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At an initial time, an individual forms a belief about a future random outcome. As
time passes, the individual may obtain, privately or subjectively, further information,
until the outcome is eventually revealed. How can a protocol be devised that induces
the individual, as a strict best response, to reveal at the outset his prior assessment of
both the final outcome and the information flows he anticipates and, subsequently, what
information he privately receives? The protocol can provide the individual with payoffs
that depend only on the outcome realization and his reports. We develop a framework
to design such protocols, and apply it to construct simple elicitation mechanisms for
common dynamic environments. The framework is general: we show that strategyproof
protocols exist for any number of periods and large outcome sets. For these more gen-
eral settings, we build a family of strategyproof protocols based on a hierarchy of choice
menus, and show that any strategyproof protocol can be approximated by a protocol of
this family.

KEYWORDS: Elicitation device, scoring rule, Becker–DeGroot–Marschak mecha-
nism, dynamic information, second-order beliefs, high-order beliefs.

1. INTRODUCTION

IMAGINE AN EXPERIMENTER (SHE) WHO BELIEVES her subject (he) conforms to the
Bayesian model of uncertainty: the subject has probabilistic beliefs over some set of un-
certain outcomes and uses Bayes’ rule to update when new information is available. How-
ever, the experimenter recognizes that the subject may condition on information which
is either subjectively perceived or privately observable. How can we design an elicitation
device to understand how these beliefs evolve?

Probabilistic beliefs are commonly measured by experimenters. The classical tool for
doing so is a scoring rule. This device offers a menu of state-contingent payoffs to a subject.
The menu is chosen so that the subject’s optimal choice uniquely reveals his subjective
belief about states of the world. Scoring rules apply in situations in which the state of the
world is eventually observed by the experimenter.

Here, instead, the subject is involved in a dynamic experiment in which private infor-
mation resolves gradually over time. The experimenter wants to understand the subject’s
perception on how this information is to be revealed. She also wants to know, after the
information is revealed, what he learned. To fix ideas, consider a simple experiment to test
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overconfidence, motivated by Moore and Healy (2008).1 A subject is to take a pass–fail
test. There are three time periods of interest. In period 0, the subject has not yet taken the
test and forms a prior belief about the likelihood he will pass the test. Then the subject
takes the test and in period 1, after having taken the test, he forms an updated, posterior
belief about whether he passed. In period 2, the test is graded and the subject is told the
outcome.

Of course, prior and posterior beliefs are expected to differ: as the subject tries the test,
he gains new information about how difficult he finds the test. So, in the initial period, the
subject anticipates that he will update his probability assessment and he forms a belief
about his own posteriors. This belief reflects what he anticipates learning about his own
performance by taking the test. We refer to it as a second-order belief to distinguish it
from the first-order beliefs that are probability assessments on test outcomes. Suppose
the experimenter has interest in such a belief and, in period 0, asks the subject to report a
distribution over the posteriors he may have. She then asks the subject, in period 1, to re-
port his believed likelihood that he passed the test. This paper is about understanding how
the experimenter can induce the subject to report both beliefs truthfully, as a strict best
response, when payoffs to the subject can only depend on the reports and the outcome of
the test.

We stress that the subject’s distribution over the posteriors gives substantially more
information than just the prior likelihood of passing the test and so allows answering a
host of new questions. For instance, Moore and Healy distinguish between overconfidence
as the overestimation of one’s performance—in our example, when the posterior is biased
upward—and overconfidence as the excessive precision of one’s signal—in our example,
when the subject reports extreme posteriors too often.2 However, the subject may well
display low levels of “precision overconfidence,” while at the same time holding the strong
belief that he will be able to guess his score after taking the test. This interpersonal notion
of overconfidence cannot be measured through the elicitation of the prior and posterior
beliefs. It is rooted in the subject’s second-order beliefs. Of course, once we know how to
elicit these beliefs, we can also ask if participants properly anticipate how much they will
learn from the test. We can ask if they have a bias, for example, ask if they believe to learn
successes more than failures. We can measure subjective overconfidence by finding the
quantile of the posterior in the reported prior distribution. And as Moore and Healy, we
can ask related questions across subjects, for instance, if participants anticipate the test to
be more informative about their own performance than about the performance of others.

Our point is not to provide an exhaustive list of experiments to be conducted with high-
order beliefs. Rather, our goal is to operationalize the acquisition of such beliefs. The
current state of the art is to offer a standard scoring rule in both periods, to elicit first the
prior and then the posterior probabilities of passing the test. The prior assessment reflects,
via the law of iterated expectations, the subject’s period-0 mean posterior, but that is the
only statistic one gets on the distribution of posteriors. Scoring rules elicit these probabil-
ity assessments because they concern whether the subject passes the test, an event directly
observable by the experimenter. In contrast, the salient feature of our example is that the

1We are grateful to Paul J. Healy and Matt Jackson for bringing to our attention the connection to this
stream of the literature.

2In practice, nonbinary outcomes are preferred to prevent the confounding of overestimation and over-
precision, which can occur when probability assessments are always above 50%. In our example, probability
assessments can be as high as 100% and as low as 0%, which makes it possible to disentangle these two notions
of overconfidence.
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experimenter is unable to observe how difficult the test is to a subject. Consequently,
scoring rules do not elicit the subject’s initial distribution over his posteriors.

In Section 2, we lay down the foundation for our approach and explain how the elicita-
tion of second-order beliefs can be done in the simple context of the above experiment. It
is based on revealed preference. To illustrate, consider two possible menus of outcome-
contingent payoffs, from which the subject is permitted to choose in period 0. One menu
gives the subject $6 for sure, independently of the outcome of the test. The other menu
offers a choice, in period 1, between two options: the first is $10 in the event of failure and
$0 otherwise, and the second gives $10 in the event of passing and $0 otherwise. Consider
two risk-neutral subjects, who, in period 0, both believe that they will pass the test with
probability 0�5, but hold different second-order beliefs: subjectA believes that he will not
learn anything from taking the test, while subject B believes that he will learn perfectly.
SubjectA would take the $6 for sure, because his expected payout with the other menu is
$5. Subject B, on the other hand, would prefer to leave his options open by choosing the
other menu. As we show, this phenomenon is general. Any subjects with differing beliefs
can be behaviorally distinguished via a choice between some pair of menus. Thus, if the
experimenter could elicit a subject’s choice from sufficiently many pairs of menus, she
could in principle back out the second-order beliefs.

In Section 3, we leverage this methodology to design simple elicitation protocols for
more complex beliefs in special dynamic environments. Our mechanisms can be intu-
itively grasped as follows. The elicitor selects a collection of elementary decision prob-
lems, carefully chosen so that observing an individual’s choice behavior on every one of
these problems permits the identification of the individual’s belief. By appropriate ran-
domization, the elicitor can ask the individual to announce his beliefs and pay him as if
he had to confront every one of these decision problems. This makes truthful communi-
cation a strict best response.

This indirect “revealed-preference” approach is simple and powerful. It is also general:
it extends to essentially arbitrary dynamic environments. The challenge is that we must
rely only on the observed outcome to elicit as a strict best response potentially complex
subjective information (the high-order beliefs). To illustrate, suppose there is a coin toss
whose outcome is only revealed at some future date. An individual holds a prior assess-
ment on the outcome and is to observe, privately, new information at m different dates,
where each observation is the realization of some k-dimensional signal. We want the in-
dividual to tell, at the outset, the full joint probability distribution over the m signals and
the outcome, and then reveal the signals he observes as he receives them. As m and k
grow large, the object to elicit includes a vast amount of subjective information, yet to en-
force truthfulness, the only objective information is a single outcome that takes only two
possible values.

We elaborate and formalize the general theory in Section 4. We introduce a family of
protocols, where each protocol is identified with a probability distribution over choice
menus. We establish that these protocols induce truth telling as a strict best response and
that any strategyproof mechanism can be approximated by a protocol of the family.

In recent years, a large body of work has been devoted to how people learn over time,
how beliefs evolve, and how it affects their decisions. Our theoretical framework is rele-
vant to experiments that meet three conditions: (i) the environment is dynamic, (ii) the
subject’s beliefs are of interest, and (iii) the signals presented to him either are not con-
trolled by the experimenter and unobservable to her or are open to interpretation. In the
experiment of Moore and Healy, taking the test generates the unobservable signal. Other
common cases of unobservable signals are social cues or cheap talk.
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Many experimental designs fit these three conditions. A recent stream of the literature
devotes special attention to the question of how people learn in repeated games (as in,
for example, Nyarko and Schotter (2002), Palfrey and Wang (2009), Hyndman, Ozbay,
Schotter, and Ehrblatt (2012), and Danz, Fehr, and Kübler (2012)). These studies elicit
a player’s beliefs about the actions of the other players using classical probability scoring
rules. In those environments, the actions taken by a player provide a signal to another
player. The signal is observed by the experimenter, but is open to interpretation. In games
with incomplete information, actions continue to provide signals, and beliefs involve both
the actions and the private information of the other players. Our framework can be used
to estimate how the players anticipate their belief to change and how it affects their own
play.

More broadly, the elicitation of high-order beliefs helps us to refine our understanding
of people’s learning process and its interplay with observed decisions, and to explain vi-
olations of equilibrium predictions. For example, it is widely documented that in games
of imperfect information, our ability to learn from strategies is limited—the textbook ex-
ample being the winner’s curse in common-value auctions. Tools such as the concept of
cursed equilibrium (Eyster and Rabin (2005)) have been introduced for the purpose of
explaining these facts. Knowing high-order beliefs would help push the analysis further
by enabling the experimenter to measure how much information a bidder expects to ob-
tain from observing the bids of their opponents. Even in simpler games, the relation be-
tween a player’s beliefs and his actions poses interesting questions. Not only is equilibrium
play often not observed, but there is evidence of inconsistencies—a player’s belief reveal-
ing deeper strategic thinking than his action—as Costa-Gomes and Weizsäcker (2008)
demonstrate for normal-form games using probability scoring rules. Being able to elicit
beliefs of second or higher order can help us understand how much of these effects can
be linked to the complexity of the dynamics. Some other works examine the evolution of
subject beliefs in response to signals and stimuli, as in the study of information cascades
(Ziegelmeyer, Koessler, Bracht, and Winter (2010)) or belief polarization (Fryer, Harms,
and Jackson (2019)). In these instances, the signals are controlled by the experimenter,
but left open to interpretation. These works track the change of first-order beliefs over
time. With second-order beliefs, it becomes possible to explain how much of what is ob-
served is due to an error in how the subject updates his belief (e.g., the subject overreacts
to information) versus how much is due to a misspecified cognitive model (e.g., the subject
incorrectly believes that future signals will carry significant information).

While we use belief elicitation in experiments as our leading example, probability scor-
ing rules have been applied to a large range of settings to induce honest or accurate
reports of information.3 They are also a main tool by which to evaluate, in theory as in
practice, learning models, predictions, and forecasters. To the extent that our approach
develops the foundation for the dynamic analog of probability scoring rules, we believe
that our theory can be applied for the same purposes of elicitation and performance eval-
uation, but in dynamic environments, in which forecasts arrive over time and what matters
is not only the quality of those forecasts, but also how fast uncertainty is anticipated to
resolve.4

3For example, in contract theory (e.g., Thomson (1979), Osband (1989), or, more recently Carroll (2019)),
prediction markets (Ostrovsky (2012)), problems of strategic distinguishability (Bergemann, Morris, and Taka-
hashi (2017)), the testing of forecasters (Stewart (2011)), or the literature rational inattention (Steiner, Stew-
art, and Matějka (2017)). Harrison and Phillips (2014) expand on the practical aspects of using scoring rules
as incentive devices in risk management.

4Knowing the information structure—forming expectations on what information will arrive and when it will
arrive—as captured by high-order beliefs enables a decision maker to solve any sort of dynamic problem. In
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Related Literature

Foremost, our paper relates to the literature on scoring rules and belief or preference
elicitation that goes back to Brier (1950) and Good (1952), who establish the first two
proper probability scoring rules. McCarthy (1956) and later Savage (1971) offer a general
method to construct these scoring rules, which has been extended and exploited exten-
sively. Because the literature is vast and spans several fields, it is impossible to do it jus-
tice (for a survey, see Gneiting and Raftery (2007)). Importantly, the literature assumes
a static setting. Our work departs from the static benchmark, providing a general rule for
making scoring rules that apply to dynamic settings.

The experiment conducted by Manski and Neri (2013) demonstrates the practical fea-
sibility of eliciting probabilistic beliefs of one subject on the probabilistic beliefs of the
other. To do so, they use the Brier score to elicit the first-order beliefs of a subject A, and
use a sum of Brier scores to elicit the beliefs of another subject B regarding subject A’s
first-order beliefs. These are also “second-order beliefs,” but there, the subject forecasts
the beliefs of someone else, whereas here, the subject forecasts his own future beliefs.
The distinction is crucial: subject B has no ability to manipulate the reports of subject A,
which are, from the viewpoint of subject B, states that the experimenter can observe, so
that standard probability scoring rules apply. In elegant recent works, Karni (2018, 2020)
uses a similar structure to elicit the second-order beliefs of the same subject. Karni argues
that this structure is useful when the subject’s behavior conforms to nonstandard decision
models. In this case, however, the mechanism is not incentive compatible, because the
subject would manipulate his future reports (see Appendix A).

The standard approach to build scoring rules, explained in Savage (1971), is to take the
subgradients of convex functions. This “direct” approach relates to the “payoff equiva-
lence” characterizations in mechanism design (Krishna and Maenner (2001)). We take a
different route. Our approach is inspired by an idea developed in Allais (1953) and also
attributed to W. Allen Wallis (Savage (1954)) in a revealed-preference context: to elicit
an individual’s preference over a collection of objects, one can ask the individual for his
preference over the entire collection, choose two objects at random, and then give the
individual the object that is preferred according to his announcement. Azrieli, Chambers,
and Healy (2018) show that the mechanisms that are incentive compatible under minimal
assumptions on the subject’s preference reduce to randomized mechanisms of the form
given by Allais.

In the static benchmark of the literature, several works relate indirectly to the Allais
idea. In their seminal work, Becker, DeGroot, and Marschak (1964) introduce, as an al-
ternative to the Brier score, a method for eliciting an expert’s belief via a second-price
auction with a random reserve price. Matheson and Winkler (1976) propose a scoring
rule to elicit the distribution function of real-valued random variables. Schervish (1989)
proposes a characterization of strictly proper scoring rules for binary outcomes as inte-
grals with positive weights; this type of characterization is also central in scoring rules for
distribution properties (Lambert (2018)). Although these works are independent of each
other, they have in common that they can be interpreted as implicit applications of the
Allais idea, either by randomization or by a mechanism that is equivalent to introducing a

contrast, probability assessments on payoff-relevant outcomes are only relevant to static decisions or degen-
erate dynamic problems. We demonstrate these facts in Sections S.3 and S.4 of the Supplemental Material
(Chambers and Lambert (2021)).
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randomization.5 One contribution of our work is thus the formalization of the connection
to the Allais idea and the illustration of its effectiveness beyond the static benchmark.

Another strand of literature compares reports across individuals to obtain honest opin-
ions on subjective matters by assuming a form of consensus among the individuals (e.g.,
Prelec (2004) or Miller, Resnick, and Zeckhauser (2005)). This consensus allows observ-
able outcomes to be discarded. In mechanism design, the Crémer–McLean mechanism
(Crémer and McLean (1988)) is a classical example of such a construct. In contrast, in
this paper we elicit information individually, but rely on the observability of the final out-
come.

Finally, our work connects to the problem of identification in the decision theory liter-
ature. To design the elicitation protocols of Sections 2–4, we show how to identify high-
order beliefs from behavior across a set of decision problems and then we combine these
decision problems into a single elicitation task. The identification that we perform differs
from the identification of beliefs in decision theory in that, in the latter, one usually has
access to the entire preference relation of the decision maker to identify the parameters
of the decision model. By contrast, in our framework, the set of decision problems used
for identification must be kept relatively simple. This simplicity is first needed to obtain
the simple protocols in the special cases described in the next two sections. But at a more
general level, working with a small enough set of decision problems enables us to com-
bine these problems so as to preserve their strict incentive properties, so that a strict best
response in any one of the decision problems continues to induce a strict best response
in the combined problem—a central aspect of our design. This aggregation can fail when
identification is supported by too many decision problems. Thus, knowing that beliefs
are identified in the classical sense can help, but is not enough to say that beliefs can be
elicited; we discuss this point in more details in Section 4.2.

The identification of beliefs (in the classical sense) is known in special cases of the de-
cision theory literature. In the dynamic models of Takeoka (2007), Dillenberger, Lleras,
Sadowski, and Takeoka (2014), and Lu (2016), the decision maker observes an interim
subjective signal, or acts as if she observed such a signal, as does the subject in our mo-
tivating example. In particular, identification for the decision models of Takeoka (2007)
and Dillenberger et al. (2014) implies that second-order and third-order beliefs are iden-
tified. On the other hand, our results imply that in any decision model consistent with
our behavioral assumptions, higher-order beliefs continue to be identified, hence com-
plementing those works. Note that in most protocols of this paper, all payoffs occur after
all uncertainty is resolved. Under risk neutrality and without discounting, redistributing
the payoffs over multiple time periods is possible, sometimes allowing for some simpli-
fication, but in general, allowing for payoffs in interim periods requires one to account
for time-related preferences such as intertemporal substitution, thus adding other dimen-
sions to preferences, which can complicate the task of elicitation. This is relevant for the
models of Kreps and Porteus (1978) and, more recently, Krishna and Sadowski (2014).

Organization

Sections 2 and 3 provide protocols that elicit beliefs in special environments in which
the number of time periods, the beliefs of the subject, or the information to be elicited

5Other elicitation mechanisms, such as the mechanisms of Roth and Malouf (1979), Grether (1981), or
Karni (2009), introduce randomization. The purpose of this randomization is different: these mechanisms
reward individuals with lottery tickets to create an incentive compatibility in the absence of risk neutrality.
The key knowledge that the experimenter must have in these contexts is that the subject’s preferences exhibit
monotonicity with respect to stochastic dominance of the imputed lotteries.
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TABLE I

FEATURES OF THE ENVIRONMENTS FOR THE PROTOCOLS OF SECTIONS 2 AND 3

Binary Outcomes Number of Interim Periods Random Time of Information Arrival Restricted Beliefs

Protocol I Yes 1 No Yes
Protocol II Yes 1 No No
Protocol III No 1 No No
Protocol IV Yes 1 Yes No
Protocol V Yes 2 No Yes
Protocol VI Yes 2 No No

are restricted. These special cases are presented in order of increasing complexity and
help build up the general theory. Table I outlines the features of these environments. The
full, unrestricted framework is presented in Section 4. Section 5 concludes. Appendix A
discusses protocols obtained by combining elicitation mechanisms for first-order beliefs.
Appendices B and C include the proofs omitted from the main text. The Supplemental
Material (Chambers and Lambert (2021)) presents several extensions of the main results.

2. A SIMPLE EXAMPLE

In this section, we explore a simple example to illustrate the theory of this paper.
Throughout, the elicitor is an experimenter who wants to elicit beliefs from her subject re-
garding a random event. For concreteness, we work with the experiment presented in the
Introduction, though the application to other domains is straightforward. The outcome
of interest is whether the subject passes or fails the test. The goal is to elicit, in period 1,
the subject’s probability assessments on the outcome and, in period 0, the subject’s initial
belief over these probability assessments.

2.1. The Case of Restricted Beliefs

As a first step, consider a restricted information structure: the experimenter hypothe-
sizes that, after taking the test, the subject either fully learns whether he passed or failed,
or learns nothing new. Thus, in period 0 (the initial period), the subject is asked to report
an element p ∈ [0�1], reflecting an initial probability assessment that he will pass the test,
together with a probability α ∈ [0�1] that he will learn whether he passed after having
taken the test (with probability 1 −α of learning nothing new). Under the experimenter’s
assumption, these two numbers describe fully the subject’s distribution over his posterior
beliefs. Then the subject takes the test and, in period 1 (the interim period), is asked to
report how likely he believes to have passed the test, an element q ∈ [0�1].6 Finally, in
period 2 (the final period), the subject is told whether he passed or failed the test. In Fig-
ure 1, we draw the probability tree associated to the subject’s belief in period 0. The leaves
of the tree correspond to the possible beliefs the subject may form in period 1, regard-
ing whether or not he passed the test, while the branches indicate the ex ante likelihood
attributed to these beliefs in period 0.

6While we could compel the subject to be consistent with his initial report by requiring q ∈ {0�p�1}, it is not
necessary. The belief at the second stage need not be in the support of the belief at the first stage, so that a
subject who misreports in period 0 is still induced to report truthfully in period 1.
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FIGURE 1.—Probability tree if the subject anticipates to learn all or nothing.

The experimenter delivers a payoff as a function of the reported probabilities α, p, and
q, when x is the outcome that realizes; by convention, x= 1 if the subject passes the test
and x= 0 if he fails. Following the literature, the experimenter must motivate the subject
with strict incentives: the subject must be willing to respond truthfully and the truth must
be the unique best response. To simplify matters even further, let us suppose the subject
is risk neutral.

To elicit the prior and posterior probabilities of passing the test, one can sequentially
use probability scoring rules, such as a quadratic scoring rule, giving the subject payoffs
1− (p−x)2 and 1− (q−x)2 for respective assessments p and q (Selten (1998)). It is then
a strict best response for the subject to act truthfully at each stage. On the other hand,
probability scoring rules do not elicit the probability that the subject assigns to learning
fully.

Instead, the elicitation of α relies on the following idea. Suppose the experimenter were
to use the above-mentioned quadratic scoring rules. As can be easily checked, a subject
who believes he is more likely to learn fully also expects to earn more from the elicitation
of his posterior. Indeed, the second score yields an expected payoff 1 − p(1 − p) to the
subject who learns nothing and 1 to the subject who learns fully. This fact makes it possible
to discriminate between the subjects who are more likely to learn fully and those who are
not. The higher is α, the higher is the option value associated with delaying a decision. We
leverage exactly this idea: individuals with a relatively high α will find it best to delay their
decision; in contrast, individuals with a relatively low α will be more willing to commit.
The goal is to appropriately choose commitment payoffs and option payoffs in order to
distinguish between the different individuals.

For example, the experimenter could fix a baseline payoff B ∈ (0�1) and, before ad-
ministering the test, offer the subject the following choice: in the interim period, he can
be paid according to the quadratic score or he can choose to forgo this elicitation pay-
ment and instead get compensated with payoff B. Initially, the subject expects to earn
1 − (1 − α)p(1 − p) from the quadratic score, so he should decide to use the quadratic
score only if α is above some threshold and otherwise leave with B. Observing the sub-
ject’s choice enables the experimenter to infer information about the probability of learn-
ing fully. By repeating this procedure on the same subject infinitely many times while
increasing B smoothly from 0 to 1, the experimenter could, in principle, collect enough
data points to infer exactly α. Doing so would be impractical, but the same effect can
be achieved through randomization and delegation: after the subject communicates his
belief, the experimenter draws B at random and chooses between the scoring rule and
payoff B on behalf of the subject. The subject strictly prefers to respond honestly as long
as a wrong choice is costly with nonzero probability—as when B is uniformly distributed.

This shows how to elicit α. We can elicit all of α, p, and q with a small modification:
keep the first quadratic scoring rule to get p and postpone the experimenter’s actions to
the final period, so that in the interim period, the subject is still unsure whether he is being
paid as a function of his posterior assessment, inducing a strict best response for q. The
overall protocol is summarized below.
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PROTOCOL I: In the initial period, the subject is asked to estimate the likelihood α that
he will learn fully, along with the prior probability p that he will pass the test. In the interim
period, the subject is asked to assess the posterior probability q that he passed the test. In the
final period, the test outcome is revealed and the experimenter draws B ∈ [0�1] uniformly at
random. If 1 − (1 − α)p(1 − p) < B, then the subject is paid 1 + B − (p− x)2; otherwise,
the subject is paid 2 − (p− x)2 − (q− x)2.

This construction highlights the key idea of this paper. To elicit an individual’s (dy-
namic) beliefs, we divide the elicitation task into many small parts. We consider a col-
lection of basic decision problems—in this instance, whether to take B or to go with the
payoffs of a quadratic scoring rule. The collection is designed so that observing the in-
dividual’s choices from each of the decision problems uncovers the beliefs entirely. But
taken separately, each decision problem only reveals a small piece of the individual’s be-
liefs. To elicit these beliefs as a single decision, we combine all the simple problems by
suitably randomizing.

As in Allais (1953), randomization is a natural device in this context. However, it is
not a necessity. We can design a nonrandom elicitation scheme if, as opposed to drawing
one decision problem from a set, we give the subject an infinitesimal fraction of every
decision problem from that set. Here, it can be done by computing the average payoffs.
For example, averaging the payoffs of Protocol I over B yields a nonrandom payoff that
represents a scoring rule for the elicitation of α, p, and q, which before simplification is
written

π(α�p�q�x)= 1 − (p− x)2 +
∫ 1−(1−α)p(1−p)

0

(
1 − (x− q)2

)
dB+

∫ 1

1−(1−α)p(1−p)
BdB�

In this instance, and in several others that we examine below, we find that random-
ization makes it possible to have intuitive and relatively simple elicitation schemes. The
absence of randomization can be preferred when the payoff, or score, is used for the pur-
pose of evaluating a learning model (as opposed to the elicitation of a subject’s beliefs) as
in Feltovich (2000). In this context, the complexity of the scoring rule is irrelevant.

2.2. Unrestricted Beliefs

We now depart from the simplifying assumption that the subject fully learns the out-
come after taking the test. The subject continues to hold a posterior belief, in the interim
period, about whether he passed. In the initial period, the subject forms a belief about this
posterior, now captured by a distribution function over [0�1] that we refer to as second-
order belief. The protocols of Section 2.1 do not enable us to elicit such a belief, because
the class of decision problems employed in the construction is too coarse. Rather than
randomize over quadratic scoring rules, we use a richer set of simpler decision problems.

PROTOCOL II: In the initial period, the subject is asked to announce his second-order
belief F . The experimenter then draws two numbers A and B independently and uniformly
from [0�1]. If

A≥ EF
[
max(B�P)

]
�

where the expectation is taken for P distributed according to F , then the protocol stops and
the subject gets the payoff A. Otherwise, in the interim period, the subject chooses between
getting the fixed payoff B and getting the payoff 1 conditional on him passing the test (and
nothing otherwise).
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PROPOSITION 1: In Protocol II, the subject announces his second-order belief as a strict
best response.

Of course, payoffs can be shifted and scaled as the experimenter sees fit. Throughout
let ϕ(B�F)= EF [max(B�P)]. Straightforward calculations yield

ϕ(B�F)= 1 −
∫ 1

B

F(p)dp�

The intuition behind Proposition 1 is simple. Observe that EF [max(B�P)] is the ex-
pected payoff of a subject who is to be given the choice in the interim period, with P
denoting the random posterior belief as seen from period 0. Therefore, the experimenter
makes the decision that is the best for the subject (given the information the subject pro-
vides) and truthful reporting is, at least, a weak best response.

In this protocol, the “simple decision problems” are whether to stop the experiment
to get an immediate payoff or continue to the next stage. There are as many decision
problems as there are values of A and B. If F is the true second-order belief, but the
subject communicates F̃ �= F instead, then we argue that there are many values of the
parameters A and B, thus many simple decision problems—sufficiently many so that, on
aggregate, these values generate a positive mass—such that the experimenter who acts on
behalf of someone with second-order belief F̃ makes the wrong choice, either stopping
the protocol while the subject would have been better off continuing or conversely. The
subject, who is unaware of which decision problem will be selected for him, is at risk of
losing some payoff when he deviates from the truth. He can only guarantee himself the
maximum payoff with probability 1 when he tells the truth.

PROOF OF PROPOSITION 1: Let F be the subject’s second-order belief and let F̃ be the
subject’s announcement. We have

EF̃
[
max(B�P)

] =
∫ 1

0
max(B�p)dF̃(p)

=
∫ B

0
BdF̃(p)+

∫ 1

B

pdF̃(p)

= BF̃(B)+ (
1 −BF̃(B)) −

∫ 1

B

F̃(p)dp

= 1 −
∫ 1

B

F̃(p)dp�

Therefore, the expected payoff of the subject is∫ 1

0

∫ 1

ϕ(B�F̃)

AdAdB+
∫ 1

0

∫ ϕ(B�F̃)

0
EF

[
max(B�P)

]
dAdB

=
∫ 1

0

1
2
(
1 −ϕ(B� F̃)2

)
dB+

∫ 1

0
ϕ(B� F̃)ϕ(B�F)dB

=
∫ 1

0

(
1
2
(
1 −ϕ(B� F̃)2

) +ϕ(B� F̃)ϕ(B�F)
)

dB� (1)
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This expression is maximized if and only if, for almost all B, ϕ(B� F̃) = ϕ(B�F). As ϕ
is continuous in its first argument, the expression is maximized if and only if for all B,
ϕ(B� F̃)= ϕ(B�F). Naturally, if F �= F̃ , then by the right continuity of cumulative distri-
bution functions, for some B,

∫ 1
B
F(p)dp �= ∫ 1

B
F̃(p)dp and so ϕ(B� F̃) �= ϕ(B�F). Hence,

the expected payoff of the subject is maximized if and only if he reports F . Q.E.D.

Rather than provide a general discussion, we conclude this section with several obser-
vations.

Eliciting the Prior and Posterior Beliefs

Protocol II elicits second-order beliefs only. The prior is not elicited directly, but is in-
cluded as part of the second-order belief, because it is equal to the mean posterior. The
posterior, a first-order belief, can either be elicited separately using a quadratic scoring
rule or be elicited in the same protocol if, instead, all the decisions are made by the exper-
imenter on behalf of the subject. In the interim period, the subject would then be asked
to send a probability assessment, as opposed to making a binary choice. In this case, it
is important that the values of A and B are only drawn or revealed after the subject has
communicated his information, to ensure that optimal announcements remain strict.

Moral Hazard

This paper is concerned with the design of protocols that prevent the manipulation
of reported beliefs. It is not concerned with the manipulation of the beliefs themselves.
When individuals can influence final outcomes, the elicitation procedure, by adding state-
contingent payments, can generate a moral hazard problem when incentives are mis-
aligned.

The problem is common in experimental setups. In incentivized experiments, it can be
reduced or eliminated by increasing the incentives on the experimental task. In the above
environment, we presume that subjects simply want to pass the test. In practice, subjects
have some control over the likelihood of passing the test, for example, they could decide
to flunk the test, which creates a potential for moral hazard. Suppose the experimenter
wants subjects who try to pass to the best of their ability. Then, to ensure that the subject
is motivated to pass, the experimenter can add a payment in case of success. If large
enough, the incentives of the experimenter and the subject are aligned in the presence of
the elicitation procedure.

Note that the presence of such agency problems does not impact the incentive com-
patibility of belief elicitation protocols. Specifically, if the subject can take actions that
influence the final outcome (or the information observed prior to the final period), then
in the environment of this section (as for the more general dynamic environment of the
sections below), the subject will find it optimal to announce the belief associated with the
optimal anticipated stream of actions at the time of the announcement.

Complexity of the Protocol

The second-order beliefs in this example are the distributions of a random variable tak-
ing values in [0�1]. In principle, they can be complex, but in practice the experimenter,
who has control of the communication device, need not account for all possible distri-
butions. For example, the subject may be asked to choose a density shape among a sug-
gested sample, move sliders to control the shape of the density function (Moore and Healy
(2008)), or to provide the probabilities of finitely many ranges of posteriors (Manski and
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Neri (2013)). Beyond the experimental context, distributions are often parameterized, for
example, a forecaster may be asked for the mean and variance of a truncated Gaussian,
or may give a discrete probability tree, that is, a distribution with finite support.

When the ability to report precisely one’s belief is limited by the technology, the subject
may be unable to reach the theoretically optimal payoff. However, the loss incurred is
small. It is bounded by the squared error between the announced belief F̃ and the true
belief F : if, for every p, |F(p)− F̃(p)|< ε, then the subject’s expected payoff is at least
the optimal payoff he would obtain by reporting F minus ε2/2.7

Note that the protocols of this section are “direct.” The alternatives are the “indirect”
elicitation protocols, in which the subject makes choices and these choices inform the
experimenter on the subject’s beliefs. One benefit of direct protocols is that they do not
require the subject to confront difficult choices: as long as the subject agrees with the
incentive-compatible nature of the protocol, he only needs to supply his information,
without making any computation on his own.

Relation With the Becker–DeGroot–Marschak Mechanism

Protocol II can be viewed as a dynamic extension of the Becker, DeGroot, and
Marschak (1964) (BDM) mechanism. In the usual version, the subject bids for an ob-
ject in a second-price auction with a random reserve price. This bid reveals the subject’s
willingness to pay for the object. In the context of probability elicitation, the object is an
Arrow–Debreu security.

What we show is that to elicit second-order beliefs, we can use two auctions, one em-
bedded into the another. In the main auction, the subject formulates a bid for the right
to participate in the secondary auction. If the bid is greater than or equal to a reserve
price A, the subject pays A and obtains this right. Otherwise, the subject pays nothing
and gets nothing. Then, if the subject won the main auction, the secondary auction takes
place. The subject formulates a bid for the Arrow–Debreu security that pays off x. If the
bid is greater than or equal to a reserve price B, the subject pays B and gets the security.
Otherwise, the subject pays nothing and gets nothing. For given values of A and B, this
auction mechanism is equivalent to Protocol II: the payoffs are identical up to an addition
of the amounts A and B. Hence, collecting bidding data (in the main auction only) for
many uniformly distributed pairs A, B in the unit square makes it possible to learn ex-
actly the subject’s second-order belief. While the BDM mechanism can elicit the subject’s
probability assessment with a single bid, many bids are needed to learn the second-order
beliefs: the subject’s willingness to pay in the first auction depends on B. In applications,
the experimenter could present the subject with a series of main auctions in which B in-
creases gradually from 0 to 1 and, for each auction, demand the subject’s bid. Once all the
bids are received, the experimenter applies one of these auctions at random, also setting
the reserve price A at random.

On the Impossibility of Eliciting Dynamic Beliefs by Combining Standard Elicitation
Mechanisms

Suppose that instead of the subject reporting, in period 0, the distribution over the
posteriors he anticipates to have in period 1, we ask the subject to report the distribution
of the posteriors of another subject passing the test.

7Equation (1) in the proof of Proposition 1 yields the expected loss incurred when reporting the approximate
belief F̃ instead of the exact belief F , 1

2

∫ 1
0 (ϕ(B� F̃)−ϕ(B�F))2 dB. If |F − F̃ |< ε, then |ϕ(B� F̃)−ϕ(B�F)| ≤∫ 1

B
|F − F̃ |< ε, so the expected loss is no greater than ε2/2.
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This situation poses no particular theoretical challenge: we can elicit the posterior using
a quadratic scoring rule, and we can elicit the distribution of posteriors using a scoring rule
designed for distributions of random variables, for example, one of the scoring rules de-
fined by Matheson and Winkler (1976), which we will refer as Matheson–Winkler score,8
taking as observed state the elicited posterior. This mechanism is natural and preserves
incentives because, from the viewpoint of both subjects, the realized value of the variable
the experimenter asks to forecast is exogenous.

One may be tempted to continue to apply this mechanism even when the two subjects
are, in fact, the same, as in this paper. As it turns out, however, the incentive compatibility
property ceases to hold. For example, the subject who is honest in the initial period will
want to manipulate his probability estimate in the interim period. Without getting into
details, the intuition is that when the subject reports truthfully in both periods and con-
templates a small deviation in the interim period, the effect of that deviation is of second
order in the quadratic scoring rule (since he was maximizing that score by being truthful),
but is generally of first order in the Matheson–Winkler score.

As we show in Appendix A, this result is quite general. The elicitation of high-order
beliefs always requires the interaction of the various reported information at different
times through the payoffs.

Equivalent Scoring Rule Formulation

As in Section 2.1, the analog of probability scoring rules for the case of second-order
beliefs can be easily constructed for the purpose of evaluating learning models.

To keep matters simple, we continue to use the language of elicitation. Suppose the
subject first announces a second-order belief F in period 0 and a probability assessment p
in period 1, while x continues to be the outcome. The goal is to design a payoff π(F�p�x)
such that it is uniquely optimal to report one’s second-order belief F in the initial period,
and then it is uniquely optimal to report one’s first-order belief p in the interim period
(even after misreporting initially). When those two conditions are met, let us say that π is
strategyproof.

To construct this payoff, we can compute what the subject earns averaged over the draws
of A and B in Protocol II, assuming that both choices in the initial and interim periods
are made by the experimenter on the subject’s behalf. This average payoff is equal to∫ 1

0

∫ 1

ϕ(B�F)

AdAdB+
∫ p

0

∫ ϕ(B�F)

0
xdAdB+

∫ 1

p

∫ ϕ(B�F)

0
BdAdB�

which reduces to∫ 1

0
F(B)ϕ(B�F)BdB+

∫ p

0
xϕ(B�F)dB+

∫ 1

p

Bϕ(B�F)dB� (2)

The payoff just defined—let us write it π(F�p�x)—is an analog of the quadratic scoring
rule for second-order beliefs. This payoff function is strategyproof.

The argument is simple. In the initial period, the expected payoff to the subject is iden-
tical to the expected payoff in Protocol II and, hence, the subject’s unique best response in

8The result is general, but to fix ideas, we can take, for example, the scoring rule S(F�p)= − ∫ p
0 F(x)

2 dx−∫ 1
p
(1−F(x))2 dx, as defined in Section 2 of Matheson and Winkler (1976), where F is the reported distribution

and p is the realization of the random variable, here the posterior.
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this period is to report truthfully. Then, no matter the second-order belief F announced,
in the interim period the subject who believes he will pass the test with probability p
announces p̃ so as to maximize the residual expected payoff∫ p̃

0
pϕ(B�F)dB+

∫ 1

p̃

Bϕ(B�F)dB� (3)

As ϕ(B�F) is strictly positive (except possibly for B = 0), (3) is strictly increasing for
p̃ ≤ p and strictly decreasing for p̃ ≥ p, and so is maximized exactly when p̃ = p: it is
strictly optimal to report truthfully in period 1.

Unlike the original protocol, payments can be spread out over time, which simplifies the
mechanism. First, the subject reports second-order belief F and is immediately paid the
amount

∫ 1
0 F(B)ϕ(B�F)BdB. Then, in the interim period, the subject reports probability

assessment p and is immediately paid the amount
∫ 1
p
Bϕ(B�F)dB. Finally, after the event

outcome realizes, the subject is paid
∫ p

0 xϕ(B�F)dB.
Behind the seemingly complex formulation of this two-stage quadratic scoring rule lies

a simpler intuition. The logic is as follows. Let us rewrite (2) slightly differently as

π(F�p�x)= 1
2

+
∫ 1

0

(
max(p�B)− 1

2
ϕ(B�F)

)
ϕ(B�F)dB+

∫ p

0
(x−p)ϕ(B�F)dB� (4)

Ignoring the irrelevant constant 1/2, let us interpret the first component of (4). Recall
that ϕ(B�F) is the average value of the subject’s interim payoff for second-order belief F .
If the realization of the random interim payoff, max(B�P), is publicly known, the term(

max(p�B)− 1
2
ϕ(B�F)

)
ϕ(B�F) (5)

is a quadratic scoring rule that elicits the subject’s assessment of the mean interim payoff.9
The elicitation is indirect, because the subject does not report explicitly an assessment of
this mean: instead, he reports second-order belief F from which an implicit assessment
can be derived. Integrating over the range of possible values for B, as in (4), ensures that
this assessment is elicited for every B.

Let us now interpret the second component of (4). The term∫ p

0
(x−p)ϕ(B�F)dB (6)

is a probability scoring rule that elicits the likelihood of the event. It is known as a
Schervish score with weight function B �→ ϕ(B�F) (Schervish (1989)).

An important feature is that the probability scoring rule (6) is not fixed: it varies with the
subject’s announced second-order belief of the initial period. This dependence is required
because the realization of max(B�P) is only privately observed and, thus, the subject may
be tempted to manipulate his report to increase the payoff that comes from the first com-
ponent of (4), as explained in our previous remark. The adaptive weight ϕ(B�F) in (6)

9Up to a factor, the quadratic scoring rule for estimations of the mean of a random variable takes the form
s(m�y) = −my + y2/2 + h(y), where h is arbitrary, y is the realization of the random variable, and m is the
mean estimate.
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ensures that the benefits of misreporting the first-order belief in the quadratic scoring rule
(5) never exceed the cost collected through scoring rule (6).

Note that the general procedure of constructing an equivalent scoring rule can be un-
dertaken with any of our protocols below, simply by taking expectations with respect to
all randomization done on the part of the elicitor and leveraging risk neutrality. The pro-
tocols discussed will incentivize the announcement of whichever beliefs our results claim,
but without any randomization.

3. PROTOCOLS FOR RESTRICTED ENVIRONMENTS

In this section we apply the general principle illustrated in Section 2 to specific instances
of dynamic environments. In every instance, there are finitely many time periods. The elic-
itor (e.g., an experimenter) has interest in the outcome of a random variable or random
event that materializes publicly in the final period. An individual (e.g., the subject) holds
beliefs on the distribution of outcomes in the initial period. Those beliefs may evolve over
time, through one or more interim period(s), due to information that either is subjectively
perceived or interpreted, or is privately observed by the individual.

We examine several cases of special but salient types of information structures. In each
case, we show that simple protocols enable the elicitor to obtain, as a strict best response,
the individual’s relevant dynamic beliefs or, equivalently, the individual’s private subjec-
tive information structure. To keep protocols simple, we focus on the elicitation of period-
0 beliefs. As in Section 2, elicitation of the subsequent lower-order beliefs can be done by
combining the protocol with another elicitation procedure (e.g., a quadratic scoring rule
for first-order beliefs) or by delegating the individual’s choices to the elicitor (we use this
approach in Section 4). We assume risk neutrality. Extending the protocols to expected
utility maximizers is straightforward.10

3.1. Multiple Outcomes

Here, as in Section 2, there is a single interim period at which the individual is able
to collect new information. The outcome is now a discrete random variable X taking
values in the finite set {1� � � � � n}. The individual’s interim belief is captured by a vector
P = (P1� � � � �Pn), where Pk denotes the assessed probability of X = k. In the initial pe-
riod, the individual holds a belief about P . This is a second-order belief, represented by
a multidimensional distribution function. It is worth noting that, perhaps surprisingly, go-
ing from two to more than two outcomes makes the elicitation of second-order beliefs
substantially more difficult, unlike the case of first-order beliefs. With first-order beliefs,
we can always sum n quadratic scores for binary events to elicit the probabilities for each
of the n outcomes, whereas we cannot iterate Protocol II to extract second-order beliefs.
Instead, we develop the following protocol.

10One can apply the following change to the protocols: shift/scale the payoffs (say, in dollars) to take values
in the normalized interval [0�1], and then instead of paying the subject $y , pay the subject $1 (or any fixed
amount) with probability y and pay nothing otherwise (or any smaller fixed amount). The idea of using “prob-
ability currency” to overcome the problem of risk aversion is discussed notably in Savage (1971), who attributes
it to Smith (1961). It is common in the experimental literature (for more details, see, for example, Harrison,
Martínez-Correa, and Swarthout (2014) and references therein).
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PROTOCOL III: In the initial period, the individual is asked to announce his second-order
belief F . The elicitor then draws two numbers A and B, and n numbers c1� � � � � cn indepen-
dently and uniformly from [0�1]. Let Ci = ci/(c1 + · · · + cn). If

A≥ EF
[
max(B�C1P1 + · · · +CnPn)

]
�

then the protocol stops and the individual gets the payoff A. Otherwise, in the interim period,
the individual is offered a choice between getting the fixed payoff B or getting a contingent the
payoff of 1 if X = I (and nothing otherwise), where I ∈ {1� � � � � n} is drawn randomly in the
final period, with Pr[I = i] = Ci.

The term EF [max(B�C1P1 +· · ·+CnPn)] denotes the expected value of max(B�
∑

i CiPi)
when (P1� � � � �Pn) is distributed according to F . The dimension of the class of simple deci-
sion problems, in the terms of Section 2, must be proportional to the size of the outcome
set. This is because the domain of the second-order beliefs has dimension n− 1.

PROPOSITION 2: In Protocol III, the individual announces his second-order belief as a
strict best response.

PROOF: Let F be the individual’s second-order belief and let F̃ be the individual’s an-
nouncement. For C = (C1� � � � �Cn), let ψ(C) be the distribution function of the random
variable

∑
i CiPi when (P1� � � � �Pn) is distributed according to the true second-order be-

lief F and, similarly, let ψ̃(C) be the distribution function of the random variable
∑

i CiPi
when (P1� � � � �Pn) is distributed according to the announced second-order belief F̃ . As
the proof of Proposition 1 demonstrates, the expected payoff of the individual is∫ (

1
2
(
1 −ϕ(

B� ψ̃(C)
)2) +ϕ(

B� ψ̃(C)
)
ϕ

(
B�ψ(C)

))
dBdC�

which is maximized if and only if, for almost all tuples (B�C) = (B�C1� � � � �Cn),
ϕ(B� ψ̃(C)) = ϕ(B�ψ(C)). By a continuity argument, this condition is equivalent to the
condition that for all tuples (B�C), ϕ(B� ψ̃(C)) = ϕ(B�ψ(C)), which in turn is equiva-
lent to the condition that for all C, ψ̃(C)=ψ(C), as shown in the proof of Proposition 1.
By the Cramér–Wold theorem, the distribution of a finite-dimensional random vector is
uniquely determined by the distributions of its one-dimensional projections, and, there-
fore, the condition that for all C, ψ̃(C)=ψ(C) is equivalent to the condition that F̃ = F .
Hence, the individual maximizes his expected payoff if and only if he announces the true
second-order belief. Q.E.D.

3.2. Information Arriving at a Random Time

We now turn to an environment with more than one interim period. The individual’s
belief on the final outcome is still refined only once. However, this time of refinement is
random and is neither controlled nor observed by the elicitor.

Section 3.1 deals with multiple outcomes, so for simplicity, we assume the final outcome
is binary. Time periods are indexed t = 0�1� � � � �T . At t = 0, the individual possesses a
probability that the event materializes (a prior belief). At some future time τ ∈ {1� � � � � T−
1}, he refines his initial assessment after observing a private or subjective signal, updating
his prior to a posterior belief.
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In the initial period, the individual’s “dynamic belief” is captured by (i) a belief about
how much he anticipates to learn, which we describe via a second-order belief F over the
range [0�1] of possible posterior assessments, and (ii) a belief about when he anticipates
to learn, described by a distribution over the possible dates {1� � � � �T −1}. We assume F is
nondegenerate, that is, that F does not put full mass on the initial assessment (if it did, it
would mean that the individual never refines his prior). Consider the following protocol.

PROTOCOL IV: In the initial period, the individual announces a distribution F over poste-
rior assessments, together with a distributionG over the times at which he anticipates updating
his prior belief. The elicitor then draws numbers A and B independently and uniformly from
[0�1]. In addition, she draws a time tc from {1� � � � �T − 1}, uniformly and independently.
Let p= EF [P] be the individual’s prior assessment of the chance that the event occurs11 and
construct the following distribution function H over event probabilities:

H(p)=
{
G(tc)F(p)+ (

1 −G(tc)
)

if p≥ p�
G(tc)F(p) if p<p�

If

A≥ EH
[
max(B�P)

]
�

then the individual gets the payoff A and the protocol stops. Otherwise, in period tc , the indi-
vidual is offered the choice between getting the fixed payoff B or getting the contingent payoff
of 1 if the event occurs (and nothing otherwise).

In this mechanism, the value EH[max(B�P)] equals the individual’s expected payoff
when the protocol does not immediately stop. The individual who understands this fact
also understands that he cannot gain by manipulating his reports. Of course, to elicit the
posterior, the elicitor could just ask for a revised probability assessment in each time
period, offering a quadratic scoring rule.

PROPOSITION 3: In Protocol IV, it is strictly optimal for the individual to honestly an-
nounce both his second-order belief and his belief about when he will receive his private sig-
nal.

PROOF: Let F be the individual’s second-order belief, and let G be the believed distri-
bution on the time of information arrival. Let F̃ and G̃ be the individual’s announcements
of these two beliefs, respectively. For every t = 1� � � � �T − 1, let

H̃t(p)=
{
G̃(t)F̃(p)+ (

1 −G(tc)
)

if p≥ EF̃ [P]�
G̃(t)F̃(p) if p< EF̃ [P]

and let

Ht(p)=
{
G(t)F(p)+ (

1 −G(t)) if p≥ EF [P]�
G(t)F(p) if p<EF [P]�

If we fixed the time tc , the protocol would reduce to Protocol II and the distribution
Htc would be elicited as a strict best response. Here, however, the time tc can be any

11This assessment can be deduced from the belief reported or can be reported separately.
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time period with positive probability, and so by Proposition 1, the individual’s expected
payoff is maximized if and only if, for every t, H̃t = Ht , a condition which, in turn, is
equivalent to the condition that F̃ = F and G̃=G. (This equivalence is immediate, noting
that if, for all t, H̃t =Ht , then as G̃(T − 1)=G(T − 1)= 1, so F̃ = F , which then implies
G̃=G.) Overall, the individual’s expected payoff is maximized if and only if both F̃ = F

and G̃=G. Q.E.D.

3.3. Two Interim Periods

We conclude with the case of two interim periods. This setting adds one period to the
baseline setup of Section 2.

There are now four time periods: the initial period (t = 0), two interim periods (t =
1�2), and the final period (t = 3). The outcome of interest concerns an event described
by the indicator variable X , revealed at t = 3. At t = 0, the individual forms a first proba-
bilistic appraisal about the event. In the next two interim periods, the individual receives
information that may change his assessment. The information is modeled by signals S1

and S2, respectively, taking finitely many values. In the initial period, the individual holds
a belief about the joint distribution on the triple (S1� S2�X), which defines the individual’s
information structure. Signal S2 contains information on random outcome X only, while
signal S1 may be informative on both X and signal S2.

The individual who has observed both signals makes a final probability assessment of
the event. Similarly, the individual who has observed S1 forms a belief on his future prob-
ability assessment (a second-order belief), and the individual who has not yet observed
any signal holds a belief on the second-order belief he anticipates to have the next period
(a third-order belief). Of course, at both times t = 0�1, the individual can also appreciate
the event likelihood and, at t = 0, the distributions over the probabilistic beliefs he antic-
ipates having, but these beliefs are redundant. Because there are finitely many signals, a
second-order belief F can be described as a collection of pairs (f�p), where f is the like-
lihood of obtaining final assessment p. A third-order belief μ can also be described as a
collection of pairs (q�F), where q is the likelihood of having second-order belief F in the
next period. The goal is to elicit the individual’s information structure or, equivalently,
the individual’s third-order beliefs.

Probability trees afford a simple graphical representation. Figure 2 gives an example
when S1 and S2 are binary. The overall tree depicts the individual’s belief at t = 0. The two

FIGURE 2.—Example of a probability tree representing a third-order belief.
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subtrees express the possible second-order beliefs the individual may have at t = 1, with
their probability shown on the branches. For instance, with the belief represented by the
right subtree, the individual’s probability assessment of the event is 0�5×0�1+0�5×0�9 =
0�5, and the assessment will be revised to 0�9 or 0�1 in the next period: the individual
anticipates being able to predict the outcome 90% of the time. In this example, the first
signal is uninformative on the event itself, because the probabilistic appraisal remains
50%, but it indicates how informative the second signal will be.

The following protocol is an immediate extension of Protocol II of Section 2.

PROTOCOL V: In the initial period, the individual is asked to announce his third-order
belief μ. The elicitor then draws the numbers A, B, and C uniformly and independently from
[0�1], and computes

π =
∑

(q�F)∈μ
qmax

(
B�

∑
(f�p)∈F

f max(C�p)
)
�

IfA≥ π, the protocol stops and the individual gets the payoffA. Otherwise, in the first interim
period, the individual is offered the choice either to stop and get the payoff B or to continue.
If the individual continues, then in the second interim period, the individual is offered the
choice between getting the payoff C or getting the contingent payoff of 1 if the event occurs
(and nothing otherwise).

The value of π corresponds to the expected payoff the individual would make if given
the choice in the first interim period. So, as for the other protocols, the individual is al-
ways at least weakly better off announcing his true belief. However, in spite of the analogy
with the baseline Protocol II, this protocol generally fails to elicit third-order beliefs. Elic-
itation fails, for example, for beliefs as simple as those depicted in the probability trees of
Figure 3.

PROPOSITION 4: Protocol V does not elicit third-order beliefs as a strict best response.

The reason behind this lack of incentives is that the class of decision problems the
protocol randomizes upon is not rich enough to differentiate between the elements of the
comparatively larger set of possible third-order beliefs. To elicit beliefs successfully, we
can either restrict the set of possible beliefs or enrich the class of decision problems. We
examine both possibilities.

Let us start with the first by considering the following restriction: the beliefs must be
such that, for any tuple of second-order beliefs (F1� � � � �Fn), there exists some probabil-
ity threshold x such that if i �= j, then EFi [max(x�P)] �= EFj [max(x�P)] or, equivalently,∫ 1
x
Fi �=

∫ 1
x
Fj . When this condition is satisfied, we say that second-order beliefs are re-

stricted.12 For example, second-order beliefs are restricted when they can be ordered by
second-order stochastic dominance, meaning that the possible signals of the first interim
period are informative to different degrees.

12Of course, we already know that for any two distinct and unrestricted second-order beliefs F and F̃ , there
always exists an x with

∫ 1
x
F �= ∫ 1

x
F̃ . The restriction imposes that this inequality extend beyond pairs of beliefs,

to all tuples.
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FIGURE 3.—Two probability trees not elicited by Protocol V.

PROPOSITION 5: If second-order beliefs are restricted, then Protocol V elicits the individ-
ual’s third-order belief as a strict best response.

We now examine the alternative possibility. We abstain from restricting beliefs but en-
rich the class of simple decision problems.

PROTOCOL VI: In the initial period, the individual is asked to report his third-order be-
lief μ. The elicitor then draws two numbersA and B uniformly and independently from [0�1].
In addition, she draws J numbers C1� � � � �CJ and J other numbers d1� � � � � dJ uniformly and
independently from [0�1]. Let Di = di/(d1 + · · · + dJ). The elicitor then computes

π =
∑

(q�F)∈μ
qmax

(
B�

∑
(f�p)∈F
1≤i≤J

Dif max(Ci�p)
)
�

IfA≥ π, the protocol stops and the individual gets the payoffA. Otherwise, in the first interim
period, the individual is offered the choice either to stop and get the payoff B or to continue.
If the individual continues, then in the second interim period, the elicitor selects C = CI , with
I drawn independently at random with Pr[I = i] = Di. The individual is then offered the
choice between getting the payoff C or getting the contingent payoff of 1 if the event occurs
(and nothing otherwise).

PROPOSITION 6: If third-order beliefs have support of size at most K and J = 2K2, then
Protocol VI elicits the individual’s third-order belief as a strict best response. Otherwise, if J is
chosen randomly and Pr[J ≤ j]< 1 for every j, Protocol VI elicits the individual’s third-order
belief as a strict best response, without restriction.
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4. MULTIPERIOD ENVIRONMENTS

In this section, we consider the case of any number of time periods and larger outcome
spaces (for the most general case, we refer the reader to Section S.2 of the Supplemental
Material). Our purpose is threefold.

First, it is to demonstrate that the revealed-preference approach is general: with a well
chosen, large-enough class of simple decision problems and a suitable randomization over
the class, we can elicit dynamic beliefs of any order in essentially arbitrary dynamic envi-
ronments.

Second, one can use the protocols of this section for the elicitation and evaluation of
dynamic beliefs or forecasts which do not conform to any of the instances investigated
in Section 3. The fact that the protocols of this section work with general dynamic envi-
ronments implies that they continue to elicit beliefs for any more specialized environment
that may be of interest: one does not have to utilize the full dynamics to benefit from these
protocols. In that sense, the most general protocols can be interpreted as “universal pro-
tocols,” which can be used to extract more or less refined information, depending on the
application. While this use may seem excessive for simple dynamics, we emphasize that if
we can assert the existence of a class of decision problems that enables us to distinguish
between different dynamic beliefs, in many settings, identifying the class of the relevant
decision problems for making this distinction can be challenging, as Section 3.3 hints at.

Finally, we show that the family of protocols introduced can also approximate arbi-
trarily closely the payoffs of any sufficiently regular protocol. We believe that this near
characterization can be convenient for the problem of selecting a protocol so as to maxi-
mize a given objective, possibly subject to some constraints. While a full analysis is beyond
the scope of this paper, we illustrate this idea in simple principal–agent problems in Sec-
tion S.5 of the Supplemental Material.

Time periods are indexed t = 0� � � � �T . Period 0 is referred to as the initial period,
period T is referred to as the final period, and periods 1 to T − 1 are the interim periods.
As in the preceding section, a random outcome X materializes in the final period. The
random outcome takes values in a compact metrizable space X , which covers the common
cases [a�b]k and {1� � � � � n}. The individual privately or subjectively receives information
gradually at each period. The individual holds probabilistic beliefs about this information
and the outcome. The goal is to elicit the high-order beliefs of the individual, which inform
us about the individual’s beliefs about the outcome and also the individual’s beliefs about
the beliefs he anticipates having. For simplicity, the individual continues to be risk neutral
and without discounting.13

Let 
1(X ) be the set of distributions over X : these are the set of first-order beliefs.
Recursively let 
k+1(X )= 
(
k(X )). The set 
k(X ) is the set of the probability trees of
level k, that is, the kth order beliefs. Endow each 
k(X ) with the weak-∗ topology and the
usual Borel σ-algebra.14 In the sequel, we use the symbols p and q to denote probability
trees of any level. In period t, the dynamic belief is a probability tree of level T − t. To
avoid confusion, we use the subscript notation pt to denote the high-order belief relevant
in period t and use the superscript notation p(k) to denote a probability tree of level k.

13Alternatively, it is sufficient to assume that, at every period, the individual behaves as if he was a subjective
expected utility maximizer, believing that he will receive information in future periods. The individual’s beliefs,
or information, need not be consistent across time periods. For example, the protocols of this section properly
elicit the beliefs of an individual who learns information he did not anticipate learning.

14The weak-∗ topology refers to the weakest topology for which, given any continuous function, integration
with respect to that function is a continuous linear functional.
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The elicitation protocol describes the rules of interactions between the individual and
the elicitor. By a revelation principle argument, every protocol is payoff-equivalent to a
direct protocol, whereby the individual reveals directly his belief. That means that in ev-
ery period t, the elicitor asks the individual to announce his (T − t)th order belief. The
payoff rule Π of a direct elicitation protocol is the individual’s overall expected payoff
Π(p0� � � � �pT−1�x), as a function of the final outcome x and the successive reports of
high-order beliefs of the individuals pt in period t. We require that Π be jointly measur-
able in its arguments, and we normalize payoffs to take values in [0�1].

The objective is to produce a protocol that induces the individual, as a strict best re-
sponse, to communicate his dynamic beliefs truthfully in every period. Define an individ-
ual strategy as a family of maps {f0� � � � � fT−1}, where ft(p0� � � � �pt) gives the belief tree
declared in period t as a function of the history of beliefs the individual has experienced
up to period t (such definition rules out randomized strategies and dependence on other
private information; it is, for our purpose, without loss). The time-t expected payoff of
the individual under strategy f is then

U(p0� � � � �pt; f )=
∫
Π

(
f0(p0)� � � � � fT−1(p0� � � � �pT−1)�x

)
dpT−1(x) � � �dpt(pt+1)�

A strategy f is optimal for the history of beliefs p0� � � � �pt and a protocol with payoff rule
Π if the individual who follows strategy f after having the sequence of beliefs p0� � � � �pt
maximizes his payoff, no matter the strategy followed up to period t. Formally, for every
pair of strategies (g�h), where g= {h0� � � � �ht−1� ft� � � � � fT−1}, we have

U(p0� � � � �pt;g)≥U(p0� � � � �pt;h)�

DEFINITION 1: A protocol is strategyproof if the following statements hold:
• For all histories, an optimal strategy exists.
• For all histories (p0� � � � �pt) and all optimal strategies f , ft(p0� � � � �pt)= pt .

4.1. A Family of Randomized Protocols

Central to our protocols are three instruments: securities, menus of securities, and menus
of (sub)menus. A security is a continuous map S : X → [0�1] (continuity is irrelevant if
the set of outcomes is discrete). It gives a payoff for every possible realization of the
random outcome. Menus of securities are collections of securities, and menus of menus
are collections of other menus. To distinguish between the different types of menus, we
call menu of order 1 a collection of securities, and menu of order k a collection of menus
of order k − 1. A menu of securities gives the obligation to its owner to pick one (and
only one) security from the menu in (or before) period T − 1. A menu of order k gives
the obligation to its owner to pick one (and only one) submenu among the collection it
contains in (or before) period T −k. Thus, an individual endowed with a menu of order k
in period T −kmakes k choices at successive times T −k� � � � �T −1 to eventually end up
with a single security. We work mostly with finite menus. A menu is finite when it contains
a finite number of securities or when it contains a finite number of submenus, themselves
being (recursively) finite. We denote by Mk the collection of finite menus of order k.

The value of a menu to an individual depends on his dynamic beliefs, captured by belief
trees. Let us denote by πk(Mk�p

(k)) the expected value of the menu Mk of order k in
period T −k, to an individual who holds, as kth order belief, a probability tree of level k,
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p(k). Recursively, we have

π1

(
M1�p

(1)
) = max

S∈M1

∫
S(x)dp(1)(x)� and if k> 1,

πk
(
Mk�p

(k)
) = max

mk−1∈Mk

∫
πk−1

(
mk−1�p

(k−1)
)

dp(k)
(
p(k−1)

)
�

Our protocols randomize over large collections of menus.15 As a preliminary, the elici-
tor who administers the protocol draws a finite menuMT of order T at random, according
to a probability distribution ξ. The menu is known only to the elicitor. Then, in every pe-
riod t = 0� � � � � T − 2, the elicitor asks the individual to reveal his full dynamic belief at
that time—a belief tree of level T − t. She then chooses the submenu of MT−t that is
best according to the individual’s announcement: she selects a submenuMT−t−1 ∈MT−t of
highest expected value in period t:

MT−t−1 ∈ arg max
mT−t−1∈MT−t

∫
πT−t−1

(
mT−t−1�p

(T−t−1)
)

dp(T−t)(p(T−t−1)
)
�

Finally, in the penultimate period T − 1, the individual communicates a posterior dis-
tribution over X—a first-order belief. The elicitor then offers a security taken from the
last menu selected, M1, of highest expected value according to the declared posterior.16

We refer to such protocols as randomized menu protocols. We stress that while these pro-
tocols are presented in their general form, with an arbitrary randomization device—and
so do not have the convenient “closed form” expression of the protocols of the previ-
ous sections—their implementation does not pose any particular difficulty: for baseline
randomization devices, the protocol’s random payoffs can be computed efficiently via a
simple algorithm. We give an example of implementation in Section S.1 of the Supple-
mental Material.

For a given randomized menu protocol with randomization device ξ, we denote by
Π(p0� � � � �pT−1�x;M) the payoff to the individual who announces pt in period t, when
the realization of X is x, and if the elicitor draws menu M ∈ MT in the initial period.
Then the payoff rule of the overall protocol is expressed as

Π(p0� � � � �pT−1�x;ξ)=
∫
Π(p0� � � � �pT−1�x;M)dξ(M)� (7)

15To ensure the randomization device is well defined, we endow the set of securities and the set of all menus
of a given order with the Borel σ-algebra, where the space of securities is given the usual sup-norm topology,
and every space of menus is given the Hausdorff metric topology.

The Hausdorff metric is a standard way to measure distances between sets. If d is a metric on X , the
Hausdorff metric on every Mk is defined recursively by

d
(
M�M ′) = max

{
max
m∈M

min
m′∈M ′ d

(
m�m′)� max

m′∈M ′ min
m∈M

d
(
m�m′)} for M�M ′ ∈ Mk�

where m and m′ denote securities when k= 1. Because menus are finite sets at every level, the σ-algebra of
events does not depend on the particular metric on the space of securities as long as it generates the same
topology (Theorem 3.91 of Aliprantis and Border (2006)).

16At every stage, if there is more than one submenu or one security that is optimal for the individual, the
elicitor selects a submenu uniformly at random among all optimal submenus. Selecting a submenu uniformly
at random guarantees the measurability of the payoff rule. Alternatively, the individual could get an equal
fraction of all optimal submenus or he could get any optimal submenu according to a measurable selection. In
the proof of Lemma 3 in Appendix C, we show that such a measurable selection is guaranteed to exist.



398 C. P. CHAMBERS AND N. S. LAMBERT

4.2. Existence and Uniqueness

Our next result asserts that strict incentives are implemented by the protocols of the
class just described when the probability measure ξ is full support. Here, a full-support
distribution over menus of order k means that for every finite menu M ∈ Mk and every
ε > 0, the probability of drawing a menu at most ε-close to M is positive, with respect to
the Hausdorff distance.

THEOREM 1: If a randomized menu protocol randomizes according to a full-support dis-
tribution, then it is strategyproof.

The randomized menu protocols follow the general approach illustrated in Section 2,
in which the class of simple decision problems is the class of finite choice menus.

The key challenge in the elicitation of dynamic beliefs in a multiperiod environment is
that the beliefs become naturally richer as the number of periods increases. This creates
two difficulties. The first one is to find the simple decision problems that allow the distinc-
tion between two given beliefs. To overcome this issue, we operate on the relatively large
class of decision problems that are the menu choices. The second difficulty is that we must
randomize over the simple decision problems in a way that preserves the incentives of the
individual, making sure that enough mass is put on the decision problems that matter for
the separation of beliefs. Because we operate on a large class of decision problems, it can
be intricate to ensure that the randomization is “proper.”

To illustrate, suppose we have a continuum of decision problems indexed by d ∈ [0�1],
and some problem d0 turns out to be crucial to separate between some beliefs. We would
then want to put a positive weight on d0, so the uniform distribution, for example, would
not work. We would want to put a mass specifically on d0, but we may not be able pinpoint
d0 precisely. And if every problem d ∈ [0�1] turned out to be crucial to separate between
beliefs—perhaps due to the richness or complexity of the beliefs—then no randomization
scheme would work. For that reason, the problem of identification we face is different
from the standard problem of identification in decision theory. We surmount this issue by
including only finite menus (which also helps with the implementation) and by controlling
the amount of data required to encode the high-order beliefs (formally given by the σ-
algebra of possible events): we ensure that a (k+ 1)th order belief is no more complex
than kth order belief if k becomes large. Then, perhaps surprisingly, the class of finite
menus is sufficiently large to make it possible to recover the full hierarchy of beliefs.

Notice that in the above protocols, the elicitor does not disclose her menu choices to
the individual, because if she did, the property of strict incentives would be lost. Of course,
this is not a limitation: the elicitor can first collect the sequence of all the announcements
of the individual, and only after the last announcement is received does she draw a menu
and operate on it as in the original protocol. This is a less literal but more natural inter-
pretation of the above protocols. Our example of implementation in Section S.1 of the
Supplemental Material follows this alternative. In addition, if we are only interested in
the elicitation of the individual’s belief in the initial period, then there is no loss in dis-
closing the menu randomly drawn and the subsequent menu choices once the individual
has communicated the initial belief.

As a corollary, Theorem 1 implies that beliefs are identified in a class of decision makers
who hold preferences over hierarchies of finite menus. Each high-order belief p ∈ 
T(X )
induces a preference over finite menus of order T captured by a binary relation 
p over
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MT defined by M 
p M
′ if and only if∫
πT(M�q)dp(q)≥

∫
πT

(
M ′� q

)
dp(q)�

Lemma 4 in the proof of Theorem 1 then implies the following fact, extending a result of
Takeoka (2007) and Dillenberger et al. (2014).

COROLLARY 1: Let p�p′ ∈ 
T(X ). If 
p = 
p′ , then p= p′.

Our final result argues that under regularity conditions, any protocol that is strate-
gyproof is approximately payoff-equivalent to some randomized menu protocol. Hence,
there is no loss of generality in focusing on randomized menu protocols: the mechanisms
we describe provide an essential characterization of the class of strategyproof mecha-
nisms.

THEOREM 2: Consider a strategyproof protocol whose payoff rule Π(p0� � � � �pT−1�x) is
jointly continuous. Then, for every ε > 0, there exists a strategyproof randomized menu proto-
col whose payoff rule Π′(p0� � � � �pT−1�x) satisfies∣∣Π(p0� � � � �pT−1�x)−Π′(p0� � � � �pT−1�x)

∣∣< ε
for all p0� � � � �pT−1�x.

5. CONCLUSION

We have considered a dynamic analog of the probability scoring rules. To induce truth-
ful announcements, we develop a new constructive approach, based on randomly selecting
among a sufficiently large number of simple dynamic decision problems, and operating as
if we were asking the individual whose information is being elicited to solve all these prob-
lems at the same time. This approach applies quite broadly. It enables us to derive simple
protocols for a range of common instances of dynamic environments, and it extends to
general dynamic environments. We have set ourselves up for the most difficult version of
the problem: the elicitor sees nothing along the way. If she can observe some of the infor-
mation that the individual observes, so that the individual’s information is only partially
private, it only makes it easier for her to solve the incentive problem. Of course, she could
use her information to expand the set of possible mechanisms by conditioning the indi-
vidual’s payoff on this piece of public information, but she need not do so: the protocols
of this paper, that condition payments on the final outcome only, still fully retain strict
incentive compatibility.

APPENDIX A: STAGE-SEPARATED PROTOCOLS

The purpose of this appendix is to show that eliciting a first-order belief via some
method that uses the final outcome as observable information and, separately, eliciting
the second-order belief via a method that uses the elicited first-order belief as observable
information, does not induce truthful responses.

We focus on the three-period case (the impossibility result extends directly to any num-
ber of periods), and we borrow notation and terminology from Section 3.1. The random
variable X takes values in X defined as {1� � � � � n}, n≥ 2. The elicitor asks the individual
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to disclose his second-order belief F ∈ 
(
(X )) in the initial period, his first-order belief
p ∈ 
(X ) in the interim period, and finally, when the random variable materializes to
value x, she rewards the individual with a payoff equal to Π(F�p�x) (on average, if the
protocol is randomized).

We ask if we can choose a strategyproof payoff rule Π (following the definition of
strategyproofness in Section 4) of the form Π(F�p�x) = Π1(F�p) + Π2(p�x); that is,
we separate stages, the individual gets a first payoff after announcing the second- and
first-order beliefs, and a second payoff after the random variable realizes that depends
only on the reported first-order belief and the realization. When the payoff rule of a
protocol satisfies this condition, we say it is stage separated. Stage-separated protocols
have a natural interpretation: they use the publicly observed outcome of X to elicit the
posterior p through Π2, and then, using p, they attempt to elicit the prior F via Π1. For
example, Π1 and Π2 could be the payoffs of classic probability elicitation methods, such
as the quadratic score or the BDM mechanism forΠ2, and one of the Matheson–Winkler
elicitation methods (Matheson and Winkler (1976)) for Π1.

PROPOSITION 7: If a protocol is stage separated, then the protocol is not strategyproof.

To understand the intuition behind this result, suppose that the protocol satisfies some
smoothness conditions and that, absent a first stage, the protocol would induce the indi-
vidual to report truthfully his first-order belief. Let us focus on the individual’s decision in
the interim period. Assume that the individual has reported his true second-order belief
F , that his true first-order belief is p, but that he reports p + 
p. The expected payoff
difference due to his deviation is

Π1(F�p+
p)−Π1(F�p)+Π2(p+
p�p)−Π2(p�p)�

where Π2(p̃�p) designates the individual’s expected payoff in the interim period when
he reports p̃ while his true belief is p. Because Π2(p̃�p) is maximized when p̃ = p, we
expect the second term Π2(p+ 
p�p)−Π2(p�p) to be of order at most ‖
p‖2, under
smoothness conditions. However, unless Π2(F� p̃) is constant in p̃, we also expect the
first term Π1(F�p+
p)−Π1(F�p) to be of order ‖
p‖ for at least some instances of p.
Thus, there are situations in which the gains realized from the first stage when deviating
from the truth in the interim period exceed the losses incurred in the second stage: the
protocol is not strategyproof. The formal proof follows.

PROOF OF PROPOSITION 7: Consider a stage-separated protocol. For every declared
second-order belief F̃ , let gF̃(p̃�x) be the total payoff (or average total payoff, if the
protocol is randomized) to the individual as a function of the announced first-order belief
p̃ and realization x:

gF̃(p̃�x)=Π1(F̃� p̃)+Π2(p̃�x)�

Suppose that gF̃(p�p) > gF̃(p̃�p) for every p̃ �= p, where gF̃(p̃�p) is the individual’s total
expected payoff given his realized posterior belief p—this inequality would be required
of any strategyproof protocol. Let gF̃ be the map on 
(X ) defined by gF̃(p)= gF̃(p�p).
Note that gF̃ is convex, so the preceding inequality can be interpreted as saying that the
map x �→Π1(F̃� p̃)+Π2(p̃�x) is a subgradient of gF̃ at point p̃. Because the domain of
gF̃ is the simplex, the map x �→Π2(p̃�x) is also a subgradient. Thus the convex functions
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gF̃ share the same subgradients. In particular, for every p′�p′′ ∈ 
(X ),

gF̃
(
p′′) − gF̃

(
p′) =

∫ 1

0

(
p′′ −p′) ·Π2

(
αp′′ + (1 − α)p′� ·)dα�

wherep ·q is the dot product betweenp and q on the simplex 
(X ) interpreted as a subset
of Rn. Thus for all F , F̃ , we get that gF −gF̃ is constant: in the initial period, the individual
is best off reporting any F̃ that maximizes gF̃(p̃) for an arbitrary p̃ independently of his
true second-order belief. This fact means that the protocol is not strategyproof. Q.E.D.

It can be seen that the payoff rule associated to the mechanism suggested by Karni
(2018, 2020) is equivalent to the sum of a Matheson–Winkler score and a quadratic scor-
ing rule. Therefore, one reading of his work is that by increasing the magnitude of the
payoffs in the second stage comparatively to the payoffs of the first stage, one can get the
individual to make reports increasingly closer to his true belief for a range of decision
models.

APPENDIX B: PROOFS FOR SECTION 3

B.1. Proof of Proposition 4

Let μ and μ̃ be the two probability trees of Figure 3:

μ=
{(

1
2
�F1

)
�

(
1
2
�F2

)}
and μ̃=

{(
1
2
� F̃1

)
�

(
1
2
� F̃2

)}
�

with

F1 =
{(

1
4
�0

)
�

(
1
2
�

1
3

)
�

(
1
4
�1

)}
�

F2 =
{(

1
2
�0

)
�

(
1
2
�

2
3

)}
�

and

F̃1 =
{(

1
2
�0

)
�

(
1
4
�

1
3

)
�

(
1
4
�1

)}
�

F̃2 =
{(

1
4
�0

)
�

(
1
4
�

1
3

)
�

(
1
2
�

2
3

)}
�

For any second-order belief F , let Π(F;C) be the expected payoff of the individual at
t = 1 when the choice is to continue. Simple calculations yield

Π(F1;C)=

⎧⎪⎪⎨⎪⎪⎩
5

12
+ 1

4
C if 0 ≤ C ≤ 1

3
�

1
4

+ 3
4
C if

1
3

≤ C ≤ 1�
Π(F2;C)=

⎧⎪⎪⎨⎪⎪⎩
1
3

+ 1
2
C if 0 ≤ C ≤ 2

3
�

C if
2
3

≤ C ≤ 1�
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and

Π(F̃1;C)=

⎧⎪⎪⎨⎪⎪⎩
1
3

+ 1
2
C if 0 ≤ C ≤ 1

3
�

1
4

+ 3
4
C if

1
3

≤ C ≤ 1�
Π(F̃2;C)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

5
12

+ 1
4
C if 0 ≤ C ≤ 1

3
�

1
3

+ 1
2
C if

1
3

≤ C ≤ 2
3
�

C if
2
3

≤ C ≤ 1�

Similarly, let Π(μ;B�C) be the expected payoff at t = 0 of an individual with third-
order belief μ, assuming the protocol continues at least to the next period. LetΠ(μ̃;B�C)
be the expected payoff for third-order belief μ̃.

If 0 ≤ C ≤ 1/3, then Π(F1;C)=Π(F̃2;C) and Π(F2;C)=Π(F̃1;C). So, for all B,

Π(μ;B�C)= 1
2

max
(
B�Π(F1;C)

) + 1
2

max
(
B�Π(F2;C)

)
= 1

2
max

(
B�Π(F̃2;C)

) + 1
2

max
(
B�Π(F̃1;C)

)
=Π(μ̃;B�C)�

Similarly, if 1/3 ≤ C ≤ 1, then Π(F1;C) = Π(F̃1;C) and Π(F2;C) = Π(F̃2;C). So for
all B,

Π(μ;B�C)= 1
2

max
(
B�Π(F1;C)

) + 1
2

max
(
B�Π(F2;C)

)
= 1

2
max

(
B�Π(F̃1;C)

) + 1
2

max
(
B�Π(F̃2;C)

)
=Π(μ̃;B�C)�

Altogether, for all B, C, Π(μ;B�C) = Π(μ̃;B�C) and the decision of the elicitor, at
t = 1, is the same whether the announced third-order belief is μ or μ̃, independently of
the draw of A, B, C. Hence, announcing μ̃ when one’s true belief is μ (and conversely) is
still a best response.

B.2. Proof of Proposition 5

We have already argued that truthful announcements are a weak best response, at least.
We show that the best response is strict. As for Proposition 4, Π(μ;B�C) denotes the
expected payoff at t = 0 of an individual whose third-order belief is μ and who is about to
face the choice in the first interim period:

Π(μ;B�C)=
∑

(q�F)∈μ
qmax

(
B�

∑
(f�p)∈F

f max(C�p)
)
�

Let μ and μ̃ be distinct third-order beliefs whose supports lie within the restricted class
considered. If there exist B, C such that Π(μ;B�C) �=Π(μ̃;B�C), then, by continuity of
Π(μ;B�C) in B and C, there exists a positive mass of triples (A�B�C) such that

min
(
Π(μ;B�C)�Π(μ̃;B�C))<A<max

(
Π(μ;B�C)�Π(μ̃;B�C))�
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so that an individual whose belief is μ and who announces μ̃ gets a strictly suboptimal
payoff with positive probability on the random triple (A�B�C)—and so gets a strictly
suboptimal payoff overall.

The proof then reduces to demonstrating the existence of B and C such that
Π(μ;B�C) �=Π(μ̃;B�C). It is convenient to assume that μ and μ̃ share the same proba-
bility trees that characterize the second-order beliefs. To do so, we write

μ= {
(qi�Fi)

}
1≤i≤n and μ̃= {

(q̃i�Fi)
}

1≤i≤n

with Fi �= Fj if i �= j and possibly qi = 0 or q̃i = 0.
Let C be such that the n payoffs Π(F1;C)� � � � �Π(Fn;C) can be totally ordered, for

example, Π(F1;C) < · · ·<Π(Fn;C). It is then easily verified that the linear span of the
set of vectors of Rn,{(

max
(
B�Π(F1;C)

)
� � � � �max

(
B�Π(Fn;C)

)) | B ∈ [0�1]}� (8)

is Rn (for instance, by varying B gradually on its range, one can progressively con-
struct the vectors (0� � � � �0�1), (0� � � � �0�1�1), and so forth, to make a basis). As μ �= μ̃,
(q1� � � � � qn) �= (q̃1� � � � � q̃n), and the set of vectors (8) has full rank, there exists B such that∑

i

qi max
(
B�Π(Fi;C)

) �=
∑
i

q̃i max
(
B�Π(Fi;C)

)
and, hence, Π(μ;B�C) �=Π(μ̃;B�C).

B.3. Proof of Proposition 6

Let Π(F;C�D) be the expected payoff of an individual in the first interim period,
with second-order belief F and who chooses to continue, and for the parameters C =
(C1� � � � �CJ) and D = (D1� � � � �DJ). Let μ and μ̃ be distinct third-order beliefs and
suppose that the support of each of these third-order beliefs has size at most K. Let
F = {F1� � � � �FM} be the union of the two supports, so that M ≤ 2J.

The key argument in Proposition 5 relies on the fact that for some draws of the elicitor,
any two second-order beliefs in F yield different expected payoffs of the continuing indi-
vidual in the first interim period. In that proposition, the fact is simply assumed by having
restricted second-order beliefs. In this proposition, we show the fact holds in the modified
protocol. The same argument then continues to apply.

Let qi be the probability, according to μ, of obtaining belief Fi in the first interim pe-
riod, and let q̃i be the analog for μ̃. As argued in the proof of Proposition 1, for every
i �= j, there exists αij ∈ [0�1] such that EFi [max(αij�P)] �= EFj [max(αij�P)]. The remain-
der of the proof requires the following result.

LEMMA 1: Let C ⊂ RM be finite. If, for all i �= j, there existsX ∈ C such thatXi �=Xj , then
there exists a convex combination Y of the vectors of C such that for all i �= j, Yi �= Yj .

PROOF: Let us start with an arbitrary Y ∈ C and apply the following iterative proce-
dure. For any pair i �= j such that Yi = Yj , we transform Y into αX + (1 − α)Y , where
X is a vector of C such that Xi �=Xj and α ∈ (0�1). The transformed Y satisfies Yi �= Yj ,
and if α is chosen small enough, then all pairs of different elements under the original
vector Y remain pairs of different elements under the transformed vector Y . We iterate
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this process while there is any remaining pair i �= j with Yi = Yj . As there are only finitely
many pairs, the procedure terminates and generates a vector whose elements are pairwise
different. Q.E.D.

Returning to the proof of Proposition 6, let Xij be the vector of RM ,

Xij = (
EF1

[
max(αij�P)

]
� � � � �EFJ

[
max(αij�P)

])
�

and let C be the collection of the vectors Xij for every pair (i� j) with i < j. There are
at most 2K(2K − 1)/2 < 2K2 = J elements in C, and by Lemma 1, there exists a vector
Y written as convex combination of elements of C such that for every i �= j, Yi �= Yj .
Therefore, for some vectors C = (C1� � � � �CJ) and D = (D1� � � � �DJ), with 0 ≤ D� ≤ 1,
and such that for every �, C� = αij for some i, j, element Yk of vector Y is equal to

J∑
�=1

D�EFk
[
max(C��P)

] =Π(Fk;C�D)�

Hence, for all F� F̃ ∈F , F �= F̃ , there exists C andD for whichΠ(F;C�D) �=Π(F̃;C�D):
any two second-order beliefs in F yield different expected payoffs of the continuing indi-
vidual in the first interim period.

APPENDIX C: PROOFS FOR SECTION 4

C.1. Some Auxiliary Lemmas

We introduce some technical lemmas to show that the payoff rules and value functions
associated with menus satisfy some regularity conditions, such as continuity and measur-
ability. These are needed to enable the computation of expectations and to allow the use
of approximation arguments in the proof of Theorem 1.

In the sequel, to simplify notation, let π0(S�x) be the payoff associated to a security S
when the outcome of X is x, let 
0(X ) designate X , and let M0 be the set of securities
taking values in the normalized interval [0�1]; instances of such securities will be denoted
by S or M0.

LEMMA 2: For every k≥ 0, the value map (Mk�p
(k)) �→ πk(Mk�p

(k)) for menuMk ∈Mk

and belief tree p(k) ∈ 
k(X ) is jointly continuous. In addition, the step-ahead value map
(Mk�p

(k+1)) �→ ∫
πk(Mk�q)dp(k+1)(q) is also jointly continuous in Mk ∈ Mk and p(k+1) ∈


k+1(X ).

PROOF: The proof proceeds by induction.
Let f0(S�p

(1))= ∫
S dp(1) and for k≥ 1, let fk(Mk�p

(k+1))= ∫
πk(Mk�q)dp(k+1)(q).

Note that π0 is jointly continuous and f0 is also jointly continuous, because securities
have a compact domain and 
1(X ) is endowed with the weak-∗ topology. Also, S �→
π0(S� ·) is continuous in the sup-norm topology.

We show that if fk is jointly continuous and ifMk �→ πk(Mk� ·) is continuous in the sup-
norm topology, then both πk+1 and fk+1 are jointly continuous, and, in addition, Mk+1 �→
πk+1(Mk+1� ·) is continuous in the sup-norm topology.

Let hk+1 be the correspondence from Mk+1 × 
k+1(X ) to Mk that is defined by
hk+1(Mk+1�p

(k+1)) =Mk+1. Because hk+1 has nonempty compact values and is continu-
ous when interpreted as a map from Mk+1 × 
k+1(X ) to Mk+1, the correspondence is
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continuous (Theorem 17.15 of Aliprantis and Border (2006)). Since fk is continuous, we
can then invoke Berge’s maximum theorem (see, for example, Theorem 17.31 of Alipran-
tis and Border (2006)) to get that the map(

Mk+1�p
(k+1)

) �→ max
m∈hk+1(Mk+1�p

(k+1))
fk

(
m�p(k+1)

)
is continuous. This proves the joint continuity of πk+1. If, in addition, Mk+1 �→
πk+1(Mk+1� ·) is continuous in the sup-norm topology, then fk+1 is jointly continuous
(Corollary 15.7 of Aliprantis and Border (2006)).

What remains to be shown is the continuity of the maps Mk+1 �→ πk+1(Mk+1� ·).
Let Ck+1 be the space of continuous real functions on 
k+1(X ) endowed with its sup-

norm. Let Kk+1(Mk+1) ⊂ Ck+1 be the convex hull of {πm;m ∈ Mk+1}, which, being the
finite union of points, is closed and bounded in Ck+1. Let C ′

k+1 be the norm dual of
Ck+1, which consists of all norm-continuous linear functionals. Let Uk+1 be the closed
unit ball of Ck+1 and let U ′

k+1 ⊂ C ′
k+1 be its polar, so that v ∈ U ′

k+1 if |v(x)| ≤ 1 for
all x ∈ Uk+1. For a given closed, bounded set C of Ck+1, let hC defined by hC(v) =
supx∈C v(x) denote its support function. Using the induction hypothesis, we remark
that the map Mk+1 �→ Kk+1(Mk+1) is continuous if the set of closed bounded subsets
of Ck+1 is given the Hausdorff metric induced by the sup-norm topology. Let us sup-
pose that a sequence {M(i) ∈ Mk+1; i = 1�2� � � �} converges to some M∞ ∈ Mk+1. Then
limi→∞ supu′∈U ′ |hKk+1(M

(i))(u
′)− hKk+1(M

∞)(u
′)| = 0 by Lemma 7.58 of Aliprantis and Bor-

der (2006). By the Riesz–Radon representation (Corollary 14.15 of Aliprantis and Bor-
der (2006)), every p(k+1) ∈ 
k+1(X ) can be identified with a member of U ′, so that
πk+1(Mk+1� ·) can be viewed as the support function of Kk+1(Mk+1) restricted to 
k+1(X ).
Thus,

lim
i→∞

sup
p(k+1)∈
k+1(X )

∣∣πk+1

(
M(i)�p(k+1)

) −πk+1

(
M∞�p(k+1)

)∣∣ = 0�

which makes Mk+1 �→ πk+1(Mk+1� ·) continuous. Q.E.D.

In the lemma below, we slightly generalize the notation introduced in Section 4. For
any k≥ 1 and M a menu of order k, let Πk(p(k)� � � � �p(1)� x;M) denote the value of such
a menu when X = x for a risk-neutral individual with no discounting and who observes
probability trees p(k) ∈ 
k(X )� � � � �p(1) ∈ 
1(X ) at the successive times of exercise of M
and its submenus.

LEMMA 3: The map (p(T)� � � � �p(1)� x�MT) �→Π(T)(p(T)� � � � �p(1)� x;MT), where p(k) ∈

k(X ), MT ∈MT , and x ∈X , is jointly measurable in the product σ-algebra.

PROOF: As in Lemma 2, for every k, we define the correspondence hk(Mk�p
(k))=Mk

and the function fk(Mk�p
(k+1))= ∫

πk(Mk�q)dp(k+1)(q).
For every k, we note that hk is measurable (Theorem 18.10 of Aliprantis and Border

(2006)), that hk is a Carathéodory function, and that the space Mk is separable.17 We can

17First, note that the set of securities is a separable metric space by Lemma 3.99 of Aliprantis and Border
(2006). Then the result follows, as the set of finite sets of a separable metric space is itself separable when en-
dowed with the Hausdorff topology. In particular, the set of finite sets of a countable dense subset is countable
and dense in the Hausdorff topology.
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then apply the measurable selection theorem (Theorem 18.19 of Aliprantis and Border
(2006)) and we get that the argmax correspondence,

arg max
m∈hk+1(Mk+1�p

(k+1))

∫
πk(m�q)dp(k+1)(q)�

is measurable and admits a measurable selector. Moreover, by the Castaing representa-
tion theorem (Corollary 14.18 of Aliprantis and Border (2006)), we can enumerate the
elements of the argmax in a measurable way, in the sense that there exists a sequence of
measurable selectors {�(i)

k+1; i= 1�2� � � �} such that

arg max
m∈hk+1(Mk+1�p

(k+1))

fk
(
mk�p

(k+1)
) = {

�(i)
k+1

(
Mk+1�p

(k+1)
); i= 1�2� � � �

}
�

We observe that∣∣∣∣arg max
m∈Mk+1

∫
πk(m�q)dp(k+1)(q)

∣∣∣∣ = lim
j→∞

j∑
i=1

1
j∑
�=1

1
�
(i)
k+1(Mk+1�p

(k+1))=�(�)
k+1(Mk+1�p

(k+1))

is measurable as a pointwise limit of real-valued measurable functions.
The remainder of the proof continues with a brief induction argument. Note that Π0

defined by Π0(x;S) = S(x) is measurable. Suppose that Πk+1 is measurable. Then Πk,
which can be written

Πk+1
(
p(k+1)� � � � �p(1)� x;Mk+1

)
= 1∣∣∣∣arg max

m∈Mk+1

∫
πk(m� ·)dp(k+1)

∣∣∣∣ lim
j→∞

j∑
i=1

Πk
(
p(k)� � � � �p(1)� x;�(i)

k+1

(
Mk+1�p

(k+1)
))

j∑
�=1

1
�
(i)
k+1(Mk+1�p

(k+1))=�(�)
k+1(Mk+1�p

(k+1))

�

becomes measurable. This concludes the proof. Q.E.D.

C.2. Proof of Theorem 1

The proof consists of two parts. The first part deals with the separation of different
individuals at a given time when there are only two possible types. In the multiperiod case,
we use for “simple decision problems” the class of finite menus. Decisions then consist
in choosing an element from the menu at the initial period, then an element from the
chosen submenu at the next period, and so forth until the penultimate period when the
decision reduces to choosing among a set of securities from the submenu chosen last. In
the first part of the proof, we show that this class of decision problems is rich enough
to discriminate between any two individuals whose belief trees are of two possible sorts.
In the second part of the proof, we apply the Allais randomization idea to discriminate
between any two individuals whose belief trees are no longer restricted.
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C.2.1. Part 1: Discriminating Between Two Belief Trees

Let p(k) and q(k) be two different probability trees of level k, that represent the dynamic
beliefs of two individuals in period T −k. We refer to the individual with (dynamic) belief
p(k) as type p(k), and the individual with belief q(k) as type q(k).

In this first part, we show that there exists a menu Mpq
k of level k with two different

submenus Mp
k−1 and Mq

k−1 such that if offered Mpq
k in period T − k, type p(k) is strictly

better off choosing submenu Mp
k−1 while type q(k) is strictly better off choosing submenu

M
q
k−1.
To understand the proof, it is helpful to start from the penultimate period T − 1, in

which case the belief trees have level k= 1 and simply represent outcome distributions.
The problem aforementioned reduces to choosing two securities Sp and Sq such that type
p(1) strictly prefers Sp and type q(1) strictly prefers Sq. It is easy to achieve when observing
that, because p(1) �= q(1), at least one continuous map f : X → [0�1] exists that separates
p(1) from q(1), in the sense that the expected payoff from f , when interpreted as a security,
is different for the two types: ∫

f dp(1) �=
∫
f dq(1)�

It is immediate for the case of finite outcome spaces and more generally holds for metriz-
able spaces by Aleksandrov’s theorem (Theorem 15.1 of Aliprantis and Border (2006)).
Because X is compact, f is bounded, so that we can choose f to take values in [0�1]. For
example, suppose

∫
f dp(1) is greater than

∫
f dq(1). Then we can set Sp = f and Sq to

be the average of
∫
f dp(1) and

∫
f dq(1). A symmetric argument holds if

∫
f dp(1) is less

than
∫
f dq(1). For this argument to work, the key element is to have essentially complete

flexibility in the design of the security, which is also the individual’s value function at the
next and final period T .

Now consider the problem of separating individuals with different belief trees of some
higher level and, so, at some earlier time. To do so, for any k≥ 1 and any belief tree μ(k)
of level k, with a slight abuse of notation, let πMk(μ

(k)) be the value of menu Mk ∈Mk in
period T −k to any individual who holds belief tree μ(k) at that time (that is, πMk(μ

(k))=
πk(Mk�μ

(k))).
Thus, for k > 1, we seek to design submenus Mp

k−1, Mq
k−1 such that type p(k) strictly

prefersMp
k−1 and type q(k) strictly prefersMq

k−1. Note that the expected payoff for any type
μ who chooses submenu Mpq

k−1 in period T − k is the expectation of the value function in
the next time period: ∫

πMk−1 dμ�

If we can choose the value functions arbitrarily, then the argument of the case k = 1
continues to apply. However, with k > 1, the value functions can no longer be chosen
arbitrarily: for k= 2, they are the space of strictly convex functions over probability dis-
tributions, and as k increases they become a increasingly smaller subset of strictly convex
functions whose domain is the growing space of belief trees of level k− 1.

Nevertheless, and perhaps surprisingly, the space of value functions is rich enough so
that the difference between two value functions can approximate arbitrarily closely any
continuous function on 
k−1(X ). We can then apply a similar argument as for the case
k= 1 to prove type separation for k > 1. The proof relies on a duality between the space
of menus and the space of value functions, whereby the set of value functions is shown to
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have the structure of a Boolean ring, which in turn enables the application of a version
of the Stone–Weierstrass theorem for these algebraic structures. We state and prove the
result in the following lemma.

LEMMA 4: For every k ∈ {1� � � � �T }, p(k)� q(k) ∈ 
k(X ) with p(k) �= q(k), there exists
Mk−1 ∈Mk−1 (Mk−1 is a security if k= 1) such that∫

πMk−1 dp(k) �=
∫
πMk−1 dq(k)� (9)

PROOF: The proof proceeds by induction. As shown above, Equation (9) is satisfied for
k = 1 and some security M0 = S. Now let us assume that the statement of the lemma is
valid for k and show it is then valid for k+ 1.

Step 1. We begin with two direct implications. First, there exist Mp
k−1 and Mq

k−1, both
elements of Mk−1, such that when type p(k) is offered Mpq

k := {Mp
k−1�M

q
k−1} in period

T − k, he is strictly better off choosing Mp
k−1, while type q(k) is strictly better off with

M
q
k−1. The construction is analogous to the case k= 1. If, for example,∫

πMk−1 dp(k) >
∫
πMk−1 dq(k)�

we set Mp
k−1 = Mk−1 and Mq

k−1 = 1
2(

∫
πMk−1 dp(k) + ∫

πMk−1 dq(k)). Second, if Mp
k−1 and

M
q
k−1 are chosen as such, we note that the value of Mpq

k is different for the two types:
πMpq

k
(p(k)) �= πMpq

k
(q(k)).

Step 2. Let Bk be the set of continuous and bounded real functions on 
k(X ). We endow
Bt with the topology of uniform convergence. Also recall that every 
k(X ) is equipped
with the weak-∗ topology. If a space S is compact and metrizable, then 
(S) endowed
with the weak-∗ topology is compact and metrizable, by the Banach–Alaoglu theorem
and the Riesz–Radon representation theorem (for example, Theorem 15.11 of Aliprantis
and Border (2006)). It follows that every 
k(X ) is a compact metrizable space.

Let Lk = {πMk − πM ′
k
�Mk�M

′
k ∈ Mk}. Note that Lk is a subset of Bk. We show below

that Lk is a Boolean ring for the operations “plus” and “max,” in the sense that (a) 0 ∈Lk

and (b) if f�g ∈Lk, then f + g ∈Lk and max{f�g} ∈Lk.
To do so, it is useful to endow recursively every set of menus M� with the following

operations:
• Minkowski addition: For any M�M ′ ∈ M1, we define the menu M +M ′ ∈ M1 by

{S+ S′;S ∈M�S′ ∈M ′}: if � > 1 andM�M ′ ∈M�, we defineM +M ′ = {m+m′;m ∈
M�m′ ∈M ′} recursively.

• Scalar multiplication: For any α≥ 0 and for any M ∈ M1, we define αM = {αS;S ∈
M}: if � > 1 and M ∈M�, we define αM = {αm;m ∈M} recursively.

Let 1 ∈Mk be the (degenerate) menu that generate the constant payoff 1 and let 0 ∈Mk

be the (degenerate) menu that generate the constant payoff 0. The following equalities
hold for each μ ∈ 
k(X ) and each M�M ′ ∈Mk:

π0(μ)= 0�

π1(μ)= 1�

πM+M ′(μ)= πM(μ)+πM ′(μ)�
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παM(μ)= απM(μ) ∀α≥ 0�

πM∪M ′(μ)= max
{
πM(μ)�πM ′(μ)

}
�

Thus, 0 ∈Lk. In addition, for each α≥ 0,

α(πM −πM ′)= παM −παM ′ �

Finally, observe that, for M , M ′, N , N ′ menus of level k,

(πM −πM ′)+ (πN −πN ′)= πM+N −πM ′+N ′

and

max{πM −πM ′�πN −πN ′ } = max{πM +πN ′�πN +πM ′ } − (πM ′ +πN ′) (10)

= π(πM+πN′ )∪(πN+πM′ ) − (πM ′ +πN ′)� (11)

In summary, the following conditions are satisfied:
(i) Lk is a Boolean ring.

(ii) Lk includes the constant function 1, since 1 = π1 −π0.
(iii) Lk is stable by scaling: αLk ⊆Lk for any α ∈ R.18

(iv) 
k(X ) is a compact Hausdorff space.
(v) Lk separates points in the sense that if f (p)= f (q) for every f ∈ Lk, then p= q.

It is a direct consequence of the second implication in Step 1 of the proof.
Therefore, we can apply the version of the Stone–Weirstrass theorem for Boolean rings
described in Theorem 7.29 of Hewitt and Stromberg (1997), which implies that Lk is
dense in Bk in the topology of uniform convergence.19

We end the proof by contradiction. If, for every Mk ∈Mk, it is the case that∫
πMk dp(k+1) =

∫
πMk dq(k+1)�

then for every f ∈Lk, ∫
f dp(k+1) =

∫
f dq(k+1)

and, by application of the Stone–Weirstrass theorem, the equality remains true for every
f ∈ Bk. That 
k(X ) is metrizable implies p(k) = q(k) by Aleksandrov’s theorem. Thus,
there exists a menu Mk of level k such that∫

πMk dp(k+1) �=
∫
πMk dq(k+1)�

which concludes the proof by induction. Q.E.D.

18By the Boolean ring property, αLk ⊆ Lk if α≥ 0, and by definition of Lk, −Lk ⊆ Lk.
19At a general level, we need that the linear span of the value functions associated to menu protocols is

dense in Bk. It is known that the linear span of the convex functions on 
k(X ) is dense in Bk in the topology
of uniform convergence (see, for example, Meyer (1966, p. 221)). However, for our purpose, this result is not
sufficient because the value functions form a strict subset of convex functions; specifically, they correspond to
the convex functions on 
k(X ) whose recursive subgradients are also convex. Therefore, Step 2 goes a step
further and shows that the linear span of the convex functions on 
k(X ) whose recursive subgradients are also
convex is dense in Bk.
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C.2.2. Part 2: Randomization

In this second part, we show that a full-support randomization over finite menus allows
us to distinguish between any two individuals whose belief trees differ at some point in
time, without restriction on the belief trees.

Formally, let us fix a full-support distribution ξ over the set of level-T menus MT .
Fix any two sequences of belief trees p = {p(T)� � � � �p(1)} and q = {q(T)� � � � � q(1)} with p �=
q (recall the superscript (k) denotes a tree of level k). Proving Theorem 1 reduces to
proving the following statement: with positive probability relative to the menu MT drawn
at random according ξ, the individual who is given menu MT at the outset and observes
the unraveling sequence of belief trees p over time is strictly better off making at least one
decision different from all optimal decisions of the individual who observes the sequence
of belief trees q. We refer to the individual of observes p as type p and to the individual
of observes q as type q.

Fix an arbitrary level k such that p(k) �= q(k) and let M�
k = {Mp��

k−1�M
q��
k−1} be a menu of

level k that separates between the two belief trees p(k) and q(k), and whose existence is
shown in Part 1 of this proof. We abuse notation in that if k = 1, then Mp��

k−1 and Mq��
k−1

denote securities. Define the (degenerate) menu of level N , M�
N , which includes onlyM�

k,
that is, either M�

N =M�
k if k = N or, otherwise, M�

N = {� � � {M�
k} � � � }. For such a menu,

there is no decision to be made until period T − k when the decision maker must choose
between either Mp

k or Mq
k .

Because of the full-support assumption, to prove the above statement, it is sufficient to
show that for any menu MT selected anywhere in a small enough neighborhood of M�

T ,
type p := (p(T)� � � � �p(1)) is strictly better off choosing a different submenu/security than
type q := (q(T)� � � � � q(1)) for every optimal selection of type q.

By Step 1 and Lemma 4, there exists ε > 0 such that for any level-kmenusMk,M ′
k with

d(Mk�M
p��
k ) < ε and d(M ′

k�M
q��
k ) < ε, type p(k) would be strictly better off choosing Mk

over M ′
k at t = T − k, while type q(k) would be strictly better off choosing M ′

k over Mk.
Consider any menu MT of level T such that d(MT�M

�
T ) < ε. In this case, by a direct

induction argument, every one of the submenus, subsubmenus, and so forth ofMT of level
k− 1 (or securities if k= 1) is either ε-close to Mp��

k−1 or,it is ε-close to Mq��
k−1; moreover,

the use of the Hausdorff distance also implies that in every submenu of level k of MT ,
there is at least one submenu closest toMp��

k−1 and another submenu closest toMq��
k−1. Thus,

the decisions that are optimal for type p in period T −k are strictly suboptimal for type q
and inversely.

C.3. Proof of Theorem 2

The proof is decomposed in two steps. First, we approximate the payoff rule Π by a
payoff rule associated with a finite menu. Since finite menus only uncover beliefs partially,
in a second step we complement the payoff rule by a small fraction of a strategyproof
protocol. The overall payoff rule can be implemented via a randomized menu protocol.

The main difficulty lies in the construction of the finite menu. This menu is obtained by
sampling the original payoff rule finitely many times in such a way that whenever a selec-
tion needs to be made from that finite menu or one its submenus, the payoffs associated
with that choice remain close to the payoffs of the original payoff rule.

For any finite menu M of order T , let Π�(p0� � � � �pT−1�x;M) be the induced payoff
rule and let Π�(p0� � � � �pT−1�x;ξ) be the payoff rule induced by the randomized menu
protocol that randomizes according to ξ. Let us slightly abuse notation and denote by

Πt(q0� � � � � qt;pt)



DYNAMIC BELIEF ELICITATION 411

the maximum expected value, in period t, of the individual who faces payoff rule Π and
who reports q0� � � � � qt from period 0 to period k, but holds belief pt in period t. Similarly,

Π�
t (q0� � � � � qt;pt;M)

is the maximum expected value of the individual endowed with the finite menu M in the
initial period instead. Let d(·� ·) denote a compatible metric on each space 
k(X ); for
example, the Lévy–Prokhorov metric.

Fix ε > 0. BecauseΠ is continuous on 
T(X )×· · ·×
(X )×X , which is a compact set,
it is uniformly continuous. Thus, there exists δ0 > 0 such that if, for each i, pi is δ0-close
to p′

i (i.e., d(pi�p′
i) < δ0), then |Π(p0� � � � �pT−1�x)−Π(p′

0� � � � �p
′
T−1�x)|< ε/2 for each

x ∈X .

Step 1(a). We show that there exists a finite subset Σ0 of 
N(X ) such that, for each
p0, if

q∗
0 ∈ arg max

q0∈Σ0

Π0(q0;p0)�

then q∗
0 is δ0-close to p0.

Let {Σ0�k}k be a sequence of finite subsets of 
T(X ) such that Σ0�k converges to 
T(X )
in the Hausdorff metric topology induced by the Lévy–Prokhorov metric. The compact-
ness of 
T(X ) guarantees existence of such a sequence. We observe that (q0�p0) �→
Π0(q0;p0) is continuous, as can be seen immediately via induction, using that every Πt is
uniformly continuous. The correspondence (P�p0)�P , where P is a compact subset of

T(X ) and p0 ∈ 
T(X ) is also continuous (see Theorem 18.10 of Aliprantis and Border
(2006)). Using Berge’s maximum theorem, we get that the correspondence

(P�p0)� arg max
q0∈P

Π0(q0;p0)

is upper hemicontinuous. Now suppose that for every k, there exists (qk0 �p
k
0) such that

qk0 ∈ arg max
q0∈Σ0�k

Π0

(
q0;pk0

)
with d(qk0 �p

k
0) ≥ δ0. Because 
T(X ) is compact, there exists a subsequence of in-

dexes, {σ(k)}k, such that pσ(k)0 converges to p∞
0 for some p∞

0 . Also, Σ0�σ(k) con-
verges to 
T(X ), where the limit is with respect to the Hausdorff metric. Noting that
arg maxq0∈
T (X ) Π0(q0;p0)= {p0}, by the upper hemicontinuity of the argmax correspon-
dence, we get that qσ(k)0 converges to p∞

0 , thus contradicting that d(qσ(k)0 �pσ(k)0 ) ≥ δ0 for
every k.

Step 1(b). Next we show that there exists k∗ such that for every finite menuM of order
T that satisfies ∣∣Π�

0(q0;p0;M)−Π0(q0;p0)
∣∣< 1/k∗ ∀q0�p0�

then, for each p0, if

q∗
0 ∈ arg max

q0∈Σ0

Π�
0(q0;p0;M)�

then q∗
0 is δ0-close to p0.
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By contradiction, if the claim does not hold, then for every k there exists pk0 , qk0 , Mk

such that ∣∣Π�
0

(
q0;p0;Mk

) −Π0(q0;p0)
∣∣< 1/k ∀q0�p0�

while

qk0 ∈ arg max
q0∈Σ0

Π�
0

(
q0;pk0 ;Mk

)
and d(qk0 �p

k
0) ≥ δ0. Using the compactness of 
T(X ), we generate a subsequence of

indexes, {σ(k)}, such that pσ(k)0 converges to p∞
0 and qσ(k)0 converges to q∞

0 for some
p∞

0 ∈ 
T(X ) and some q∞
0 ∈ Σ0.

Then, d(q∞
0 �p

∞
0 ) ≥ δ0 and following Step 1(a), it implies that q∞

0 is not a maxi-
mizer of the map q0 ∈ Σ0 �→ Π0(q0;p∞

0 ). Let q∗
0 ∈ Σ0 be such a maximizer. Then we

have Π0(q
∗
0;p∞

0 ) > Π0(q
∞
0 ;p∞

0 ) and, by continuity, for large enough ks, Π0(q
∗
0;pk0) >

Π0(q
∞
0 ;pk0), with both sides of the inequality bounded away from each other. Thus for

any k large enough, Π�
0(q

∗
0;pk0 ;Mk) > Π�

0(q
∞
0 ;pk0 ;Mk). This inequality contradicts the

fact that for k large enough, q∞
0 should also maximize q0 ∈ Σ0 �→Π�

0(q0;pk0 ;Mk), since
Σ0 is finite.

Next, by uniform continuity, we set δ > 0 such that, if for each i, pi is δ-close to p′
i, then

|Π(p0� � � � �pT−1�x)−Π(p′
0� � � � �p

′
T−1�x)|< 1/k∗ for each x ∈X . Let δ1 = min{δ0� δ}.

Step 2. We now iterate Step 1 for every t = 1� � � � � T − 1. Let t ≥ 1 and δt > 0 be given.
Fix p0� � � � �pt−1 such that p0 ∈ Σ0, p1 ∈ Σp0

1 , p2 ∈ Σp0�p1
2 , and so forth, where every set of

the form Σ
p0�����pt−1
t is a finite subset of 
T−t(X ).

Analogously to Step 1(a), we define Σp0�����pt−1
t as a finite subset of 
T−t(X ) such that,

for every pt , if

q∗
t ∈ arg max

qt∈Σp0�����pt−1
t

Πt(p0� � � � �pt−1� qt;pt)�

then q∗
t is δt-close to pt .

Then, by a direct generalization of Step 1(b), there exists k∗ such that for every finite
menu M of order T that satisfies∣∣Π�

t (p0� � � � �pt−1� qt;pt;M)−Πt(p0� � � � �pt−1� qt;pt)
∣∣< 1/k∗ ∀pt�qt�

for every pt , if

q∗
t ∈ arg max

qt∈Σp0�����pt−1
t

Π�
t (p0� � � � �pt−1� qt;pt;M)�

then q∗
t is δt-close to pt .

Finally, we let δ be such that if, for every i, q′
i is δ-close to q′′

i , then |Π(q0� � � � � qT−1�x)−
Π(q′

0� � � � � q
′
T−1�x)|< 1/k∗ for every x. Let δt+1 = min{δ�δt}.

Step 3. We build a finite menuM∗
0 of order T by sampling the infinite menu associated

with Π as follows: for every p0� � � � �pT−2, where for every t, pt ∈ Σp0�����pt−1
t , we define

M
p0�����pT−2
T = {

Π(p0� � � � �pt−1� qT−1� ·);qT−1 ∈ Σp0�����pT−2
T−1

}
�

M
p0�����pt−1
t = {

M
p0�����pt−1�qt
t+1 ;qt ∈ Σp0�����pt−1

t

}
�
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We let M∗
0 = {Mq0

0 ;q0 ∈ Σ0}. Let ξ be the degenerate probability measure that allocates
full mass on M∗

0 . We note that we have, by Steps 1(a), 1(b), and 2,∣∣Π�(p0� � � � �pT−1�x;ξ)−Π(p0� � � � �pT−1�x)
∣∣< ε/2 ∀p0� � � � �pT−1�x�

Step 4. This step concludes the proof. Let ξ′ be a probability measure over MT with
full support. Take ξ′′ = (1 − ε/2)ξ+ (ε/2)ξ′. ThenΠ�(p0� � � � �pT−1�x;ξ′′) defines a strat-
egyproof payoff rule and∣∣Π�(p0� � � � �pT−1�x;ξ)−Π(p0� � � � �pT−1�x)

∣∣< ε ∀p0� � � � �pT−1�x�
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