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Abstract Prequential testing of a forecaster is known to be manipulable if the test
must pass an informed forecaster for all possible true distributions. Stewart (J Econ
Theory 146(5):2029–2041, 2011) provides a non-manipulable prequential likelihood
test that only fails an informed forecaster on a small, category I, set of distributions. We
present a prequential test based on calibration that also fails the informed forecaster on
at most a category I set of true distributions and is non-manipulable. Our construction
sheds light on the relationship between likelihood and calibration with respect to the
distributions they reject.

Keywords Testing forecasters · Calibration test

1 Introduction

We consider the problem of testing a forecaster in a stochastic environment. The
forecaster may or may not be informed of the probabilities governing an unfolding
sequence of realizations. Our objective is to find a test that can determine whether the
forecaster is informed based on her predictions and the realization of the process. The
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classic example concerns the testing of a weather forecaster. The forecaster makes
a daily prediction of the probability of rain the following day. A natural test would
be to check whether the predictions are calibrated. This calibration test considers the
empirical distribution of rain conditional on the predictions made by the forecaster.
For example, it considers the realization of rain following all the days on which
she predicted rain with probability 40 % the previous day. The forecaster is said to
be calibrated if for every prediction made long enough, the empirical distribution
converges to the forecast. In other words, it rained close to 40 % of the time in the
days following her prediction of 40 % chance of rain. Foster and Vohra (1998) have
shown that an uninformed forecaster could use a randomized prediction strategy that
guarantees she will be calibrated no matter what the realization is—hence, no matter
what the true distribution is, the uninformed forecaster can manipulate the calibration
test.

The manipulability of the calibration test has been extensively generalized, most
notably by Sandroni (2003) and Olszewski and Sandroni (2008) for any finite-time
rejection test as well as by Shmaya (2008) for all prequential tests—tests that sequen-
tially ask for predictions along the unfolding realization. In contrast, positive results
by Dekel and Feinberg (2006) and Olszewski and Sandroni (2009b) showed that there
are tests that cannot be manipulated, however they require that the forecaster provide
the entire distribution upfront. Other positive results include the testing of multiple
forecasters where a prequential test can distinguish which forecaster is the informed
one. Distinguishing an informed forecaster from an uninformed one was achieved by
Al-Najjar and Weinstein (2008) using a likelihood test and by Feinberg and Stewart
(2008) using a cross-calibration test. A likelihood test compares the ratio of the prod-
ucts of two forecasters’ prediction sequences to determine the informed one under the
assumption that one of the forecasters must be informed. A cross-calibration test asks
that a forecaster be calibrated conditional on the joint predictions of the forecasters,
for example, considering all the periods where one forecaster predicted 20 % chance
of rain for the following day and the other predicted 40 % at the same time. Cross-
calibration measures the empirical distribution conditional on both predictions. Since
the distribution of rain cannot converge both to 40 and 20 % at the same time the test
distinguishes the informed forecaster.

An alternative strand of the literature considered tests that restrict the set of possi-
ble distributions governing the process. Al-Najjar et al. (2010) considered learnable
distributions. These distributions converge to a distinct characteristic that allows the
forecaster to provide separating predictions in finite time. Olszewski and Sandroni
(2009a) suggested a prequential non-manipulable test that fails the informed forecaster
only when the conditional probabilities are within a small interval, e.g., forecasts that
get close to 50 %. For general finite sets of outcomes, Babaioff et al (2010) proposed
a non-manipulable test that passes the informed forecaster only when the conditional
distributions are outside a closed convex set of non-zero measure. Stewart (2011) put
forth a likelihood-based test that cannot be manipulated and may fail the informed
forecaster on at most a small, category I, set of distributions, i.e., a countable union
of nowhere dense sets—sets whose closure has empty interior. Our paper adds to this
strand by offering a calibration-based non-manipulable test that may fail the informed
forecaster on at most a small, category I, set of distributions. Our results advance the
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analogy between likelihood-type and calibration-type tests as viable practical tools
for testing experts.

To define our test consider choosing a probability distribution arbitrarily. This will
be our reference distribution. The reference distribution will determine the set of prob-
ability distributions for which a forecaster who knows the true distribution would fail
the test—a set we want to keep small, a category I set. The reference distribution
will also determine how the forecaster is being calibrated. We assume the test and the
reference distribution are known to the forecaster. The test proceeds by considering
sequentially the realization of the process and the sequence of predictions the fore-
caster provided as this realization materialized, making it a prequential test. We now
distinguish two cases. If the forecaster did not make predictions that infinitely often
were close to the conditional probabilities of the reference distribution then we fail the
forecaster. If the forecasts were infinitely often close to the reference distribution we
ask whether the forecasts were calibrated when they came close to the reference dis-
tribution. For example, consider the reference distribution that predicts 30 % chance
of rain (i.i.d.). The set of distributions that do not infinitely often have conditional
predictions close to 30 % is a category I set. For predictions not in that set, i.e., where
the expert infinitely often makes predictions close to 30 %, we test if the expert is
calibrated with respect to the reference distributions. In this case, it simply means
that on these periods, the empirical distribution is indeed 30 %—i.e., we check if the
forecaster was calibrated on these periods, much like standard weather forecast cali-
bration tests do. We show that this generalizes to any reference distribution. The test
will now require the expert to be calibrated with respect to the reference distribution
on the periods where he makes predictions close to the conditional probabilities of the
reference distribution.

As an example, let the reference distribution predict a probability of 20 % chance
of rain if there was no rain the day before, and 80 % chance of rain otherwise. The set
of distributions that do not infinitely often have conditional probabilities close to this
reference distribution is once again a category I set of distributions. Now we require
that the forecaster’s predictions are also close to 20 % after a dry day and 80 % the day
after it rained infinitely often. Conditional on making these predictions infinitely often
we check whether the empirical distribution was close to 20 and 80 % respectively. If
the true distribution does infinitely often get close to the reference distribution, the true
forecaster will pass the test by reporting the true distribution. However, we show that
there is no strategy of the false expert that guarantees passing this test, hence it cannot
be manipulated. While standard calibration can be manipulated, it is the additional
requirement that predictions coincide infinitely often with a reference distribution that
removes manipulation and allows for testing even when there is no restriction on when
the true distribution may be close to the reference distribution.

Our results are presented as follows. We first observe that for every reference dis-
tribution if the distribution governing the process is indeed close to the reference
distribution infinitely often then an informed forecaster will pass the test. We then
show that for any given reference distribution the set of distributions that with positive
probability never come close to the reference distribution is a category I set of dis-
tributions. Hence, for all but a category I set of distributions the informed forecaster
will pass the test with probability one (with respect to the true distribution). Finally,
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we show that there is no randomized forecasting strategy that would allow an unin-
formed forecaster to always pass the test. As in Stewart (2011), our results carry over
to the Bayesian setting, in which the tester and the forecaster hold a common prior
over the possible distributions of the governing process. Under some conditions on
the prior, our test passes the informed forecaster with probability one, while it fails
the uninformed forecaster with probability one.

2 Definitions

Denote by Ω = {(ωt )t=1,2,... | ωt ∈ {0, 1}} the set of possible realizations endowed
with the product topology. We consider the Borel σ -algebra on Ω . Let ωt refer to the
first t elements of the sequence ω. Let Ht = {0, 1}t be the set of possible histories of
length t .

Let �(Ω) be the set of Borel probability distributions on Ω endowed with the weak*
topology. Given a distribution λ, denote by λt (ω) the probability that ωt = 1 condi-
tional on the history ωt−1 when the history has positive λ-probability. Assume λt (ω)

takes an arbitrary value otherwise. We will occasionally write λt (ω
t−1) to emphasize

the independence of λt on future realizations.
We are interested in prequential tests of a forecaster. Assume the true distribution

generating the realization ω ∈ Ω is the probability distribution μ. At every period t the
forecaster is asked to make a prediction as to the probability of ωt = 1 conditional on
observing ωt−1. An informed forecaster knows μ and is assumed to forecast according
to μ. An uninformed forecaster does not know μ. At every period t she can choose
any forecast in [0, 1], as well as randomize her forecast, as a function of the realization
ωt−1 and her own past realized forecasts.

A prequential test is a function T : �(Ω) × Ω �→ {Pass, Fail} that satisfies
T (λ, ω) = T (λ′, ω) if λt (ω) = λ′

t (ω) for every t and such that T (λ, ω) = Fail
whenever there is some t such that λ(ωt ) = 0. In other words, T depends only on the
sequence of conditional forecasts along the realization and fails the forecaster if she
predicts with certainty that the actual realization should not have materialized.1

A test passes a forecaster informed of a true distribution μ if the set of realizations
{ω|T (μ, ω) = Pass} has μ-probability 1. A test passes an informed forecaster on a
set of distributions D ⊂ �(Ω) if she passes for all μ ∈ D. A subset of a topological
space is called category I if it is a countable union of nowhere dense sets—sets such
that the interior of their closure is empty. Category I sets are small in a topological
sense.

A pure strategy for an uninformed forecaster is a sequence of predictions
{λt (ω

t−1)}∞t=1 for every ω. Hence it corresponds to a unique probability distribution
in �(Ω). Given a mixed strategy η ∈ �(�(Ω)) an uninformed forecaster passes the

1 Note that any prequential test as defined above is also a prequential test as defined in Shmaya (2008).
Shmaya considers tests as functions of sequences of predictions along a realization. A collection of forecast
sequences, one for every realization, defines a unique distribution over sequences (Kolmogorov Extension
Theorem), however multiple collections may be mapped into the same distribution. These multiple col-
lections differ only in the probabilities assigned conditional on zero probability finite histories. Hence, by
failing on an occurrence of such events our test can be defined as a function of forecasts predictions as well.
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test T at ω with at least η-probability 1 − ε if η({λ|T (λ, ω) = Pass }) ≥ 1 − ε, i.e.,
with at least probability 1 − ε with respect to her randomized strategy the uninformed
forecaster passes the test on the realization ω. A test is manipulable if for every ε > 0
there exists a mixed strategy η such that the uninformed forecaster passes the test at
every ω ∈ Ω with at least η-probability 1 − ε.

A prequential test is called a Borel test if it is measurable with respect to the Borel
σ -algebra defined on �(Ω) × Ω as above.

We consider the following variant of the calibration test that we call reference
calibration test.

Fix an arbitrary reference distribution ν ∈ �(Ω). Let I1, . . . , Im denote the inter-
vals Ii = [βi , βi+1) where 0 = β1 < · · · < βm < 1 and Im = [βm, 1], m ≥ 2.
These intervals need not be small in any sense, and may have different widths. Let
{εn}∞n=1 be a positive sequence converging to zero. The test performs calibration in
periods determined by a random variable Bt . The random variable Bt takes the value
1 when the forecaster’s prediction is close to the reference distribution ν. Specifically,
we define recursively a sequence of periods {tn}∞n=0 as a function of the forecaster’s
prediction λ, the realization ω, and the reference distribution ν as follows: Let t0 = 0
and

tn+1 = inf ({t > tn | |λt (ω) − νt (ω)| < εn+1} ∪ {∞}) .

tn denotes the first period strictly after tn−1 at which the forecast gets within εn from
the reference distribution and ∞ otherwise. Hence limn tn = ∞.

Define Bt = 1 if there is some n such that t = tn , and Bt = 0 otherwise. Note
that Bt is a function of ωt−1 and λk(ω

k−1) for k ≤ t . Let Ci
t be the random variable

such that Ci
t = 1 if νt (ω) ∈ Ii and Ci

t = 0 otherwise. Note that the periods tn and the
variables Bt depend on ω and λ, and the variables Ci

t also depend on ω.
The reference calibration test passes the forecaster if

∑
t Bt = ∞ and

lim
n→∞

∑n
t=1 Bt · Ci

t · (λt (ω) − ωt )
∑n

t=1 Bt · Ci
t

= 0

for all i such that
∑

t Bt · Ci
t = ∞. Note that, if

∑
t Bt = ∞ for a particular λ and ω,

there always exists some i such that
∑

t Bt · Ci
t = ∞.

The reference calibration test simply adds conditioning on the random variables
Bt to a standard calibration test. We perform calibration using the checking rule Ci

t
whenever the predictions come close to the reference distribution, and ask that they
do so infinitely often. Note that the reference calibration test is prequential as well as
Borel since it is a limit of Borel functions.

3 Results

The calibration test was shown to be manipulable by Foster and Vohra (1998). This
result was extended, expanded and generalized by Fudenberg and Levine (1999),
Lehrer (2001), Vovk and Shafer (2005), Olszewski and Sandroni (2008, 2009b) and
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Shmaya (2008), with the latter showing that every Borel prequential test that passes
the informed forecaster for every true distribution μ can be manipulated, i.e., there
exists a mixed strategy that passes the uninformed forecaster on every realization. We
show that our reference calibration test fails the informed forecaster on a small set of
true distributions and is non-manipulable.

Fix a reference distribution ν ∈ �(Ω), and define

Dν =
{
μ ∈ �(Ω) | ∀ω lim inf

t→∞ |μt (ω) − νt (ω)| = 0
}

.

The set Dν includes all the distributions with conditionals that get arbitrarily close to
ν infinitely often, for every realization. Here, the conditionals of ν are fixed arbitrarily
for 0-probability histories.

First we show that for every distribution ν, the set Dν is large in a topological sense.

Proposition 1 For every reference distribution ν, the set of the distributions that do
not belong to Dν is a category I set.

Proof Observe that

�(Ω)\Dν = ∪ω∈Ω ∪k≥1 ∪n≥1 ∩t≥n {μ ∈ �(Ω) | |μt (ω) − νt (ω)| ≥ 1/k}
⊆ ∪k≥1 ∪n≥1 ∩t≥n∪ht−1∈Ht−1

{μ ∈ �(Ω) | |μt (ht−1) − νt (ht−1)| ≥ 1/k} .

Also note that the set {μ ∈ �(Ω) | |μt (ht−1) − νt (ht−1)| ≥ 1/k} is weak* closed.
Besides the union ∪ht−1 {μ ∈ �(Ω) | |μt (ht−1) − νt (ht−1)| ≥ 1/k} is a finite union
of closed sets, and so is closed. The set Sn,k defined by

Sn,k = ∩t≥n ∪ht−1 {μ ∈ �(Ω) | |μt (ht−1) − νt (ht−1)| ≥ 1/k}

is an intersection of closed sets, and so is a closed set. Take any μ ∈ Sn,k . Define
μm ∈ �(Ω) by

μm
t (ht−1) =

{
μt (ht−1) for all t ≤ m and all ht−1 ∈ Ht−1 ,

νt (ht−1) for all t > m and all ht−1 ∈ Ht−1 .

We have μm /∈ Sn,k and the sequence {μm}∞m=1 converges to μ in the weak* topology.
Hence Sn,k has empty interior. So Sn,k is a closed nowhere dense set. Hence, ∪k≥1∪n≥1
Sn,k is the countable union of nowhere dense sets—a category I set. ��

Second we observe that for every reference distribution ν, an informed forecaster
passes the reference calibration test on every distribution of Dν .

Proposition 2 Fix the reference distribution ν and the corresponding reference cali-
bration test. The test passes the informed forecaster on the set Dν .

Proof Noting that for every μ ∈ Dν we have
∑

t Bt = ∞, the proposition follows
from the standard calibration theorems (cf. Dawid 1982; Kalai et al. 1999). ��
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Finally we show that the reference calibration test is not manipulable.

Proposition 3 Fix the reference distribution ν and the corresponding reference cal-
ibration test. For every mixed strategy η ∈ �(�(Ω)) of an uninformed forecaster,
there exist uncountably many distributions μ ∈ Dν such that the test fails the fore-
caster with (η, μ)-probability 1. That is, for a probability one set of realizations of the
randomized forecast strategy and a probability one set of realizations of the process
governed by μ, the forecaster fails the test.

Proof As in previous work (cf.Olszewski and Sandroni 2009a; Babaioff et al 2010;
Stewart 2011) to prove non-manipulability we will allow Nature to randomize over
the “feasible” set of distributions Dν and observe that, for an appropriate choice of
randomization, the compound distribution falls outside the feasible set. By doing so
the uninformed forecaster fails the test on the compound distribution and also, by the
section theorems, on a probability one set of distributions in Dν .

Let |Ik | denote the length of interval Ik , and let δ = min{|I1|, . . . , |Im |}/2. We
introduce the random variables Zht taking values in [0, 1], for every t ≥ 0 and every
history ht ∈ Ht . There are countably many such random variables, and only finitely
many for each fixed time t .

To define the Zht ’s, we also introduce the random variables Z̃t , t ≥ 1, taking values
in [0, 1]. These variables are independently and identically distributed according to
P(Z̃t ≤ x) = (1 − δ) + δx . We let Zht−1 = Z̃t if νt (ht−1) ∈ Im , and Zht−1 =
1 − Z̃t otherwise. Note that the Zht ’s are perfectly correlated for every given t , but
are independent across t’s. Besides every Zht is distributed following a mixture of a
uniform distribution with weight δ and a 1 − δ atom either at 0 or at 1.

By the Kolmogorov Extension Theorem, every realization of the family of variables
Zht yields a unique distribution over Ω , defined by μt (ω) = Zωt−1

. Hence P yields a
distribution ξ over �(Ω). Denote by μ̄t (ω) the expected conditional probability at time
t , defined by μ̄t (ω) = ∫

μt (ω)dξ(μ). Note that μ̄t (ω) = δ/2 and μ̄t (ω) = 1 − δ/2 if
νt (ω) ∈ Im and νt (ω) /∈ Im , respectively.

The distribution ξ ∈ �(�(Ω)) has the following properties:

1. Whenever νt (ω) ∈ Ii for some i ≤ m −1 we have μ̄t (ω)−νt (ω) ≥ δ/2. Similarly
if νt (ω) ∈ Im we have μ̄t (ω) − νt (ω) ≤ −δ/2.

2. The distribution ξ has no atoms. In particular every set of distributions with ξ -
probability 1 is uncountable.

3. The distribution ξ assigns probability 1 to the set of distributions Dν .

The first property is direct. The second property owes to the weight δ on the uniform dis-
tribution given independently to the conditional probabilities at every period. Finally,
to obtain the third property, fix some K , t0 ∈ N. Let SK ,t0 be the set of distributions
μ such that, for some ω ∈ Ω, |μt (ω) − νt (ω)| > 1/K for every t ≥ t0. Note that for
any given t , the probability that there exists some ω for which |μt (ω)−νt (ω)| > 1/K
cannot be greater than 1− δ/K , because of the weight δ on the uniform distribution of
the random conditional probabilities, and because all the random conditional proba-
bilities are perfectly correlated at any given time. Since those conditional probabilities
are distributed independently across time and 1 − δ/K is bounded away from 1, the
set SK ,t0 has ξ -probability 0. If a distribution μ does not belong to Dν , it belongs to
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SK ,t0 for some K , t0. As there are only countably many such sets, the complement of
Dν has ξ -probability 0, and so the set Dν has ξ -probability 1.

The remainder of the proof makes use of the following lemma:

Lemma 1 Let η be a mixed strategy of the forecaster. For every i = 1, . . . , m, there
is a ξ -probability 1 set of distributions S i ⊂ �(Ω) such that for every μ ∈ S i , with
(η, μ)-probability 1 on predictions λ and realizations ω, we have

lim
n→∞

∑n
t=1 Bt · Ci

t · (ωt − μ̄t (ω))
∑n

t=1 Bt · Ci
t

= 0

whenever
∑

t Bt · Ci
t = ∞.

Proof (Lemma 1) Consider the probability distribution U on infinite sequences
[0, 1]∞ that distributes uniformly and independently every element of the sequence.
Let {αt }∞t=1 denote a realization of U . We consider the product space of the follow-
ing three processes: Forecasts λ generated by the given mixed strategy η, sequences
{αt }∞t=1 sampled according to the uniform i.i.d. U , and distributions μ generated by ξ

as defined above.
Define recursively the stochastic process {Yt }∞t=1 by Yt =1{αt ≤μt (Y1, . . . , Yt−1)}.

That is, Yt = 1 if the uniform i.i.d. realization is less or equal to the conditional
distribution of μ given Y1, . . . , Yt−1, and Yt = 0 otherwise. Note that Pr(Yt =
1|Y1, . . . , Yt−1) = μ̄t (Y1, . . . , Yt−1). By the standard calibration theorems we have
that with (η, U, ξ)-probability 1,

lim
n→∞

∑n
t=1 Bt · Ci

t · (Yt − μ̄t (Y1, . . . , Yt−1))
∑n

t=1 Bt · Ci
t

= 0

if
∑

t Bt · Ci
t = ∞. Hence there is a ξ -probability 1 set of distributions S i such that

for every μ ∈ S i , with (η, U )-probability 1 we have (for the given μ),

lim
n→∞

∑n
t=1 Bt · Ci

t · (Yt − μ̄t (Y1, . . . , Yt−1))
∑n

t=1 Bt · Ci
t

= 0

if
∑

t Bt · Ci
t = ∞ (See, for example, Halmos 1974 Chapter VII). The conclusion

follows observing that Yt is distributed according to μt (Y1, . . . , Yt−1) as is ωt . ��
We now return to the proof of our proposition. Applying Lemma 1 to every i =

1, . . . , m, there is a set of distributions S = ∩iS i with ξ -probability 1 and such that,
for all μ ∈ S, with μ-probability 1 on ω,

lim
n→∞

∑n
t=1 Bt · Ci

t · (ωt − μ̄t (ω))
∑n

t=1 Bt · Ci
t

= 0

if
∑

t Bt · Ci
t = ∞.
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By construction of the process Bt , Bt · (λt − νt ) → 0 for every λ and ω as t → ∞.
Also, by property #1 above, for all n large enough,

∣
∣
∣
∣
∣

∑n
t=1 Bt · Ci

t · (μ̄t (ω) − νt (ω))
∑n

t=1 Bt · Ci
t

∣
∣
∣
∣
∣
>

δ

3

if
∑

t Bt · Ci
t = ∞.

Finally, we have ωt − λt = (ωt − μ̄t ) + (μ̄t − νt ) + (νt − λt ). The averages of the
first and third pairs on the right hand side converge to 0 when multiplied by Bt · Ci

t
but the middle pair was shown to be bounded away from 0. Hence for each μ ∈ S,
with μ-probability 1 on ω,

∑n
t=1 Bt · Ci

t · (ωt − λt (ω))
∑n

t=1 Bt · Ci
t

does not converge to zero if
∑

t Bt · Ci
t = ∞.

By property #3, ξ(Dν) = 1. Hence the set S ∩ Dν has ξ -probability 1, and the
conclusion follows by property #2. ��

We also note that, much like Stewart (2011), our reference calibration test can be
extended to the Bayesian setting albeit with somewhat stronger restrictions on the prior
over the set of true distributions. In particular, assume P ∈ �(�(Ω)) is a prior that
satisfies (a) P(Dν) = 1, (b) the average distribution with respect to the prior denoted
μ̄ ∈ �(Ω) and defined by μ̄t (ω) = ∫

μt (ω)d P(μ) satisfies that there is some ε > 0
such that for every ω there is some t0 with |μ̄t (ω) − νt (ω)| > ε for all t > t0 and (c)
in addition, for every i, μ̄t (ω) − νt (ω) has the same sign whenever νt (ω) ∈ Ii .

Then we have the following corollary of Proposition 3:

Corollary 1 Let P be a prior over distributions with reference ν satisfying the con-
dition above. Then there exists a reference calibration test with ν that satisfies:

– The informed forecaster passes the test with P-probability 1: The set of true dis-
tributions μ such that the informed forecaster passes the test has P-probability
1.

– An uninformed forecaster fails the test with P-probability 1: For every given mixed
strategy η ∈ �(�(Ω)) of the forecaster, the set of true distributions μ such that
the forecaster passes the test with positive (η, μ)-probability has P-probability 0.

4 Concluding remarks

The non-manipulability of the reference calibration test is the result of adding an
additional hurdle to the standard calibration test. Now the forecaster must also get
close to the reference distribution along all realizations. This hurdle is exactly what a
true distribution must possess to pass the test. Fortunately, most distributions do get
infinitely often close to any given reference distribution, since those distributions that
do not, form a category I set. In Stewart (2011) the added “burden of proof” requires the
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forecaster to perform better than a given reference distribution in the likelihood test. In
that case, the true distribution must be sufficiently far from the reference distribution
to ensure that an informed forecaster can beat the reference distribution. Interestingly,
the distributions that do not pass this likelihood test are those that quickly converge
to the reference distribution. Both the distributions that do not have a converging sub-
sequence and those that converge quickly2 are topologically small, category I, sets of
distributions.

We note that our results can be extended by requiring that the predictions are close to
the reference distribution on a given infinite sub-sequence of times. In other words, we
can require that the expert be cross-calibrated on any fixed sub-sequence of times (with
respect to the reference distribution). In this case, we have to exclude all distributions
that do not get infinitely often close to the reference distribution on that particular
sub-sequence. While this set is larger, it is still a category I set, and all of our results
continue to hold.

The likelihood test in Stewart (2011) uses a reference measure much in the same
way as Al-Najjar and Weinstein (2008) used two forecasters under the assumption that
one of them is informed. In Stewart (2011) the reference distribution is assumed to be
the “false” distribution which a true informed forecaster should beat. In our paper the
reference distribution represents a desired property of the true distribution—getting
close to the reference distribution infinitely often. Moreover, it is the forecaster’s
predictions that determine when she is cross-calibrated with respect to the reference
distribution. Here the reference distribution plays a somewhat different role than the
one played by either the informed or the uninformed forecaster in Feinberg and Stewart
(2008).

We point out that instead of cross-calibrating along a sequence converging to the ref-
erence distribution, our proofs would hold if we considered cross-calibrating whenever
the forecaster makes predictions within the same intervals Ik as the reference distrib-
ution forecasts. Adding the requirement that the forecaster’s predictions fall in these
intervals infinitely often, we fail on a category I set of true distributions and retain the
non-manipulability of a prequential test.3

Finally, while having a category I set of distributions for which the true expert might
fail may seem like a small set, we point out that this is a topologically determined set
that may not be intuitively small. Our test fails all true distributions that do not come
infinitely often close to the reference distribution on every realization. This is a small
set because most distributions, in the category sense, are “all over the place” and have
conditional probabilities that take values that are dense in the interval [0, 1], quite an
extreme non-systemic property for a stochastic process. This is in contrast with rules
governing the distribution over time—such as being learnable (see Al-Najjar et al.
2010) where the distributions that are considered tend to have converging properties
over time.

2 Specifically, Stewart (2011) requires that the sum of squared differences on the conditionals be bounded.
3 We are very grateful to Colin Stewart for bringing this to our attention.
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