Electronic Transactions on Artificial Intelligence 99
Vol. 5 (2001), Section B: pp. 99-110
http: /www.ep.liu.se/ej/etai/2001/006/

Refereed Article

Nils J. Nilsson:

Teleo-Reactive Programs and the Triple-Tower
Architecture

Author’s affiliation: Stanford University, U.S.A.

Abstract: I describe an architecture for linking perception and action in a
robot. It consists of three “towers” of layered components. The “perception
tower” contains rules that create increasingly abstract descriptions of the
current environmental situation starting with the primitive predicates pro-
duced by the robot’s sensory apparatus. These descriptions are deposited in
a “model tower” which is continuously kept faithful to the current environ-
mental situation by a “truth-maintenance” system. The predicates in the
model tower, in turn, evoke appropriate action-producing programs in the
“action tower”. It is proposed that the actions be written as “teleo-reactive”
programs — ones that react dynamically to changing situations in ways that
lead inexorably toward their goals. Programs in the action tower are orga-
nized more-or-less hierarchically — bottoming out in programs that cause
the robot to take primitive actions in its environment. The effects of the
actions are sensed by the robot’s semsory mechanism, completing a sense-
model-act cycle that is quiescent only at those times when the robot’s goal is
perceived to be satisfied. I illustrate the operation of the architecture using
a simple block-stacking task.
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I. Agent Architectures

Can anything in general be said about intelligent agent architectures? [1]
Just as there are millions of species of animals, occupying millions of differ-
ent niches, I expect that there will be many species of artificial agents—each
a specialist for one of a countless number of tasks. The exact forms of their
architectures will depend on their tasks and their environments. For exam-
ple, some will work in time-stressed situations in which reactions to unpre-
dictable and changing environmental states must be fast and unequivocal.
Others will have the time and the knowledge to predict the effects of future
courses of action so that more rational choices can be made. Even though
there will probably never be a single, all-purpose agent architecture, there is
one that I think might play a prominent role in many future systems. It can
be viewed as an elaboration of the first two levels of the popular three-level
architectures that have been prominent in robotics research.

A. Three-Level Architectures

One of the first integrated intelligent agent systems was a collection of com-
puter programs and hardware known as “Shakey the Robot” (Nilsson, 1984).
Shakey’s design was an early example of what has come to be called a three-
level architecture. The levels correspond to different paths from sensory
signals to motor commands.

At the lowest level of such architectures are actions that use a short and
fast path from sensory signals to effectors. Important “reflexes” are handled
by this pathway—such as “stop” when touch sensors detect a close object
ahead. Servo control of motors for achieving set-point targets for shaft
angles and so on are also handled by these low-level mechanisms.

The intermediate level combines the low level actions into more complex
behaviors—ones whose realization depends on the situation (as sensed and
modeled) at the time of execution. This level uses more abstract (or more
“coarse”) perceptual predicates and more complex actions than do the lower
ones. Whereas reflex actions are typically evoked by primitive sensory sig-
nals, the coordination of intermediate-level actions requires more elaborate
perceptual processing.

The third level usually involves systems that can generate plans consisting
of a sequence of intermediate level programs.

The three-level architecture has been used in a variety of robot systems. As
a typical example, see (Connell, 1992).

B. The Triple-Tower Architecture

A generalization of the three-level architecture has been proposed by Albus
and colleagues (Albus, 1991; Albus, McCain, Lumia, 1989). They envision
hierarchies or “towers” of perceptual, modeling, and action processing. We
propose here a particular instantiation of their triple-tower architecture.
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Figure 1: A Triple-Tower Architecture

The novel features of our proposal are:

e The use of teleo-reactive programs in the action tower

e The use of perceptual rules in the perception tower. These rules
create increasingly abstract predicates from simpler ones

e The use of a truth-maintenance system (TMS) to keep the predicates
in the model tower continuously faithful to changes in the sensed
environment

My version of this triple-tower architecture is illustrated in Figure 1. The
operation of such a system would proceed as follows: Aspects of the en-
vironment that are relevant to the agent’s roles are sensed and converted
to primitive predicates and values. These are stored at the lowest level of
the model tower. Their presence there may immediately evoke primitive
actions at the bottom of the action tower. These actions, in turn, affect the
environment, and some of these effects may be sensed—creating a loop in
which the environment itself might play an important computational role.

The perception tower consists of rules that convert predicates stored in
the model tower into more abstract predicates which are then deposited at
higher levels in the model tower. These processes can continue until even
the highest levels of the model tower are populated.

The action tower consists of a loose hierarchy of action routines that are
triggered by the contents of the model tower. The lowest level action rou-
tines are simple reflexes—evoked by predicates corresponding to primitive
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percepts. More complex actions are evoked by more abstract predicates
appropriate for those actions. High-level actions “call” other actions until
the process bottoms out at the primitive actions that actually affect the
environment.

We also allow for the possibility that the actions themselves might affect
the model tower directly (in addition to the loop through the environment)
by writing additional and/or altered content. With the ability both to read
from and write in memory, the triple-tower structure is a perfectly general
computational architecture.

In order to be responsive to ongoing environmental changes, we include a
truth-maintenance system (TMS) as part of the model tower. Such a system
should continuously delete predicates and values from the model tower that
are no longer derivable (through the perceptual rules) from the then-present
components of the model tower. We describe a specific example of such a
triple-tower system in section III.

II. Teleo-Reactive Programs

I propose that the actions be implemented as teleo-reactive (T-R) programs.
For completeness, we give a brief overview of this formalism here.

A teleo-reactive (T-R) program is an agent control program that robustly
directs the agent toward a goal in a manner that continuously takes into
account changing perceptions of the environment. T-R programs were in-
troduced in two papers by Nilsson (Nilsson 1992, Nilsson 1994). See also
the T-R web page at:
WWw.robotics.stanford.edu/users/nilsson/trweb/tr.html

In its simplest form, a T-R program consists of an ordered list of production
rules:

Ki = ag
K; — a;

K,, = an

The K; are conditions, which are evaluated with reference to a world model.
The a; are actions on the world (or that change the model). In typical usage,
the condition K is a goal condition, which is what the program is designed
to achieve, and the action a; is the null action.

A T-R program is interpreted in a manner roughly similar to the way in
which ordered production systems are interpreted: the list of rules is scanned
from the top for the first rule whose condition part is satisfied, and the
corresponding action is then executed. A T-R program is usually designed
so that for each rule K; — a;, K; is the regression, through action a;,
of some particular condition higher in the list. That is, K; is the weakest
condition such that the execution of action a; under ordinary circumstances
will achieve some particular condition, say K, higher in the list (that is,
with j < 4). T-R programs designed in this way are said to have the
regression property.
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We assume that the set of conditions K; (for i = 1,...,m — 1) covers most
of the situations that might arise in the course of achieving the goal K. In
any case, we can set K,,, = T (or 1) as a default catch-all. If an action fails
to achieve its expected condition, due to an execution error, noise, or the
interference of some outside agent, the program will nevertheless typically
continue working toward the goal. This robustness of execution is one of
the advantages of T-R programs.

T-R programs differ substantively from conventional production systems,
however, in that actions in T-R programs can be durative rather than dis-
crete. A durative action is one that can continue indefinitely. For example,
a mobile robot might be capable of executing the durative action mowve,
which propels the robot ahead (say at constant speed). Such an action
contrasts with a discrete one, such as move forward one meter. In a T-R
program, a durative action continues only so long as its corresponding con-
dition remains the highest true condition in the list. When the highest true
condition changes, the current executing action immediately changes corre-
spondingly. Thus, unlike ordinary production systems, the conditions must
be continuously evaluated; the action associated with the currently highest
true condition is always the one being executed. An action terminates when
its associated condition ceases to be the highest true condition.

The regression condition for T-R programs must therefore be rephrased for
durative actions: For each rule K; — a;, K; is the weakest condition such
that continuous execution of the action a; under ordinary circumstances)
eventually achieves some particular condition, say K; , with j < i. (The
fact that K; is the weakest such condition implies that, under ordinary
circumstances, it remains true until K; is achieved.)

In a general T-R program, the conditions K; may have free variables that
are bound when the T-R program is called to achieve a particular ground
instance of K;. These bindings are then applied to all the free variables in
the other conditions and actions in the program. Actions in a T-R program
may be primitive, they may be sets of actions executed simultaneously, or
they may themselves be T-R programs. Thus, recursive T-R programs are
possible. (See Nilsson 1992 for examples.)

When an action in a T-R program is itself a T-R program, it is important to
emphasize that the usual computer science control structure does not apply.
The conditions of all of the nested T-R programs in the hierarchy are always
continuously being evaluated! The action associated with the highest true
condition in the highest program in the stack of “called” programs is the
one that is evoked. Thus, any program can always regain control from any
of those that it causes to be called—essentially interrupting any durative
action in progress. This responsiveness to the current perceived state of the
environment is another one of the advantages of T-R programs.

Sometimes it is useful to represent a T-R program as a tree, called a T-R
tree, as shown in Figure 2.

Suppose two rules in a T-R program are K; — a; and K; — a; vith j <1
and with K; the regression of K; through action a;. Then we have nodes in
the T-R tree corresponding to K; and K; and an arc labeled by a; directed
from K; to K;. That is, when K; is the shallowest true node in the tree,
execution of its corresponding action, a;, should achieve K;. The root node
is labeled with the goal condition and is called the goal node. When two or
more nodes have the same parent, there are correspondingly two or more
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Figure 3: Blocks on a Table

actions for achieving the parent’s condition.

Continuous execution of a T-R tree would be achieved by a continuous
computation of the shallowest true node and execution of its corresponding
action. (Ties among equally shallow true nodes can be broken by some
arbitrary but fixed tie-breaking rule.)

The “backward-from-the-goal” approach to writing T-R programs makes
them relatively easy to write and understand, as experience has shown.

I1I. A Triple-Tower T-R Agent Builds a Tower

As an illustrative example, I describe a triple-tower system for building a
tower of blocks on a table. We assume the agent works in an environment
of blocks and a table as shown in Figure 3.

In this example, there are four blocks (4, B, C, and D), a table (T'a), and
a hand that can move blocks from place to place. In the sketch, the hand
is holding block D.

At the lowest level of the action tower are the action schemas putdown(z, y)



106

and pickup(z). The schema putdown(z,y) can be applied if the hand is
holding block z and if y is either the table or a block with no other block on
it. The result (if successful) is that block z is on y (that is, either directly
on the table or on top of block y). The schema pickup(z) can be applied
if no block is on block z and the hand is not already holding anything.
The result is that the hand will be holding block z. We assume that these
actions are “ballistic.” They continue executing until they terminate (either
successfully or in some type of failure).

The sensory system creates all of the instances of the predicates On(z,y)
and Holding(z) that are satisfied by the environment. These are imme-
diately placed at the bottom of the model tower. (These predicates have
their obvious intended interpretations.) If applied to the environment of
blocks and table shown above, the sensors would create and place in the
model tower the following assertions: On(C,A4), On(A,Ta), On(B,Ta),
and Holding(D). These assertions remain in the model tower only so long
as direct sensory perception of the environment sustains them. (For ex-
ample, if block C is moved, the assertion On(C, A) would be immediately
deleted.)

The goal of our block-stacking agent is to make a tower of blocks with all
of the blocks in the tower ordered from top to bottom as specified by a
user. The user specifies the order, from top to bottom, by a list, such as
(4, B,C). The complete system for this example is shown in Figure 4.

The perception tower is composed of a number of rules that are invoked
in the forward direction to create new predicates—more abstract than the
primitive ones, which are created directly by the sensors. These rules are
invoked by predicates that are already in the model. The results are inserted
in the model. For example, the rule

=(3z)On(z,y) A ~Holding(y) D Clear(y)

can be used to assert Clear(C) in the model tower because (by reference
to the model) there is no assertion of the form On(z,C) and there is no
assertion Holding(C). (We assume “negation as failure.”) Similarly, we
can assert Clear(B).

The rule
On(z,Ta) — Ordered(list(z))

can be used to assert Ordered((A)) and Ordered((B)) in the model because
both On(A4,Ta) and On(B,Ta) are in the model already. (The Lisp con-
struct list(z) creates a list whose single element is the argument z. Note
our use of other Lisp notation throughout the example.) Using the various
rules in the perception tower, more abstract predicates come to populate
the model tower. The model tower is used to evaluate predicates as needed
by the T-R programs in the action tower. Keep in mind however, that all
of these model assertions are subject to a truth-maintenance system that
continuously updates them as the (sensed) environment changes.

A user can specify a tower to be built by calling the top-level T-R program,
maketower(z), with z instantiated to whatever tower s/he desires. For ex-
ample, s/he might call maketower((4, B,C)). Calling this program invokes
other T-R programs in the action tower. Their invocation ultimately results
in the execution of primitive actions whose primitive effects are sensed and
recorded in the model tower—leading to the insertion and retraction of other
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Figure 4: Triple-Tower Architecture for Building a Tower

predicates and the evocation of other actions. The reader is invited to trace
through a successful execution. Note that the evocation of T-R programs
is not strictly hierarchical. Lower level programs can call those at a higher
level. Note also that the top-level program, maketower, is recursive. Re-
member that called programs are allowed to continue only so long as the
relevant condition in the program that called them remains in the model
tower—throughout the entire stack of T-R programs invoked at any time.)

The architecture just described is capable of building any single tower with-
out the need for search. The complexity is polynomial in the size of the
tower. [Compare with a similarly efficient scheme for tower building pro-
posed by (Chapman, 1989). The “blocks world” is NP-hard only for building
multiple towers (Gupta & Nau, 1992).]

A Java applet [2] implementing this triple-tower, T-R system is available
on the web at:
www.robotics.stanford.edu/
users/nilsson/trweb/TRTower/TRTower .html
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IV. The Vision

Our example shows that it is relatively straightforward to design a triple-
tower T-R system for simple, demonstration-type tasks. The challenge is
to see whether or not such systems can be designed for the many real-
world tasks that we want robots and agents to perform. As we have seen,
there are three major components to be synthesized, namely, abstractions
of sensed data, rules for creating these abstractions, and hierarchies of T-R
programs. The abstractions, rules, and programs are all interdependent,
which can make synthesis of complex programs difficult.

In addition to the manual methods of synthesis (such as was employed to
develop the block-stacking system), we can also employ automatic planning
and learning techniques. By themselves, planning and learning methods are
probably not sufficient for the synthesis of large and effective robot control
programs ez nihilo. I believe that efforts by human programmers at various
stages of the process will continue to be important—initially to produce
a preliminary program and later to improve or correct programs already
modified by automatic planning and learning techniques. I envision that
four methods, namely programming, teaching, reinforcement learning, and
planning might be interspersed in arbitrary orders. It will be important
therefore for the language(s) in which programs are constructed and mod-
ified to be languages in which programs are easy for humans to write and
understand and ones that are compatible with machine learning and plan-
ning methods. These requirements most likely rule out, for example, C code
(it would be hard to learn) and neural networks (they would be hard for
humans to understand and modify), however useful these formalisms might
be in other applications. T-R programs, on the other hand, are easy for
humans to write and modify, and there has already been some progress on
their synthesis by automatic planning and learning methods.

Benson’s TRAIL system produces T-R programs via a planning system that
employs STRIPS-type rules learned by inductive logic programming (IPL)
methods (Benson 1996). As regards other varieties of learning, we might
distinguish two types, namely teaching and reinforcement learning. Teach-
ing involves someone showing the robot what is required by “driving” it
through various tasks. This experience produces a training set of conditions
and corresponding actions, which can then be used by supervised learning
methods to clone the behavior of the teacher in the form of T-R programs.
Reinforcement learning involves on-the-job trials guided by rewards given
by a human user or teacher, and/or by the environment itself. Preliminary
work on the use of teaching and reinforcement learning to produce T-R
programs is described in (Nilsson 2000).

There is also other research that might be relevant to the hierarchical aspects
of learning triple-tower systems. Pfleger has investigated on-line techniques
for detecting frequently occurring, hierarchically related sub-strings within
data streams (Pfleger, 2001). Drescher has proposed methods for build-
ing concepts based on Piagetian cognitive development (Drescher, 1991).
Stone has developed a layered learning architecture for robotic soccer play-
ers (Stone, 2000). And Dietterich proposes methods for hierarchical rein-
forcement learning (Dietterich 1998).

I think the triple-tower architecture provides an interesting setting for an
attack on the problem of synthesizing mid-level control systems for robots
and other agents.
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Footnotes

[1] Parts of this section are adapted from Chapter 25 of my book, Artificial
Intelligence: A New Synthesis, San Francisco: Morgan Kaufmann, 1998.

[2] Running the applet requires the Java 2 Runtime Environment (JRE),
version 1.3 or above. Visiting the applet’s website should result in your
being asked if you want this JRE downloaded to your computer. You can
check the version number of your JRE by typing under the shell prompt:
java-version. JRE v1.3 can be downloaded from Sun; it is available for the
platforms: Microsoft Windows, Linux (x86), and Solaris (SPARC/x86).



