the second part of step (3), we
used the property td B) = tr(BA) if ABissquare. |J

Finally, we present a third lemma (a generalization of Len81g that shows the equivalence of

denoising autoencoders and RICA with weight decay for wigitedata. Denoising autoencoders
are often preferred over standard autoencoders. In dagasitoencoders, the algorithm is asked to
reconstruct the original input given its corrupted version

Lemma 3.3 The denoising reconstruction cost with additive noise = 37 | [W2W (z() + @) —
(D3, where ¢(*) arerandom variableswith zero mean and variance 41, isequivalent to || (W7 W —
D)E(D + 6%1)2 ||% + 262 Z?Zl |W; |3 up to an additive constant.



If the data is whitened, theR and D are both identity matrices. As a result, denoising is edeiva
to simply adding a weight decay penalty to objective funwiof RICA.

Proof of Lemma 3.3: We have:
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We note that: ande are uncorrelatedE [ze”| = L 37" | 2()(e())7 = 0 andcis a constant. i

2 Norm ball projection

When the representations are overcomplete> n, notice that it is possible to reconstruct the data
O, IWTWa; — ;)3), with only a complete subset of the rows1af, while setting the rest to
zero. Therefore, in order to learn an overcomplete reptaten without degenerate (zero) features,
we constrain each row 6 to have al, norm of 1, i.e.,

IWil2=1,Vi=1,... k. (16)

Although these constraints prevent learning degenerptesentations, they make the optimization
problem potentially harder and require the use of projegtadient methods.

In order to use L-BFGS/CG to solve this constrained optitiazaproblem we employ.,-norm
ball projection. The key idea is project the weights ontortbem ball during each iteration of the

optimization. Specifically, we ldi’; = W, /||W;]|2.

Since optimization methods such as L-BFGS or CG evaluateltfective function using the sup-
plied gradient vector, we need to account for the projectighe gradient computation. In particular,
we will need to “backpropagate” the gradients through thaqution, thereby taking into account
the projection during the optimization. This allows us teatrthe optimization problem as if it is
unconstrained, which makes optimization run much fdster.

"While W could potentially grow unbounded, we do not find that this is a problem ictipea because
simple scaling ofi” will not be a descent direction. Furthermore, one could always le$Fato be on the
norm ball in the outer loop of the optimization method.



The gradient computation that takes projection into act@ucarried out as follows:

Procedure 1RICA for large overcomplete representations
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Step 2: Compute gradieptusingiV.
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