
An Interactive Interface for Directing Virtual
Humans

Gael Sannier1 , Selim Balcisoy2 , Nadia Magnenat-Thalmann1 , Daniel Thalmann 2

1) MIRALab, University of Geneva, 24 rue du Général Dufour
CH 1211 Geneva, Switzerland

2) Computer Graphics Laboratory, Swiss Federal Institute of Technology
EPFL, LIG, CH 1015 Lausanne, Switzerland

Abstract. Research on Virtual Humans spans from body animation to speech
generation. In many cases research systems are isolated software pieces and can only
be used after a steep learning curve. In this paper a novel system is presented which
integrates a large repertoire of Virtual Human research in one piece of user-friendly
software, Virtual Human Director (VHD). This software achieves two important
goals without any decrease in real-time performance or graphics quality. One goal is
the integration of all the existing real-time virtual human technology from two
research laboratories into open software architecture. The other one is to develop an
intuitive user interface, which allows artists and directors to work with Virtual
Humans.

1 . Introduction

Though virtual human models have been in existence, they have been used mainly for
research purposes to enable the simulation of human movements and behaviors. Only
recently there has been any encouraging interest from outside the academic world. Virtual
humans have potential applications in entertainment and business products such as films,
computer games, and as TV talk-show host. New applications are involved with new ways
of interacting between real and virtual entities.
On the other hand, research on virtual humans produces several solid software components.
In this paper, a novel system, VHD, is proposed for integrating these software components.
VHD focuses on two important issues:

- Fully integrated virtual humans with facial and body animation, and speech.
- A straightforward user interface for designers and directors.
VHD system provides a range of virtual human animation and interaction capabilities

integrated into one single environment. Our software architecture allows the addition of
different interfaces from distinct environments into our software. VHD actors can be
controlled via a standard TCP/IP connection over any network by using our virtual human
message protocol. Possible high-level AI software can also be coded to control multiple
actors.

We first describe briefly the real-time animation modules for body and face. Then we will
describe the user interface. Finally, we present some results, where we tested VHD with
broadcasting partners of the European Project VISTA.

2 . Real-time animation modules for body

In VHD, we have two types of body motion: predefined gestures and task-oriented motion.
Predefined gestures are prepared using keyframe animation and motion capture. For task
oriented motions like walking we use motion motors.

2.1 Motion capturing and predefined postures
A traditional way of animating virtual humans is playing keyframe sequences. We can record
specific human body postures or gestures with a magnetic motion capturing system and an

anatomical converter [7], or we can design human postures or gestures using the TRACK
system [8].

Motion capturing can be best achieved by using a large number of sensors to register
every degree of freedom of the real body. Molet et al. [7] discuss that a minimum of 14
sensors are required to manage a biomechanically correct posture. The raw data coming from
the trackers has to be filtered and processed to obtain a usable structure. Our software permits
the conversion of raw tracker data into joint angle data for all 75 joints in the standard
HUMANOID skeleton [6].

TRACK is an interactive tool for the visualization, editing and manipulation of
multiple track sequences. To record an animation sequence we create key positions from the
scene, then store the 3D parameters as 2D tracks of the skeleton joints. The stored keyframes,
from the TRACK system or magnetic tracker, can be used to animate the virtual human in
real-time. We used predefined postures and gestures to perform realistic hand and upper body
gestures for interpersonal communications. Figure 1 presents some predefined postures.

Figure 1. Keyframe examples

2.2 Motion motors
We used one motion motor for the body locomotion. This walking motor was developed by
Boulic [10]. Current walking motor enables virtual humans to travel in the environment using
instantaneous velocity of motion. One can compute the walking cycle length and time from
which the necessary skeleton joint angles can be calculated for animation. This instantaneous
speed oriented approach influenced VHD user interface design, where user is directly
changing the speed. On the other hand VHD also supports another module for controlling
walking, where users can control walking with simple commands like “WALK_FASTER”.
Figure 2 includes snapshots from a walking session in one picture.

Figure 2. Walking example with walking interface

In many cases actors are expected to perform multiple body motions like waving
while walking. AGENTLib [10] coordinates multiple AGENTS with multiple ACTIONS.
AGENTLib also manages natural motion blending. VHD is built on the AGENTLib library
for body animation, motion planning and motion blending.

3 . Real-time animation and speech for face

In this section we will describe our method for animating a 3D-face model. Different
approaches have been proposed for the synthesis of talking heads. Pearce et al. [1] uses a
string of phonemes to generate the corresponding animation of the 3D-face, while Cohen and
Massaro [2] start with an English text as input to generate the speech. In our system we
combine both elements to generate the speech. The animation is driven by high-level actions
such as "smile", "surprise", which also control the head deformations. We extended our
model to speech capabilities by combining these facial animations with the output of a text-to-
audio system at the phoneme level.

Deformation level

Mid and low-level
actions

High-level actions

Facial deformation

3D rendering

User

Decomposition
 of animation

Figure 3. Layer of information to perform the facial animation.

3.1. Real-time facial animation system
Globally, the process of face animation is decomposed into several layers of information as
shown in Figure 3.

The high-level actions concern the emotions, the sentences and the head movements
of the virtual actor. The animator direct completely the virtual clone with actions from this
level. Emotions are interpreted as an evolution of face over time. It is defined as starting from
neutral state, passing through a sequence of visible changes, and returning to a neutral state.
A library of standard emotions can be defined, including smile, anger, surprise, fear, etc. but
specific emotions like "virtual twitch" can also be created to personalize the virtual human.
For the speech animation, each sentence is decomposed into phonemes. To each phoneme
corresponds a viseme, which is the phoneme counterpart in terms of facial animation. A total
of 44 visemes are used. Examples of visemes are given in Figure 4. From the animation point
of view, a sentence is just a sequence of temporized visemes. Finally, the head movements
can be controlled by the variation of their intensity over time.

Figure 4. A virtual head model with its corresponding visemes for the indicated words.

The mid-level actions can be defined as expressions of the face. They are considered
as facial snapshot modulated in time and intensity to make the high-level actions. A facial
snapshot is composed by a set of low-level actions unit.

The low-level actions are defined as 63 regions of the face. Each region corresponds
to a facial muscle. An intensity value is associated to each region describing its deformation.
These intensities are called 'Minimum Perceptible Actions' (MPA). For each frame of the
facial animation, an array of 63 MPAs is provided, defining the state of the face at this frame.

The deformation of the face is performed using Rational Free Form Deformation
(RFFD) applied on regions of the mesh corresponding to the facial muscles [3]. The role of
our facial animation library is to compute, at every activation of high-level action, a list of

MAPs' frame. To get the face deformation at a given time, this library composes one by one
every MPA of the time-right frame of each activated action. It allows the mixing of high-level
actions in real-time (for example smiling while speaking). The resulting array of MPA is
transmitted to the face animation module that computes the deformation of the mesh. This
regions-based method is totally mesh/head independent, as long as the 63 regions are well
defined for each object.

3.2. Speech
The input text is being converted into temporized phonemes using a text-to-speech synthesis
system. In this case we are using the Festival Speech Synthesis System that is being
developed at the University of Edinburg [4]. It produces also the audio stream that will be
subsequently playback in synchronization with the facial animation system. Using the
temporized phonemes, we are able to create the facial animation by concatenating the
corresponding visemes through time. The facial animation system is based on the system
described by Kalra [5]. We have limited the set of phonemes to the ones used in the Oxford
English Dictionary, but an easy extension to any language could be done by designing the
corresponding visemes.

The synchronization of face movement with sound is initially done by starting the two
processes at the same time. In order to keep the synchronization during all the speech, we use
the sound playback as a time reference. By knowing beforehand the total length of the sound,
the number of frames of the animation (given by the temporized visemes), and the current
time, the synchronization can be done easily by skipping frames in case of delay.

4 . Software issues on integration

Figure 5. Simplified client-server system between the interface and the 3D application.

In order to be able to optimize the quality, a computer can be completely dedicated to the
rendering aspect using IRIS Performer [11] libraries, while another one is used only for the
interface. The constraint, for the interface, is to remotely control the animation in real-time.
For that purpose, a very simplified client-server protocol was established as shown in Figure
5. A daemon is run on the computer dedicated to the animation (a high-end computer). This
daemon launches the 3D-application (arrow 2 of Figure 5) each time it gets a connection from
a user (arrow 1 of Figure 5). The interface then communicates directly with the 3D-
application using sockets (arrow 3 of Figure 5). It allows the computing of a real-time full-
screen rendered animation while also having a whole screen dedicated to the interface. In
order to make the connection possible between the interface and the 3D-application, a
communication protocol has been established. It results that any interface, using the same
protocol for communication, is able to control the 3D-environment. A new concept can be
developed based on the idea of a networked PC-based interface. Each client of this network
will have the control of one actor. A simplified lower-quality rendering would be displayed
on each PC. A specific client would control the cameras. The server of this network, getting

Daemon

High-end computer
Simple computer

Graphical
Interface
(client)

3D
application
(server)

2

1

3

all the data of all its clients, could use the communication protocol for directing the 3D-
application in order to render a high quality output of the scene in real-time.

5 . Interface design issues

In the previous sections, we described a system for animating virtual humans with regard to
the constraint of quality. We will now present the aspects of interactivity developed in this
system.

The goal of the VHD interface was to provide an easy control of multiple actors and
cameras in real-time. Thus, the user can create virtual stories by directing all the actions in
real-time. It is similar to a producer directing actors during a shooting but with more controls
given to the producer in the sense that everything is decided and controlled by the same
person. To make this complicated task possible and useable, we provide high-level control of
the virtual actors. Tools were developed to be able to predefine actions in advance so that
during the real-time playing, the director can concentrate on the main guidelines of his
scenario (sentences for example).

Only high-level actions can be used with the interface. It allows control of the speech
by typing/selecting simple text-based sentences. The facial animation is controlled by pre-
recorded sequences. These animations can be mixed in real-time and also mixed with the
facial animation. Control of the body is done through keyframing and motion motors for the
walking.

As soon as we have many virtual actors to control, the number of available actions
will make the task of the director more and more complex. In order to ease this complicated
task for the real-time interaction, we provide several tools for pre-programming actions in
advance. The user can give a time after which the action will be played. Nevertheless, the
idea is more useful for repeating actions. For example, we can program the eye blinking of an
actor every five seconds plus a value between zero and two seconds. However all the actions
cannot be programmed this way. As the goal is to be able to play scenario in real-time, we
want to let the control of the main actions to be in the hands of the director. Nevertheless, a
lot of actions result from a few main events. Let's consider the sentence "I am very pleased to
be here with you today". The user may want to have the virtual actor smiling after something
like one second (while saying: "pleased") and move the right hand after 1.5 seconds (saying:
"here"). So the idea is to pre-program actions to be played after the beginning of a main event
which is the sentence. Then, just by selecting the main actions, complex behavior of the
virtual actors will be completely determined. However the user will still be able to mix other
actions to the pre-programmed ones.

Basic virtual camera tools are also given to the user. New camera positions can be
fixed interactively from the interface. Cameras can be attached to virtual humans, so that we
can have a total shot and a close-up of a virtual actor whatever his/her position is on the
virtual scene. During real time, the list of camera positions is available on the interface, and
the user can switch from one camera to the other just by clicking on it. An interpolation time
can be easily set to provide zooming and traveling options between two camera positions.
The cameras are also considered as an extension of the actions. They can be programmed in
advance so when an actor says a sentence, the camera can be programmed to go directly to a
given position.

In order to improve the building of virtual stories, a scripting tool was developed for
recording all the actions being played on an actor. Then, the user can adjust the sequence and
play it again in real-time. As the saving is done independently for each actor and for the
cameras, one can program the actors one by one, and play all the script together at the end.
The other idea is to program background actors in order to be able to pay more attention to the
main action being played in real-time.

6 . Results

We tested our software extensively within European project VISTA with broadcasting
partners to produce TV programs. After several tests with designers and directors, our

concept of one single integrated platform for virtual humans got a good feedback. Our
Interface has a straightforward concept and highest level of control allows designers to
control virtual humans in a natural way. We included several traditional camera operations
into our interface to allow directors to use VHD without any steep learning curve. Figure 6
display snapshots from a VHD session.

Figure 6. Examples of interface controlling virtual actors.

7 . Conclusion and Future Work

In this paper we presented a novel system for integrated virtual human animation. Our
software, VHD, is developed to enable a non-computer scientist to interact with virtual
humans in several ways.

- a designer can create a full story by directing, animating several virtual actors,
- a home user can get connected by their home PC to a studio and control one

virtual actor (this option requires special PC software), or
- a director and a team of artists can create a complex event, where virtual actors

interact with real actors.
For many AI programs VHD can be used to create a visual environment. VHD

provides also an open platform to extend capabilities of virtual humans without major
difficulties.
In near future we are planning to add new capabilities to VHD:

- several high level motion/task controlling and editing facilities to create mini
scripts,

- automatic grasping of virtual objects,
- integrated an AI system to trigger reactions to facial emotions, sentences, pre-

recorded keyframes for body,
- integration with computer vision based tracker software to have a fully integrated

augmented reality system, and
- direct-speech animation control with the use of a microphone.

8 . Acknowledgements

The authors would like to thank MIRALab and LIG teams for their support, and Frank
Alsema from VPro for his intuitive ideas and constructive criticism. We would also like to

thank Chris Joslin for proofreading this document. This research was supported by the
European Project VISTA and Swiss National Foundation for Scientific Research.

References

[1] A. Pearce, B. Wyvill, G. Wyvill, D. Hill (1986) Speech and Expression: A Computer Solution to Face
Animation, Proc. Graphics Interface ’86, Vision Interface ’86, pp. 136-140.

[2] M. M. Cohen, D. W. Massaro (1993) Modeling Coarticulation in Synthetic Visual Speech, eds N. M.
Thalmann, D. Thalmann, Models and Techniques in Computer Animation, Springer-Verlag, Tokyo, pp.
139-156.

[3] P. Kalra, A. Mangili, N. Magnenat Thalmann, D. Thalmann (1992) Simulation of Facial Muscle
Actions Based on Rational Free Form Deformation, Proc. Eurographics ’92, pp. 59-69.

[4] A. Black, P. Taylor (1997) Festival Speech Synthesis System: System Documentation (1.1.1), Technical
Report HCRC/TR-83, Human Communication Research Center, University of Edinburgh.

[5] P. Kalra (1993) An Interactive Multimodal Facial Animation System, Ph.D. Thesis, Ecole Polytechnique
Federale de Lausanne.

[6] R. Boulic, Z. Huang, J. Shen, T. Molet, T. Capin, B. Lintermann, K. Saar, D. Thalmann, N. Magnenat-
Thalmann, A. Schmitt, L. Moccozet, P. Kalra, I. Pandzic (1995) A System for the Parallel Integrated
Motion of Multiple Deformable Human Characters with Collision Detection, Proc.
EUROGRAPHICS'95 Maastricht, Computer Graphics Forum, 14(3), pp. 337-348.

[7] T. Molet, R. Boulic, D. Thalmann (1996) A Real Time Anatomical Converter for Human Motion
Capture, Eurographics Workshop on Computer Animation and Simulation, R. Boulic and G. Hegron
(Eds.), ISBN 3-211-828-850, Springer-Verlag Wien, pp. 79-94.

[8] R. Boulic, Z. Huang, N. Magnenat Thalmann, D.Thalmann (1994) Goal Oriented Design and Correction
of Articulated Figure Motion with the TRACK system, Computers and Graphics, Pergamon Press, Vol.
18, No. 4., pp. 443-452.

[9] R. Boulic, D. Thalmann, N. Magnenat-Thalmann (1990) A Global Human Walking Model with Real-
Time Kinematic Personification, The Visual Computer, Vol. 6, No. 6, pp. 344-358.

[10] R. Boulic, P. Becheiraz, L. Emering, D. Thalmann (1997) Integration of Motion Control Techniques for
Virtual Human and Avatar Real-Time Animation, Proc. VRST'97, pp. 111-118, ISBN 0-89791-953-x.

[11] J. Rohlf, J. Helman (1994) IRIS Performer: A High Performance Multiprocessing Toolkit for Real-Time
3D Graphics, Proc. SIGGRAPH’94, ACM Press.

