
A MOBILE AUTOMATON: AN APPLICATION

OF ARTIFICIAL INTELLIGENCE TECHNIQUES

Nils J. Nilsson
Stanford Research Institute

Menlo Park, California

January 1969

(Preliminary draft submitted for approval to the
International Joint Conference on Artificial
Intelligence, 7-9 May 1969, Washington, D.

A MOBILE AUfOMTON: AN APPLICATION

OF ARTIFICIAL INTELLIGENCE TECHNIQUES

Nils J. Nilsson

ABSTRACT

A research project applying artificial intelligence techniques to the

development of integrated robot systems is described. The experimental

facility consists of an SDS-940 computer and associated programs control-

ling a wheeled vehicle that carries a TV camera and other sensors. The

primary emphasis is on the development of a system of programs for process-

ing sensory data from the vehicle, for storing relevant information about

the environment, and for planning the sequence of motor actions necessary

to accomplish tasks in the environment. A typical task performed by our

present system requires the robot vehicle to rearrange (by pushing) simple

objects in its environment.

A novel feature of our approach is the use of a formal theorem-proving

system to plan the execution of high-level functions as a sequence of

other, perhaps lower level, functions. The execution of these in turn

requires additional planning at lower levels. The main theme of the

research is the integration of the necessary planning systems, models of

the world and sensory processing systems into an efficient whole capable of

performing a wide range of tasks in a real environment.

KE WORDS

Robot

Robot System

Visual Processing

Problem Solving

Question Answering

Theorem Proving

Models of the World

Planning

Scene Analysis

Mobile Automaton

ACKNOWLEDGMENT

At least two dozen people at the Stanford Research Institute have

made substantial contributions to the project that the author has the

good fortune to describe in this paper. All of us express our apprecia-

tion to the Rome Air Development Center and the Advanced Research Projects

Agency who supported this research.

iii

INTRODUCTION

At the Stanford Research Institute we are implementing a facili ty

for the experimental study of robot systems. The facility consists of a

time -shared SDS-940 computer , several core -loads of programs , a robot

vehicle and special interface equipment.

Several earlier reports
l* and papers2-4 describing the project have

been written; in this paper we shall describe its status as of early 1969

and discuss some of our future plans.

The robot vehicle itself is shown in Fig. 1. It is propelled by two
stepping motors independently driving a wheel on either side of the vehicle.

It carries a vidicon television camera and optical range-finder in a mov-

able "head. Control logic on board the vehicle routes commands from the

computer to the appropriate action sites on the vehicle. In addition to

the drive motors, there are motors to control the camera focus and iris

set tings and the til t angle of the head. (A motor to pan the head is not

yet used by present programs. Other computer commands arm or disarm

interrupt logic , control power switches and request readings of the status

of various registers on the vehicle. Besides the television camera and

range-finder sensors , several "cat-whisker" touch-sensors are attached to

the vehicle t s perimeter. These touch sensors enable the vehicle to know

when it bumps into something. Commands from the SDS-940 computer to the

vehicle and information from the vehicle to the computer are sent over

two special radio links, one for narrow-band telemetering and one for trans-

mission of the TV video from the vehicle to the computer.

* References are listed a t the end of this paper.

FIG. THE ROBOT VEHICLE

The purpose of our robot research at SRI is to study processes for

the real-time control of a robot system that interacts wi th a complex

environment. We want the vehicle to be able to perform various tasks

that require it to move about in its environment or to rearrange objects.

In order to accomplish a wide variety of tasks rather than a few specific

ones , a robot system must have very general methods. What is required

the integration in system of many of the abilities that are usually

found separately in individual Artificial Intelligence programs.

We can group most of the needed abilities into three broad classes:

(1) problem-solving, (2) modelling, and (3) perception:

(1) Problem-Sol ving

A robot system accomplishes the tasks given it by performing

a sequence of primitive actions, such as wheel motions and camera readings.

For efficiency, a task should first be analyzed into a sequence of primi-

tive actions calculated to have the desired effect. This process of task
analysis is often called planning because it is accomplished before the

robot begins to act. Obviously in order to plan , a robot system must

know " about the effects of i ts actions.

(2) Modelling

A body of knowledge about the effects of actions is a type of

model of the world. A robot problem-solving system uses the information

stored in the model to calculate what sequence of actions will cause the

world to be in a desired state. As the world changes , either by the

robot' s own actions or for other reasons , the model must be updated

record these changes. Also new information learned about the world should

be added to the model.

(3) Perception

Sensors are necessary to give a robot system new information

about the world. By far the most important sensory system is vision

since it allows direct perception of a good sized piece of the world

beyond the range of touch. Since we assum that a robot system will not

always have stored in its model every detail of the exact configuration

of its world and thus cannot know precisely the effects of its every

action , it also needs sensors with which to check predicted consequences

against reality as it executes its plans.

The integration of such abilities into a smoothly-running,

efficient system presents both important conceptual problems and serious

practical challenges. For example , it would be infeasible for a single

problem-solving system (using a single model) to attempt to calculate the

long chains of primitive actions needed to perform lengthy tasks. A way

around this difficulty is to program a number of coordinating "action-

uni ts " each with its own problem-solving system and model and each re-

sponsible for planning and executing a specialized function. In planning

how to perform its particular function , each action-uni t knows the effects

of executing functions handled by various of the other action-units. Wi

this knowledge it composes its plan as a sequence of other functions (with

the appropriate arguments) and leaves the planning required for each of

these functions up to the action-units responsible for executing them at

the time they are to be executed.

Such a system of interdependent action-units implies certain

addi tional problems involving communication of information and transfer

of control between units. When such a system is implemented on a serial

computer with limited core memory, obvious practical difficulties arise

connected with swapping program segments in and out of core and handling

interrupts in real time. The coordinated action-unit scheme serves as a
useful guide in explaining the operation of our system , even though

practical necessities have dictated occasional deviations from this scheme

in our implementa tion In the next section we shall discuss the problem-

solving processes and models associated with some specific functions of

the present SRI robot system.

SOME SPECIFIC FUNCTIONS OF TH ROBOT SYSTEM AND THIR ASSOCIATED

PROBLEM-SOLVING PROCESSES AND MODELS

Low Level Functions

The robot system is capable of executing a number of functions

that vary in complexity from the simple ability to turn the drive wheels

a certain number of steps to the ability to collect a number of boxes by

pushing them to a common area of the room. The organization of these

functional action-units is not strictly hierarchical , although for de-

scriptive convenience we will divide them into two classes: low level and
high level functions.

Of the functions that we shall mention here , the simplest are

certain primitive assembly language routines for moving the wheels , til t-
ing the head , reading a TV picture and so on. Two examples of these are
MOVE and TURN; MOVE causes the vehicle to roll in a straight line by

turning both drive wheels in unison , and TURN causes the vehicle to rotate

about its center by turning the drive wheels in opposite directions. The

arguments of MOVE and TURN are the number of steps that the drive wheels

are to turn (each step resulting in a vehicle motion of 1/32 inch) and

status " arguments that allow queries to be made about whether or not

the function has been completed.

Once begun , the execution of any function either proceeds until

it is completed in its normal manner or until it is halted by one of a

number of "abnormal II circums tances such as the vehicle bumping into un-

expected objects , overload conditions , resource exhaustion and so on.

Under ordinary operation , if execution of MOVE results in a bump, motion

is stopped automatically by a special mechanism on the vehicle. This

mechanism can be overridden by a special instruction from the computer

however , to enable the robot to push objects.

The problem-solving systems for MOVE and TURN are trivial; they

need only to calculate what signals shall be sent to registers associated

wi th the motors in order to complete the desired number of s eps.

At a level just above MOVE and TURN is a function whose execu-

tion causes the vehicle to travel directly to a point specified by a pair

of (x

, y)

coordinates. This function is implemented in the FORTRAN routine

LEG. The model used by LEG contains information about the robot' s present

y) location and heading relative to a given coordinate system and in-

formation about how far the vehicle travels for each step applied to the

stepping motors. This information is stored along wi th some other special

constants in a structure called the PARAMETER MODEL. Thus for a given

, y)

destina tion as an argument of LEG , LEG' s problem-solving system

Our implementation allows a program calling routines like MOVE or TURN
to run in parallel with the motor functions they ini tia te.

calculates appropriate arguments for a TURN and MOVE sequence and then

executes this sequence. Predicted changes in the robot' s location and

heading caused by execution of MOVE and TURN are used to update the

PARAMETER MODEL.

Ascending one more level in our system we encounter a group of

FORTRAN " two-letter" routines whose execution can be initiated from the

teletype. Our action-unit system ceases to be strictly hierarchical at
this point since some of the two-letter commands can cause others to be

executed.

One of these two letter commands , EX , takes as an argument a

sequence of (x y) coordinate positions. Execution of EX causes the robot

to travel from its present position directly to the first point in the

sequence , thence directly to the second , and so on until the robot reaches

the last point in the sequence. The problem-solving system for EX simply

needs to know the effect caused by execution of a LEG program and composes

a chain of LEG routines each wi th arguments provided by the successive

points specified in the sequence of points. Under ordinary operation , if
one of these LEG routines is hal ted due to a bump, EX backs the vehicle

up slightly and then hal ts. A special feature of our implementation

the abili ty to arm and service interrupts uch as caused by bumps) a t the

FORTRAN programming level.

Another two-letter command PI causes a picture to be read after

the TV camera has been aimed at a specified position on the floor. The

problem-solving system for PI thus calculates the appropriate arguments

for a TURN routine and a head-tilting routine; PI then causes these to

executed , reads in a picture from the TV camera, and performs processing

necessary to extract information about empty areas on the floor. (Details

of the picture processing programs of the robot system are described in

Section III below.

The ability to travel by the shortest route to a specified goal

position along a path calculated to avoid bumping into obstacles is pro-

vided by the two letter command TE. Execution of TE involves the calcula-
tion of an appropriate sequence of points for EX and the execution of EX.

This appropriate sequence is calculated by a special problem solving

system embodied in the two-letter commnd PL.

The source of information about the world used by PL is a planar

map of the room called the GRID MODEL. The GRID MODEL is a hierarchically

organized system of four by four grid cells. Ini tially the "whole world

is represented by a four-by-four array of cells. A given cell can be

either empty (of obstacles), full , partially full , or unknown. Each

partially full cell is further subdivided into a four by four array

cells and so on until all partially full cells represent areas of some

sui tably small size. (Our present system splits cells down to a depth of

three levels representing a smallest area of about 12 inches.

Special "model maintenance " programs insure that the GRID MODEL

is automatically updated by information about empty and full floor areas

gained by either successful execution or interruption of MOVE commands.

The PL program first uses the GRID MODEL to compute a network

or graph of "nodes. The nodes correspond to points in the room opposite

corners of obstacles; the shortest path to a goal point will then pass

through. a sequence of a subset of these nodes. In Fig. 2 we show a com-

plete GRID MODEL of a room containing three objects. The robot' s position

FIG. 2 A GRID MODEL OF A ROOM WITH THREE OBJECTS

marked " " and the goal position , marked " " together with the nodes

J and K are shown overlain on the GRID MODEL. The pro-

gram PL then determines that the shortest path is the sequence of points

, I , and G by employing an optimal graph-searching algorithm developed

by Hart , et ale

If the GRID MODEL map of the world contains unknown space, PL

must decide whether or not to treat this unknown space as full or empty.

Currently, PL mul tiplies the length of any segment of the route through

unknown space by a parameter k. Thus if k=l , unknown space is treated as

empty; values of k greater than unity cause routes through known empty

space to be preferred to possibly shorter routes through unknown space.

Execution of TE is accomplished by first reading and processing

a picture (using PI with the camera aimed at the goal position) and taking

a range-finder reading. The information about full and empty floor areas

thus gained is added to the GRID MODEL. A route based on the updated

GRID MODEL is then planned us ing PL, and then EX is executed us ing the

argumen ts calcula tad by PL. If the EX called by TE is halted by a bump,
a procedure attempts to manuever around the interfering obstacle , and then

TE is called to start over again. Thus , vision is used only at the be-

ginning of a journey and when unexpected bumps occur along the journey.

Al though our present robot system does not have manipulators

wi th which to pick up objects, it can move objects by pushing them. The

fundamental ability to push objects from one place to another is programmed

into another two-letter FORTRAN routine called PU. Execution of PU causes

the robot to push an object from one named position along a straight line

path to another named position. The program PU takes five arguments:

the (x

, y)

coordina tes of the object to be pushed , the "size " or maximum

extent of the object about its center of gravity, and the (x y) coordinates

of the spot to which the object is to be pushed. The problem-solving

system for PU assembles an EX , a TURN , and two MOVE commands into a sequence

whose execution will accomplish the desired push. First a location from

which the robot mus t begin pushing the object is computed. Then PL is

used to plan a route to this goal location. The sequence of points along

the route serves as the argument for EX which is then executed. (Should

EX be s topped by a bump, PU is started over again. Next PU' s problem-

solving system (using the PARAMETER model) calculates an argument for

TURN that will point the robot in the direction that the object is to be

pushed. A large argument is provided for the first MOVE command so that

when it is executed , it will bump into the object to be pushed and auto-

matically halt. After the bump and half the automatic stopping mechanism

on the vehicle is overridden and the next MOVE command is executed wi th an

argument calculated to push the object the desired distance.

Higher Level Functions

As we ascend to higher level functions , the required problem-

solving processes must be more powerful and general. We want our robot

sys tem to have the ability to perform tasks possibly requiring qui te com-

plex logical deductions. What is needed for this type of problem-solving

is a general language in which to state problems and a powerful search

strategy with which to find solutions. We have chosen the language of
first-order predicate calculus in which to state high level problems for

the robot. These problems are then solved by an adaptation of a
Question Answering System" QA-3 , based on "resolution" theorem-proving

6-9methods.

As an example of a high level problem for the robot , consider

the task of moving (by pushing) three objects to a common place. This

task is an example of one that has been executed by our present system.

If the objects to be pushed are, say, oBI , OB2 , and OB3 , then the problem

of moving them to a common place can be stated as a "conjecture " for

C,A-3 :

s(POSITION (OBl s) A POSITION (OB2 s) A POSITION (OB3

(That is

, "

There exists a situation s and a place p, such that

OBI , OB2 , and OB3 are all at place p in situation s. The task for

QA-3 is to "prove " that this conjecture follows from "axioms II that

describe the present position of objects and the effects of certain

actions.

Our formulation of these problems for the theorem-prover involves

specifying the effects of actions in terms of functions that map situa-

tions into new situations. For example, the function PUSH (x s) maps

the s i tua tion s into the s i tua tion resulting by pushing object x into place

p.

Thus two axioms needed by QA-3 to, solve the pushing problem are:

s POSITION (x p, PUSH (x s))

and

s(POSITION (x s) A SAM (x

=:?OSITION (x , P , PUSH (y, q, s)) J

The first of these axioms states that if in an arbitrary situa-

tion s , an arbitrary object x is pushed to an arbitrary place p, then a

new situation , PUSH (x

, p,

s), will result in which the object x will be at

pos i tion p. The second axiom s ta tes that any object will stay in its old

place in the new situation resulting by pushing a different object.

In addition to the two axioms just mentioned we would have

others describing the present positions of objects. For example , if OBI

at coordinate position (3 5) in the present situation , we would have:

POSITION (OBI , (3, 5), PRESENT)

(This information is provided automatically by routines which scan the

GRID MODEL giving names to clusters of full cells and noting the locations

of these clusters.

In provtng the truth of the conjecture , the theorem-prover used

by QA-3 also produces the place p and situation s that exist. That is

QA-3 determines that the desired situation s is:

s = PUSH (OB3 , (3 5), PUSH (OB2 , (3 5), PRESENT))

All of the information about the world used by QA-3 in solving this problem

is stored in the form of axioms in a structure called the AXIOM MODEL.

general , the AXIOM MODEL will contain a large number of facts, more than

are necessary for any given deduction.

Another LISP program examines the composition of functions

calculated by QA-3 and determines those lower level FORTRAN two-letter

commands needed to accomplish each of them. In our present example , a

sequence of PU commands would be assembled. In order to calculate the

appropriate arguments for each PU, QA-3 is called again , this time to

prove conjectures of the form:

p, w(POSITION (OB2 , P ,PRESENT) A SIZE (OB2 , w) J

Again the proof produces the p and w that exist , thus providing the

necessary position and size arguments for PU. (Size information is

also automatically entered into the AXIOM MODEL by routines that scan

the GRID MODEL.

In transferring control between LISP and FORTRAN (and also

between separate large FORTRAN segments), use is made of a special miniature

moni tor system called the VALET. The VALET handles the process of dismissing

program segments and starting up new ones using auxiliary drum storage for

transferring information between programs.

The QA-3 theorem proving system allows us to pose quite general

problems to the robot system , but further research is needed on adapting

theorem-proving techniques to robot problem-solving in order to increase

efficiency. * The generality of theorem-proving techniques tempts us to

use a single theorem-prover (and axiom set) as a problem-solver (and

model) for all high level robot abilities. We might conclude, however

tha t efficient operation requires a number of coordinating action-unit

structures each having its own specialized theorem-prover and axiom set

and each responsible for relatively narrow classes of functions.

Another LISP program enables commands stated in simple English

to be executed. It also accepts simple English statements about the

environment and translates them into predicate calculus statements to

be stored as axioms. English processing by this program is based on

work by L. S. Coles. Engl ish commnds are ordinarily transla ted into

predicate calculus conjectures for QA-3 solve by producing an appro-

priate sequence s ubord ina functions. For some simple commands, the

theorem-prover bypassed and lower leve 1 routines such as PU etc.,

are called directly.

We can easily propose less fortuitous axiomatiza tions for the "collecting
objects task" that would prevent QA-3 from being able to solve it.

The English program also accepts simple English questions that

require no robot actions. For these it uses QA-3 to discover the answer

and then it delivers this answer in English via the teletypewriter. (Task

execution can also be reported by an appropriate English output. Further

details on the natural language abilities of the robot system are described

in a paper by Coles published in this Proceedings.

III VISUAL PERCEPTION
Vision is potentially the most effective means for the robot system

to obtain information about its world. The robot lives in a rather anti-

septic but nevertheless real world of simple objects--boxes , wedges, walls

doorways , etc. Its visual system extracts information about that world
from a conventional TV picture. A complete scene analysis would produce

a description of the visual scene , including the identification and loca-

tion of all visible objects. While this is our ultima te goal , our current

vision programs merely identify empty floor space , regions on the floor

into which the robot is free to move. This is done by first producing a

line drawing representation of the scene , and then by analyzing this line

drawing to determine the empty floor space. In this section we shall

describe briefly how this is done; further details can be found in other

1 4report s and papers. '

Production of a Line Drawing

The line drawing is produced from the TV picture by a series of

essent ially local operations. The first step is to read the TV picture

into the computer. The picture , obtained from a conventional vidicon

camera , is digitized and stored as a 4-bit (16 intensity levels) 120 x 120
array. This digi tized representation can be displayed for visual inspection
and Fig. 3a shows a digitized version of a scene containing a wedge-shaped

object.

(a) Digitized Image (b) Differentiated Image

(c) Line-Segment Mask Responses (d) Grouped Line Segments

ii-

III

(e) (f) Joined Lines
TA-5953-52

FIG. 3 EXAMPLE OF VISUAL PROCESSI NG STEPS

The digitized image is then processed to determine which pisture

points have intensi ties that are sufficiently different from thos of its

immedia te neighbors. Several techniques have been described in the

literature to produce such a "differentiated " or outline-enhanced pisture;

we are using an approximation to a method proposed by Roberts. After

differentiation" the image is as shown in Fig. 3b.

The next step is to attempt to determine locally the direction

of outlines of the picture. To do so we use a set of " feature-detecting

masks. Each mask covers a 7 x 7 sub-frame of the picture; when a suf-

ficient number of picture points of the differentia ted image lie along a

short line segment , then a particular mask matched to a line segment of

that direction responds. We use 16 masks ma tched to 16 different segment

directions and test for responses with masks centered everywhere on the

picture. The result of this short-line segment detecting operation
shown in Fig. 3c. In tha t figure we have used short line segments

represent the corresponding mask responses.

The next stage of processing, called "grouping, " fills in some

of the gaps and throws away isolated line segments. Whenever line segments

are both sufficiently close in location and sufficiently the same in

direction they are linked together in a "group. Line segment groups

having too few numbers are then thrown away. The result of grouping for

our example image is shown in Fig. 3d.

Next each group is fitted by a single long straight line.

The result is shown in Fig. 3e. Note tha t gaps still exist , particularly

near corners. These are largely taken care of by a routine called JOIN

that in effect manufactures special masks to see which of several candidate

methods for joining end points is best supported by the original picture

da ta. After JOIN, our example image is as shown in Fig. 3f. In Fig. 4

we show a corresponding sequence of images for a slightly more complicated

s ce ne .

B. Analysis of the Line Drawing
The line drawing produced by JOIN preserves much of the informa-

tion in the quantized picture in a very compact form. However , the line

drawing often contains flaws in the form of missing or extra line segments

and to circumvent these f laws during analysis requires knowledge

hypotheses about the nature of the robot' s world.

The only information currently being extracted from the line

drawing is a map of the open floor space. A program called FLOR BOUNDARY

analyzes the line drawing to find the places where the walls or other

objects meet the floor. The FLOOR BOUNDARY program first checks to be

sure that the area along the extreme bottom of the picture is indeed "floor.

It then uses a special procedure to follow along the lines nearest the
bottom of the picture (filling gaps where necessary) to delineate a

conservative estimate of this region of floor. In Fig. 5 we show the
floor boundaries extracted from the scenes of Figs. 3 and

Because we know that the floor that the robot "sees " is an

extens ion of the same floor on which it res ts , and because we know certain

parameters such as the acceptance angle and height of the camera , and the

pan and tilt angles , we can compute the actual location in three-dimensional

space of a line corresponding to the bottom of the picture. Similarly,

we can compute lines corresponding to the sides of the picture and of the

floor blundary. This computation gives us an irregular polygon on the

floor that is known to be empty. It is this empty area that is then
finally entered into the GRID MODEL.

(a) Digitized Image (b) Differentiated Image

(c) Line-Segment Mask Responses (d) Grouped Line Segments

(e) Long-Line Fits (f) Joined Lines
TA- 5953 -

FIG. 4 A SECOND EXAMPLE OF VISUAL-PROCESSING STEPS

(a)

(b)

FIG. 5 FLOOR BOUNDARIES

Al though inf orma tion about known empty space is very useful , it
is clear that much more informa tion can be extracted from a visual scene

Much of our current vision system research is being directed at locating

and identifying various objects , whether partially or totally in the field

of view. Some of the approaches we are taking are described in the next
section.

CONCLUSIONS

There are several key questions that our work has helped to put into

focus. Given that a robot system will involve the successful integration
of problem-solving, modelling, and perceptual abilities , there are many

research questions concerning each of these. Let us discuss each in turn.

Problem-Sol ving

Our somewhat hierarchical organization of problem-solvers and

models seems a natural , even if ad hoc , solution to orgahizing complex

behavior. Are there alternatives? Will the use of theorem-proving

techniques provide enough generali ty to permit a single general purpose

problem solver or will several "specialist " theorem-provers be needed
to gain the required efficiency?

Other questions concern the use of theorem-proving methods for

problem-solving. How do they compare with the "production methods " as

used by the General Problem Solver (GPS) or wi th the procedural language

approach as developed by Fikes?13
Perhaps some combina tion of all of

these will prove superior to any of them;. perhaps more experience will

show that they are only superficially different.

Another question is: To what level of detail should behavioral

plans be made before part of the plan is executed and the results checked

against perceptual information? Although this question will not have a
single answer we need to know upon what factors the answer depends.

Our problem-solving research will also be directed at methods

for organizing even more complex robot behavior. We hope eventually to

be able to design robot systems capable of performing complex assembly

tasks requiring the intelligent use of tools and other materials.

Mode II ing

Several questions about models can be posed: Even if we continue
to use a number of problem-solvers , must each have its own model? To what

extent can the same model serve several problem-solvers? When perceptual

system discovers new information about the world , should it be entered

directly into all models concerned? In what form should information be

stored in the various models? Should provisions be made for forgetting

old informa tion? Can a robot system be given a simple model of its own
problem-solving abilities? Ensuing research and experience with our

present system should help us with these questions.

Vis ual Percept ion

The major difficul ty we have encountered in extending the

capabili ty of the vision system has been the cascading of errors during

the various stages of processing. The lowest level program inevi tably

makes errors , and these errors are passed up to the next higher level.

Thus , errors accumulate until the highest level program is asked , among

other things , to correct the compounded errors of all the programs below

it.
To circumvent these problems, we have begun experimenting with

a quite different program organization in which a high-level driver program

endowed with knowledge of the robot' s world , actively seeks information

from low-level subroutines operating directly on the pictorial data.

When a given subroutine is exercised , the driver program checks to see

if the results are consistent wi th the information already accumulated.

If not , other subroutines may be called , or the results of previously

called subroutines may be reconsidered in the light of current information.

We anticipate that this organization will lessen the compounding effect of

errors and will provide a more graceful means of recovering from the

errors that are committed.

A number of obvious questions come to mind. How can information

about the world best be incorporated in the driver program? How can the

driver use facts about the world obtained from the model? What strategy

should the driver use to explore the picture wi th its repertoire of sub-

routines? Since "facts " obtained from ei ther the model or the subroutines

are subject to error , it is natural to accompany them by some conf idence

or probability measure. How should these be computed? How should the

resul ts of several subroutines be combined , since , loosely speaking, we

have strong statistical dependence? How can we augment the current

repertoire of subroutines with others to make use of such properties as

color , texture , and range? We are presently actively involved in seeking

answers to these and related questions. Early results with this approach

have been very encouraging , and we hope to provide more details in a

future paper.

The main theme of the project has been and will continue to

the problem of system integration. In studying robot systems tha t inter-

ac t with the real world , it seems extremely important to build and program

a real system and to provide it with a real environment. Whereas much

can be learned by simula ting certain of the necessary functions (we use

this strategy regularly), many important issues are likely not to be

anticipated a t all in simulations. Thus questions regarding, say the

feasibili ty of a system of interacting action-units for controlling a

real robot can only be confronted by actually attempting to control a

real robot with such a system. Questions regarding the suitability of
candidate visual processing schemes can most realistically be answered

by experiments wi th a system that needs to "see" the real world. Theorem-

proving techniques seem adequate for solving many " toy " problems; will the

full generality of this approach really be exploitable for directing the

automatic control of mechanical equipment in real-time?

The questions that we have posed in this section are among those

that must be answered in order to develop useful and versatile robot

systems. Experiments with a facility such as we have described appears

to be the best way to elicit the proper questions and to work toward

their answers.

10.

11.

12.

REFERENCES

N. Nilsson , et aI

, "

Application of Intelligent Automata to Recon-
naissance " Contract AF 30(602) -4l47 , SRI Project 5953 , Stanford
Research Ins ti tute , Menlo Park , California. Four Interim Reports
and one Final Report dated December 1968.

C. A. Rosen and N. J. Nilsson

, "

An Intelligent Automaton " IEEE
Interna tional Convention Record , Part 9 (1967).

B. Raphael

, "

Programming a Robot Proc. IFIP Congress 68 , Edinburgh
Scotland (Augus t 1968).

G. E. Forsen

, "

Proces sing Vis ual Data wi th an Automaton Eye " in
Pictorial Pattern Recognition (Thompson Book Company, Washington

C., 1968).

p. Hart , N. Nilsson , and B. Raphael

, "

A Formal Basis for the Heuristic
Determination of Minimum Cost Paths, IEEE Trans. on Systems Science
and Cybernetics , Vol. SSC- , No. , pp. 100-107 , (July 1968).

C. Green and B. Raphael

, "

The Use of Theorem-Proving Techniques in
Ques tion-Answering Sys tern Proc. 1968 ACM Conference , Las Vegas
Nevada (Augus t 1968).

C. Green and B. Raphael esearch on Intelligent Ques tion-Answering
Systems " Scientific Report No. , Contract AF 19(628)-5919 SRI
Project 6001 , Stanford Research Insti tute Menlo Park , California
(May 1967).

B. Raphael

, "

Research on Intelligent Question-Answering Systems
Final Report Contract AF 19(628) -5919 , SRI Project 6001 , Stanford
Research Institute , Menlo Park , California (May 1968).

C. Green

, "

Theorem-Proving by Resolution as a Basis for Question-
Answering Systems Machine Intelligence 4 , B. Meltzer and D. Michie
(Eds.), Edinburgh University Press (Edinburgh , Scotland; to appear
1969) .

L. S. Coles

, "

An On-Line Question-Answering System with Natural
Language and Pictorial Input Proc. 1968 ACM Conference , Las Vegas
Nevada (August 1968).

L. S. Coles

, "

Talking wi th a Robot in English Proc. of the Inter
na tional Joint Conference on Artificial Intelligence , Wash. D.C.,
(May 1969).

L. G. Roberts

, "

Machine Perception of Three-Dimens ional Solids
Optical and Electro-Optical Information Processing (MIT Press , 1965).

13. Fikes , R., "A Study in Heuristic Problem-Solving: Problems Stated
as Procedure Proc. of Fourth Systems Symposium , held at Case
Western Reserve University, (Nov. 1968) (to be published).

