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ABSTRCT

In this paper feature determination as a method of training the
first layer of weights in a two layer learning machine (Perceptron) is
investigated. The problem is viewed as one of examining a set of pat-
terns and determining a set of simpler patterns, or features, so that
each of the original patterns can be formed by superposing the features.
While the general problem of finding a minimal set of features was not
solved, two algorithms were given that solve the problem for restricted
pattern sets.
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I INODUCTION

A. TWQ- LAYER LEARNING MACHINES

A typical perceptron-type learning machine consists of layers of

as,ociators or threshold elements.l The inputs to the learning machine

are connected, through weights, to the associators in the first layer.

The outputs of the first-layer associators are connected, through weights,

to the associators in the second layer.

In a two-layer learning machine, the outputs of the associators in

the second layer are taken to be the outputs of the machine. Such a two-

layer machine is illustrated in Fig. 1.

The ensemble of inputs to the machine at a given instant is called

a pattern; the ensemble of outputs is called a response. A central prob-

lem is to find a set of weight values in the first and second layers such

that the machine responds to a list of patterns in accordance with some

prescribed set of responses. Generally, the task of specifying these

weight values as the result of a direct calculation is impractical, and

one looks for algorithms by which the weight values can be iteratively

modified while the machine is being exposed to a set of representative

patterns from the list. The employment of such an algorithm design. the

machine by a process commonly called training.

Algorithms have been proposed that specify how to adjust the values

of the weights in one of the layers if those in the other layer remain

fixed. Training procedures for the a-perceptron 1 (to adjust the weights

in the second layer) and for the Madaline2 (to adjust the weights in the

first layer) are examples. No universally successful methods, however,

are known for adjusting the weights in both layers simultaneously.

This paper presents a procedure for adjusting the weights in the

first layer that can be performed without regard to the way in which the

second layer is trained. The weights in the first layer are adjusted

during training until the first-layer associators detect significant

feature' in the patterns. (Precisely what constitutes a feature will be

described later.) The weights in the second layer can then be adjusted
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to obtain the prescribed responses. Thus, the problem of adjusting the

weights in the first layer is viewed as a problem of feature determination.

B. REPRESENTATION OF PATTERNS AND WEIGHT SETS

For ease of explanation, suppose that the inputs to the learning

machine are arranged in a rectangular array or retina, so that every pos-

sible binary pattern can be represented by a mosaic of black and white

cells. Each of these mosaics will be called an image. The image illus-

trated in Fig. 2 represents a pattern on a 5 x 5 retina. This image can

also be represented by the binary 25-tuple

0, 1, 1, 1, 1,0,0, 1,0,0,0,0, 1,0,0. 0,0, i, 0,0,0,0, i, 0 ,0, )

where a II i" corresponds to a bl ack cell and a II 0" corresponds to a whi te

cell. The correspondence between each cell in the retina and each com-

ponent of the 25-tuple is defined according to the scanning convention

indicated by Fig. 3.

We shall restrict the weights in the first layer to the values one

and zero. An image will also be used to represent the values of a set
of binary weights incident on each first-layer associator. A black cell

wiii be used to represent a weight value equal to one, and a white cell

will be used to represent a weight value equal to zero. If there are K

first-layer associators, then K images completely describe the wiring

between the learning-machine input terminals and the first layer of as-

sociators. If the word associator is taken to include the set of weights

as well as the usual summing and threshold devices, then each possible

binary-weight associator can be represented by an image together with a

threshol d val ue.

I
~

,

I.

An associator will be said to be matched to a pattern if its

representation is identical with the image representation of that

Such an associator plays the role of a template..

image
pattern,

C. FEATURE DETERMINATION AS A MEANS TO ORGAN 
I ZE

THE FIRST LAYER OF WEIGIITS

Consider the problem of selecting the values of the first-layer

weights in an ~-perceptron. One well-known solution is to choose these

weights randomiy.i An alternative is to provide a first-layer associator

2



matched to each pattern (see Fig. 4). Indeed, matching or template

techniques are quite usefully employed in pattern recognition when the

patterns tend to "cluster" around prototypes. For more diffuse sets of

patterns, however, the number of different templates needed becomes pro-

hibitively large.

If it is reasonable to assume that each pattern is composed of

simpler patterns or features, then a matching scheme can still be used.

The features are then building blocks of the complete patterns, and sub-

te.plates matched to features can be used (see Fig. 5). The number of

features is usually much smaller than the number of patterns that can be

composed from them, and, therefore, a sub-template matching scheme could

be an economical solution to the problem of specifying the first layer of

weights.

The problem of organizing the first layer of weights will be viewed

as one of determining such features. Some important aspects of this

problem can be illustrated by a simple example in which we construct

patterns out of the six features shown in Fig. 6. The patterns will be

formed, let us say, by combining any two distinct features from this set

of six features. Thus, for example, the pattern of Fig. 2 is formed by

the superposition of features Fi and Fs of Fig. 6. If we use all of the

combinations of two features out of the six, we get (~) ~ 15 patterns.

These are shown in Fig. 7.

We now ask the reader to forget, for a moment, the preceding dis-

cussion, and to suppose that the patterns of Fig. 7 were presented to

him in some sequence, possibly with repetitions allowed, It would not

be very long before he would discover that these fifteen patterns were,

in fact, constructed out of the six features of Fig. 6. This discovery

would enable him to organize a learning machine with six associators in

the first layer, one matched to each feature, rather than fifteen associ-

ators, one matched to each pattern. Furthermore, these features would

also be suitable for other patterns of similar structure, and thus would

provide much greater flexibility than that provided by simple template

matching. In general, if the envi ronment of presented patterns is actu-

ally structured, in the sense that there are a few basic features out of

which all the presented patterns are composed, then it is likely that

substantial advantages can be reali zed by making use of this fact in the

processing performed by the first layer of associ ators. The striking

I'

3



economies that can be obtained by appropriate organization are

demonstrated in Appendix A.

While the advantages of determining features are clear, the general

problem of finding them is not easily solved. Consider again the set of

patterns formed by superposing precisely two of the six features shown

in Fig. 6, namely, the set of patterns shown in Fig. 7. Let us renumber

the retinal cells by permuting the numbers (1, 2, ..., 25), and then

again represent all images according to the scheme of Fig. 3, but with

the new numbers assigned to the retinal cells of the image. To be spe-

cific, we take (at random) the following permutation:

Old Betinal 1 2 3 4 5 6 7 8 9 19 11 12 13 a 15 16 17 18 19 20 21 22 23 24 25
Cell.Number

New Retinal 8 15 24 25 14 17 9 1 16 21 2 11 20 22 10 13 6 3 12 7 4 19 23 5 18
Cell Number

(
!

Under this permutation the 15 patterns shown in Fig, 7 go over into

the 15 patterns shown in Fig. 8. The order of the patterns is (inten-

tionally) not the same in Fig. 8 as in Fig. 7. The actual correspondence

is as follows:

Figure 7 a b c d e f . h i j Ie i . n 0

Fi¡ure 8 a d j i h . e i 0 b n / g Ie c

Since the permutation of the retinal cells is a one-to-one transfor-

mation, it is clear that the organizational structure of the 15 patterns

of Fig. 8 is the same as that of Fig. 7, namely, there are six basic

features and each of the 15 patterns is made up by superposing precisely

two of these features.

I ., ..

Now we ask the reader to forget, for a moment, the rreceding dis-

cussion and to suppose that the patterns of Fig. 8 were presented to him

in some sequence, possibly with repetitions allowed. We invite him to

try to determine the number of basic featnres involved and their compo-

sition, working under this assumed ignorance. We believe, that he will

find, as we did, that the solution is not quite so trivial.. Of course

.
Thia problea caa, howeyer. be aolyed by a ai.ple alioritha, aa haa beea pointed out to ua by W. R. Lyaa.
For a aliihtly aore challeniiai problea. uae aa the featurea all S horizontal sad all S yertical bara.
Fora the patteraa by takiai aay yertical pI ua aay horizontal bar. The 2S patteraa thua obtained are
rearraaied oa the retiaa aa before.
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the reader might take the position that each retinal cell is a feature,

since each pattern can be constituted by superposing a subset of these.

This, however, would require 25 features, whereas we know that 6 suffice.

Alternatively, he might take each of the 15 patterns to be a feature.

This is open to the same objection. What is desired is a minimal set of

features sufficient to account for all the given patterns.

Since the abstract mathematical structures represented by Fig. 7

and Fig. 8 are isomorphic, it is clear that our ease in solving the prob-

lem of Fig, 7 as compared to the di fficul ty of Fig. 8 reflects a psycho-

logical or physiological phenomenon, rather than a mathematical distinction

between the problems.. If the environment actually consists of "bars" as

in Fig. 7, and if we know this in advance, then it is clearly advantageous

to build "bar detectors" into a recognition system for this environment of

patterns. However, if we know nothing about the structure of the patterns

in advance, then any algorithm or adaptive process that is to lead to the

determination of the features will have to be equally effective when ap-

plied to the patterns of Fig. 8 as it is to Fig. 7. Although "bars" may

be likely to occur in everyday visual patterns, there are also situations

in which nothing may be known in advance about the structure of the pat-

terns. Suppose for example that each" retinal cell" represents, not a

cell of a two-dimensional visual image but the presence of a certain

feature already abstracted at a previous stage of the process. Thus, for

example, the first retinal cell might represent the presence of a hori-

zontal bar, the second might represent a moving spot in the center of the

field, the third a shrill sound coming into the system, and so on. In

this case there may be no obvious a priori features, although the features,

or "syndromes," may exist, and we may find it very helpful indeed to know

-

--

them.

As another example of a situation in which "bars" may not be the

natural features, consider the qualitative analysis, say, of the chemical

pollutants in a river. On the first day an examination of a sample of

the water might reveal the presence of pollutant chemicals A, B, C in

excess of a normal threshold. On the second day there may be excesaive

quantities of C, V, E, F. On the third day A, B, C, G, H, I, and so on.

These finding. for 15 days might be represented by data such as shown in

Fig. 9. Here again we have 25 .. retinal cells" and 15 patterns. Now, if

it ~urn. out that the occurrence or nonoccurrence of the various chemicals

is not really independent, but in fact that daily pollution patterns can

5



be described in terms of a few features, or syndromes, then one would

suspect that there is a reason for this and investigate the cause. For

example, if a certain combination of chemicals occurs repeatedly, and if

a particular upstream factory is known to have these chemicals as waste

products, then one may be led to investigate whether this factory is

giving sufficient treatment to its effluent.

D. STATEMENT OF THE PROBLEM

Suppose that matched to each feature occurring in the set of pat.

terns there is an associator in the first layer. By observing the responses

of the associators in the first layer, we could reconsti tute the pattern

being presented. This reconstitution would be performed by combining all

features whose presence is detected..

In learning machine pattern classification tasks, it is not necessary

to reconstitute the pattern. One desires only to know to which of a rela-

ti vel y small number of categories each pattern belongs. I f the fi rst

layer of associators is to be trained to detect features, the features can

be limited to those that are most helpful in establishing tne category of

the input pattern. The number of features needed for pattern classifica-

tion might be substantially smaller than the number needed for pattern

reconstitution. Nevertheless, in this paper we shall confine ourselves to

the following question: What algorithms can be used to direct the train-

ing of a layer of associators such that they eventually become matched to

a set of features sufficient to reconstitute all of the patterns presented?

We shall begin by presenting a mathematical formulation that includes

the following more general problem: Given a set of patterns, determine a

set of features, minimal in number, such that each pattern can be formed

by the superposition of a subset of these features. Unfortunately, we

have not yet been able to find a reasonably brief algorithm to solve the

.
1\a ability to reconatitute patterna fro. featurea auiieata a .eana to trana.it a aet of hiih-
raaolution photo.rapha oyer a low-bandwidth channel. Rather than trana.it the black or white
i.for.ation about each cell i. tha reti.a (hi.h bandwidth), we trana.it only the infor.ation
re.ardin. which fen.urea are preaant and which are abaant for any particular i.a.e. At the
receiyer, the hi.h-reaolution i.a.a ia recoaatituted by co.bini.. the featurea that were
preaeat. If tha total nu.ber of faaterea for any aet of patterna ia leaa than the total
ne.ber of retinal cella, then the faature-detection technique can be a aeana for achieyin.
baadwidth reduction in an i.a.a- trana.iaaioa ayate..

~
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problem in this degree of generality. However, we shall present two

useful algorithms for the case in which the features are large compared

to their mutual overlap. Results of experiments by digital computer

simulation will be used to show that these algorithms can lead to

valuable results, even when thi s restriction is not met.

7



II MAmEATICA FORMATION

A. THE GENERAL PROBLEM

The problem of feature determination introduced in Section I can

be formulated in set-theoretical terms as follows:

Let S be a given set of points t8 ~ (n . 1,... ,N). (This represents
n

a retina of N retinal cells.) Any subset of S is called an i.age. Let

P (a. 1,... ,M) be given images. These are called the patterns. This.
collection of M patterns is denoted by ~ . tPM~ (a . 1,... ,M). A collec-

tion of K images 3 . tF.~ (k . 1,... .K) is called a set of features for ~

if each p. is the union of some s'lbcollection of the F., i.e... if for

each a there exists a ~ubset u(m) of the integers (1,... ,K) such that

P . . U F.to'(.) . ( II = 1, ... .. M) (1)

Given ~, the general problem is to find a set of features tF.~

(k a 1,... ,K) for ~ such that K is minimal.

Equation (1) will have no solution if K is too smalL. On the other
hand, if K ~ min(N,M) a solution will clearly exist: if M ~ N, take

K = M and F. - p. for k - 1,...) M; if N ~ M, take K . Nand F. . s. for

k-l,...,N.
Even if a solution to Eq. (1) exists, it may not he uni que, i. e. )

the features F. and/or the selection ~(m) may not be unique. For example,

consider the set of patterns of Fig. 7, with patterns (a), (b), (c), and

(d) deleted. If we let ~ be the remaining set of eleven patterns, then

the top horizontal bar occurs only in the presence of the right vertical

bar. Instead of using the top hori zontal bar as a feature, we could take

the top horizontal har plus any subset of the rirht vertical bar. We

shall find it convenient to normalize to the "maximal size feature"

possible. Thus, in this instance we would choose the pattern of Fig. 7(e)

rather than the top horizontal bar as our first feature. In general,

given a set of features 3 - tF.~ (k - 1,...,K), we can find a new set of

8



features 3 . O\~ (k . 1,... ,K) by taking F. as the intersection of all

of the patterns containing F.. That is,

F .. n
. ~P 2'..-

p . (k s 1, . . . , K)

Clearly, f. ~ F. and 3 is a set of features for ~.

sati sfy the equation

Furthermore, the F.

F. . n p . (k I: 1,...,K) (2 )-
. ~P .~, .

Thus, we may replace any set of features by their "hulls," which satisfy

Eq. (2),

Even with this normali zation of the features, however, the selection

o-(a) may not be unique. For example, in the case just considered, the

pattern of Fig. 7(e) can be represented either as the pattern consisting

of the feature of Fig. 7(e) alone or of the feature of Fig. 7(e) plus the

right vertical bar. Again, we shall find it convenient to noraaliie to

the "maximal set." That is, in this instance we would include both

features in the right hand side of Eq. (1). In general we shall include

in the right hand side of Eq. (1) all features contained in the pattern.

With this convention, Eq. (1) takes the form

p . . U F. ~'.5P .- . (a . 1, . . " M) ( 3)

and, if the features F. have been normal i zed, then

F. . n
.lP .~, II

p . ( k . 1, . . . ,K) ( 4)

B. A GENERAL SOLUTION

Equation (3) by itself provides a logically complete algorithm for

testing whether a given set of features satisfies Eq. (1). Consequently,

one obvious (but impractical) algorithm for solving the general problem

of Eq. (1) wi th minimal K woul d be to start wi th K . 1, (K :: 0 for

mathematicians) and examine the possibility of a solution of Eq. (3) for

all possible choices of the single feature Fi' There are 2M such cases.

9



If no solution exists for K . 1, take K . 2 and examine whether a

solution exists for all possible choices of the pair of distinct features F¡,

F2. There are (~N) . 2N-i(2N - 1) such cases. If there is no solution
for K . 2, we try K . 3, and so on. A solution will be found for

K ~ min(N,M), and the first such solution will clearly have K minimal.

Although the number of cases at each step can be substantially reduced

by considering only those choices for F, (k e 1,..., K) that sati sfy
Eq. (4), this verification itself will take some computing, and we can

hardly claim that this is a practical algorithm.

i.
i

""
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III ALGORI1S

A. THE THRESHOLD CONDITION

The general problem we have posed is that of determining a set of

features tF,J (It c 1,... ,K), minimal in number, such that

p c U F, (1I c I, ... 1M). ,. F ,æP.

where

F, . n p (It . 1,...,K).,P .;F, .

(3 )

( 4)

In words, Eq. (4) states that the intersection of all patterns sharing

a common feature is that feature. A basic problem, then, is that of

determining whether or not all the patterns in a given group of patterns

share a common feature.

Consider the simpler problem of determining whether or not two gi ven
patterns share a common feature. If they do, that feature is included

in their intersection; if they do not, their intersection contains merely

intersections of distinct features (i. e., overlaps of features). This is

illustrated in Fig. 10, where the pertinent features are assumed to be

horizontal and vertical bars. Note that in this example the size of the

intersection, i.e., the number of retinal points it contains, is large when

the patterns share a common feature, and is small when they do not. Hence-

forth we shall restrict our attention to such situations. More precisely,

we shall assume that there exists a threshold, 6, such that any two patterns

share a common feature if and only if the size of their intersection equals

_.

or exceeds this threshold.

An associator can be used to compare the size of the intersection of

two patterns wi th the value of the threshold. Consider the patterns P i and P 2'
and the associator shown in Fig. 11. The associator has been matched to Pi by

setting the values of the weights to points in Pi equal to one, and setting the
values of the weights to points not in Pi equal to zero. If P2 is pre-

sented to the retina, then the sum S gives the size of the intersection

P2nPi' If the threshold of the associator is equal to the threshold 6,
..

11



then the associator is active if and only if Pi and P2 share a common

feature.

ß.TRAI NI NG ONE ASSOCI ATOR

When such a threshold, 0, exists, a simple algorithm can be used

to train an associator so that it eventually becomes matched to a fea-

ture. Consider the set of patterns shown in Fig. 12. Suppose that

patterns Pi' P2' and P6' and only those patterns, share a common feature,

so that the feature is given by their intersection Pinp2np6' The as-
sociator can form this joint intersection by forming successive pairs of

i n t e r s e c t ion s , v i z., P 6 n (p 2 n P i ).

This result is achieved in the following way. The associator is

matched to the first pattern, Pi (see Fig. 11). The second pattern, P2

is presented. If the associator becomes active, indicating that Pi and

P2 share a common feature, then the associator is matched to the inter-

section P2 nPi; this is easily done by merely setting the value of the

weights to points not in P2 equal to zero. If the associator does

not become active, indicating that Pi and P2 have no common features, no

changes in the weight values are made. This process is now repeated

with the other patterns. Whenever a pattern presented shares a feat::re

with all pre'vious patterns that activated the associator, that pattern

also activates the associator; setting the values of the weights to

points not in that pattern equal to zero results in the associator being

matched to th~ intersection of all of these patterns.

This algorithm for training one associator can be stated mathemati-

cally as follows. Let A( i) denote the image representing the weights of

the associator after the i-th pattern has been prr:sented, and let 11111

denote the number of retinal points in any image I. Then

A(i + 1) r A ( i ) np i + i

LA(i)

if II A ( i ) np i + ill ~ 0

(i=O,...,M-l) ( i: \~ ,

otherwise,

where

A (0) ..
N

U s., (6 )
i .. i

12



It is shown in Appendix B that after the Mth pattern has been

presented, A (M) is one of the features if the following conditions

satisfied:
are

(1 ) p . . Uc
.J'.=p.

F. (II = 1, "', M) (3 )

(2 ) F. n::.iP."".
p . (k .. I, "', K) (4 )

and

1(3) -K(K - l)N .: e .: N .2 ..X. .1n - (K - l)N. ax (7)

where

N .
.1 n

min IIF .11,
(8 )

and
N
.. x

max IIF .nF .11, J (9 )
i . j
i '1 j

The first two conditions are merely statements of the basic relations

bet\1een patterns and normalized features. The third condition, the thresh-

oid condition, is a more precise statement of the fact that we are con-

cerned with pattern sets for which the size of the intersection of any two

patterns indicates whether or not they share a common feature. It is suf-

ficient (although not necessary) to guarantee that the associator will be

activated by a pattern if and only if it shares a feature with all previ-

ous patterns that activated the associator..

. The threahold condition haa been atated in . for. that will be conyenient later. If only
ODe aaaociator ia to be traiDed. thia condition c.n be relaxed by repl.cini the riiht aide
of Eq. (7) with N.in'

13



c. A SEQUENTIAL ALGORITHM

ThJ algorithm just described gives a way of determining one of the

features. The remaining features could, in principle, be determined in

the same way by permuting the order in which the patterns are presented.

(In view of Eq. 4, such an ordering is always possible.) This scheme

suffers from the di fficul ty that the number of permutations of the pat-

terns necessary to guarantee the determination of every feature (M!) will

usually be prohibitively large. If random permutations are used, it will

usually result in several associators being matched to each feature. It

seems desirable, in the interest of economy, to prevent more than one

associator from becoming matched to the same feature. This can be done

by raising the threshold of the associator being trained whenever the

pattern presented contains features al ready determined. The amount that

the threshold is raised depends upon the relation of these features to

the image of the associator being trained. To be more specific, the

threshold is increased by the size of the union of those features of the

pattern that (a) have been detected by other associators, and (b) are

contained in the image of the associator being trained.

One way to incorporate this mechanism for preventing the multiple

determination of features is to begin by training the first associator

as before. After one iteration of the patterns, the first associator

has been matched to, say, the first feature. Then the second associator

is trained, using this threshold-raising mechanism to prevent it from

also becoming matched to the first feature. After the second iteration

of the patterns, the second associator has been matched to, say, the

second feature. This procedure is continued, a new associator being

trained after each iteration of the patterns, until, after K iterations,

all of the features have been found. This algorithm is referred to as

the sequential algorithm because features are determined in sequence.

II,

'"
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This algorithm can be stated mathematically as follows. Let

Ai(M),..., Aj(M) denote the images representing the weights of the first

j associators after j iterations of the patterns. (These, of course, are

supposed to be j different features.) Let Aj+i(i) denote the image repre-

senting the weights of the (j + 1)-th associator after the presentation of

of the ith pat~ern on the (j + l)-th iteration. Let K.. be the set of
, J

integers k( 0 ~ k ~ j) defined by

K. .
, J

- tk; O~k~j IIA,,(M) np¡11 ~ e A.(M) ; Aj(i)ì (0)

Then

Aj+i(i+l) - rAj+l(i) nPi+i

LA;+! (i

if II A j +1 ( i) np i + 111 ~ e + II A.(M) II
hKi+l,j+1

u
(ll)

otherwise,

(i = 0,..., M - 1

j=O,...,K-l)
where

Aj+1(O) -
N

U S ii-I
(2)

15



It is shown in Appendix B that the conditions given by Eqs. (3), (4),

and (7) are sufficient to guarantee that after K iterations of the pat-

terns, the images Ai(M), ..., Ai(M) will be the K features Fi' "', FK'

It should be emphasized that of these conditions, it is the thresh-

old condi tion,

1- K(K - UN c: 8 c: N .2 ... = .iD - (K - I)N.. . (7 )

that limi ts the generali ty of the resul ts. It should also be noted that

this condition was obtained by a "worst-case" analysis; in many situations

the algorithm can be used to find useful features even though this con-

dition is not met.

i

D. A PARALLEL ALGORITHM

Instead of training the associ ators one after another, we can obtain

the features more rapidly by training several of the associators at once.

One algorithm for such a training procedure starts with a single associator

as before, and introduces new associators whenever they are needed for

reconstitution. After a pattern has been presented and the weight changes

have been made, a test is made to see if the union of the images of the

active associators reproduces that pattern. If it does, the next pattern

1S presented. If it does not, a new associator matched to that pattern

1S introduced, and then the next pattern is presented.

This procedure for training several associators, which is referred to

as the parallel algorithm, begins by matching the first associator to the

first pattern. Suppose that, at the ith step, j associators are being

trained. (At the second step, one associator is being trained.) Let

Ai(i), ..., Aj(i) denote the corresponding images. When pattern P,+i is

presented, the new images are determined as follows:

(2 )

Ai is active if and

active, Ai(i + 1) =

Ai(i ~ 1) . Ai(i).

A2 is active if and only if IIA2(i)np'+111 ~ 8 + 82"

82 . IIAi(i + 1) II if (a) Ai is active, and (b)
C

Ai(i + 1) . A2(i); otherwise, e2 . O. If A2 is active,

only if IIAi(i) np'+111 ~ 8.

Ai(i)np,+i; if Ai is inactive,

If Ai is(1 )

Here,

16



(3 )

A2(i + 1) .. A2(i),nPi+i
A2(i + 1) = A2(i).

In general, Ai is active if and only if I!AI(i)npi+ill ~

6 + 61. Here, 61 = II U A.(i + 1) II, where keKI if and. tKu . Conly if (a) A. is active \k .: l) and (bl A.(i + 1) . Ai(i).
If Ai is active, Ai(i + 1) . Ai(i) npä+i i if Ai is inactive,

Ai(i + 1) . Ai(i).

if A2 is inactive,

After the j new images have been found, the union of the images of

the active associators is formed. If this union yields pattern Pi+i'

then the next pattern is presented. If it does not, a new associator

matched to this pattern is introduced, and then the next pattern is

presented. This procedure is continued for as many iterations of the

pattern set as is needed to obtain the features.

The example given in Fig. 13 illustrates the operation of this

algorithm. Except for numbering, the six patterns involved are the same

as those shown in Fig. 12. The threshold 6 is taken to be three. The

procedure begins by matching Ai to Pi' Next, P2 is presented, and since

IIAi (1) np211 . 10 ~ 3, Ai is active, and Ai (2) . Ai (1) r12. Since P2
can be reconstituted by Ai' P3 is presented. P3 also activates Ai, and

Ai(3) . Ai(2)np3. Now, however, P3 can not be reconstituted by Ai alone,

and a new associator A2 matched to P3 is introduced. The presen~ation

of p. activates Ai' and its image, Ai(4), is reduced to the lower hori-

zontal bar. Since Ai is active and Ai(4) ç A2(3), the threshold for A2

is raised to 3 + IIAi(4) II = 8; this prevents A2 from becoming active,

and thus prevents its image from being reduced to the same lower hori-

zontal bar. The pattern p. can not be reconstituted, and a new associ-

ator A3 matched to p. is introduced. The remaining steps are performed

similarly, and the four features are found in less than two iterations

of the pattern set.

The parallel algorithm often yields a set of features in fewer than

the K iterations of the patterns required by the sequential algorithm.

This speed is gained by training new associators before old associators

have determined a feature. This complicates the action of the threshold-

raising mechanism, however, and frequently leads to the determination of

more features than are needed for reconstitution.

11



E. SELECTION OF THE THRESHOLD

In order to use either the sequential or the parallel algorithm, we

must know the value of the threshold, e. I f the features were known, a

threshold for the sequential algorithm could be obtained from the bounds

given by Eq. (7). However, the determination of the features is our goal;

furthermore, even if Eq. (7) can not be satisfied by any value of e, there may well

exist a threshold for which the algorithm will disclose a set of useful features.

An efficient, generally applicable method of determining such a threshold has

not yet been found. However, it is often practical to repeat the procedure

for several values of e, and to select that value that gave the best results.

For example, consider the twenty-four patterns shown in Fig. 14. These

patterns were constructed from seven features--hori zontal, verti cal, and
diagonal bars. (For these features, incidentally, Eq. (7) can not be

satisfied by any value of e.) The results of using the parallel algorithm

with a threshold of oné are shown in Fig. 15. Of the fifteen features

found, the seven largest features are sufficient to reconstitute all of the

patterns. Similar results were obtained with a threshold of two (see

Fig. 16). Higher thresholds led to features with excessive overlap, and

poorer results; however, the features obtained using the lower thresholds

are clearly useful.

..
'-,
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iv CONCLUDING COMMENTS

In this paper we have investigated feature determination as a method

of training the first layer of weights in a two-layer learning machine.

The problem was viewed as one of examining a set of patterns and deter-

mining a set of simpler patterns, or features, so that each of the original

patterns can be formed by superposing the features. While the general

problem of finding a minimal set of features was not solved, two algorithms

were given that solve the problem for restricted pattern sets.

These results suggest several other problems worth further study.

On the other hand, one can seek useful algorithms that apply to less re-

stricted or even unrestricted pattern sets. On the other hand, one can

seek useful algorithms for pattern sets containing topological constraints

characteristic of special patterns, such as visual patterns. In either

case, the effects of noise and small distortions must be investigated to

ensure the practicability of this approach. Finally, attention should be

given to the problem of determining those features most valuable for pat-

tern classification. A good solution to this problem would be a maJor

contribution to the theory of self~organizing systems.
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APPENDIX A

FETIE DETECTION AN EFFICIENT MA()INE ORGANIZATION

The purpose of this appendix is to show how the utilization of

features may result in a much more efficient use of associators. We shall

compare three different organizations of associators which can correctly

categorize some simple patterns. The patterns will be formed out of

straight-line features, and will be presented to a retina for which the

gridwork is very fine.

Consider first the six lines shown in Fig. A-I. We shall call these

the II ideal features." We shall form the set of II ideal patterns" by com-
bining any three out of these six ideal features. Thus there are

(~) . 20 ideal patterns, one of which is illustrated in Fig. A-2.

Now we introduce a complication. Suppose that the artist who is

sketching the patterns is somewhat sloppy in positioning the features.

For example, he might slightly displace or slightly rotate any given

feature. In addi tion, he might sketch by making more than one try at

drawing a given ideal line. Thus, for instance, in attempting to sketch

the pattern of Fig. A-2 he might start by sketching the upper horizontal

line of Fig. A-l(a). Figure A-3 shows five lines, anyone of which might

be the outcome of his effort to draw the top hori zontal line. Let us call

these five lines "equivalent representations" of the ideal line of

Fig. A-l(a). Similarly, suppose that each of the six ideal lines of

Fig. A-I has, say, five equivalent representations. Thus a given ideal

pattern, such as Fig. A-2, might be represented by anyone of (25 - 1)3

actual patterns, one of which is shown in Fig. A-4.

We shall also be interested in the case in which the artist is re-

stricted to draw only a single line in his attempt to denote any ideal

feature of Fig. A-I (" drawing" rather than II sketching"). In this case,
in attempting to draw Fig. A-I(a), he could use only one of the five lines
in Fig. A-3. Then a given ideal pattern, such as Fig. A-3, can be repre-

sented by anyone of 53 actual patterns. For brevity, let us call this

Case (b), and the case considered above, in which the artist can use any

20



one or more lines, Case (a). Thus, although there are only

patterns, there are actually 20(25 - 1)3 ~ 6-' 105 di,stinct
might be presented to the retina in Case (a), and 20 . 53 s

patterns in Case (b).

(~) = 20 idealpatterns that
2500 distinct

Suppose that we have available associators having an arbitrary number

r of inputs, each with weight +1, and a threshold, e. If e = r, the asso-

ciator responds if and only if all of its inputs are active; if e = 1, it

responds if and only if at least one of its inputs is active.

We now consider a system having for its input a retina on which the

patterns will be proj ected, and having for its output twenty associators

of the type described, corresponding to the twenty ideal patterns. It is

desired that when any representative of an ideal pattern is shown to the

retina, the corresponding associator should become active; otherwise it

should remain inactive. The problem is to form a network of associators

to accomplish this task. We shall examine three solutions and compare

them as to the number of associators and the number of connections used.

For the purpose of computing the number of connections, we assume

for simplicity that the number of retinal points in each ideal feature is

a constant, p, and that thi s is al so the number 0 f retinal points in each

equivalent representation of any ideal feature. Let lip, II denote the
number of retinal points in the ith pattern. Then, in Case (a),

3p ~ lip, II ~ 15p, and in Case (b), lip, II ~ 3p.

For Case (a), one such solution (Solution I) is shown in Fig. A-5, where the

ith "internal" associator has a threshold of lip .11 and has connections,
with unit weights to all of the retinal points of the ith pattern. Thus,

each of these associators is activated by a particular pattern on the

retina. Each output associator has a threshold equal to one, and connec-

tions of unit weights to those internal associators which represent the

same ideal pattern. Thus each output associator is acti ve in response to
its" equivalenCie class" of patterns, as required.

This arrangement requires 20(25 - 1)3 associators (we shall not count

the twenty" response" associators, since they must be present in any system,

and we are interested in comparing systems). The number of connections is

6 . 5 . (~)P(25 - 1)2 . 24 ~ 4.6p . 106 in the first layer, and 20(25 - 1)3

in the second layer of connections. If we let NA denote the number of
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8ssociators used (not counting response units), and Nc the number of

connections, we have for this arrangement

NA 20(25 - 1)3 ~ 6 . 105 (A-h)

Nc 6 . 5 . (:)P(25 - 1)2 . 2l + 20(25 - 1)3 ~ 4.6p . 106

(A-lb)

An economy can be effected by considering the Case (b) and using a

similar arrangement, where now there are only (3) 53 patterns to be con-

sidered. Here

NA
(:) 53

2500

and

Nc . 2500(3p + 1)

(A- 2 a)

(A-2b)

It is easy to see that this arrangement also solves Case (b), and we call

i t So lu t i on I i.

A much more economical solution (Solution III) may be obtained by

having each associator of the first layer respond to a particular real-

ization of a line feature (see Fig. A-6). Each associator of the second

layer represents the presence of a particular ideal feature, and the

aS8ociators of the thi rd layer (the responses) are acti vated by any repre-

sentati ve of the corresponding ideal pattern.. The threshold in the first

layer is Pi the number of retinal points in a feature. There are

6 . 5 . 30 associators in the first layer and six in the second. Hence

NA . 36 (A-3a)

The number of connections in the £i rat set is 30p, in the second

6 . 5 = 30, and in the thi rd 3 . 20 . 60. Hence

Nc . 30p + 90 (A-3b)

. I. thi pirticalir probl.. biia, diicuiiid, tbe lirlt Iiyir 01 iiiociitori could bi ili.iaitid by coa.ictia,
iicb iiiociitor'ol tbi iicoad Iiyir to tblt pirt 01 tbe ritiai co.iria, I Iiituri lad iti "perturbitioa."
II tbi Illturl .iri IIII diijoiat, bo.i.ir, tbii .ithod .i,ht Iiil. We ibill Dot diicnii it lurther heri.

,.
¡
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A comparison of Eqs. (A-h) and (A-lb) with Eqs. (A-2a) and (A-2b),

and (A-3a) and (A-3b) shows the enormous savings that may be realized as

a result of appropriate organization. The principle of "early

generalization" to effect such economies has been pointed out by

Rosenblatt. 
3

To compare these three types of organi zation in the general case,

let the number of ideal features be F, and let the ideal pattern be com-

posed by the superposition of precisely f ideal features. Let E denote

the number of equivalent representations of each feature. Then for the

three types of organization discussed above, the results are as follows:.

ORGANIZATION
HA He

TYPE

I
e) (2£ - 1)f

pEF e ~ ~) 2£-1(2£ - 1)f-l + C) (2£ - 1)f

II
C) £f

(fp + 1) C)Ef

III F(E + 1) EF(p + 1) + f e)

Even more impressi ve economies are possible if the structural organ-

ization of the patterns is hierarchial. To illustrate this, let us elab-

orate the previous problem. Suppose that the patterns described above

represent" letters" in an alphabet of twenty letters. Suppose the retina

is extended to four times its original width, so that four-letter words

of this alphabet can be placed on it (see Fig. A-7).

Suppose further that each letter can be positioned in each box in,

say, seven ways. Although there are now 20. = 160,000 ideal four-letter

words, there are actually 20. . 74. (25 - 1)12 ~ 3' 1026 distinct pat-

terns that are possible on the enlarged retina in Case (a), and

20. . 7. . 512 ~ 9 . 1016 in Cas~ (b). We suppose that we have as re-

sponse uni ts associators corresponding to each ideal four-letter word on

the retina. It is desi red to construct a system of associators such that

when any particular representation of an ideal word is placed on the retina,

the response uni t that corresponds to that ideal word becomes active and

all others remain inacti ve. Again we consider three types of solution,

analogous to the previous example.

~.

. Note tbat HA doea Dot iDclude tbe Du.ber of re.poD.e uDit., .iDce tbe.e .u.t be u.ed iD any ca.e. He'

boweyer, doe. iuclude tbe cODDectioD. to tbe re.pOD.e uDit..
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For Solution I we Use an internal associator for each distinct pat-

tern and then combine them into words, as shown in Fig. A-B. Here the

number of associators used is

NA = 204 . 74 . (25 - 1)12 ~ 3 . 1026 (A- 4a)

and the number of connections is

Nc . p . 4 . 5 . 7 . (~) (25 - 1) 224 L (:) (25 - 1) ~ 3 + N A

'"
a (3lp + 1)NA

'"
.. p . 1028 (A-4b)

where, as before, p represents

line feature of Fig. A-I. The

ciator is lip .11, where lip .11i i
four-letter word. Clearly, in
lip, II "' 12p.

the number of retinal points in an ideal

number of inputs to a fi rst-l ayer asso-
is now the number of points in the ith

Case (a) 12p ~ lip, II ~ 60p; in Case (b),

For Solution II we use a similar arrangement, but start instead with

Case (b). It is easy to see that this arrangement will also solve Case (a),

but now only 204 . 74 . 512 internal associators are required in the middle

layer. There will be 12p . 204 . 74 . 512 connections in the first set,

and 204 . 74 . 512 connections in the second. Hence we have in this case

NA 204 . 74 . 512 ~ 1017 (A-Sa)

and

Nc . "-i 18
(12p + I)N A .~ P . 10 (A- Sb)

A much greater saving can be achieved if we organize the system so

as to reflect the organization of this particular environment of patterns.

This is illustrated in Fig. A-9. Here the first layer consists of asso-

ciators that respond to a particular representation of a given line

feature in a given box in a gi ven posi tion in the box. Thus there are
4 . 6 . 5 . 7 . 840 such associators. In the second layer, the five

equivalent representations of a given line feature in a given box in a

given position are combined to represent the ideal line in a given box

in a given position in the box. The third combines the ideal lines into l
I
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ideal letters in a given box in a given position in the box. The fourth
layer combines the seven possible posi tions of a gi ven ideal letter in a

given box. The fifth layer is the response units. The number of internal

associators used in this system is therefore

NA 4'6'5'7 + 4'6'7 + 4'20'7 + 4'20 . 1648

(A-6a)

and the number of connections is

Ne .. 840p + 5'168 + 3'560 + 7'80 + 4'20'

840p + 643,080 (A-6b)

The enormous saving is evident. To compare the three types of organ-

i zation in general, let L denote the number of letters in a word and P

the number of ways in which a given letter can be positioned in a given

box. With F, t, and E as defined earlier, the results are as follows:

ORGANIZATION
NA NeTYPE

t) P(2' - iJ (F - 1) ~ C) ji-iI pEFPL f - 1 (ZE - 1)/-i2E-i P f (2E - 1)1 + NA

II
~:) PEII

((Lp + l)NA

III Lfp(E + 1) + (;) (P+1~ +E(P' 1) . . (:) (f . 1) . (:) 'J

Another advantage to the organization of Solution III is that the

number of inputs to a given associator is reduced. (Ct. Fig. A-5 with

Fig. A-5, and Fig. A-8 with Fig. A-9.) If we think of the model as repre"

senting an industrial organization, with associators representing

decision-making individuals, then, in view of the natural limitations of

human capacity for handling information, such a reduction of input data

may be essential for the individual's mental health.

In order to achieve the advantage of matching the organizational

structure of the system with that present in the environment of the pat-

terns, it appears that one must be able to either determine the structure
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of the environment and design the system accordingly, or else formulate

reinforcement rules by means of which the system will adapt its struc-

'ture to that present in the envi ronment. Since the patterns of active

uni ts at any given layer themselves represent input patterns to the sub-
sequent layer, the algorithms developed can be used to find the features

of the" patterns" in any given layer.

~
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APPENDIX B

CONGENCE PRO Fæ TH SEQUIAL ALGORITH

This appendix contains the convergence proof for the sequential

algorithm. As before, we let S = tsn! (n = 1,...,N) denote the set of

retinal points and ~ = tP ! (m = 1,... ,M) denote the set of patterns..
We assume the existence of a set of features 3 = tF,! (k = 1,... ,K)

such that

p . U F,. U F .~p.

and

F. . n p.
.~P.'iF,

(m . 1,..., M) ( B- 1 )

(k . 1,..., K) ( B- 2 )

and the existence of a threshold e such that

1- K(K - UN .: e2 ..ax
where

N ... i n

and

N II a x
.

.:. ( B- 3 )IV ... i n - (K - UN .. a x

min
i

IIF.II,
( B- 4 )

max IIF.nF.11, J ( B- 5 )
i . j
i, j

The algorithm is most conveniently stated in two parts. Let Ai(i)

denote the image representing the weights of the first associator after

the ith pattern has been presented. Then the algorithm for changing

the weights of the first associator is

Ai(i + U . r Ai(nnPi+i

LAi(i)

if IIAi(i)nPi+ill ~ e

( B- 6 )

ot herwise
(i = O,...,M- 1)
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i

whe re

Ai(O) .
N

U S
n" i n

( B- 7 )

The presentation of all of the M patterns is called an iterat ion of
the patterns. Let A i (M), ..., A j (M) denote the images representing the

weights of the first j assor.iatQrs after j iterations of the patterns.

Let Aj+i(i) denote the image representing the weights of the (j + 1)-th

associator after the presentation of the ith pattern on the (j + l)-th

iteration. Let K,. be the set of integers k(O c: k c: j) defined by1 ) i .

K. .I)
.. ik ; o c: k c: j , II A. (M) n P ¡ II ~ e ,

c
A.(M) - Aj(i)) . ( B- 8 )

Then the algorithm for changing the weights of the (j + l)-th associator is
--

Aj+i(i+l) - r Aj+ i( i)nPi+ i

L Aj+i(i)

if IIAj+I(OnPi+ill ~ e + II U A.(M) II
.I!K i+i,j+i

otherwise ( B- 9 )

(i-O,...,M-1)
(j"l,..,K-l)

where

Aj+I(O) -
N

Un" I
S

n
( B- 10 )

We shall show that if conditions (B-1), (B-2), and (B-3) are satisfied,

then, after K iterations, the images Ai(M), ..., A.(M) are the features

FI' ..., F.. We shall first show that after one iteration Ai(M) is a

feature, and we shall then show that, after j + I iterations, Aj+I(M) is

a feature other than A i on, ..., A j (M).

Part 1. Convergence of A i

We begin by repeating the algorithm for Ai,

Ai(i+l) - r Ai(i)np¡+i

LAi(i)

if IIAi(i)np¡+ill ~ e

(i - O,...,M - 1) ( B- 6 )

otherwise
,

!.
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i ~- -

where

Ai(O) '"

N

U sn'" 1 n
(B- 7)

From Eq. (B- 3) ,

IIAl(O)np111 . IIP111
~
'" N ... 1 D

~ 8

so that

Ai(i) PI ( B- 11 )

If at the (i + l)-th step IIAi(i)nPi+ill ~ 8, we shall say that

Pi+i activates Ai' Thus, at the first step Pi activates Ai' Let the

first n patterns that act i vate A 1 be denoted by P. , ..., P. . Theni 1 i n
after step in

A1(in)
n

n P.j.l i j ( B- 1 2 )

De fin e i n + 1

countered.
.. i n

+ 1, so that at the next step, pat tern P.In + 1 is en-

One of two cases can arise:

Case (a): P. , ..., P. have at least one common feature.
i i I

n + 1

Case (b): P., ..., P. have no common features.
i 1 i

n + 1

Case (a)

Let F 1 be a feature common to P. ,i 1
... , P. .

In + 1
Then

F 1
c.

n + 1

n P.j'" 1 i j
( B- 1 3 )

and, from Eqs. (B-4) and (B-9),

IIAi(in)nPi II
n + 1

~
'" II F 111

~. N .
111 D

~ 8 ( B- 14)

Thus, in Case (a), P. activates AI'
In + 1
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Case (b)

Leaaa 1:

Let 1 j be a subset of
let the collection of sets

integer is in every set of

collection of point sets.

the set of integers (i) (i . 1"..,K), and

(1.) (j . 1"." m) have the property that no) -
integers. Let 3 = (F.) (k . 1"., ,K) be a

Then

S' 8 uj 8i (~/~
c
=

i-i I
II, II F.nF.¡'-i j'-l i ) ( B- 15 )

Proof: Let s € S'. Then s cannot be a member of one and only one

the sets of 3, for, were it so, there would be an 1. such that s ~
)

and hence s ~ S'. Thus 3 (i,j), i ~ j, .s€ F¡ and s € Fj' Thus
s. € F ¡ nFj, and, since all possible pairs of intersections appear
right side of Eq. (B-15), the lemma is proved.

of

U F,¡ ~ I. i
)

in the

Now suppose that P ¡ , .,., P ¡ have no common features.i n + 1
from Eqs. (8-9) and (B-1) and the lemma,

Then,

n+ i
Ai( i )npi' . n Pi'n n+l j8i j

n+i ~ )
. n U F.j81 ¡.'.'8P. '

1- I.
)

1-1 K

~ 'l)i ~ul. F¡nFji ~i
(B-16 )

and

IIAi(in)np¡ II
n + i

c:-
K- 1 I

II ¡Vi YJ¡ F¡nFj II

c:-
K- 1 I
r r IIF.nF.11¡-ij~¡ iJ

c:8
i-i I
r r N
¡-i j~¡ ..11

1- -K(K-l)N2 ..11
0: e ( B- 17)

Thu8, in Case (b), P. does not activate Ai'In + i
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It follows that Pi activates A 1 if and only if the patterns
n + 1

(pi, ..., Pi ) have at least one feature in common~ After M steps,1 n + 1
let (Pi, ..., Pi ) be the set of patterns that activated A l' and let1 no
F 1 be one feature they share. Then

A 1 (M) ,.

no

n p.j " 1 ' j
(B-18 )

C
But F1" Pi. (j" 1""'"0)' and F1 is not contained in any other pattern.

J
Thus by Eq. (B-2),

A 1 (M) F 1 ( B- 19 )

Part 2. Convergence of A j + 1

We begin by repeating the algori thm for A j + l'

Aj+1(i + 1) ,. r Aj+1( dnPi+1

lAj+1( d

if IIAj+1( dnPi+111 ~ () + II U A.Un IIHKi+1,j+i
( B- 9 )

otherwse

(i" O,...,M - 1)

(j ,. 0,... ,K - 1)

where

Aj+1(0) ,. ù S
n == 1 n

( B- i 0 )

and

K. .
, J

" (k ; o .: k .: j , IIA.OO nPi \I ~ e ,
c .

A. (M) ,. A j ( i) ) ( B- 8 )

Suppose that the algorithm has operated successfully for A l' .... Aj
and we are starting the (j + 1)-th iteration. Then Ai(M), ..., Aj(M)

are j distinct features; for convenience we number them so that

Ai (M) ,. F., (i . 1,...,j) (B- 20)
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If at the (i + 1)-th step

IIAj+1(i)nPi+111
;:. () + II U A It (M) II

ItEl'i+1.j+1

we shall say that Pi+1 activates A'+l' Let the first n patterns thatJ .
activate A. + 1 be denoted by p. , ..., Pi' Then after step inJ i 1 n

Aj+1(in) = rî P.1=1 i I
( B- 21)

Define in+1 . in + I, so that at the next step pattern P.i n + 1

teredo One of two cases can arise:

is encoun-

Cau (b):

Pi , ..., Pi have at least one common feature,1 n + 1
besides perhaps some or all of F¡, ..., Fj'

Pi' ..., Pi have no common features, besides1, n + 1
perhaps some or all of F1' ..., Fj'

"

Case (a):

Before considering these cases in detail,we shall establish some

useful facts.

Lemma 2:

II F. np. II ~ () if a nd on 1 y ifF. i; P..i J i J
Sufficiency: C

IfF, . p" then F, n P. . F., andi J i J i
f "-

Necessi ty:

IIFinpjl1

1 P.,
J

. IIF¡ II ~ NmiD ~ ()

If F.i then F.np. i F.n(U F.), andi J i j;i. J
IIF,nPJII ~ ii,~ F,nFjll ~ '~j IIF¡nFjll ~ (K - i)Nux

i
i, IIF, nPj II . 0 (8. If K ~ 2, '2 K ~ i, andIf K .

IIF,npjll ( i. -K(K - l)N ~ 82 .ax Q.E.D.'. N
By adopt i.. tb. CODnllt ioD " . rr, we OaD .nid tll ...d for a a.pirau proof tbat 1- pau.rn

i :ti"
will loth-iU AJ+l'
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Consider now the set of integers K. '+1'
'n+1oJ

K, '+1
'n+ 1 oJ . (k ;

O(k(j+l, IIAIt(M)np. II ~ (), AIt(M) ~ AJ'+1(in+1))
'n + 1

From Eqa, (B-20) and (B-2l), and Lemma 2, we can write this as

K, '+1
'n+ 1 oJ = ( k ;

O-:k-:j+l, CFit '" p, ,
, n + 1

F ~ rîIt 1=1 P. )
, I

( B- 22 )

Let FC denote the union of all of the features from F l' "., Fj

that are common to p, ,
, 1

..., P. .
, n + 1

Clearly

K, '+ 1
'n+1oJ

tk ; F ~ FC)
It

( B- 2 3 )

and

U A It (M)HI'. '+1
'n+1oJ

= FC ( B- 24 )

Case (a)

In Case (a), Pi , ..., Pi have at least one common feature,1 n + 1
besides perhaps some or all of F l' ,.., Fj' which we number as Fj +1'

Then

p,
, I

'"
i i

PUFj+1UF (Z '" l,...,n + 1) (B- 25)

i
where F i is the union of those features in P, and not in FC UF., Then, i J
at step in+1' it follows from Eqs. (B-21), (B-25), (B-24), and (B-20)

that
n + 1

IIA'+l(i )np, II = II n P. IIJ n 'n+1 1=1 'i . II (Fc U F j + 1) U

n + 1 .

n F'I II
1=1

~ IIpUFj+111 '"
lip II + IIFj+111-IIFCnFj+111

~ IIFcII+N,m i D -II U FltnFj+111
itEr, '+1

'n+ 1 oJ

~ lip II + N .II i D - (K - 1)N '
. i D

(B- 26)
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and thus, from Eqs, (B-3) and (B-24), that

II A j + 1 (i n ) n P ¡ II ~ 8 + II U A It (M) IIn + 1 /tl' , ' + 1
'n+1oJ

(B-27)

Thus, in Case (a), p,
'n + 1

activates Aj+1'

Case (b)

In Case (b), Pi ' .." Pi1 n + 1
haps some or all of F1, .." Fj'

have no common features, besides per-

Then

p,
, I

. FCUFi I (Z . l,...,n + 1) (B- 28)

i
where F i is the union of features in P,

, i

the F¡ i have no common features, Then at

Eqs, (B-21) and (B-28), and Lemma 1 that

and not in FC, In particular,
step in+!, it follows from

IIA'+l(i )np, II1 n 'n+1
n + 1

II n Pi IIi'" 1 I

- IIFc U

n + 1 .

n F'I II
1-1

n + 1 '

~ lip II + II n F'I II
i'" 1

1'-1 I'
~ IIFc II + II ,Vi ,'I, F ¡ nFj II, l¥'

1'-1 I'
~ IIFc II + ~ ~ IIF, nF ,IIi-1j;:¡ , 1

1
~ IIFc II + - K(K - 1)N2 .. x

and thus, from Eqs. (B-3) and (B-24), that

Thus, in

IIA '+ 1 (i ) np. II ( () + II U Ait (M) II1 n 'n+l itEr. '+1
'n+ 1 .J

Case (b), P. does not activate AJ'+l'
'n + 1

( B- 2 q )

34



It follows that Pi activates A '+1 if and only if the set of patternsn + 1 )
tP, ".. ,P. ) have at least one feature in common, not counting the fea-'i 'n+l
turesthat have already been detected by Ai, ..., Aj' After M steps, let

tp¡ ,...,p¡ ) be the set of patterns that activated A)'+l' and let F)'+l be1 no
one feature besides F l' ..., Fj that they share. Then

Aj+i(M) =

10

n P.
1=1 ' I

(B- 30)

But Fj+l s: Pi 
i (l '" l'''''lo)' and Fj+l is not contained in any other

pattern. Thus by Eq. (B-2),

Aj+ion .. F j + 1 ( B- 31)
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FIG.2 REPRESENTATION OF A PATTERN BY AN IMAGE ON A RETINA
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FIG. 3 SCANNING CONVENTION
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FIG, 10 INTERSECTIONS OF PATTERNS

mnll=.
P2 Pi P2 n Pi

!.'
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FIG, 11 THE IMPLEMENTATION OF THE INTERSECTION OPERATION BY AN ASSOCIATOR
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FIG. A-2 AN IDEAL PATTERN
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FIG. A-3 EQUIVALENT REPRESENTATIONS OF AN IDEAL FEATURE
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