
Near-Optimal Search in Continuous Domains

Samuel Ieong∗, Nicolas Lambert and Yoav Shoham
Computer Science Department

Stanford University
{sieong,nlambert,shoham}@cs.stanford.edu

Ronen Brafman
Computer Science Department

Ben Gurion University
brafman@cs.bgu.ac.il

Abstract

We investigate search problems in continuous state and action
spaces with no uncertainty. Actions have costs and can only
be taken at discrete time steps (unlike the case with contin-
uous control). Given an admissible heuristic function and a
starting state, the objective is to find a minimum-cost plan that
reaches a goal state. As the continuous domain does not al-
low the tight optimality results that are possible in the discrete
case (for example by A*), we instead propose and analyze an
approximate forward-search algorithm that has the following
provable properties. Given a desired accuracy ε, and a bound
d on the length of the plan, the algorithm computes a lower
bound L on the cost of any plan. It either (a) returns a plan
of cost L that is at most ε more than the optimal plan, or (b)
if, according to the heuristic estimate, there may exist a plan
of cost L of length > d, returns a partial plan that traces the
first d steps of such plan. To our knowledge, this is the first
algorithm that provides optimality guarantees in continuous
domains with discrete control and without uncertainty.

Introduction
From path planning in the Mars Rover (Bresina et al.
2002; Mausam et al. 2005) to flying autonomous heli-
copters (Abbeel et al. 2007), planning problems in prac-
tice often have to deal with continuous parameters. In this
paper, we study planning problems that feature continuous
state and action spaces with discrete control, i.e., actions can
only be taken at discrete time steps. We start by giving two
examples where we may come across such problems.

Imagine we are asked to park a Mars Rover through re-
mote controls. As communication consumes energy, and can
take place only over certain windows of opportunities (when
the Rover is on the correct side of Mars), it is not possible
to have continuous control over the Rover’s actions. To park
the Rover, we may choose to send a few discrete commands,
such as “turn the steering wheel 15 degrees to the left and go
in arc for 2 meters.” Note that while control is discrete, both
the state space and the action space are continuous.

Closer to home, consider a planning problem from the
computer billiards championships (Smith 2006). There,

∗Supported by supported by a Richard and Naomi Horowitz
Stanford Graduate Fellowship.
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

contesting algorithms are asked to submit a cue action from
a six-dimensional continuous action space. Once this action
is selected, the shot is simulated and the result is fed back to
the contestant. Note that once the action is selected, there is
no continuous control over the cue ball, as the ball will roll
according to the laws of physics based on the initial action.

Despite much work on planning from both AI and mo-
tion planning research, little is known about whether such
problems can be solved with strong theoretical guarantees.
Our main contribution is to present a novel forward-search
algorithm that, for a given desired accuracy ε and a bound d
on the length of the plan, computes a lower bound L on the
cost of any plan. It returns either a complete plan that is at
most ε worse than the best possible one, or a partial plan for
which, according to the heuristic estimate, there may exist a
complete plan of cost L of length > d that uses the partial
plan. This is guaranteed under mild assumptions. The main
idea is to explore the action space in a disciplined manner
without arbitrary discretization, and through the use of any
admissible heuristic function, prune away poor policies and
focus the search on more promising directions.

Given the vast amount of research done on planning in
continuous domain, it is impossible to thoroughly discuss
the applicability of the many different algorithms to our
problem domain. At a high level, we can identify techniques
from two main sources: MDPs and motion planning.

Many continuous planning problems have been studied
under the framework of MDPs, POMDPs (Roy & Thrun
2002) and control theory. This problem is different from
ours, as their solutions use backward induction to deal with
uncertainties, while without uncertainty the use of forward,
heuristic search allows more efficient computations. Be-
sides, while there are good theoretical techniques for dealing
with continuous state spaces (Hauskrecht & Kveton 2004;
Guestrin, Hauskrecht, & Kveton 2004), relatively little work
has explicitly dealt with continuous action spaces. When
faced with such problems, either ad hoc discretization of the
action space or sampling is used (Porta et al. 2006).

Unlike MDPs, motion planning algorithms often work
directly with continuous state and action spaces (Latombe
1991). In particular, sampling-based algorithms, such as
probabilistic roadmaps (PRMs) (Kavraki et al. 1996) and
rapidly exploring random trees (RRTs) (LaValle & Kuffner
1999), do not require discretization of the state or action

space. However, their goal is to decide if a path exists be-
tween two configurations (a start state and a goal state); the
optimality of the path is not dealt with explicitly. More im-
portantly, most motion planning algorithms assume continu-
ous control. When decisions occur in discrete time, the con-
straints are non-differentiable (LaValle 2006). There exist
few algorithms for motion planning under these constraints,
and little is known about their theoretical guarantees.

The paper is organized as follows. We start by giving a
formal definition of the planning problem in consideration
and the underlying assumptions. Then we propose an al-
gorithm that solves such problems, and provide theoretical
guarantees. We conclude with some possible extensions to
our work presented here.

Model & Terminology
We start by defining planning problems in continuous state
and action spaces with discrete control.
Definition 1. An instance of a planning problem in our do-
main is given by 〈S,A,G, T, C, H, s0〉, where
• S ⊆ Rn is an n-dimensional continuous state space
• A = [a, a] ⊂ Rm is an m-dimensional continuous action

space, given by a hyper-rectangle, bounded by the two
vectors a and a, which gives the minimum and maximum
controls in the m dimensions

• G ⊂ S is the set of goal states (goal set)
• T : S × A 7→ S is the transition function that maps a

given state and an action to its destination state
• C : S × A 7→ R+ is the cost function that returns a non-

negative cost of the action taken at a given state
• H : S 7→ R+ is an admissible heuristic function that

returns a lower bound (under-estimate) on the cost of any
plan from a given state to any goal state

• s0 ∈ S is the starting state C
We refer to a sequence of actions as a plan. A plan is

complete if the sequence of actions, (a0, a1, . . . , ak) leads
to a goal state, i.e.,

T (· · ·T (T (s0, a0), a1), . . . , ak) ∈ G
otherwise the plan is partial. The cost of a plan is given by

k∑

i=0

C(si, ai)

where si is the state before the i-th action takes place.
We assume the planning problems to satisfy two assump-

tions. The first ensures the existence of a complete plan for
the problem.
Assumption 1. The goal set G is open, and there exists at
least one complete plan. C

Our next assumption has to do with the continuity of the
transition, the cost, and the heuristic functions. We first de-
fine Lipschitz continuity.
Definition 2. A function f : Rp 7→ Rq is Lipschitz-
continuous with constant K if for all a, b ∈ Rp,

||f(a)− f(b)|| ≤ K||a− b||
|| · || may be any norm, for instance the Euclidean norm. C

Assumption 2 (Lipschitz continuity). The transition func-
tion T (s, a), cost function C(s, a), and heuristic function
H(s), are Lipschitz-continuous. For the heuristic function,
we denote its Lipschitz constant by hs. For the transition and
the cost functions, we denote their constants by ts, ta, cs, ca.
Note that there are two constants per function, one for state
(s) and one for action (a). For the transition function T (·, ·),

||T (s, a)− T (s′, a)|| ≤ ts||s− s′||
||T (s, a)− T (s, a′)|| ≤ ta||a− a′||

and similarly for C(·, ·). This finer distinction follows from
the basic definition of Lipschitz continuity. C

Algorithm
We now present our approximate forward-search algorithm
that solves the planning problem previously stated1.

Data Structure
The basic idea of the forward-search algorithm is to build a
search tree in the continuous domain. At each node of the
tree, we store the following data:

• state: the state s, associated to the node

• action: the action a that leads from the parent state to s

• depth: the depth of the node in the search tree

• lastCost: the cost of the action a that leads to this state

• estimate: a lower bound on the minimum cost of any
plan from this state to a goal state

• M : a saw-tooth function, such that for any action α, it
returns the lower bound on the estimated cost of the plan
that takes action α from state s.

• parent: the parent node

• children: the set of children

Before we proceed to the description of the algorithm, we
provide some insight on the use of the function M , as it con-
stitutes the soul and backbone of our algorithm. Recall that
by Assumption 2, the transition function, the cost function,
and the heuristic function are all Lipschitz continuous. Thus,
at a given state s, the heuristic estimate of H(T (s, a)) pro-
vides a bound on the heuristic estimate on actions other than
a. In particular, for any action a′,

||H(T (s, a′))−H(T (s, a))|| ≤ hs||T (s, a)− T (s, a′)||
≤ hsta||a− a′||

Similarly, for the cost function,

||C(s, a′)− C(s, a)|| ≤ ca||a− a′||
1Our topological assumption on goal sets implies that, in gen-

eral, there is no optimal plan, as by continuity of costs and transi-
tions, complete plans may be improved by infinitesimal modifica-
tions. The optimal cost is therefore defined as the infimum over all
sequences of complete plans. We nevertheless use the term optimal
plan for simplicity.

Thus, the minimum cost of a plan that takes action a′ from
state s, M(a′), is bounded by

M(a′) = C(s, a′) + H(T (s, a′))

≥ C(s, a) + H(T (s, a))− (hsta + ca)||a− a′||
= M(a)− (hsta + ca)||a− a′||

The saw-tooth function M helps us to keep track of these
cost lower bounds, as illustrated by Figure 1. In the figure,
only actions a1 and a2 have been sampled. The lower bound
on the rest of the actions is given by the bounding technique
described.

Base algorithm
The basic idea of the algorithm is to construct a search tree
in the continuous domain. At each node, the algorithm keeps
track and updates the saw-tooth function M based on infor-
mation obtained by sampling new actions. It is structured as
follows:

Main Algorithm Continuous Search(ε,MaxDepth)
root← single leaf node with state s0, and estimate H(s0)
loop
〈 1. find the node with lowest estimated cost 〉
if node.state ∈ G or node.depth = MaxDepth then

return root.estimate and path from root to node
end if
if node is a leaf then
〈 2. expand node 〉

else
〈 3. resample node 〉

end if
〈 4. update the tree 〉

end loop

The algorithm starts by setting the root of the search tree
to be the starting state s0 of the planning problem. At each
step of the loop, it finds the node in the tree that has the
lowest estimated cost. This is performed at Step 1:

〈 1. find the node with lowest estimated cost 〉
node← root
previous← null
while previous 6= node and node is not a leaf do

previous← node
child← arg minc∈node.children c.estimate + c.lastCost
bestEstimate← child.estimate + child.lastCost
if bestEstimate− node.estimate ≤ ε/2node.depth then

node← child
end if

end while

Once this node is found, if it is a goal state, then the al-
gorithm has found a plan that is guaranteed to be within ε of
the cost of the optimal plan. If MaxDepth is reached, then
the algorithm will return a partial plan that ends in a node at
MaxDepth with the lowest estimated cost to goal. Other-
wise, the algorithm will sample some actions. If the node is
visited for the first time (thus a leaf), it will sample the “av-
erage” action, (a + a)/2. There are other possible choices,
this choice is mostly for concreteness of our description.

M : lower bound on cost

a: actionsa1
a2

C(s, a1) + H(T (s, a1))

C(s, a2) + H(T (s, a2))

Figure 1: Saw-tooth function M

〈 2. expand a leaf node 〉
child← Create node corresponding to (a + a)/2
Update node.M using constant (hsta + ca)
node.estimate← mina node.M(a)

When a new node is created, its cost estimate is pro-
vided by the heuristic function. The last two steps require
additional clarification. As mentioned earlier, the cost and
heuristic value of sampled actions can be used to bound es-
timated costs of unseen samples. Therefore, after sampling
actions at a node, the function M needs to be updated. Let
M ′ be the saw-tooth function after the update. Its values
are determined by the point-wise maximum of the original
function M and the new “cone” due to the sample. Suppose
a is the new sample, then ∀α ∈ A,

M ′(α) = max(M(α), C(s, a)+H(s, a)−(hsta+ca)||α−a||)

As we will see shortly, the Lipschitz constants for the up-
dates may differ. After M is updated, we set the new esti-
mate of the node according to the minimum in M .

When a node has already been expanded, but no previ-
ously sampled action may lead to the estimated optimal cost,
new actions are sampled. The action to sample next depends
on which action shows the most promise (i.e., a minimum)
according to the function M . This is performed in Step 3:

〈 3. resample non-leaf node 〉
a∗ ← arg mina node.M(a)
child← Create node according to a∗

Update node.M using constant (hsta + ca)
node.estimate← mina node.M(a)

Whether the algorithm has expanded a new node, or re-
sampled at an existing node, if the estimate of the node has
changed, it needs to check with its parent to see if this may
in turn change the estimate of its parent. These updates may
propagate upwards until the root node, or until the estimate
of some ancestor of the node remains unchanged. The for-
mula used as Lipschitz constant for updating the function M
will be explained in the theoretical analysis.

a: actions

M : lower bound on cost

Old mina node.M(a)

New mina node.M(a)

Figure 2: Updating Saw-tooth function M

a: actions

M : lower bound on cost

Original mina node.M(a)

New mina node.M(a)

Figure 3: New lower bound discovered

〈 4. update the tree 〉
d← 1
while node has a parent and node.estimate has changed do

d← d + 1
node← node.parent
newLipschitz ← ca + (

Pd−1
i=1 cstati−1

s) + hstatd−1
s

Update node.M using constant newLipschitz
node.estimate← mina node.M(a)
for each c ∈ node.children do update c.estimate

end while

The situation in step 4 of the algorithm can be summa-
rized in figures 2 and 3. In Figure 2, suppose we have ex-
panded the leaf node at a2, and discover a new lower bound
on the cost of any plan that takes action a2, we will then up-
date the function M at node s. Note that this update may in-
volve a larger Lipschitz constant, and hence the slope of the
update may be steeper. After the update, we may discover a
new lower bound on the cost of any plan starting from node
s, as illustrated in Figure 3. This in turn may trigger further
updates upstream in the tree.

Handling updates of function M

So far we abstracted away the internal representation and the
operations on M . However in action spaces of dimension 2
and higher, the saw-tooth function M is an envelope of cones
oriented downwards, and finding its minimum is known to
be a hard problem (Mladineo 1986). Therefore, instead of
working directly on the cones, we use an envelope of hyper-
rectangles: the function M is approximated as a piecewise-
constant function M̃ taking constant values on subintervals

that partition the action space. By ensuring that M̃ is always
lower than M , its minimum remains a lower-bound of the
cost of the optimal plan. Instead of using M ’s minimum,
we estimate the cost of the optimal plan by the value of the
lowest hyper-rectangle.

In the node data structure, M is replaced by a collec-
tion of cones and a collection of hyper-rectangles rects.
Cones can be represented as tuples (value, action, λ), and
define the function x 7→ value − λ||action − x||. Hyper-
rectangles are tuples ([a, b], value), and define a hyper-
rectangle surface of dimensionality of the action space, with
height value.

The approximate M̃ is kept as close to M as possible by
raising the rectangle envelope whenever the partition is re-
fined or M is updated. These raising operations are per-
formed by calls to the UPDATE function, which places the
hyper-rectangles located below a cone at the highest posi-
tion beneath it.

〈 Update a hyper-rectangle’s value 〉
function UPDATE(rectangle, cone)

Let ([a, b], v) = rectangle
x← farthest vertex of the multidimensional

interval [a, b] from cone.action
rectangle.value← max(rectangle.value, cone.value
−cone.λ ∗ ||x− cone.action||)

end function

The change to envelope of rectangles requires some
changes to the steps. Node expansion is now done by creat-
ing two children corresponding to the boundary actions, a,
a, and their associated cones. One hyper-rectangle cover-
ing the entire action space is created for the newly expanded
node, with its value set to be as high as possible while re-
maining below the envelope formed by the two cones. The
new estimate (of the cost of the optimal plan) at the new
node is given by the hyper-rectangle’s value.

〈 2. expand a leaf node 〉
Create child1 and child2 corresponding to actions a and a
node.children← node.children ∪ {child1, child2}
cone1 ← (a, child1.estimate + child1.lastCost, ca + hsta)
cone2 ← (b, child2.estimate + child2.lastCost, ca + hsta)
node.cones← node.cones ∪ {cone1, cone2}
R← ([a, a], . . .
. . . minc∈{child1,child2} c.lastCost + c.estimate . . .
. . .− (ca + hsta)||child1.action− child2.action||
node.rects← node.rects ∪ {R}
node.estimate← R.value

As in the base algorithm, resampling occurs when none
of the current samples would allow to reach the current
estimate of the optimal cost, here provided by the hyper-
rectangle of lowest value R. Resampling takes two steps.
We first split R in two by dividing its corresponding multi-
dimensional interval of actions [a1, b1] along the longest
edge into two subintervals of equal size, [a1, b2] and [a2, b1].
This refines M̃ ’s partition of actions. The envelope of hyper-
rectangles is then raised to be as close to the lower-bound of
the cone envelope as possible. We then sample the actions a2

and b2, and create the associated children and cones. As we
modify the cone envelope, we raise the collection of hyper-
rectangles one more time to tighten the approximation.

〈 3. resample non-leaf node 〉
R← minR∈node.rects R.value
Let ([a1, b1], v) = R: divide [a1, b1] along the longest edge into

two intervals of equal size,[a1, b2] and [a2, b1]
R1 ← ([a1, b2], v) and R2 ← ([a2, b1], v)
for each cone ∈ node.cones do UPDATE(R1, cone) . . .

. . . and UPDATE(R2, cone)
node.rects← node.rects ∪ {R1, R2}\{R}
Create child1 and child2, corresponding to actions a2 and b2

node.children← node.children ∪ {child1, child2}
cone1 ← (child1.estimate, a2, ca + hsta)
cone2 ← (child2.estimate, b2, ca + hsta)
node.cones← node.cones ∪ {cone1, cone2}
for each R ∈ node.rects do UPDATE(R, cone1) . . .

. . . and UPDATE(R, cone2)
node.estimate← minR∈node.rects R.value

Finally the tree is updated upwards from the current node
to the root. For each node encountered, a new cone is added
to the node’s parent, corresponding to the action taken from
the parent to the node. The slope coefficient is the same as
in the base algorithm. We again raise the envelope of hyper-
rectangles M̃ to lie just below M .

〈 4. update the tree 〉
d← 1
while node has a parent and node.estimate has been changed
do

d← d + 1
cone← (node.action, node.estimate, ca+

(
Pd−1

i=1 cst
i−1
s ta) + hst

d−1
s ta)

node← node.parent
node.cones← node.cones ∪ {cone}
for each R ∈ node.rects do UPDATE(R, cone)
node.estimate← minR∈node.rects R.value

end while

Formal guarantees
We now describe the formal guarantees of our algorithm,
listed below:
Theorem 1. Main Algorithm terminates after a finite num-
ber of steps.
Theorem 2. When the algorithm terminates, it returns a
lower bound on the cost of any plan.
Theorem 3. If the algorithm returns a complete plan, then
its cost is at most ε more than that of the optimal plan.
Theorem 4. If the algorithm returns a partial plan, then
there may exist a plan of cost at most ε more than that of the
optimal plan that uses the partial plan.

To clarify Theorem 4, when Main Algorithm returns a
partial plan, that is because the algorithm is going to next
resample a node s at maximum depth. This happens only
when the sum of the cost of the partial plan and the heuristic
estimate at s is at most ε higher than the lower bound on the

cost of any plan. While this does not guarantee the existence
of an ε-optimal plan that goes through s, if the heuristic es-
timate is reliable, there is likely to be an ε-optimal plan that
can be derived from the partial plan.

To prove these theorems, we first need to establish a cou-
ple of lemmas. The first bounds the maximum difference in
costs of plans that take different actions from the same state.
Lemma 1. Let Lk(s, a) denote the lower bound on the cost
of any plan that starts in state s, take action a, and continues
for k more steps, defined by

Lk(s, a) = C(s, a)+ min
a1,a2,...,ak

(
k∑

i=1

C(si, ai) + H(sk+1)

)

where si = T (si−1, ai−1). For a different action a′ 6= a,

||Lk(s, a′)− Lk(s, a)|| ≤ N(k)||a′ − a||
where N(k) = ca +

(∑k−1
i=0 cstatis

)
+ hstatks .

Note that this is a generalization of the relationship we
mentioned in the data structure section when we describe the
data structure M . In particular, that relationship is a special
case of Lemma 1 for k = 0. This also explains the constant
we use in Step 4 of the algorithm. The proof is technical and
can be found in the Appendix.

Our second lemma establishes an invariance that is main-
tained by the main loop of the algorithm.
Lemma 2. At the beginning of each loop, root.estimate is
a valid lower bound on the cost of the optimal plan.

Proof. We will prove this by induction. When we initialize
the algorithm, root.estimate is set to be H(s0). By admis-
sibility of the heuristic function, this lower bound is valid.

Suppose root.estimate is correct after the n-th loop. In
the next loop, root.estimate may be changed in two places.
It may be changed either (1) when we sample actions from
the root, or (2) in Step 4 〈 update the tree 〉.

Case (1): This is an application of Lemma 1 for k = 0.
Case (2): in Step 4, root.estimate may be updated when

the estimate of some leaf node at depth d is changed. This
may happen when the change causes cascading updates that
propagate up the tree. Lemma 1 for k = d applies if
root.estimate gets changed.

Proof (Theorem 2). This is a consequence of Lemma 2
when the algorithm terminates.

Proof (Theorem 3). In Step 2 of the algorithm, the node
chosen to be expanded or resampled is at most ε more than
root.estimate. By Lemma 2, since that is a lower bound on
the cost of any plan, if the node chosen is in a goal state, the
plan costs at most ε more than that of the optimal plan.

Proof Sketch (Theorem 4). This follows from similar rea-
sons in the proof of Theorem 3 and is omitted.

We still need to establish that the algorithm terminates
after a finite number of steps. Intuitively, this is not ob-
vious because there are uncountably many actions in the
search space. However, the search space can be pruned us-
ing Lemma 1. The complete proof is as follows.

Proof (Theorem 1). Suppose the algorithm does not termi-
nate for a given problem. This is only possible if for all the
nodes examined (i.e, expanded or resampled), none of them
is in the goal set nor at maximum depth. If a node is ex-
amined, and it does not cause an update, then the next node
to be examined will be a child of the node (by invariance
of Lemma 2 and Step 2). Hence, for the algorithm not to
terminate, updates must take place.

For any given node, since the Lipschitz constants for the
update is bounded, after a certain number of its children has
been examined, its estimate will have to increase. Repeating
this argument, eventually, the estimate of the root node has
to increase. In particular, if the algorithm does not terminate,
the estimate of the root will have to increase unboundedly.

However, by Assumption 1, there exists a complete plan
for the planning problem. This plan has finite cost. There-
fore, root.estimate cannot be unboundedly large, since by
Lemma 2, it is always a lower bound on the cost of any plan.
This contradicts the previous claim that estimate at root con-
tinues to increase unboundedly.

Concluding Remarks
In this paper, we looked at planning problems that feature
continuous state and action spaces with discrete control.
We formulated the problem as a heuristic search problem,
and proposed an approximate forward-search algorithm with
concrete theoretical guarantees. The key algorithmic insight
is to make use of the Lipschitz continuity in the transition,
the cost, and the heuristic functions to intelligently prune
away bad plans. While we have explained this technique in
the context of a specific algorithm, the idea may also be ap-
plicable to other methods, such as grid-based techniques that
uniformly discretize the action space.

Although we provided precise suggestions as to how the
algorithm may be implemented, our main contribution re-
mains theoretical. Experiments with a rudimentary imple-
mentation show that, at comparable tree sizes, our algorithm
has similar performances as grid-based methods (but such
methods do not offer control for error bounds). However,
we believe that further optimization will lead to significant
improvements, and we hope to focus our next contribution
on practical aspects of our algorithm.

Finally, one important direction we plan to explore is to
extend our method to cater for uncertainties in action out-
comes. This may provide an alternative solution technique
to continuous MDPs by means of forward search.

Acknowledgments
We thank Jean-Claude Latombe and Andrew Ng for fruitful
discussions on related algorithms for the problem.

References
Abbeel, P.; Coates, A.; Quigley, M.; and Ng, A. Y. 2007. An ap-
plication of reinforcement learning to aerobatic helicopter flight.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramkrishnan, S.; Smith,
D.; and Washington, R. 2002. Planning under continuous time
and resource uncertainty: A challenge for AI. In Proc. 18th Conf.
on Uncertainty in Artificial Intelligence, 77–84.

Guestrin, C.; Hauskrecht, M.; and Kveton, B. 2004. Solving
factored mdps with continuous and discrete variables.
Hauskrecht, M., and Kveton, B. 2004. Linear program approxi-
mations for factored continuous-state markov decision processes.
In NIPS 16, 859–902.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; ; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high dimen-
sional configuration spaces. In IEEE Trans on Robotics and Au-
tomation, volume 12, 566–580.
Latombe, J.-C. 1991. Robot Motion Planning. Kluwer Academic
Publishers.
LaValle, S. M., and Kuffner, J. J. 1999. Randomized kinody-
namic planning. In Proc. IEEE Int. Conf. Robotics and Automa-
tion, 473–479.
LaValle, S. M. 2006. Planning Algorithms. Cambridge Univer-
sity Press.
Mausam; Benazera, E.; Brafman, Ronen Meuleau, N.; and
Hansen, E. A. 2005. Planning with continuous resources in
stochastic domains. In Proc. 19th Int. Joint Conf. on Artificial
Intelligence, 1244–1251.
Mladineo, F. H. 1986. An algorithm for finding the global max-
imum of a multimodal, multivariate function. Math. Program.
34(2):188–200.
Porta, J. M.; Vlassis, N.; Spaan, M. T.; and Poupart, P. 2006.
Point-based value iteration for continuous POMDPs. J Machine
Learning Research 7:2329–2367.
Roy, N., and Thrun, S. 2002. Motion planning through policy
search. In Proc. IEEE Int. Conf. Intell. Robots and Sys.
Smith, M. 2006. Running the table: An AI for computer billiards.
In Proc. 21st Nat. Conf. on Artificial Intelligence.

Appendix
To prove Lemma 1, we use the following inequality.

Lemma 3. For two functions over the same domain, f(·) and g(·),

||min
x

f(x)−min
y

g(y)|| ≤ max
z
||f(z)− g(z)||

Proof Sketch (Lemma 1). We establish the case for k = 1 to build
intuition. The general case can be proved inductively. By defini-
tion,

L1(s, a) = C(s, a) + min
a1

“
C(s1, a1) + H(s2)

”

L1(s, a
′) = C(s, a′) + min

a′1

“
C(s′1, a

′
1) + H(s′2)

”

By triangular inequality and Lemma 3,

||L(s, a′)− L(s, a)||
≤ ||C(s, a′)− C(s, a)|| (1)

+ max
x
||C(T (s, a′), x)− C(T (s, a), x)|| (2)

+ max
y
||H(T (T (s, a′), y))−H(T (T (s, a), y))|| (3)

We can bound the terms in Equations (1), (2), and (3) by repeated
application of the Lipschitz condition. Hence,

||L1(s, a
′)− L1(s, a)|| ≤ (ca + csta + hststa)||a′ − a||

