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ABSTRACT

In this paper feature determination as a method of training the
first layer of weights in a two layer learning machine (Perceptron) is
investigated. The problem is viewed as one of examining a set of pat-
terns and determining & set of simpler patterns, or features, so that
each of the original patterns can be formed by superposing the features.
While the general problem of finding a minimal set of features was not
solved, two algorithms were given that solve the problem for restricted
pattern sets.
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I INTRODUCTION

A. TWO-LAYER LEARNING MACHINES

A typical perceptron-type learning machine consists of layers of

associators or threshold elements.}

The inputs to the learning machine
are connected, through weights, to the associators in the first layer.
The outputs of the first-layer associators are connected, through weights,

to the associators in the second layer.

In a two-layer learning machine, the outputs of the associators in
the second layer are taken to be the outputs of the machine. Such a two-

layer machine 1s illustrated in Fig. 1.

The ensemble of inputs to the machine at a given instant is called
a pattern; the ensemble of outputs is called a response. A central prob-
lem is to find a set of weight values in the first and second layers such
that the machine responds to a list of patterns in accordance with some
prescribed set of responses. Generally, the task of specifying these
weight values as the result of a direct calculation is impractical, and
one looks for algorithms by which the weight values can be iteratively
modified while the machine is being exposed to a set of representative
patterns from the list. The employment of such an algorithm designs the

machine by a process commonly called training.

Algorithms have been proposed that specify how to adjust the values
of the weights in one of the layers 1f those in the other layer remain
fixed. Training procedures for the a-perceptron1 (to adjust the weights
in the second layer) and for the Madaline? (to adjust the weights in the
first layer) are examples. No universally successful methods, however,

are known for adjusting the weights in both layers simultaneously.

This paper presents a procedure for adjusting the weights in the
first layer that can be performed without regard to the way in which the
second layer is trained. The weights in the first layer are adjusted
during training until the first-layer associators detect significant
features in the patterns. (Precisely what constitutes a feature will be

described later.) The weights in the second layer can then be adjusted



to obtain the prescribed responses. Thus, the problem of adjusting the

weights in the first layer is viewed as a problem of feature determination.

B. REPRESENTATION OF PATTERNS AND WEIGHT SETS

For ease of explanation, suppose that the inputs to the learning
machine are arranged in a rectangular array or retina, so that every pos-
sible binary pattern can be represented by a mosaic of black and white
cells. Each of these mosaics will be called an imaege. The image illus-
trated in Fig. 2 represents a pattern on a 5 X 5 retina. This image can

also be represented by the binary 25-tuple
(1,1,1,1,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,)

where a “1” corresponds to a black cell and a “0” corresponds to a white
cell. The correspondence between each cell in the retina and each com-
ponent of the 25-tuple is defined according to the scanning convention

indicated by Fig. 3.

We shall restrict the weights in the first layer to the values one
and zero. An image will also be used to represent the values of a set
of binary weights incident on each first-layer associator. A black cell
will be used to represent a weight value equal to one, and a white cell
will be used to represent a weight value equal to zero. If there are K
first-layer associators, then K images completely describe the wiring
between the learning-machine input terminals and the first layer of as-
sociators. If the word associator is taken to include the set of weights
as well as the usual summing and threshold devices, then each possible
binary-weight associator can be represented by an image together with a

threshold value.

An associator will be said to be matched to a pattern if its image

representation is identical with the image representation of that pattern.

Such an associator plays the role of a template..

C. FEATURE DETERMINATION AS A MEANS TO ORGANIZE
THE FIRST LAYER OF WEIGHTS

Consider the problem of selecting the values of the first-layer
weights in an G-perceptron. One well-known solution is to choose these

weights randomly.! An alternative is to provide a first-layer associator



matched to each pattern (see Fig. 4). Indeed, matching or template
techniques are quite usefully employed in pattern recognition when the
patterns tend to “cluster’ around prototypes. For more diffuse sets of
patterns, however, the number of different templates needed becomes pro-

hibitively large.

If it is reasonable to assume that each pattern is composed of
simpler patterns or features, then a matching scheme can still be used.
The features are then building blocks of the complete patterns, and sub-
templates matched to features can be used (see Fig. 5). The number of
features is usually much smaller than the number of patterns that can be
composed from them, and, therefore, a sub-template matching scheme could
be an economical solution to the problem of specifying the first layer of

weights.

The problem of organizing the first layer of weights will be viewed
as one of determining such features. Some important aspects of this
problem can be illustrated by a simple example in which we construct
patterns out of the six features shown in Fig. 6. The patterns will be
formed, let us say, by combining any two distinct features from this set
of six features. Thus, for example, the pattern of Fig. 2 is formed by
the superposition of features F, and F, of Fig. 6. If we use all of the
combinations of two features out of the six, we get (g) = 15 patterns.

These are shown in Fig. 7.

We now ask the reader to forget, for a moment, the preceding dis-
cussion, and to suppose that the patterns of Fig. 7 were presented to
him in some sequence, possibly with repetitions allowed. It would not
be very long before he would discover that these fifteen patterns were,
in fact, constructed out of the six features of Fig. 6. This discovery
would enable him to organize a learning machine with six associators in
the first layer, one matched to each feature, rather than fifteen associ-
ators, one matched to each pattern. Furthermore, these features would
also be suitable for other patterns of similar structure, and thus would
provide much greater flexibility than that provided by simple template
matching. In general, if the environment of presented patterns is actu-
ally structured, in the sense that there are a few basic features out of
which all the presented patterns are composed, then it is likely that
substantial adventages can be realized by making use of this fact in the

processing performed by the first layer of associators. The striking



economies that can be obtained by appropriate organization are

demonstrated in Appendix A,

While the advantages of determining features are clear, the general
problem of finding them is not easily solved. Consider again the set of
patterns formed by superposing precisely two of the six features shown
in Fig. 6, namely, the set of patterns shown in Fig. 7. Let us renumber
the retinal cells by permuting the numbers (1, 2, ..., 25), and then
again represent all images according to the scheme of Fig. 3, but with
the new numbers assigned to the retinal cells of the image. To be spe-

cific, we take (at random) the following permutation:

Old Retinal |1{ 2] 3} 4] 5] 6{7|8| 9]10|11{12|13114{15[16{17]18]|19}20]21|22]|23]24{25
Cell Number
New Retinal |8(15]24]25|14(17|9|1{16]21) 2([11]|20j22{10{13| 6] 3|12} 7| 4[|19{23} 5|18
Cell Number

Under this permutation the 15 patterns shown in Fig. 7 go over into
the 15 patterns shown in Fig. 8. The order of the patterns is (inten-

tionally) not the same in Fig. 8 as in Fig. 7. The actual correspondence

is as follows:

Figure 7 la | b |c |d|e|flg[h|ilj|k]|l|{m]n]o

Figure 8 |a|d |j |l |h]|m]|e]ilo|b|n]|Fflg]k]|c

Since the permutation of the retinal cells is a one-to-one transfor-
mation, it is clear that the organizational structure of the 15 patterns
of Fig. 8 is the same as that of Fig. 7, namely, there are six basic
features and each of the 15 patterns is made up by superposing precisely

two of these features.

Now we ask the reader to forget, for a moment, the preceding dis-
cussion and to suppose that the patterns of Fig. 8 were presented to him
in some sequence, possibly with repetitions allowed. We invite him to
try to determine the number of basic features involved and their compo-
sition, working under this assumed ignorance. We believe, that he will

find, as we did, that the solution is not quite so trivial.* Of course

This problem can, however, be solved by a simple algorithm, as has been pointed out to us by W. R. Lymn.
For a alightly more challenging problem, use as the features all 5 horizontal and ell 5 vertical bars.
Form the patterns by taking any verticel plus any horizontal bar. The 25 patterns thus obtained are
rearranged on the retina as before.




the reader might take the position that each retinal cell is a feature,
since each pattern can be constituted by superposing a subset of these.
This, however, would require 25 features, whereas we know that 6 suffice.
Alternatively, he might take each of the 15 patterns to be a feature.
This is open to the same objection. What is desired is a minimal set of

features sufficient to account for all the given patterns.

Since the abstract mathematical structures represented by Fig. 7
and Fig. 8 are isomorphic, it is clear that our ease in solving the prob-
lem of Fig. 7 as compared to the difficulty of Fig. 8 reflects a psycho-
logical or physiological phenomenon, rather than a mathematical distinction
between the problems. If the environment actually consists of “bars’ as
in Fig. 7, and if we know this in advance, then it is clearly advantageous
to build “bar detectors” into a recognition system for this environment of
patterns. However, if we know nothing about the structure of the patterns
in advance, then any algorithm or adaptive process that is to lead to the
determination of the features will have to be equally effective when ap-
plied to the patterns of Fig. 8 as it is to Fig. 7. Although “bars’’ may
be likely to occur in everyday visual patterns, there are also situations
in which nothing may be known in advance about the structure of the pat-
terns. Suppose for example that each “retinal cell” represents, not a
cell of a two-dimensional visual image but the presence of a certain
feature already abstracted at a previous stage of the process. Thus, for
example, the first retinal cell might represent the presence of a hori-
zontal bar, the second might represent a moving spot in the center of the
field, the third a shrill sound coming into the system, and so on. In
this case there may be no obvious a priori features, although the features,

or ‘“syndromes, "’ may exist, and we may find it very helpful indeed to know

them.

As another example of a situation in which ““bars’ may not be the
natural features, consider the qualitative analysis, say, of the chemical
pollutants in a river. On the first day an examination of a sample of
the water might reveal the presence of pollutant chemicals A, B, C in
excess of a normal threshold. On the second day there may be excessive
quantities of C, P, E, F. On the third day A, B, C, G, H, I, and so on.
These findings for 15 days might be represented by data such as shown in
Fig. 9. Here again we have 25 “retinal cells” and 15 patterns. Now, if
it turns out that the occurrence or nonoccurrence of the various chemicals
is not'really independent, but in fact that daily pollution patterns can
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be described in terms of a few features, or syndromes, then one would
suspect that there is a reason for this and investigate the cause. For
example, if a certain combination of chemicals occurs repeatedly, and if
a particular upstream factory is known to have these chemicals as waste
products, then one may be led to investigate whether this factory is

giving sufficient treatment to its effluent.

D. STATEMENT OF THE PROBLEM

Suppose that matched to each feature occurring in the set of pat-
terns there is an associator in the first layer. By observing the responses
of the associators in the first layer, we could reconstitute the pattern
being presented. This reconstitution would be performed by combining all

features whose presence is detected.*

In learning machine pattern classification tasks, it is not necessary
to reconstitute the pattern. One desires only to know to which of a rela-
tively small number of categories each pattern belongs. If the first
layer of associators is to be trained to detect features, the features can
be limited to those that are most helpful in establishing the category of
the input pattern. The number of features needed for pattern classifica-
tion might be substantially smaller than the number needed for pattern
reconstitution. Nevertheless, in this paper we shall confine ourselves to
the following question: What algorithms can be used to direct the train-
ing of a layer of associators such that they eventually become matched to

a set of features sufficient to reconstitute all of the patterns presented?

We shall begin by presenting a mathematical formulation that includes
the following more general problem: Given a set of patterns, determine a
set of features, minimal in number, such that each pattern can be formed
by the superposition of a subset of these features. Unfortunately, we

have not yet been able to find a reasonably brief algorithm to solve the

The ability to reconstitute patteras from features suggests a means to transmit a set of high-
resolution photographs over a low-bandwidth channel. Rather then transmit the black or white
informstion about each cell in the retina (high bandwidth), we transmit only the information
regarding vhich feasures are present and which are absent for any particular image. At the
receiver, the high-resolution image is recoastituted by combining the features that were
praseat. If the total number of features for any set of patterns is less than the total
nusber of retinal cells, then the feature-detection technique can be a means for achieving
bandwidth reduction in an image-transwission systenm.




problem in this degree of generality. However, we shall present two

useful algorithms for the case in which the features are large compared

to their mutual overlap. Results of experiments by digital computer

simulation will be used to show that these algorithms can lead to

valuable results, even when this restriction is not met.




IT MATHEMATICAL FORMULATION

A. THE GENERAL PROBLEM

The problem of feature determination introduced in Section I can

be formulated in set-theoretical terms as follows:

Let S be a given set of points {sn} (n =1,...,N). (This represents
a retina of N retinal cells,) Any subset of S is called an image. Let
P. (m = 1,...,M) be given images. These are called the patterns. This
collection of M patterns is denoted by P = {PM} (m =1,...,M). A collec-
tion of K images 3 = {F.} (k = 1,...,K) is called a set of features for P

if each P_ is the union of some subcollection of the F,, i.e., if for

each m there exists a subset o(m) of the integers (1,...,K) such that
p, = U F (m = 1,....M) . (1)
keo(a)

Given P, the general problem is to find a set of features {Fk}
(k = 1,...,K) for P such that K is minimal.

Equation (1) will have no solution if K is too small. On the other
hand, if K 2 min(N,M) a solution will clearly exist: if M < N, take
K = M and Fh = Pb for k = 1,...,M; if N <M, take K = N and Fh =z g
k=1 .. ,N.

P
N for o

Even if a solution to Eq. (1) exists, it may not he unique, ti.e.,
the features F, and/or the selection o(m) may not be unique. For example,
consider the set of patterns of Fig. 7, with patterns (a), (b), (c), and
(d) deleted. If we let P be the remaining set of eleven patterns, then
the top horizontal bar occurs only in the presence of the right vertical
bar. Instead of using the top horizontal bar as a feature, we could take
the top horizontal bar plus any subset of the right vertical bar. We
shall find it convenient to normalize to the “maximal size feature’
possible. Thus, in this instance we would choose the pattern of Fig. 7(e) S
rather than the top horizontal bar as our first feature. In general,

given a set of features d = {F,} (k = 1,...,K), we can find a new set of




features 9 = {F.} (k =1,...,K) by taking fh as the intersection of all
of the patterns containing F,. That is

F. = N P (k = 1,...,K)

k a3p 2F -
="k

Clearly, Fh F, and 3 is a set of features for P. Furthermore, the F

wyJ

A
satisfy the equation

F, = n_»p (k = 1,...,K) . (2)

Thus, we may replace any set of features by their “hulls,’” which satisfy
Eq. (2).

Even with this normalization of the features, however, the selection
o(m) may not be unique. For example, in the case just considered, the
pattern of Fig. 7(e) can be represented either as the pattern consisting
of the feature of Fig. 7(e) alone or of the feature of Fig. 7(e) plus the
right vertical bar. Again, we shall find it convenient to normalize to
the “maximal set.’ That is, in this instance we would include both
features in the right hand side of Eq. (1). In general we shall include
in the right hand side of Eq. (1) all features contained in the pattern.
With this convention, Eq. (1) takes the form

po= U r = m (3)
» k3F,CP
and, if the features F. have been normalized, then
F, = r] P (k = 1,...,K) . (4)

= n
IBP.=F*

B. A GENERAL SOLUTION

Equation (3) by itself provides a logically complete algorithm for
testing whether a given set of features satisfies Eq, (1). Consequently,
one obvious (but impractical) algorithm for solving the general problem
of Eq. (1) with minimal K would be to start with K =1, (K =0 for
mathematicians) and examine the possibility of a solution of Eq. (3) for

all possible choices of the single feature F,. There are 2¥ such cases..




If no solution exists for K = 1, take K = 2 and examine whether a
solution exists for all possible choices of the pair of distinct featuresF,
F,. There are %N = 2¥°1(9% - 1) such cases. If there is no solution
for K = 2, we try K = 3, and so on. A solution will be found for

K < min(N,M), and thé first such solution will clearly have K minimal.
Although the number of cases at each step can be substantially reduced
by considering only those choices for F, (k = 1,...,K) that satisfy

Eq. (4), this verification itself will take some computing, and we can

hardly claim that this is a practical algorithm.
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ITI ALGORITHMS

A. THE THRESHOLD CONDITION

The general problem we have posed is that of determining a set of

features {Fh} (k = 1,...,K), minimal in number, such that
P, U r oL, (3)
ksF . CP
— |
where
e N -0 (4)
n’P._Fh

In words, Eq. (4) states that the intersection of all patterns sharing
a common feature is that feature. A basic problem, then, is that of
determining whether or not all the patterns in a given group of patterns

share a common feature.

Consider the simpler problem of determining whether or not two given
patterns share a common feature. If they do, that feature is included
in their intersection; if they do not, their intersection contains merely
intersections of distinct features (i.e., overlaps of features). Thisis
illustrated in Fig. 10, where the pertinent features are assumed to be
horizontal and vertical bars. Note that in this example the size of the
intersection, i.e., the number of retinal points it contains, is large when
the patterns share a common feature, and is small when they do not. Hence-
forth we shall restrict our attention to such situations. More precisely,
we shall assume that there exists a threshold, &, such that any two patterns
share a common feature if and only if the size of their intersection equals

or exceeds this threshold.

An associator can be used to compare the size of the intersection of
two patterns with the value of the threshold. Consider the patterns P, andP,,
and the associator shown in Fig. 11, The associator has been matched to P; by
setting the values of the weights to points in P, equal to one, and setting the
values of the weights to points not in P, equal to zero. If P, is pre-
sented to the retina, then the sum S gives thesize of the intersection
Pzr]Pl. If the threshold of the associator is equal to the threshold 6,

11



then the associator is active if and only if P, and P, share a common

feature.

B. TRAINING ONE ASSOCIATOR

When such a threshold, 6, exists, a simple algorithm can be used
to train an associator so that it eventually becomes matched to a fea-
ture. Consider the set of patterns shown in Fig. 12. Suppose that
patterns Pl, P2, and Ps' and only those patterns, share a common feature,
so that the feature is given by their intersection Plr1P2f1P6. The as-
sociator can form this joint intersection by forming successive pairs of
intersections, viz., Psr][Pzr]Pl].

This result is achieved in the following way. The associator is
matched to the first pattern, P, (see Fig. 11). The second pattern, P,
is presented. If the associator becomes active, indicating that P, and
P2 share a common feature, then the associator is matched to the inter-
section Pzr]Pl; this is easily done by merely setting the value of the
weights to points not in P, equal to zero. If the associator does
not become active, indicating that Pl and P2 have no common features, no
changes in the weight values are made. This process is now repeated
with the other patterns. Whenever a pattern presented shares a feature
with all previous patterns that activated the associator, that pattern
also activates the associator; setting the values of the weights to
points not in that pattern equal to ze;o results in the associator being

matched to the intersection of all of these patterns.

This algorithm for training one associator can be stated mathemati-
cally as follows. Let A(i) denote the image representing the weights of
the associator after the i-th pattern has been presented, and letllI”

denote the number of retinal points in any image I. Then

A)0p,, it llane, |l 26
A(i +1) = (i =0, ..., M- 1) (=)
A(1) otherwise,
where
N
A0) = U s; . (6)
i=1

12



It is shown in Appendix B that after the Mth pattern has been

presented, A (M) is one of the features if the following conditions are

satisfied:
my p, = U F, m=1, ..., ) , (3)
nrhgp_
@ F, - [ p k=1, .o, O, (4)
-?P.EF*
and

1
(3) =KWK~ DN, <O SN, = K-V, (1)
where
N.in = min ”Fi|| (8)
and
Noow = max [IFOFN . (9)
Yy

The first two conditions are merely statements of the basic relations
between patterns and normalized features. The third condition, the thresh-
old condition, is a more precise statement of the fact that we are con-
cerned with pattern sets for which the size of the intersection of any two
patterns indicates whether or not they share a common feature. It is suf-
ficient (although not necessary) to guarantee that the associator will be
activated by a pattern if and only if it shares a feature with all previ-

ous patterns that activated the associator.”

* The threshold condition has been stated in a form that will be convenient later. If only
one associator is to be trained, this condition can be relaxed by replacing the right side
of Eqs (T) with N.. .

in
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C. A SEQUENTIAL ALGORITHM

Th: algorithm just described gives a way of determining one of the
features. The remaining features could, in principle, be determined in
the same way by permuting the order in which the patterns are presented.
(In view of Eq. 4, such an ordering is always possible.) This scheme
suffers from the difficulty that the number of permutations of the pat-
terns necessary to guarantee the determination of every feature (M!) will
usually be prohibitively large. If random permutations are used, it will
usually result in several associators being matched to each feature. It
seems desirable, in the interest of economy, to prevent more than one
associator from becoming matched to the same feature. This can be done
by raising the threshold of the associator being trained whenever the
pattern presented contains features already determined. The amount that
the threshold is raised depends upon the relation of these features to
the image of the associator being trained. To be more specific, the
threshold is increased by the size of the union of those features of the
pattern that (a) have been detected by other associators, and (b) are

contained in the image of the associator being trained.

One way to incorporate this mechanism for preventing the multiple
determination of features is to begin by training the first associator
as before. After one iteration of the patterns, the first associator
has been matched to, say, the first feature. Then the second associator
is trained, using this threshold-raising mechanism to prevent it from
also becoming matched to the first feature. After the second iteration
of the patterns, the second associator has been matched to, say, the
second feature. This procedure is continued, a new associator being
trained after each iteration of the patterns, until, after K iterations,
all of the features have been found. This algorithm is referred to as

the sequential algorithm because features are determined in sequence.

1k



This algorithm can be stated mathematically as follows. Let
A (M),..., Aj(M) denote the images representing the weights of the first
J associators after j iterations of the patterns. (These, of course, are
supposed to be j different features.) Let Aj+l(i) denote the image repre-
senting the weights of the (j + 1)-th associator after the presentation of
of the ith pattern on the (j + 1)-th iteration. Let Kij be the set of
integers k(0 < k < j) defined by

K, = s o<k<j, llaonnelize , a0 Sa,)) . o)
Then
A NP la, @negll2e+ ]l g 4l
Aj+l(i +]1) = keKipy,j+1 (11)
Aj+1(i) otherwise,
(i=0,..., M- 1
j=0,...,K-1)
where
N
A, (0) = -U1 s, - (12)




It is shown in Appendix B that the conditions given by Eqs. (3), (4),
and (7) are sufficient to guarantee that after K iterations of the pat-
terns, the images A (M), ..., Ay (M) will be the K features Fl' eoe, Fu

It should be emphasized that of these conditions, it is the thresh-

old condition,

1
S KK - DN, <0 SN,

in

- (K= DN, (1)

that limits the generality of the results. It should also be noted that
this condition was obtained by a “worst-case’” analysis; in many situations
the algorithm can be used to find useful features even though this con-

dition is not met.

D. A PARALLEL ALGORITHM

Instead of training the associators one after another, we can obtain
the features more rapidly by training several of the associators at once.
One algorithm for such a training procedure starts with a single associator
as before, and introduces new associators whenever they are needed for
reconstitution. After a pattern has been presented and the weight changes
have been made, a test is made to see if the union of the images of the
active associators reproduces that pattern. If it does, the next pattern
is presented. If it does not, a new associator matched to that pattern

is introduced, and then the next pattern is presented.

This procedure for training several associators, which is referred to
as the parallel algorithm, begins by matching the first associator to the
first pattern. Suppose that, at the ith step, j associators are being
trained. (At the second step, one associator is being trained.) Let
A (D), .., Aj(i) denote the corresponding images. When pattern P ,, is

presented, the new images are determined as follows:
(1) A, is active if and only if |lA1(i) r]Pi+1|| 26, If A, is
active, Al(i +1) = Al(i)f]Pi+1; if Al is inactive,
AL+ 1) = A,

(2) A, is active if and only if |[4,(0)NP, || 36+ 6, Here,
62 - ||A1(i + 1] if (a) A, is active, and (b)
A G # 1) = Az(i); otherwise, 92 =0. IfA, is active,
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A, (i +1) = A,(0)NP,,, ; if A, is inactive,
A, + 1) = A (4).

(3) In general, Al is active if and only if ||A (1)r]P +1i|
6 + 9 Here, || LJ A, (it 1)|| where keK, if and
only 1f (a) Ah is actlve (k < 1) and (b) A, (i ¢ 1) = A (1)
If Al 1s active, Al(z +1) = Al(z.)nP‘.+
AG+ 1) = A, 30,

s 1f A‘ is 1nact1ve,

After the j new images have been found, the union of the images of
the active associators is formed. If this union yields pattern P ,,,
then the next pattern is presented. If it does not, a new associator
matched to this pattern is introduced, and then the next pattern is
presented. This procedure is continued for as many iterations of the

pattern set as is needed to obtain the features.

The example given in Fig. 13 illustrates the operation of this
algorithm. Except for numbering, the six patterns involved are the same
as those shown in Fig. 12. The threshold & is taken to be three. The
procedure begins by matching 4, to P;. Next, P, is presented, and since
||Al(1)f1P2|| = 10 : 3, Al is active, and A1(2) = Al(l)fqu. Since P2
can be reconstituted by Al, P3 is presented. P3 also activates Al, and

3
and a new associator A, matched to P, is introduced. The presentation
of P‘ activates A, and its image, A1(4), is reduced to the lower hori-
zontal bar. Since Al is active and Al(4) ¢ A2(3), the threshold for A2

is raised to 3 + ||A1(4)|| = 8; this prevents A2 from becoming active,

A1(3) = A1(2)f1P3. Now, however, P, can not be reconstituted by Al alone,

and thus prevents its image from being reduced to the same lower hori-
zontal bar. The pattern P4 can not be reconstituted, and a new associ-
ator A, matched to P, is introduced. The remaining steps are performed
similarly, and the four features are found in less than two iterations

of the pattern set.

The parallel algorithm often yields a set of features in fewer than
the K iterations of the patterns required by the sequential algorithm.
This speed is gained by training new associators before old associators
have determined a feature. This complicates the action of the threshold-
raising mechanism, however, and frequently leads to the determination of

more features than are needed for reconstitution.
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E. SELECTION OF THE THRESHOLD

In order to use either the sequential or the parallel algorithm, we
must know the value of the threshold, 6. If the features were known, a
threshold for the sequential algorithm could be obtained from the bounds
given by Eq. (7). However, the determination of the features is our goal;
furthermore, even if Eq. (7) cannot be satisfied by any value of , there may well
exist a threshold for which the algorithm will disclose a set of useful features.
An efficient, generally applicable method of determining such a threshold has

not yet been found. However, it is often practical to repeat the procedure

for several values of &, and to select that value that gave the best results.

For example, consider the twenty-four patterns shown in Fig. 14. These
patterns were constructed from seven features—horizontal, vertical, and
diagonal bars. (For these features, incidentally , Eq. (7) can not be
satisfied by any value of 6.) The results of using the parallel algorithm
with a threshold of one are shown in Fig. 15. Of the fifteen features
found, the seven largest features are sufficient to reconstitute all of the
patterns. Similar results were obtained with a threshold of two (see
Fig. 16). Higher thresholds led to features with excessive overlap, and
poorer results; however, the features obtained using the lower thresholds

are clearly useful,
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IV CONCLUDING COMMENTS

In this paper we have investigated feature determination as a method
of training the first layer of weights in a two-layer learning machine.
The problem was viewed as one of examining a set of patterns and deter-
mining a set of simpler patterns, or features, so that each of the original
patterns can be formed by superposing the features. While the general
problem of finding a minimal set of features was not solved, two algorithms

were given that solve the problem for restricted pattern sets.

These results suggest several other problems worth further study.

On the other hand, one can seek useful algorithms that apply to less re-
stricted or even unrestricted pattern sets. On the other hand, one can
seek useful algorithms for pattern sets containing topological constraints
characteristic of special patterns, such as visual patterns. In either
case, the effects of noise and small distortions must be investigated to
ensure the practicability of this approach. Finally, attention should be
given to the problem of determining those features most valuable for pat-
tern classification. A good solution to this problem would be a major

contribution to the theory of self-organizing systems.
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APPENDIX A

FEATURE DETECTION AND EFFICIENT MACHINE ORGANIZATION

The purpose of this appendix is to show how the utilization of
features may result in a much more efficient use of associators. We shall
compare three different organizations of associators which can correctly
categorize some simple patterns. The patterns will be formed out of
straight-line features, and will be presented to a retina for which the

gridwork is very fine.

Consider first the six lines shown in Fig. A-1. We shall call these
the “ideal features.” We shall form the set of “ideal patterns” by com-
bining any three out of these six ideal features. Thus there are
(g) =« 20 ideal patterns, one of which is illustrated in Fig. A-2.

Now we introduce a complication. Suppose that the artist who is
sketching the patterns is somewhat sloppy in positioning the features.
For example, he might slightly displace or slightly rotate any given
feature. In addition, he might sketch by making more than one try at
drawing a given ideal line. Thus, for instance, in attempting to sketch
the pattern of Fig. A-2 he might start by sketching the upper horizontal
line of Fig. A-1(a). Figure A-3 shows five lines, any one of which might
be the outcome of his effort to draw the top horizontal line. Let us call
these five lines ‘‘equivalent representations’ of the ideal line of
Fig. A-1(a). Similarly, suppose that each of the six ideal lines of
Fig. A-1 has, say, five equivalent representations. Thus a given ideal
pattern, such as Fig. A-2, might be represented by any one of (25 - 3

actual patterns, one of which is shown in Fig. A-4.

We shall also be interested in the case in which the artist is re-
stricted to draw only a single line in his attempt to denote any ideal
feature of Fig. A-1 (“drawing” rather than ‘' sketching”). In this case,
in attempting to draw Fig. A-1(a), he could use only one of the five lines
in Fig. A-3. Then a given ideal pattern, such as Fig. A-3, can be repre-
sented by any one of 53 actual patterns. For brevity, let us call this

Case (b), and the case considered above, in which the artist can use any
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one or more lines, Case (a). Thus, although there are only g = 20 ideal
patterns, there are actually 20(2°% - 1)3 = 6-+ 10% distinct patterns that
might be presented to the retina in Case (a), and 20 ° 53 2 2500 distinct
patterns in Case (b).

Suppose that we have available associators having an arbitrary number
r of inputs, each with weight +1, and a threshold, 6. If 6 = r, the asso-
ciator responds if and only if all of its inputs are active; if 6 = 1, it

responds 1f and only if at least one of its inputs is active.

We now consider a system having for its input a retina on which the
patterns will be projected, and having for its output twenty associators
of the type described, corresponding to the twenty ideal patterns. It 1is
desired that when any representative of an ideal pattern is shown to the
retina, the corresponding associator should become active; otherwise it
should remain inactive. The problem is to form a network of associators
to accomplish this task. We shall examine three solutions and compare

them as to the number of associators and the number of connections used.

For the purpose of computing the number of connections, we assume
for simplicity that the number of retinal points in each ideal feature is
a constant, p, and that this is also the number of retinal points in each
equivalent representation of any ideal feature. Let IIPill denote the
number of retinal points in the ith pattern. Then, in Case (a),
3p < ||Pi|‘ < 15p, and in Case (b), ||Pi|| 3p.

[}

For Case (a), one such solution (Solution I) is shown in Fig. A-5, where the
ith “internal’” associator has a threshold of ||Pi|| and has connections
with unit weights to all of the retinal points of the ith pattern. Thus,
each of these associators is activated by a particular pattern on the
retina. Each output associator has a threshold equal to one, and connec-
tions of unit weights to those internal associators which represent the
same ideal pattern. Thus each output associator is active in response to

its “equivalence class” of patterns, as required.

This arrangement requires 20(2% - 1)3 associators (we shall not count
the twenty “response’ associators, since they must be present in any system,
and we are interested in comparing systems). The number of connections is
6 -5 - (3)p(2® - 102 - 24T 4.6p - 10 in the first layer, and 20(2° = 1)°

in the second layer of connections. If we let N, denote the number of
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associators used (not counting response units), and N. the number of
connections, we have for this arrangement

N, 20(2% - 1)3 6 - 10° (A-1a)

1)

5 ~
N, 6 5 (2),u25 - 1)%2 - 2% +20(25 - 1)% = 4.6p + 10¢

(A-1b)

An economy can be effected by considering the Case (b) and using a
similar arrangement, where now there are only (g) 53 patterns to be con-

sidered. Here

6 3
N, = 3 5 = 2500 , (A-2a)
and
N, = 2500(3p + 1) . (A-2b)

It is easy to see that this arrangement also solves Case (b), and we call
it Solution II.

A much more economical solution (Solution III) may be obtained by
having each associator of the first layer respond to a particular real-
ization of a line feature (see Fig. A-6). Each associator of the second
layer represents the presence of a particular ideal feature, and the
associators of the third layer (the responses) are activated by any repre-
sentative of the corresponding ideal pattern.* The threshold in the first
layer is p, the number of retinal points in a feature. There are

6 - 5 = 30 associators in the first layer and six in the second. Hence

N, = 36 . (A-3a)

The number of connections in the first set is 30p, in the second
6 * 5 =30, and in the third 3 * 20 = 60. Hence

No = 30p +90 . (A-3b)

* In the perticular probles being discussed, the first layer of associators could be eliminated by connecting
each sssociator of the second layer to that part of the retina coverimg s festure and its “perturbation.”
If the feature were lesa disjoint, however, this method might feil, We shall not discuss i¢ further hers.
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A comparison of Eqs. (A-la) and (A-1b) with Eqs. (A-2a) and (A-2b),
and (A-3a) and (A-3b) shows the enormous savings that may be realized as
a result of appropriate organization. The principle of “early
generalization” to effect such economies has been pointed out by

Rosenblatt.?

To compare these three types of organization in the general case,
let the number of ideal features he F, and let the ideal pattern be com-
posed by the superposition of precisely f ideal features. Let E denote
the number of equivalent representations of each feature. Then for the

three types of organization discussed above, the results are as follows:*

ORGANIZATION
TYPE N Ne

F F-1 F
I ( )(2‘ - nf PEF<, )2"‘(2‘E -pft +( @2f - »f
f -1 f
F F
I1 ( )zf (fp + 1)( )Ef
f f

F
111 F(E + 1) EF(p + 1) + f(f)

Even more impressive economies are possible if the structural organ-
ization of the patterns is hierarchial. To illustrate this, let us elab-
orate the previous problem. Suppose that the patterns described above
represent ‘‘letters’ in an alphabet of twenty letters. Suppose the retina
is extended to four times its original width, so that four-letter words

of this alphabet can be placed on it (see Fig. A-7).

Suppose further that each letter can be positioned in each box in,
say, seven ways. Although there are now 20* = 160,000 ideal four-letter
words, there are actually 204 - 74 - (2° - 1)!2 = 3 - 1026 distinct pat-
terns that are possible on the enlarged retina in Case (a), and
204 -+ 7% - 512 % 9 + 10'¢ in Case (b). We suppose that we have as re-
sponse units associators corresponding to each ideal four-letter word on
the retina. It is desired to construct a system of associators such that
when any particular representation of an ideal word is placed on the retina,
the response unit that corresponds to that ideal word becomes active and
all others remain inactive. Again we consider three types of solution,

analogous to the previous example.

* Note that "A does not include the number of response units, since these must be used in any case. NC'

however, does include the connections to the response units.
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For Solution I we use an internal associator for each distinct pat-
tern and then combine them into words, as shown in Fig. A-8. Here the

number of associators used is

Ny = 20 - 7% - (25 - )2 T 3. 1026 (A-4a)

and the number of connections is

5
Ne = p-4-5-7-(2)(25—1)22‘[7(:)(25—1)3:|3+NA

(3p + N, = p - 1028 (A-4b)

ue

where, as before, p represents the number of retinal points in an ideal
line feature of Fig. A-1. The number of inputs to a first-layer asso-
ciator is IlPiII, where ||Pi|| is now the number of points in the ith
four-letter word. Clearly, in Case (a) 12p s I|Pi|l N 60p; in Case (b),
e, 11 = 12.

For Solution II we use a similar arrangement, but start instead with
Case (b). It is easy to see that this arrangement will also solve Case (a),
but now only 20* - 7% - 5!2 jnternal associators are required in themiddle
layer. There will be 12p * 20* + 7% - 512 connections in the first set,

and 20% - 74 . 512 connections in the second. Hence we have in this case

~

N, = 204 - 7¢ . 5125 1917 (A-5a)

and

Ne = (12p + 1)N, =ip « 10! | (A-5b)

A much greater saving can be achieved if we organize the system so
as to reflect the organization of this particular environment of patterns,
This is illustrated in Fig. A-9. Here the first layer consists of asso-
ciators that respond to a particular representation of a given line
feature in a given box in a given position in the box. Thus there are
4 © 6 ° 5 7 =840 such associators. In the second layer, the five
equivalent representations of a given line feature in a given box in a
given position are combined to represent the ideal line in a given box

in a given position in the box. The third combines the ideal lines into
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ideal letters in a given box in a given position in the box. The fourth
layer combines the seven possible positions of a given ideal letter in a
given box. The fifth layer is the response units, The number of internal
associators used in this system is therefore

N, = 4:°6°5°7 + 4°6°7 + 4-20-7 + 4:20 = 1648

(A-6a)
and the number of connections is
N, = 840p + 5+168 *+ 3°560 + 7:80 + 4-20*
= 840p * 643,080 . (A-6b)
The enormous saving is evident. To compare the three types of organ-

ization in general, let L denote the number of letters in a word and P
the number of ways in which a given letter can be positioned in a given

box. With F, f, and E as defined earlier, the results are as follows:

ORGANIZATION N N
TYPE A c

F L F-1 F L-1
I )P(zE - nf PEFPL ( ) (2f - nfE e ( )(25 -nfl o ew,
f f-1 f
F L
11 Kf) PEf] (flp + DN,
F F F\ L
111 L[FP(E +1) 4 (f) (p+1)] L|FPE(p + 1) + P (f) (f+1)+ ;

Another advantage to the organization of Solution III is that the

number of inputs to a given associator is reduced. (Cf. Fig. A-5 with
Fig. A-6, and Fig. A-8 withFig. A-9.) If we think of the model as repre-
senting an industrial organization, with associators representing
decision-making individuals, then, in view of the natural limitations of
human capacity for handling information, such a reduction of input data

may be essential for the individual’s mental health.

In order to achieve the advantage of matching the organizational
structure of the system with that present in the environment of the pat-

terns, it appears that one must be able to either determine the structure
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of the environment and design the system accordingly, or else formulate

reinforcement rules by means of which the system will adapt its struc-
‘ture to that present in the environment. Since the patterns of active
units at any given layer themselves represent input patterns to the sub-
sequent layer, the algorithms developed can be used to find the features

of the ‘“patterns” in any given layer.

26




APPENDIX B

CONVERGENCE PROOF FOR THE SEQUENTIAL ALGORITHM

This appendix contains the convergence proof for the sequential

algorithm. As before, we let S = {sn} (n =1,...,N) denote the set of

retinal points and P = {P_.} (m =1,...,M) denote the set of patterns.
We assume the existence of a set of features J = {Fh} (k=1,...,K)
such that
po» U r Ge1...m (B-1)
. k> F CP_
and
F,o- o p (h=1,....0) (B-2)

and the existence of a threshold 8 such that

1
- Kk - DN, <8 SN, - &-DN,, (B-3)
where
N, = minllF|l (B-4)
and
N ., = max ”Fir]Fjll . (B-5)
Yal
i#)

The algorithm is most conveniently stated in two parts. Let A (i)
denote the image representing the weights of the first associator after
the ith pattern has been presented. Then the algorithm for changing

the weights of the first associator is

A GONP,,, if [lA (NP, Il &6
A(i +1) = (B-6)
A, (D) otherwise ,
(¢ =0,...,M - 1)
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~ where

N
A (0) = s, . (B-7)

n®1l

The presentation of all of the M patterns is called an iteration of
the patterns. Let A, (M), ..., Aj(M) denote the images representing the
weights of the first j associators after j iterations of the patterns.
Let Aj+l(i) denote the image representing the weights of the (j + 1)-th
associator after the presentation of the ith pattern on the (j + 1)-th
iteration. Let Kij be the set of integers k(0 < k < j) defined by

K. = {k: O0<k<j, lawnpllZe, A S 4G} . (B-8)

LF

Then the algorithm for changing the weights of the (j + l)-th associatoris

A (ONP,,  if I, 00NP 2 e+|LKU A
A,-ﬂ(i'"l) = 141,41 -
Aj+1(i) otherwise (B-9)
(i =0,...,M - 1)
(j =1,.., K-1
where ;
N L

A4 (0) = s, - (B-10)

n=1

We shall show that if conditions (B-1), (B-2), and (B-3) are satisfied,
then, after K iterations, the images A, (M), ..., A, (M) are the features
Fio, oo,
feature, and we shall then show that, after j *+ 1 iterations, Aj+1(M) is
a feature other than A (M), ..., Aj(M).

Part 1. Convergence of 4,

We begin by repeating the algorithm for A4,. !

aone,, if A one 0l 26
AGi+]l) = (i =0,....,m- 1) (B-6)

A, (i) otherwise |
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where

a0 = Us, - (B-7)
From Eq. (B-3),

> >
||A1(0)r]P1|| = el 2 N 28
so that

A = P, (B-11)

If at the (i + 1)-th step HAl(i)r]Pi+1||z 6, we shall say that
P,,, activates A;. Thus, at the first step P, activates 4,. Let the

1
n

first n patterns that activate A, be denoted by Pi , «.., P. . Then
1

after step i,

Ay = e, . (B-12)
j=1 J
Define i_,, = i, * 1, so that at the next step, pattern P, o is en-
countered. One of two cases can arise: "
Case (a): P, ., ..., P, " have at least one common feature,
Case (b): P, , ..., P, . have no common features.
n+tl
Case (a)
Let F, be a feature common to P, , ..., P; o Then
. 1 nt+l
ntl
F,S Ne, (B-13)
i=1 J
and, from Eqs. (B-4) and (B-9),
layipne, A2 IRl 2N, %6 . (B-14)
Thus, in Case (a), P, activates 4,.

ntl
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Case (b)
Lemma 1:

Let Ij be a subset of the set of integers {i} (i =1,...,K), and
let the collection of sets {IJ.} (j =1,...,m) have the property that no
integer is in every set of integers. Let J = {Fk} (k= 1,...,K) be a

collection of point sets, Then

' tj LJ c k-1 K (
s i (ierf‘) ) auf ,-Ul FinFj B-15)

Proof: Let s € S'. Then s cannot be a member of one and only one of

the sets of J, for, were it so, there would be an Ij such that s ¢ LJ F,

i€ .

and hence s ¢ S'. Thusa(i,j). iFj, »seF, andseFJ.. Thus J
8. € Fif]Fj. and, since all possible pairs of intersections appear in the
right side of Eq. (B-15), the lemma is proved.

Now suppose that Pil' ooy Py . have no common features. Then,
from Eqs. (B-9) and (B-1) and the lemma,

ﬁl nﬁl C K~1 K n (B-16)
A . R - . - F = F F ] B- 6
l(ln)npln+l 1-1 P‘] j-l ;’Flép ' lL-Jl ]ul i J

and

lla,Gipne, |l
ntl

NA
C
W=
e
s |
:-1

NA
™M
™M
£l
>
&)

k-1 K
2 N

i=1 j>i "

WA

1 .
-_— -1
= K(K = DN,

< 8 . . (B-17)

Thus, in Case (b), P, does not activate 4,.
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activates A, if and only if the patterns

It follows that P, o
After M steps,

{Pil' ..., P +1} have at least one feature in common.
n

let {Pil' ..., P, )} be the set of patterns that activated A, and let

no

F, be one feature they share. Then

"o
A (M) = P, . (B-18)
i=1 J
- . . . .
But F, =P, (j = 1,...,ny), and F; is not contained in any other pattern.
Thus by Eq.J(B-2).
A(M)y = F, (B-19)
Part 2. Convergence of Aj+1
We begin by repeating the algorithm for Aj+l'
A ONP,, it 4, 0ne 2 el U 40l
Lt (B-9)

A+l =
A (D) otherwise ,

(i =0,...,M - 1)
(j =0,...,K - 1)

where

(B-10)

and
C
K, = (ks o<k<j, llaun0pli2e, A, = A; ()} (B-8)
Suppose that the algorithm has operated successfully for 4,, .,Aj
and we are starting the (j + 1)-th iteration. Then A (¥), . A; (M)
are j distinct features; for convenience we number them so that
(B-20)

A = F, Gie1..,))
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If at the (i + 1)-th step

14, GNPl 2 6+l U amll

Kis1,j41

we shall say that P, activates A,,,. Let the first n patterns that
activate Aj+l be denoted by P, , ..., P; .‘ Then after step i,
1

13
n

A Gi) s Ne . (B-21)

Define i,,, = i, *+ 1, so that at the next step pattern P, is encoun-
nt+l
tered. One of two cases can arise:

have at least one common feature,

Case (a): Pil' ceo, P
besides perhaps some or all of F,, ..., F

Case (b): Py, .... Py .,

perhaps some or all of F,, ..., Fj.

o+
Ix

have no common features, besides

Before considering these cases in detail, we shall establish some

useful facts.

Lemma 2:

P..
j

IF,NP; || 2 6 if and only if F,

Sufficiency: If F, < P., then Fir]Pj = F,, and

J

> 6

min —

Ne.Qp 0l = IF Al N
- ¢ srn( Y
Necessity: If F, P, then F, NP, & F‘.ﬂ(_, F}.), and
JT i

< < -
lenp, 50 Y ronrlis s e ne il E & - on,,
< 1 >
1£K=1, IFNPll=0<6 1£K32 5 K1, and

1
IF NPl & <K= DN, $6 . QED

. N
By adopting the convention P‘ L] u ]
1

\ we oan avoid the need for a separate proof that some pattern
[)

n
will activate ‘jﬂ'
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Consider now the set of integers K. .
TSR

, C .
Ki i ® {k ; 0<k<j+tl, ||A,(M)npin+1|| 26, A = A].“(Lm)}

From Eqs. (B-20) and (B-21), and Lemma 2, we can write this as

. C C
Ki,.+1.j+1 ={k;0<k<1+1'Fh=Pi 'Fk'hpi

n+l 1=1 1
(B-22)
Let F° denote the union of all of the features from F,, ..., Fj
that are common to P, , ..., P, . Clearly
1 atl
c [
Papedtt {k: F, = F} (B-23)
and
U a4 = F . (B-24)
ReK, T
nt1*/
Case (a)

In Case (a), Pil' vy Py . have at least one common feature,
n
besides perhaps some or all of F|, ..., Fj, which we number as Fj+1'

Then

i
P, = FUF, UF : (L=1,...,n+ 1) , (B-25)
where Fll is the union of those features in Piz and not in F‘LJFj. Then
at step i_,,, it follows from Eqgs. (B-21), (B-25), (B-24), and (B-20)
that

ntl ntl .
I, Gione, A= A0 e IE = T UF,, DU N
2 FeUr, Gl = HFell+ DI, Ll - liFeOF, i
: ”FC” + Nnin - ”h U Fi nFj+1”
EK‘n+1-f’1
2 lFell+ N, - (k- DN, (B-26)
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and thus, from Eqs. (B-3) and (B-24), that

) >
4,008, I 2 e+||m_U_+A,(M)|| : (B-27)
e tl
Thus, in Case (a), P. activates A . ..
el jtl
Case (b)
In Case (b), Pil' R o have no common features, besides per-
n

haps some or all of F,, ..., Fj. Then

P, = FUF'! (1=1,...,n%1) (B-28)
l
where F‘l is the union of features in Pil and not in F¢. In particular,

the F'! have no common features. Then at step i,y it follows from
Eqs. (B-21) and (B-28), and Lemma 1 that

ntl
IIAJ.”(in)ﬂPl."HH = |l 101 Pil||
ntl i
= lFey
ntl i
§ el i ) F
< ﬁ:f K n
= <l + F.[\F.
et U Q) rs
< k-1 K
$ lrell+ = = IR, NF
i®l j>i
< 1
= ""c || +?K(K - l)Nllx '

and thus, from Eqs. (B-3) and (B-24), that

||Aj+1(in)ﬂpin+1|| <6+ ||m U a.mlil . (B-29)

in*l'j+l

Thus, in Case (b), P,

does not activate A ..
n+l ]+l
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It follows that P; o activates Aj+1 if and only if the set of patterns
n

{Pil""'Pi +1} have at least one feature in common, not counting the fea-
n

tures that have already been detected by 4,, ..., Aj. After M steps, let

{Pil""'P‘n } be the set of patterns that activated Aj+1, and let Fj+1 be

one feature besides F,, ..., Fj that they share. Then
A = [y P (B-30)

C
But Fj+1 =pP. (l = 1,...,10), and Fj+1 is not contained in any other

v

pattern. Thus by Eq. (B-2),

A0 = Fi (B-31)
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TWO LAYERS OF
ADJUSTABLE WEIGHTS
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] / /
FIRST-LAYER SECOND -LAYER
ASSOCIATORS ASSOCIATORS

(RESPONSE -UNITS)

FIG. 1 A TWO-LAYLE LEARNING MACHINE
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FIG. 2 REPRESENTATION OF A PATTERN BY AN IMAGE ON A RETINA
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FIG. 3 SCANNING CONVENTION
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FIG. 8 PATTERNS PRODUCED BY RENUMBERING THE RETINAL POINTS
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P, P3 P, NP4

FIG. 10 INTERSECTIONS OF PATTERNS
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FIG. 11 THE IMPLEMENTATION OF THE INTERSECTION OPERATION BY AN ASSOCIATOR
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PATTERN SET

PI

PATTERNS CONTAINING
P, ﬁ A COMMON FEATURE
5 P, NP, NPg
3

Ps

FIG. 12 INTERSECTION OF ALL PATTERNS CONTAINING A COMMON FEATURE
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PATTERNS A, IMAGE A, IMAGE A, IMAGE A, IMAGE

—

B ACTIVE ASSOCIATORS
INACTIVE ASSOCIATORS

Ll

FIG. 13 AN EXAMPLE SHOWING THE OPERATION OF THE PARALLEL ALGORITHM
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FIG. 16 ASSOCIATORS WITH THRESHOLDS OF TWO
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{a) (b) {c)

(d) (e) (f)

FIG. A-1 IDEAL FEATURES

FIG. A-2 AN IDEAL PATTERN

===

FIG. A-3 EQUIVALENT REPRESENTATIONS OF AN IDEAL FEATURE

FIG. A-4 A SKETCH OF AN IDEAL PATTERN
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ASSOCIATOR
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ASSOCIATORS
CENLIRID

FIG. A-5 SOLUTION |
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FIG. A-6 SOLUTION il
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FIG. A-7 AN IDEAL WORLD
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