
Complexity of Combinatorial Market Makers∗

Yiling Chen
Yahoo! Research

111 W. 40th St., 17th Floor
New York, NY 10018

Lance Fortnow
EECS Department

Northwestern University
2133 Sheridan Road
Evanston, IL 60208

Nicolas Lambert
Department of Computer

Science
Stanford University
Stanford, CA 94305

David M. Pennock
Yahoo! Research

111 W. 40th St., 17th Floor
New York, NY 10018

Jennifer Wortman
Department of Computer and

Information Science
University of Pennsylvania

Philadelphia, PA 19104

ABSTRACT
We analyze the computational complexity of market maker
pricing algorithms for combinatorial prediction markets. We
focus on Hanson’s popular logarithmic market scoring rule
market maker (LMSR). Our goal is to implicitly main-
tain correct LMSR prices across an exponentially large out-
come space. We examine both permutation combinatorics,
where outcomes are permutations of objects, and Boolean
combinatorics, where outcomes are combinations of binary
events. We look at three restrictive languages that limit
what traders can bet on. Even with severely limited lan-
guages, we find that LMSR pricing is #P-hard, even when
the same language admits polynomial-time matching with-
out the market maker. We then propose an approximation
technique for pricing permutation markets based on an al-
gorithm for online permutation learning. The connections
we draw between LMSR pricing and the literature on online
learning with expert advice may be of independent interest.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Economics, Theory

Keywords
Prediction markets, logarithmic market scoring rule market
makers, online learning with expert advice

∗Part of this work was done while L. Fortnow, N. Lambert
and J. Wortman were visiting Yahoo! Research, New York.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’08, July 8–12, 2008, Chicago, Illinois, USA.
Copyright 2008 ACM 978-1-60558-169-9/08/07 ...$5.00.

1. INTRODUCTION
One way to elicit information is to ask people to bet on it.

A prediction market is a common forum where people bet
with each other or with a market maker [9, 10, 23, 20, 21].
A typical binary prediction market allows bets along one di-
mension, for example either for or against Hillary Clinton to
win the 2008 US Presidential election. Thousands of such
one- or small-dimensional markets exist today, each operat-
ing independently. For example, at the racetrack, betting
on a horse to win does not directly impact the odds for that
horse to finish among the top two, as logically it should,
because the two bet types are handled separately.

A combinatorial prediction market is a central clearing-
house for handling logically-related bets defined on a combi-
natorial space. For example, the outcome space might be all
n! possible permutations of n horses in a horse race, while
bets are properties of permutations such as “horse A finishes
3rd” or “horse A beats horse B.” Alternately, the outcome
space might be all 250 possible state-by-state results for the
2008 US Presidential election, while bets are Boolean state-
ments such as “Democrat wins in Ohio and Florida but not
in Texas.”

Low liquidity marginalizes the value of prediction mar-
kets, and combinatorics only exacerbates the problem by
dividing traders’ attention among an exponential number of
outcomes. A combinatorial matching market—the combi-
natorial generalization of a standard double auction—may
simply fail to find any trades [11, 4, 5].

In contrast, an automated market maker is always willing
to trade on every bet at some price. A combinatorial mar-
ket maker implicitly or explicitly maintains prices across all
(exponentially many) outcomes, thus allowing any trader
at any time to place any bet, if transacted at the market
maker’s quoted price.

Hanson’s [13, 14] logarithmic market scoring rule mar-
ket maker (LMSR) is becoming the de facto standard mar-
ket maker for prediction markets, largely because it has a
number of desirable properties, including bounded loss that
grows logarithmically in the number of outcomes, infinite
liquidity, and modularity that respects some independence
relationships. LMSR is used by a number of companies,
including Microsoft, inklingmarkets.com, thewsx.com, and

190

yoonew.com, and is the subject of a number of research stud-
ies [7, 15, 8].

In this paper, we analyze the computational complexity
of LMSR in several combinatorial betting scenarios. We
examine both permutation combinatorics and Boolean com-
binatorics. We show that both computing instantaneous
prices and computing payments of transactions are #P-hard
in all cases we examine, even when we restrict participants
to very simplistic and limited types of bets. For example, in
the horse race analogy, if participants can place bets only of
the form “horse A finishes in position N”, then pricing these
bets properly according to LMSR is #P-hard, even though
matching up bets of the exact same form (with no market
maker) can be done in polynomial time [4].

On a more positive note, we examine an approximation
algorithm for LMSR pricing in permutation markets that
makes use of powerful techniques from the literature on on-
line learning with expert advice [3, 19, 12]. We briefly review
this online learning setting, and examine the striking paral-
lels that exist between the specific form of standard LMSR
prices and the expert weights employed by the Weighted
Majority algorithm [19]. We then show how a recent exten-
sion of Weighted Majority to permutation learning [16] can
be transformed into an approximation algorithm for pric-
ing in permutation markets in which the market maker is
guaranteed to have bounded loss.

2. RELATED WORK
Fortnow et al. [11] study the computational complexity of

finding acceptable trades among a set of bids in a Boolean
combinatorial market. In their setting, the center is an auc-
tioneer who takes no risk, only matching together willing
traders. They study a call market setting in which bids are
collected together and processed once en masse. They show
that the auctioneer matching problem is co-NP-complete
when orders are divisible and Σp

2-complete when orders are
indivisible, but identify a tractable special case in which
participants are restricted to bet on disjunctions of positive
events or single negative events.

Chen et al. [4] analyze the the auctioneer matching prob-
lem for betting on permutations, examining two bidding lan-
guages. Subset bets are bets of the form“candidate i finishes
in positions x, y, or z” or “candidate i, j, or k finishes in
position x.” Pair bets are of the form “candidate i beats
candidate j.” They give a polynomial-time algorithm for
matching divisible subset bets, but show that matching pair
bets is NP-hard.

Hanson highlights the use of LMSR for Boolean combi-
natorial markets, noting that the subsidy required to run a
combinatorial market on 2n outcomes is no greater than that
required to run n independent one-dimensional markets [13,
14]. He discusses the computational difficulty of maintain-
ing LMSR prices on a combinatorial space, and proposes
running market makers on overlapping subsets of events, al-
lowing traders to synchronize the markets via arbitrage.

The work closest to our own is that of Chen, Goel, and
Pennock [6], who study a special case of Boolean combi-
natorics in which participants bet on how far a team will
advance in a single elimination tournament, for example a
sports playoff like the NCAA college basketball tournament.
They provide a polynomial-time algorithm for LMSR pricing
in this setting based on a Bayesian network representation of
prices. They also show that LMSR pricing is NP-hard for a

very general bidding language. They suggest an approxima-
tion scheme based on Monte Carlo simulation or importance
sampling. We believe ours are the first non-trivial hardness
results and worst-case bounded approximation scheme for
LMSR pricing.

3. BACKGROUND

3.1 Logarithmic Market Scoring Rules
Proposed by Hanson [13, 14], a logarithmic market scor-

ing rule is an automated market maker mechanism that al-
ways maintains a consistent probability distribution over an
outcome space Ω reflecting the market’s estimate of the like-
lihood of each outcome. A generic LMSR offers a security
corresponding to each possible outcome ω. The security as-
sociated to outcome ω pays off $1 if the outcome ω happens,
and $0 otherwise. Let q = (qω)ω∈Ω indicate the number
of outstanding shares for all securities. The LMSR market
maker starts the market with some initial shares of secu-
rities, q0, which may be 0. The market keeps track of the
outstanding shares of securities q at all times, and maintains
a cost function

C(q) = b log
X
ω∈Ω

eqω/b, (1)

and an instantaneous price function for each security

pω(q) =
eqω/bP

τ∈Ω eqτ /b
, (2)

where b is a positive parameter related to the depth of the
market. The cost function captures the total money wa-
gered in the market, and C(q0) reflects the market maker’s
maximum subsidy to the market. The instantaneous price
function pω(q) gives the current cost of buying an infinitely
small quantity of the security for outcome ω, and is the par-
tial derivative of the cost function, i.e. pω(q) = ∂C(q)/∂qω.
We use p = (pω(q))ω∈Ω to denote the price vector. Traders
buy and sell securities through the market maker. If a trader
wishes to change the number of outstanding shares from
q to q̃, the cost of the transaction that the trader pays is
C(q̃)−C(q), which equals the integral of the price functions
following any path from q to q̃.

When the outcome space is large, it is often natural to
offer only compound securities on sets of outcomes. A com-
pound security S pays $1 if one of the outcomes in the set
S ⊂ Ω occurs and $0 otherwise. Such a security is the com-
bination of all securities ω ∈ S. Buying or selling q shares of
the compound security S is equivalent to buying or selling
q shares of each security ω ∈ S. Let Θ denote the set of
all allowable compound securities. Denote the outstanding
shares of all compound securities as Q = (qS)S∈Θ. The cost
function can be written as

C(Q) = b log
X
ω∈Ω

e
P

S∈Θ:ω∈S qS/b

= b log
X
ω∈Ω

Y
S∈Θ:ω∈S

eqS/b . (3)

The instantaneous price of a compound security S is com-
puted as the sum of the instantaneous prices of the securities

191

that compose the compound security S,

pS(Q) =

P
ω∈S eqω/bP
τ∈Ω eqτ /b

=

P
ω∈S e

P
S′∈Θ:ω∈S′ qS′/bP

τ∈Ω e
P

S′∈Θ:τ∈S′ qS′/b

=

P
ω∈S

Q
S′∈Θ:ω∈S′ eqS′/bP

τ∈Ω

Q
S′∈Θ:τ∈S′ eqS′/b

. (4)

Logarithmic market scoring rules are so named because
they are based on logarithmic scoring rules. A logarithmic
scoring rule is a set of reward functions

{sω(r) = aω + b log(rω) : ω ∈ Ω},
where r = (rω)ω∈Ω is a probability distribution over Ω, and
aω is a free parameter. An agent who reports r is rewarded
sω(r) if outcome ω happens. Logarithmic scoring rules are
proper in the sense that when facing them a risk-neutral
agent will truthfully report his subjective probability distri-
bution to maximize his expected reward. A LMSR market
can be viewed as a sequential version of logarithmic scor-
ing rule, because by changing market prices from p to p̃ a
trader’s net profit is sω(p̃) − sω(p) when outcome ω hap-
pens. At any time, a trader in a LMSR market is essentially
facing a logarithmic scoring rule.

LMSR markets have many desirable properties. They of-
fer consistent pricing for combinatorial events. As market
maker mechanisms, they provide infinite liquidity by allow-
ing trades at any time. Although the market maker sub-
sidizes the market, he is guaranteed a worst-case loss no
greater than C(q0), which is b log n if |Ω| = n and the mar-
ket starts with 0 share of every security. In addition, it
is a dominant strategy for a myopic risk-neutral trader to
reveal his probability distribution truthfully since he faces
a proper scoring rule. Even for forward-looking traders,
truthful reporting is an equilibrium strategy when traders’
private information is independent conditional on the true
outcome [7].

3.2 Complexity of Counting
The well-known class NP contains questions that ask

whether a search problem has a solution, such as whether a
graph is 3-colorable. The class #P consists of functions that
count the number of solutions of NP search questions, such
as the number of 3-colorings of a graph.

A function g is #P-hard if, for every function f in #P,
it is possible to compute f in polynomial time given an or-
acle for g. Clearly oracle access to such a function g could
additionally be used to solve any NP problem, but in fact
one can solve much harder problems too. Toda [24] showed
that every language in the polynomial-time hierarchy can be
solved efficiently with access to a #P-hard function.

To show a function g is a #P-hard function, it is suffi-
cient to show that a function f reduces to g where f was
previously known to be #P-hard. In this paper we use the
following #P-hard functions to reduce from:

• Permanent: The permanent of an n-by-n matrix A =
(ai,j) is defined as

perm(A) =
X
σ∈Ω

nY
i=1

ai,σ(i) , (5)

where Ω is the set of all permutations over {1, 2, ..., n}.
Computing the permanent of a matrix A containing
only 0-1 entries is #P-hard [25].

• #2-SAT: Counting the number of satisfying assign-
ments of a formula given in conjunctive normal form
with each clause having two literals is #P-hard [26].

• Counting Linear Extensions: Counting the num-
ber of total orders that extend a partial order given by
a directed graph is #P-hard [2].

#P-hardness is the best we can achieve since all the func-
tions in this paper can themselves be reduced to some other
#P function.

4. LMSR FOR PERMUTATION BETTING
In this section we consider a particular type of mar-

ket combinatorics in which the final outcome is a ranking
over n competing candidates. Let the set of candidates be
Nn = {1, . . . , n}, which is also used to represent the set of
positions. In the setting, Ω is the set of all permutations
over Nn. An outcome σ ∈ Ω is interpreted as the scenario
in which each candidate i ends up in position σ(i). Chen et
al. [4] propose two betting languages, subset betting and pair
betting, for this type of combinatorics and analyze the com-
plexity of the auctioneer’s order matching problem for each.
In what follows we address the complexity of operating an
LMSR market for both betting languages.

4.1 Subset Betting
As in Chen et al. [4], participants in a LMSR market for

subset betting may trade two types of compound securities:
(1) a security of the form 〈i|Φ〉 where Φ ⊂ Nn is a subset of
positions; and (2) a security 〈Ψ|j〉 where Ψ ⊂ Nn is a subset
of candidates. The security 〈i|Φ〉 pays off $1 if candidate i
stands at a position that is an element of Φ and $0 other-
wise. Similarly, the security 〈Ψ|j〉 pays off $1 if any of the
candidates in Ψ finishes at position j and $0 otherwise. For
example, in a horse race, participants can trade securities of
the form “horse A will come in the second, fourth, or fifth
place,” or “either horse B or horse C will come in the third
place.”

Note that owning one share of 〈i|Φ〉 is equivalent to own-
ing one share of 〈i|j〉 for every j ∈ Φ, and similarly owning
one share of 〈Ψ|j〉 is equivalent to owing one share of 〈i|j〉 for
every i ∈ Ψ. We therefore restrict our attention to a simpli-
fied market where securities traded are of the form 〈i|j〉. We
show that even in this simplified market it is #P-hard for the
market maker to provide the instantaneous security prices,
evaluate the cost function, or calculate payments for trans-
actions, which implies that the running an LMSR market
for the more general case of subset betting is also #P-hard.

Traders can trade securities 〈i|j〉 for all i ∈ Nn and j ∈
Nn with the market maker. Let qi,j be the total number
of outstanding shares for security 〈i|j〉 in the market. Let
Q = (qi,j)i∈Nn,j∈Nn denote the outstanding shares for all
securities. The market maker keeps track of Q at all times.
From Equation 4, the instantaneous price of security 〈i|j〉 is

pi,j(Q) =

P
σ∈Ω:σ(i)=j

Qn
k=1 eqk,σ(k)/bP

τ∈Ω

Qn
k=1 eqk,τ(k)/b

, (6)

192

and from Equation 3, the cost function for subset betting is

C(Q) = b log
X
σ∈Ω

nY
k=1

eqk,σ(k)/b . (7)

We will show that computing instantaneous prices, the
cost function, and/or payments of transactions for a subset
betting market is #P-hard by a reduction from the problem
of computing the permanent of a (0,1)-matrix.

Theorem 1. It is #P-hard to compute instantaneous
prices in a LMSR market for subset betting. Additionally, it
is #P-hard to compute the value of the cost function.

Proof. We show that if we could compute the instan-
taneous prices or the value of the cost function for subset
betting for any quantities of shares purchased, then we could
compute the permanent of any (0, 1)-matrix in polynomial
time.

Let n be the number of candidates, A = (ai,j) be any n-
by-n (0,1)-matrix, and N = n! + 1. Note that

Qn
i=1 ai,σ(i)

is either 0 or 1. From Equation 5, perm(A) ≤ n! and hence
perm(A) mod N = perm(A). We show how to compute
perm(A) mod N from prices in subset betting markets in
which qi,j shares of 〈i|j〉 have been purchased, where qi,j is
defined by

qi,j =

(
b ln N if ai,j = 0,

b ln(N + 1) if ai,j = 1
(8)

for any i ∈ Nn and any j ∈ Nn.
Let B = (bi,j) be a n-by-n matrix containing entries of

the form bi,j = eqi,j/b. Note that bi,j = N if ai,j = 0 and
bi,j = N +1 if ai,j = 1. Thus, perm(A) mod N = perm(B)
mod N . Thus, from Equation 6, the price for 〈i|j〉 in the
market is

pi,j(Q) =

P
σ∈Ω:σ(i)=j

Qn
k=1 bk,σ(k)P

τ∈Ω

Qn
k=1 bk,τ(k)

=
bi,j

P
σ∈Ω:σ(i)=j

Q
k �=i bk,σ(k)P

τ∈Ω

Qn
k=1 bk,τ(k)

=
bi,j · perm(Mi,j)

perm(B)

where Mi,j is the matrix obtained from B by removing the
ith row and jth column. Thus the ability to efficiently
compute prices gives us the ability to efficiently compute
perm(Mi,j)/perm(B).

It remains to show that we can use this ability to com-
pute perm(B). We do so by telescoping a sequence of prices.
Let Bi be the matrix B with the first i rows and columns
removed. From above, we have perm(B1)/perm(B) =
p1,1(Q)/b1,1. Define Qm to be the (n−m)-by-(n−m) matrix
(qi,j)i>m,j>m, that is, the matrix of quantities of securities
(qi,j) with the first k rows and columns removed. In a mar-
ket with only n−m candidates, applying the same technique
to the matrix Qm, we can obtain perm(Bm+1)/perm(Bm)
from market prices for m = 1, ..., (n−2). Thus by computing
n − 1 prices, we can compute„

perm(B1)

perm(B)

«„
perm(B2)

perm(B1)

«
· · ·

„
perm(Bn−1)

perm(Bn−2)

«

=

„
perm(Bn−1)

perm(B)

«
.

Since Bn−1 only has one element, we thus can com-
pute perm(B) from market prices. Consequently, perm(B)
mod N gives perm(A).

Therefore, given a n-by-n (0, 1)-matrix A, we can compute
the permanent of A in polynomial time using prices in n−1
subset betting markets wherein an appropriate quantity of
securities have been purchased.

Additionally, note that

C(Q) = b log
X
σ∈Ω

nY
k=1

bk,σ(k) = b log perm(B) .

Thus if we can compute C(Q), we can also compute
perm(A).

As computing the permanent of a (0, 1)-matrix is #P-
hard, both computing market prices and computing the cost
function in a subset betting market are #P-hard.

Corollary 2. Computing the payment of a transaction
in a LMSR for subset betting is #P-hard.

Proof. Suppose the market maker starts the market
with 0 share of every security. Denote Q0 as the initial
quantities of all securities. If the market maker can compute
C(Q̃) − C(Q) for any quantities Q̃ and Q, it can compute
C(Q) − C(Q0) for any Q. As C(Q0) = b log n!, the market
maker is able to compute C(Q). According to Theorem 1,
computing the payment of a transaction is #P-hard.

4.2 Pair Betting
In contrast to subset betting, where traders bet on abso-

lute positions for a candidate, pair betting allows traders to
bet on the relative position of a candidate with respect to
another. More specifically, traders buy and sell securities of
the form 〈i > j〉, where i and j are candidates. The security
pays off $1 if candidate i ranks higher than candidate j (i.e.,
σ(i) < σ(j) where σ is the final ranking of candidates) and
$0 otherwise. For example, traders may bet on events of the
form“horse A beats horse B”, or “candidate C receives more
votes than candidate D”.

As for subset betting, the current state of the market is
determined by the total number of outstanding shares for all
securities. Let qi,j denote the number of outstanding shares
for 〈i > j〉. Applying Equations 3 and 4 to the present
context, we find that the instantaneous price of the security
〈i, j〉 is given by

pi,j(Q) =

P
σ∈Ω:σ(i)<σ(j)

Q
i′,j′:σ(i′)<σ(j′) eqi′,j′/bP

τ∈Ω

Q
i′,j′:τ(i′)<τ(j′) eqi′,j′/b

, (9)

and the cost function for pair betting is

C(Q) = b log
X
σ∈Ω

Y
i,j:σ(i)<σ(j)

eqi,j/b . (10)

We will show that computing prices, the value of the cost
function, and/or payments of transactions for pair betting
is #P-hard via a reduction from the problem of computing
the number of linear extensions to any partial ordering.

Theorem 3. It is #P-hard to compute instantaneous
prices in a LMSR market for pair betting. Additionally, it
is #P-hard to compute the value of the cost function.

Proof. Let P be a partial order over {1, . . . , n}. Recall
that a linear (or total) order T is a linear extension of P

193

if whenever x ≤ y in P it also holds that x ≤ y in T . We
denote by N (P) the number of linear extensions of P .

Recall that (i, j) is a covering pair of P if i ≤ j in P
and there does not exist � �= i, j such that i ≤ � ≤ j. Let
{(i1, j1), (i2, j2), ... , (ik, jk)} be a set of covering pairs of
P . Note that covering pairs of a partially ordered set with
n elements can be easily obtained in polynomial time, and
that their number is less than n2.

We will show that we can design a sequence of trades that,
given a list of covering pairs for P , provide N (P) through a
simple function of market prices.

We consider a pair betting market over n candidates. We
construct a sequence of k trading periods, and denote by
qt

i,j and pt
i,j respectively the outstanding quantity of security

〈i > j〉 and its instantaneous price at the end of period t.
At the beginning of the market, q0

i,j = 0 for any i and j. At
each period t, 0 < t ≤ k, b ln n! shares of security 〈it > jt〉
are purchased.

Let

Nt(i, j) =
X

σ∈Ω:σ(i)<σ(j)

Y
i′,j′:σ(i′)<σ(j′)

e
qt

i′,j′/b
,

and

Dt =
X
σ∈Ω

Y
i′,j′:σ(i′)<σ(j′)

e
qt

i′,j′/b
.

Note that according to Equation 9, pt
it,jt

= Nt(it, jt)/Dt.
For the first period, as only the security 〈i1 > j1〉 is pur-

chased, we get

D1 =
X

σ∈Ω:σ(i1)<σ(j1)

n! +
X

σ:σ(i1)>σ(j1)

1 =
(n!)2 + n!

2
.

We now show that Dk can be calculated inductively from
D1 using successive prices given by the market. During pe-
riod t, b ln n! shares of 〈it > jt〉 are purchased. Note also
that the securities purchased are different at each period, so
that qs

it,jt
= 0 if s < t and qs

it,jt
= b ln n! if s ≥ t. We have

Nt(it, jt) = Nt−1(it, jt)e
b ln(n!)/b = n!Nt−1(it, jt) .

Hence,

pt
it,jt

pt−1
it,jt

=
Nt(it, jt)/Dt

Nt−1(it, jt)/Dt−1
=

n!Dt−1

Dt
,

and therefore,

Dk = (n!)k−1

kY

�=2

p�−1
i�,j�

p�
i�,j�

!
D1 .

So Dk can be computed in polynomial time in n given the
prices.

Alternately, since the cost function at the end of period k
can be written as C(Q) = b log Dk, Dk can also be computed
efficiently from the cost function in period k.

We finally show that given Dk, we can compute N (P)
in polynomial time. Note that at the end of the k trading
periods, the securities purchased correspond to the covering

pairs of P , such that eqk
i,j/b = n! if (i, j) is a covering pair

of P and eqk
i,j/b = 1 otherwise. Consequently, for a per-

mutation σ that satisfies the partial order P , meaning that
σ(i) ≤ σ(j) whenever i ≤ j in P, we haveY

i′,j′:σ(i′)<σ(j′)

e
qk

i′,j′/b
= (n!)k .

On the other hand, if a permutation σ does not satisfy P ,
it does not satisfy at least one covering pair, meaning that
there is a covering pair of P , (i, j), such that σ(i) > σ(j), so
that Y

i′,j′:σ(i′)<σ(j′)

e
qk

i′,j′/b ≤ (n!)k−1 .

Since the total number of permutations is n!, the total sum
of all terms in the sum Dk corresponding to permutations
that do not satisfy the partial ordering P is less than or
equal to n!(n!)k−1 = (n!)k, and is strictly less than (n!)k

unless the number of linear extensions is 0, while the total
sum of all the terms corresponding to permutations that do
satisfy P is N (P)(n!)k. Thus N (P) =

¨
Dk/(n!)k

˝
.

We know that computing the number of linear extensions
of a partial ordering is #P-hard. Therefore, both computing
the prices and computing the value of the cost function in
pair betting are #P-hard.

Corollary 4. Computing the payment of a transaction
in a LMSR for pair betting is #P-hard.

The proof is nearly identical to the proof of Corollary 2.

5. LMSR FOR BOOLEAN BETTING
We now examine an alternate type of market combina-

torics in which the final outcome is a conjunction of event
outcomes. Formally, let A be event space, consisting of N
individual events A1, · · · , AN , which may or may not be mu-
tually independent. We define the state space Ω be the set
of all possible joint outcomes for the N events, so that its
size is |Ω| = 2N . A Boolean betting market allows traders to
bet on Boolean formulas of these events and their negations.
A security 〈φ〉 pays off $1 if the Boolean formula φ is satis-
fied by the final outcome and $0 otherwise. For example, a
security 〈A1 ∨ A2〉 pays off $1 if and only if at least one of
events A1 and A2 occurs, while a security 〈A1 ∧ A3 ∧ ¬A5〉
pays off $1 if and only if the events A1 and A3 both occur
and the event A5 does not. Following the notational con-
ventions of Fortnow et al. [11], we use ω ∈ φ to mean that
the outcome ω satisfies the Boolean formula φ. Similarly,
ω �∈ φ implies that the outcome ω does not satisfy φ.

In this section, we focus our attention to LMSR markets
for a very simple Boolean betting language, Boolean formu-
las of two events. We show that even when bets are only
allowed to be placed on disjunctions or conjunctions of two
events, it is still #P-hard to calculate the prices, the value of
the cost function, and payments of transactions in a Boolean
betting market operated by a LMSR market maker.

Let X be the set containing all elements of A and their
negations. In other words, each event outcome Xi ∈ X is
either Aj or ¬Aj for some Aj ∈ A. We begin by consider-
ing the scenario in which traders may only trade securities
〈Xi ∨ Xj〉 corresponding to disjunctions of any two event
outcomes.

Let qi,j be the total number of shares purchased by all
traders for the security 〈Xi ∨ Xj〉, which pays off $1 in the
event of any outcome ω such that ω ∈ (Xi ∨ Xj) and $0
otherwise. From Equation 4, we can calculate the instan-
taneous price for the security 〈Xi ∨ Xj〉 for any two event

194

outcomes Xi, Xj ∈ X as

pi,j(Q) =
P

ω∈Ω:ω∈(Xi∨Xj)
Q

1≤i′<j′≤2N:ω∈(X
i′∨X

j′)
e
q
i′,j′/b

P
τ∈Ω

Q
1≤i′<j′≤2N:τ∈(X

i′∨X
j′)

e
q
i′,j′/b . (11)

Note that if Xi = ¬Xj , pi,j(Q) is always $1 regardless of
how many shares of other securities have been purchased.
According to Equation 3, the cost function is

C(Q) = b log
X
ω∈Ω

Y
1≤i<j≤2N :ω∈(Xi∨Xj)

eqi,j/b . (12)

Theorem 5 shows that computing prices and the value of the
cost function in such a market is #P-hard, via a reduction
from the #2-SAT problem.1

Theorem 5. It is #P-hard to compute instantaneous
prices in a LMSR market for Boolean betting when bets are
restricted to disjunctions of two event outcomes. Addition-
ally, it is #P-hard to compute the value of the cost function
in this setting.

Proof. Suppose we are given a 2-CNF (Conjunctive Nor-
mal Form) formula

(Xi1 ∨ Xj1) ∧ (Xi2 ∨ Xj2) ∧ · · · ∧ (Xik ∨ Xjk) (13)

with k clauses, where each clause is a disjunction of two liter-
als (i.e. events and their negations). Assume any redundant
terms have been removed.

The structure of the proof is similar to that of the pair
betting case. We consider a Boolean betting markets with N
events, and show how to construct a sequence of trades that
provides, through prices or the value of the cost function, the
number of satisfiable assignments for the 2-CNF formula.

We create k trading periods. At period t, a quantity
b ln(2N) of the security 〈Xit ∨ Xjt〉 is purchased. We de-
note by pt

i,j and qt
i,j respectively the price and outstanding

quantities of the security 〈Xi ∨ Xj〉 at the end of period t.
Suppose the market starts with 0 share of every security.
Note that qs

it,jt
= 0 if s < t and qs

it,jt
= b ln(2N) if s ≥ t.

Let

Nt(i, j) =
X

ω∈Ω:ω∈(Xi∨Xj)

Y
1≤i′<j′≤2N :ω∈(Xi′∨Xj′)

e
qt

i′,j′/b
,

and

Dt =
X
ω∈Ω

Y
1≤i′<j′≤2N :ω∈(Xi′∨Xj′)

e
qt

i′,j′/b
.

Thus, pt
i,j = Nt(it, jt)/Dt.

Since only one security 〈Xi1 ∨ Xj1〉 has been purchased in
period 1, we get

D1 =
X

ω∈Ω:ω∈(Xi1∨Xj1)

2N +
X

ω∈Ω:ω �∈(Xi1∨Xj1)

1

= 3 · 22N−2 + 2N−2.

We then show that Dk can be calculated inductively from
D1. As the only security purchased in period t is (Xit ∨Xjt)
in quantity b ln(2N), we obtain

Nt(it, jt) = Nt−1(it, jt)e
b ln(2N)/b = Nt−1(it, jt)2

N .
1This can also be proved via a reduction from counting linear
extensions using a similar technique to the proof of Theo-
rem 3, but the reduction to #2-SAT is more natural.

Therefore,

pt
it,jt

pt−1
it,jt

=
Nt(it, jt)/Dt

Nt−1(it, jt)/Dt−1
=

2NDt−1

Dt
,

and we get

Dk = (2N)k−1

kY

�=2

p�−1
i�,j�

p�
i�,j�

!
D1 .

In addition, since the cost function at the end of period k
can be expressed as

C(Q) = b log Dk ,

Dk can also be computed efficiently from the cost function
in period k.

We now show that we can deduce from Dk the number of
satisfiable assignments for the 2-CNF formula (Equation 13).
Indeed, each term in the sumX

ω∈Ω

Y
1≤i′<j′≤2N :ω∈(Xi′∨Xj′)

e
qk

i′,j′/b

that corresponds to an outcome ω that satisfies the formula
is exactly 2kN , as exactly k terms in the product are 2N

and the rest is 1. On the contrary, each term in the sum
that corresponds to an outcome ω that does not satisfy the
2-CNF formula will be at most 2(k−1)N since at most k −
1 terms in the product will be 2N and the rest will be 1.
Since the total number of outcomes is 2N , the total sum
of all terms corresponding to outcomes that do not satisfy
Equation 13 is less than or equal to 2N (2(k−1)N) = 2kN ,
and is strictly less than 2kN unless the number of satisfying
assignments is 0. Thus the number of satisfying assignments
is
¨
Dk/2kN

˝
.

We know that computing the number of satisfiable as-
signments of a 2-CNF formula is #P-hard. We have shown
how to compute it in polynomial time using prices or the
value of the cost function in a Boolean betting market of
N events. Therefore, both computing prices and computing
the value of the cost function in a Boolean betting market
is #P-hard.

Corollary 6. Computing the payment of a transaction
in a LMSR for Boolean betting is #P-hard when traders can
only bet on disjunctions of two events.

The proof is nearly identical to the proof of Corollary 2.
If we impose that participants in a Boolean betting market

may only trade securities corresponding to conjunctions of
any two event outcomes, 〈Ai ∧ Aj〉, the following Corollary
gives the corresponding complexity results.

Corollary 7. It is #P-hard to compute instantaneous
prices in a LMSR market for Boolean betting when bets are
restricted to conjunctions of two event outcomes. Addition-
ally, it is #P-hard to compute the value of the cost function
in this setting, and #P-hard to compute the payment for a
transaction.

Proof. Buying q shares of security 〈Ai ∧ Aj〉 is equiv-
alent to selling q shares of 〈¬Ai ∨ ¬Aj〉. Thus if we can
operate a Boolean betting market for securities of the type
〈Ai ∧ Aj〉 in polynomial time, we can also operate a Boolean
betting market for securities of the type 〈Ai ∨ Aj〉 in poly-
nomial time. The result then follows from Theorem 5 and
Corollary 6.

195

6. AN APPROXIMATION ALGORITHM
FOR SUBSET BETTING

There is an interesting relationship between logarithmic
market scoring rule market makers and a common class of
algorithms for online learning in an experts setting. In this
section, we elaborate on this connection, and show how re-
sults from the online learning community can be used to
prove new results about an approximation algorithm for sub-
set betting.

6.1 The Experts Setting
We begin by describing the standard model of online learn-

ing with expert advice [19, 12, 27]. In this model, at each
time t ∈ {1, · · · , T}, each expert i ∈ {1, · · · , n} receives a
loss �i,t ∈ [0, 1]. The cumulative loss of expert i at time

T is Li,T =
PT

t=1 �i,t. No statistical assumptions are made
about these losses, and in general, algorithms are expected
to perform well even if the sequence of losses is chosen by
an adversary.

An algorithm A maintains a current weight wi,t for each
expert i, where

Pn
i=1 wi,t = 1. These weights can be viewed

as distributions over the experts. The algorithm then re-
ceives its own instantaneous loss �A,t =

Pn
i=1 wi,t�i,t, which

may be interpreted as the expected loss of the algorithm
when choosing an expert according to the current distribu-
tion. The cumulative loss of A up to time T is then defined in
the natural way as LA,T =

PT
t=1 �A,t =

PT
t=1

Pn
i=1 wi,t�i,t.

A common goal in such online learning settings is to mini-
mize an algorithm’s regret. Here the regret is defined as the
difference between the cumulative loss of the algorithm and
the cumulative loss of an algorithm that would have “cho-
sen” the best expert in hindsight by setting his weight to 1
throughout all the periods. Formally, the regret is given by
LA,T − mini∈{1,··· ,n} Li,T .

Many algorithms that have been analyzed in the online
experts setting are based on exponential weight updates.
These exponential updates allow the algorithm to quickly
transfer weight to an expert that is outperforming the oth-
ers. For example, in the Weighted Majority algorithm of
Littlestone and Warmuth [19], the weight on each expert i
is defined as

wi,t =
wi,t−1e

−η�i,tPn
j=1 wj,t−1e−η�j,t

=
e−ηLi,tPn

j=1 e−ηLj,t
, (14)

where η is the learning rate, a small positive parameter that
controls the magnitude of the updates. The following theo-
rem gives a bound on the regret of Weighted Majority. For
a proof of this result and a nice overview of learning with
expert advice, see, for example, Cesa-Bianchi and Lugosi [3].

Theorem 8. Let A be the Weighted Majority algorithm
with parameter η. After a sequence of T trials,

LA,T − min
i∈{1,··· ,n}

Li,T ≤ ηT +
ln(n)

η
.

6.2 Relationship to LMSR Markets
There is a manifest similarity between the expert weights

utilized by Weighted Majority and the prices in an LMSR
market; simply compare the form of Equation 14 with the
form of Equation 2. One might ask if the results from the
experts setting can be applied to the analysis of prediction
markets. Our answer is yes. For example, it is possible to

use Theorem 8 to rediscover the well-known bound of b ln(n)
for the loss of an LMSR market maker with n outcomes.

Let ε be a limit on the number of shares that a trader
may purchase or sell at each time step; in other words, if a
trader would like to purchase or sell q shares, this purchase
must be broken down into �q/ε
 separate purchases of ε or
less shares. Note that the total number of time steps T
needed to execute such a sequence of purchases and sales is
proportional to 1/ε.

We will construct a sequence of loss functions in a setting
with n experts to induce a sequence of weight matrices that
correspond to the price matrices of the LMSR market. At
each time step t, let pi,t ∈ [0, 1] be the instantaneous price
of security i at the end of period t, and let qi,t ∈ [−ε, ε] be
the number of shares of security i purchased during period
t. Let Qi,t be the total number of shares of security i that
have been purchased up to time t. Define the instantaneous
loss of each expert as �i,t = (2ε − qi,t)/(ηb). First notice
that this loss is always in [0, 1] as long as η ≥ 2ε/b. From
Equations 2 and 14, at each time t,

pi,t =
eQi,t/bPn

j=1 eQj,t/b
=

e2εt/b−ηLi,tPn
j=1 e2εt/b−ηLj,t

=
e−ηLi,tPn

j=1 e−ηLj,t
= wi,t .

Applying Theorem 8, and rearranging terms, we find that

max
i∈{1,··· ,n}

TX
t=1

qi,t −
TX

t=1

nX
i=1

pi,tqi,t ≤ η2Tb + b ln(n).

The first term of the left-hand side is the maximum pay-
ment that the market maker needs to make, while the second
terms of the left-hand side captures the total money the mar-
ket maker has received. The right hand side is clearly min-
imized when η is set as small as possible. Setting η = 2ε/b
gives us

max
i∈{1,··· ,n}

TX
t=1

qi,t −
TX

t=1

nX
i=1

pi,tqi,t ≤ 4ε2Tb + b ln(n).

Since T = O(1/ε), the term 4ε2Tb goes to 0 as ε becomes
very small. Thus in the limit as ε approaches 0, we get
the well-known result that the worst-case loss of the market
maker is bounded by b ln(n).

6.3 Considering Permutations
Recently Helmbold and Warmuth [16] have shown that

many results from the standard experts setting can be ex-
tended to a setting in which, instead of competing with the
best expert, the goal is to compete with the best permu-
tation over n items. Here each permutation suffers a loss
at each time step, and the goal of the algorithm is to main-
tain a weighting over permutations such that the cumulative
regret to the best permutation is small. It is infeasible to
treat each permutation as an expert and run a standard al-
gorithm since this would require updating n! weights at each
time step. Instead, they show that when the loss has a cer-
tain structure (in particular, when the loss of a permutation
is the sum of the losses of each of the n mappings), an alter-
nate algorithm can be used that requires tracking only n2

weights in the form of an n × n doubly stochastic matrix.
Formally, let W t be a doubly stochastic matrix of weights

maintained by the algorithm A at time t. Here W t
i,j is the

196

weight corresponding to the probability associated with item
i being mapped into position j. Let Lt ∈ [0, 1]n×n be the loss
matrix at time t. The instantaneous loss of a permutation
σ at time t is �σ,t =

Pn
i=1 Lt

i,σ(i). The instantaneous loss

of A is �A,t =
Pn

i=1

Pn
j=1 W t

i,jL
t
i,j , the matrix dot product

between W t and Lt. Notice that �A,t is equivalent to the
expectation over permutations σ drawn according to W t of
�σ,t. The goal of the algorithm is to minimize the cumulative
regret to the best permutation, LA,T − minσ∈Ω Lσ,T where
the cumulative loss is defined as before.

Helmbold and Warmuth go on to present an algorithm
called PermELearn that updates the weight matrix in two
steps. First, it creates a temporary matrix W ′, such that for

every i and j, W ′
i,j = W t

i,je
−ηLt

i,j . It then obtains W t+1
i,j by

repeatedly rescaling the rows and columns of W ′ until the
matrix is doubly stochastic. Alternately rescaling rows and
columns of a matrix M in this way is known as Sinkhorn bal-
ancing [22]. Normalizing the rows of a matrix is equivalent
to pre-multiplying by a diagonal matrix, while normalizing
the columns is equivalent to post-multiplying by a diagonal
matrix. Sinkhorn [22] shows that this procedure converges to
a unique doubly stochastic matrix of the form RMC where
R and C are diagonal matrices if M is a positive matrix. Al-
though there are cases in which Sinkhorn balancing does not
converge in finite time, many results show that the number
of Sinkhorn iterations needed to scale a matrix so that row
and column sums are 1 ± ε is polynomial in 1/ε [1, 17, 18].

The following theorem [16] bounds the cumulative loss of
the PermELearn in terms of the cumulative loss of the best
permutation.

Theorem 9. (Helmbold and Warmuth [16]) Let A be the
PermELearn algorithm with parameter η. After a sequence
of T trials,

LA,T ≤ n ln(n) + η minσ∈Ω Lσ,T

1 − e−η
.

6.4 Approximating Subset Betting
Using the PermELearn algorithm, it is simple to approxi-

mate prices for subset betting in polynomial time. We start
with a n × n price matrix P 1 in which all entries are 1/n.
As before, traders may purchase securities of the form 〈i|Φ〉
that pay off $1 if and only if horse or candidate i finishes
in a position j ∈ Φ, or securities of the form 〈Ψ|j〉 that pay
off $1 if and only if a horse or candidate i ∈ Ψ finishes in
position j.

As in Section 6.2, each time a trader purchases or sells q
shares, the purchase or sale is broken up into �q/ε
 purchases
or sales of ε shares or less, where ε > 0 is a small constant.2

Thus we can treat the sequence of purchases as a sequence
of T purchases of ε or less shares, where T = O(1/ε). Let
qt

i,j be the number of shares of securities 〈i|Φ〉 with j ∈ Φ
or 〈Ψ|j〉 with i ∈ Ψ purchased at time t; then qt

i,j ∈ [−ε, ε]
for all i and j.

The price matrix is updated in two steps. First, a
temporary matrix P ′ is created where for every i and j,
2We remark that dividing purchases in this way has the
negative effect of creating a polynomial time dependence
on the quantity of shares purchased. However, this is not
a problem if the quantity of shares bought or sold in each
trade is bounded to start, which is a reasonable assumption.
The additional time required is then linear only in 1/ε.

P ′
i,j = P t

i,je
qt

i,j/b where b > 0 is a parameter playing a sim-
ilar role to b in Equation 2. Next, P ′ is Sinkhorn balanced
to the desired precision, yielding an (approximately) doubly
stochastic matrix P t+1.

The following lemma shows that updating the price matrix
in this way results in a price matrix that is equivalent to the
weight matrix of PermELearn with particular loss functions.

Lemma 10. The sequence of price matrices obtained by
the approximation algorithm for subset betting on a sequence
of purchases qt ∈ [−ε, ε]n×n is equivalent to the sequence of
weight matrices obtained by running PermELearn(η) on a
sequence of losses Lt with

Lt
i,j =

2ε − qt
i,j

ηb

for all i and j, for any η ≥ 2ε/b.

Proof. First note that for any η ≥ 2ε/b, Lt
i,j ∈ [0, 1] for

all t, i, and j, so the loss matrix is valid for PermELearn.
P 1 and W 1 both contain all entries of 1/n. Assume that
P t = W t. When updating weights for time t + 1, for all i
and j,

P ′
i,j = P t

i,je
qt

i,j/b = W t
i,je

qt
i,j/b

= e2ε/bW t
i,je

−2ε/b+qt
i,j/b

= e2ε/bW t
i,je

−ηLt
i,j = e2ε/bW ′

i,j .

Since the matrix W ′ is a constant multiple of P ′, the
Sinkhorn balancing step will produce the same matrices.

Using this lemma, we can show that the difference between
the amount of money that the market maker must distribute
to traders in the worst case (i.e. when the true outcome
is the outcome that pays off the most) and the amount of
money collected by the market is bounded. We will see in
the corollary below that as ε approaches 0, the worst case
loss of the market maker approaches bn ln(n), regardless of
the number of shares purchased. Unfortunately, if ε > 0,
this bound can grow arbitrarily large.

Theorem 11. For any sequence of valid subset betting
purchases qt where qt

i,j ∈ [−ε, ε] for all t, i, and j, let

P 1, · · · , P T be the price matrices obtained by running the
subset betting approximation algorithm. Then

max
σ∈Sn

TX
t=1

nX
i=1

qt
i,σ(i) −

TX
t=1

nX
i=1

nX
j=1

P t
i,jq

t
i,j

≤ 2ε/b

1 − e−2ε/b
n ln(n) +

„
2ε/b

1 − e−2ε/b
− 1

«
2εnT .

Proof. By Theorem 9 and Lemma 10, after rearranging
terms, we have that for any η ≥ 2ε/b,

2εnT −
TX

t=1

nX
i=1

nX
j=1

P t
i,j

≤
„

η

1 − e−η

«
bn ln n + 2εnT − max

σ∈Sn

TX
t=1

nX
i=1

qt
i,σ(i)

!
.

197

Thus we have

η

1 − e−η
max
σ∈Sn

TX
t=1

nX
i=1

qt
i,σ(i) −

TX
t=1

nX
i=1

nX
j=1

P t
i,jq

t
i,j

≤ η

1 − e−η
bn ln(n) +

„
η

1 − e−η
− 1

«
2εnT .

Notice that η/(1−e−η) is an increasing function in η, and
goes to 1 in the limit as η goes to 0. Thus the right hand
side of this equation decreases as η decreases to 0. Setting
η = 2ε/b yields the result.

Notice that the number of steps T scales inversely with ε
since each lump purchase of q shares must be broken into
�q/ε
 individual purchases. Thus in the limit as ε approaches
0, the loss of the market maker is bounded by bn ln(n).

Corollary 12. For any sequence of valid subset betting
purchases broken into T (= O(1/ε)) small purchases such
that qt

i,j ∈ [−ε, ε] for all t, i, and j, let P 1, · · · , P T be the
price matrices obtained by running the Subset Betting Ap-
proximation Algorithm. In the limit as ε approaches 0,

max
σ∈Sn

TX
t=1

nX
i=1

qt
i,σ(i) −

TX
t=1

nX
i=1

nX
j=1

P t
i,jq

t
i,j ≤ bn ln(n) .

This bound is comparable to worst-case loss bounds
achieved using alternate methods for operating LMSRs on
permutations. A single LMSR operated on the entire out-
come space has a guaranteed worst-case loss of b ln(n!), but
is, of course, intractable to operate. A set of n LMSRs oper-
ated as n separate markets, one for each position, would also
have a total worst-case loss bn ln(n), but could not guarantee
consistent prices. In the limit, our approximation algorithm
achieves the same worst-case loss guarantee as if we were
operating n separate markets, but prices remain consistent
at all times.

7. CONCLUSIONS
We investigate the computational complexity for logarith-

mic market scoring rule (LMSR) market makers to oper-
ate combinatorial betting markets. We examine two specific
market combinatorics, permutations and Boolean combina-
tions. In a permutation betting market, the state space is
the set of rankings of n competing candidates and is of size
of n!. In a Boolean betting market, the state space is the
set of Boolean combinations of N event outcomes and is of
size 2N .

Since allowing participants to bet on individual states is
both intractable and unnatural, we allow participants to
trade securities that correspond to simple properties of the
final state. For permutation betting, we consider subset bet-
ting, which allows traders to bet on a set of positions that a
candidate will stand at or a set of traders who will stand at a
particular position, and pair betting, which allows traders to
wager on the relative ranking of two candidates. For Boolean
betting, we consider the situation where traders bet on con-
junctions or disjunctions of two events. In all cases, we prove
that it is #P-hard to compute the instantaneous prices as
well as payments of transactions in a LMSR market. Our
results on subset betting in LMSR contrast with those of
Chen et al. [4] who show that subset betting is tractable
when the market is operated by a central auctioneer who

performs riskless order matching. Our results on Boolean
betting contrast with those of Chen, Goel, and Pennock [6]
who consider betting on single-elimination tournaments—a
special form of Boolean combinations—and show that such
a market with LMSR may be operated in polynomial time.
This raises interesting questions on the connection between
the complexity of auctioneers and the complexity of mar-
ket makers, and on the complexity of other combinatorial
betting scenarios.

We also show that there is an interesting relationship be-
tween LMSR market makers and a common class of expert
learning algorithms. This allows us to design an approxima-
tion algorithm for pricing subset betting in an LMSR. We
prove that in the limit the worst-case loss of an LMSR mar-
ket maker that uses our algorithm remains bounded. In the
future we plan to further investigate the connection between
online learning in expert settings and information markets
with automated market makers.

8. ACKNOWLEDGMENTS
The authors are grateful to Sampath Kannan for useful

discussions and advice on how to approach the pair betting
problem, to Manfred Warmuth for sharing extended details
of his work on learning permutations, and to Sharad Goel
for insightful discussions.

9. REFERENCES
[1] H. Balakrishnan, I. Hwang, and C. Tomlin.

Polynomial approximation algorithms for belief matrix
maintenance in identity management. In 43rd IEEE
Conference on Decision and Control, pages 4874–4879,
2004.

[2] G. Brightwell and P. Winkler. Counting linear
extensions is #P-complete. In ACM Symposium on
Theory of Computing, 1991.

[3] N. Cesa-Bianchi and G. Lugosi. Prediction, learning,
and games. Cambridge University Press, 2006.

[4] Y. Chen, L. Fortnow, E. V. Nikolova, and D. M.
Pennock. Betting on permutations. In ACM
Conference on Electronic Commerce, 2007.

[5] Y. Chen, L. Fortnow, E. V. Nikolova, and D. M.
Pennock. Combinatorial betting. ACM SIGecom
Exchanges, 7(1):865–877, 2007.

[6] Y. Chen, S. Goel, and D. M. Pennock. Pricing
combinatorial markets for tournaments. In ACM
Symposium on Theory of Computing, 2008. To appear.

[7] Y. Chen, D. M. Reeves, D. M. Pennock, R. D.
Hanson, L. Fortnow, and R. Gonen. Bluffing and
strategic reticence in prediction markets. In Workshop
on Internet and Network Economics, 2007.

[8] Yiling Chen and David M. Pennock. A utility
framework for bounded-loss market makers. In
Proceedings of the 23rd Conference on Uncertainty in
Artificial Intelligence, pages 49–56, 2007.

[9] R. Forsythe, F. Nelson, G. Neumann, and J. Wright.
Anatomy of an experimental political stock market.
The American Economic Review, 82(5):1142–1161,
1992.

[10] R. Forsythe, T. Rietz, and T. Ross. Wishes,
expectations, and actions: A survey on price formation
in election stock markets. Journal of Economic
Behavior and Organization, 39:83–110, 1999.

198

[11] L. Fortnow, J. Kilian, D. M. Pennock, and
M. Wellman. Betting boolean-style: A framework for
trading securities based on logical formulas. Decision
Support Systems, 39(1):87–104, 2004.

[12] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

[13] R. D. Hanson. Combinatorial information market
design. Information Systems Frontiers, (1):105–119,
2003.

[14] R. D. Hanson. Logarithmic market scoring rules for
modular combinatorial information aggregation.
Journal of Prediction Markets, 2007.

[15] R. D. Hanson, J. Ledyard, and T. Ishikida. An
experimental test of combinatorial information
markets. Journal of Economic Behavior and
Organization, 2008. To appear.

[16] D. Helmbold and M. Warmuth. Learning permutations
with exponential weights. In 20th Annual Conference
on Learning Theory, pages 469–483, 2007.

[17] Bahman Kalantari and Leonid Khachiyan. On the
complexity of nonnegative-matrix scaling. Linear
Algebra and its applications, (240):87–103, 1996.

[18] Nathan Linial, Alex Samorodnitsky, and Avi
Wigderson. A deterministic strongly polynomial
algorithm for matrix scaling and approximate
permanents. Combinatorica, 20(4):545–568, 2000.

[19] N. Littlestone and M. Warmuth. The weighted
majority algorithm. Information and Computation,
108(2):212–261, 1994.

[20] R. Nelson and D. Bessler. Subjective probabilities and
scoring rules: Experimental evidence. American
Journal of Agricultural Economics, 71(2):363–369,
1989.

[21] K. Oliven and T. Rietz. Suckers are born, but markets
are made: Individual rationality, arbitrage, and
market efficiency on an electronic futures market.
Management Science, 50(3):336–351, 2004.

[22] R. Sinkhorn. A relationship between arbitrary positive
matrices and doubly stochastic matrices. The Annals
of Mathematical Statistics, 35(2):876–879, 1964.

[23] R. Thaler and W. Ziemba. Anomalies: Parimutuel
betting markets: Racetracks and lotteries. Journal of
Economic Perspectives, 2(2):161–174, 1988.

[24] S. Toda. PP is as hard as the polynomial-time
hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[25] L. Valiant. The complexity of computing the
permanent. Theoretical Computer Science, 8:189–201,
1979.

[26] L. Valiant. The complexity of enumeration and
reliability problems. SIAM Journal of Computing,
8(3):410–421, 1979.

[27] V. Vovk. A game of prediction with expert advice.
Journal of Computer and System Sciences,
56:153–173, 1998.

199

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

