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1 Proofs and Discussions of Lemmas

Proof of Lemma 3.1: We have:
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From the proof, it can also be seen that when the data is not whitened, 1
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. Further, by diagonalizingCx, we have
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Here,Cx denotes the covariance matrix of the data.E is the matrix whose columns are eigenvectors
of Cx; andD is a diagonal matrix of eigenvalues ofCx.

This result also means that when the data is not whitened, thereconstruction cost becomes a
weighted linear regression in the space rotated by eigenvectors and scaled by eigenvalues. The
cost is therefore weighted heavily in the principal vector directions and less so in the other direc-
tions. Also, note thatD−

1

2ET is the well-known PCA whitening matrix. The optimization therefore
builds in an inverse whitening matrix such thatW will have to learn the whitening matrix to cancel
outED

1

2 .

Proof of Lemma 3.2: We have
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Note, in step (3), we used the fact that tr(Ik) = k and tr(In) = n. In the second part of step (3), we
used the property tr(AB) = tr(BA) if AB is square.

Finally, we present a third lemma (a generalization of Lemma3.1) that shows the equivalence of
denoising autoencoders and RICA with weight decay for whitened data. Denoising autoencoders
are often preferred over standard autoencoders. In denoising autoencoders, the algorithm is asked to
reconstruct the original input given its corrupted version.

Lemma 3.3 The denoising reconstruction cost with additive noise 1
m

∑m

i=1 ‖W
TW (x(i) + ǫ(i))−

x(i)‖22, where ǫ(i) are random variables with zero mean and variance δ2I, is equivalent to ‖(WTW−

I)E(D + δ2I)
1

2 ‖2
F
+ 2δ2

∑k

j=1 ‖Wj‖
2
2 up to an additive constant.

1



If the data is whitened, thenE andD are both identity matrices. As a result, denoising is equivalent
to simply adding a weight decay penalty to objective functions of RICA.

Proof of Lemma 3.3: We have:
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We note thatx andǫ are uncorrelated:E
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2 Norm ball projection

When the representations are overcompletek >> n, notice that it is possible to reconstruct the data
(
∑m

i=1 ‖W
TWxi − xi‖

2
2), with only a complete subset of the rows ofW , while setting the rest to

zero. Therefore, in order to learn an overcomplete representation without degenerate (zero) features,
we constrain each row ofW to have aL2 norm of 1, i.e.,

‖Wi‖
2
2 = 1, ∀i = 1, . . . , k. (16)

Although these constraints prevent learning degenerate representations, they make the optimization
problem potentially harder and require the use of projectedgradient methods.

In order to use L-BFGS/CG to solve this constrained optimization problem we employL2-norm
ball projection. The key idea is project the weights onto thenorm ball during each iteration of the
optimization. Specifically, we let̂Wi = Wi/‖Wi‖

2
2.

Since optimization methods such as L-BFGS or CG evaluate theobjective function using the sup-
plied gradient vector, we need to account for the projectionin the gradient computation. In particular,
we will need to “backpropagate” the gradients through the projection, thereby taking into account
the projection during the optimization. This allows us to treat the optimization problem as if it is
unconstrained, which makes optimization run much faster.1

1While W could potentially grow unbounded, we do not find that this is a problem in practice, because
simple scaling ofW will not be a descent direction. Furthermore, one could always rescale W to be on the
norm ball in the outer loop of the optimization method.
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The gradient computation that takes projection into account is carried out as follows:

Procedure 1RICA for large overcomplete representations
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Step 2: Compute gradientg usingŴ .
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