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This appendix contains supplementary material and proofs omitted from the main text.
References to this Online Appendix are preceded by the letters “OA.” Other references are
to the main text.
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Part I
Complements for Section 2

OA.1 Additional Details on the Computations

In this section we provide the details on the computations of Section 2 in the main text.

First, we derive the equilibrium effort for the standard model, the first example of
Section 2. Equation (3) (in the main text) implies that, if the worker exerts effort A; at
round ¢, then the expected market belief, from the viewpoint of the worker, is

Bl = H(f_m;ms _ ). (0A.1)

The worker chooses each effort level Ay, t =1,...,T so as to maximize Equation (2), which
after plugging in (OA.1) is equal to

T T A2 T t—1
DBl — (M) = =) 8T ) D 0T s (A - AY)
t=1 t=1 t=1 s=1 (t-1)%
:_Zdt 1A2+i i 55 1 (A — A)).
t=1 s=t+1 8_1)2

Hence, maximizing (3) yields a unique optimal effort level A; at each round ¢, which is the
maximizer of

1 A7 ZTf >
-0 =+ Tt —————= (A — A}).
2 Rt 1+(s—1)%
Hence
T 5
At _ Z 65_t77
S 1+ (s—1)X

which corresponds to Equation (4).
Next, we derive the equilibrium effort for the two-signal two-period cases for the second
and third examples of Section 2. Recall that in this variant of the standard model,

St =alAy + B0+,
Si' = a'lA; + 810 + €Y,

and
Yo = AS] 4 (1 — \)Sih
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As in the standard model the worker exerts no effort in the second round (Az = 0). The
equilibrium effort in the first round is determined by the value of the rating at the start of
round 2: the worker chooses effort A; to maximize

2
> 8 Elu — ¢(A)] = E[u2] — e(Ay), (OA.2)

t=1

where the expectation reflects the worker’s viewpoint, i.e., it assumes the distribution over
signals obtained under effort A;. Using the standard projection formulas for the multivariate
normal distribution, we get

Cov|[d,Y3]
Var[Y3]
_ Cov[d,Ys]
~ Var[Yy]

uo = E[0 | Ya] = E[f] + (Y2 - E[Y3]),

(Vs — (Aol + (1 — )\)aH)A’{) ,

where this time the expectation reflects the market’s viewpoint, i.e., it assumes that the
worker exerts effort A} during the first round, as opposed to A;. The market’s belief may
thus differ from the worker’s belief off equilibrium when A} # A;. We also have

Cov[f,Ys] = A\G'E + (1 — Ny,
Var[Ya] = (A\8' + (1 = N)BN2E 4+ A2 + (1 - V)2
Covariance and variance are also taken with respect to the market’s viewpoint, but their

expression remains the same when taken with respect to the worker’s viewpoint, so it is
irrelevant. Overall, we can rewrite Equation (OA.2) as

M'E+ (1 -N)p"S I 1 A
1- A —A])——
(ABL+ (1= N)BM)2E + A2 + (1 —A)Q(/\a (1= Aat) (A= A7) =55
and so the effort level A; that maximizes (OA.2) is
IZ 1— HE
Ay =90 ASE+ (1 —M)6 (At + (1 = N)ath), (OA.3)

ABY+ (1 = N)BI)2E + A2 + (1 — \)2

which corresponds to Equation (5) when (o', ") = (1,0) and (o!!, ") = (0,1). The
optimal weights of Equations (6) and (7) are obtained by maximizing the equilibrium effort
given by (OA.3) for the two cases (a!, 1) = (1,0), (a!!, 1) = (0,1) and (!, ") = (!, 1),
(al, A1) = (1,1).

We now derive the equilibrium effort for the one-signal three-period case, which is the
fourth example of Section 2. At the first round, the rating is irrelevant and 1 = 0. At the

1.2



second round, the rating chosen is Yo = X; and the market belief is

Covlf, X1]

o = E[@ | Xﬂ = E[e] + VaI‘[Xl] (Xl - E[Xl])7
_ Cov[f, X1] .
— Srafe e,
= o (- A,

by another application of the projection formulas for the multivariate normal distribution,
where the expectations are taken from the market’s perspective and where we note that

Cov[f,X1] =%, and Var[X;]=X+1.
At the third round, the rating is Y5 = AX; + (1 — A) X2 and the market belief is

Cov|[d,Ys]
Var|[Ys]

B 5

A+ (1-A24+ X

p3 = (Y3 =247 — (1 -X)43),

(Ys =241 — (1 - M)A43),

where we note that
Cov[f,Y3] =%, and Var[Yz] =X+ (1-))>+2.

Therefore, at round 2 and 3, the expected market beliefs from the worker’s viewpoint are
respectively

Eljal = 5= (41— A7), (0A.4)
and .
Elus] = (M1 + (1= A As — AAT — (1= N A3). (OA.5)

A2+ (1-N)243
The worker chooses effort A3 = 0 at round 3, and chooses efforts A; and As, at round 1
and 2 respectively, to maximize

3
> 6" Elu — ¢(Ay)] = 6E[ug] + 6*Elus] — (A1) — 6c(Ay). (OA.6)
t=1

After plugging Equations (OA.4) and (OA.5) into Equation (OA.6), we get the optimal
effort levels

5 1
A, = 6%
1=90 <2(/\—1))\+2+1+E+1>’

L3



and
d(A—=1)X

2A— DA+ S+ 1
Choosing A that maximizes A; + Ao yields

V24/02 + 122 +1-2
2(5—1) ’

Ay = —

A=

which after simplification is equal to A(d) defined in Equation (7).
Finally, we consider the last example of Section 2, with T" rounds, and a rating linear in
output: at the start of round ¢, the market observes

Y;f = Z us,th-

s=1

From the now usual projection formulas for multivariate normal distributions, the market
belief about the worker’s ability is then

Covl[6,Y}]

=B I = e

(Y — E[Y3]),

where the expectation is taken according to the market’s conjecture of the worker’s effort
A*, and with

Cov[d,V;] = Z‘Zukt,

Var|Y;| = Zuit—i-Z Z U 4 Ut -

,j=1
Hence,
Z - t—1
it = S b Y — Zuk,tAZ .
DR P kt+2” 1 Wi et k=1
The worker chooses his efforts At, t=1,...,T to maximize

T t—1 t—1 9
_ t—1 k=1 Ukt o AL
= ;5 ( (Z g (A Ak)) 5 ) :

1
X Zk 1ukt+Z” 1 Wit \ s=1

14



The first-order condition yields

T

_ -1
A Z 5" SuStZk 1“kt
.=
1
t= 5—1—1Z Z

kt+Z'LJ lultu]t

and the second-order condition is always satisfied. Finding the parameters u,, s <t so as
to maximize aggregate equilibrium effort

and so maximizing

_ t— t—1
S8 st (S ()
-1
=1 =1 > Zkl kﬁzu 1 Witlye 5 kl kt+zm 1“ztuy,
is equivalent to finding, for every ¢, the parameters us;, s < ¢t that maximize
t—1
(Zk o'~ kuk’t> <Zk 1 ukt)
3 12 kt+ZzJ 1Uztu]t

Observe that this last expression is more concisely expressed as

t—1
Corr[0, Y] Zét Us.t,

Var[Y;] —

which corresponds to Equation (9) of the main text.
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Part 11
Complements for Section 3

OA.2 Proof of Lemma 3.2

1. If the wage satisfies the zero-profit condition, then the worker who chooses effort
strategy A makes (ex ante) payoff

E [/OOO (A + i — c(Ar)) e dt} ,

where A* denotes the market conjectured effort level. The worker has no impact on
A*, which may only depend on time. Thus, the worker’s strategy is optimal if, and
only if, it maximizes

E UOOO (1t — c(Ap)) e dt] .

2. Letting M' = {M}};>0 and M} = o(u;), we have E*[0,|M}] = E*[0|p] = pu, hence
for a given conjectured effort level A*, the market’s transfers and the worker’s best
response are the same under both information structures M and M’.

OA.3 Proofs of Proposition 3.4 and Lemma B.3

We prove the existence and uniqueness of the equilibrium, and give the closed-form
expression of the equilibrium action in the stationary case. We work directly under the
multisignal framework of Section 5, which encompasses the baseline model of Section 3.

Let Y by a linear rating, not necessarily stationary. As Y is linear, then the market
belief p is also a linear rating, by the projection formula for jointly Gaussian variables, and
we can write

pe = Z /<t Wi,s,t (ASk,s — Al ds),
E V5S

where A* is the effort level conjectured by the market.

We prove that, given the (unique) wage that satisfies the zero-profit condition, there
exists a (up to measure zero sets) unique optimal effort strategy for the worker, pinned
down by a first-order condition. This, in turn, yields existence of a unique equilibrium.

Let us fix the wage process 7 that satisfies the zero-profit condition, and suppose that
the worker follows effort strategy A. The worker’s time-0 (ex post) payoff is then

/ TAT 4 — c(A) e L. (OA.T)
0
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Maximizing the worker’s ex ante payoff is equivalent to maximizing the ez post payoff (up
to null events). Hence, we seek conditions on A that characterize when it is a maximizer
of (OA.7). Thus, as

dSk,s = (arAs + Bibs) ds + 01, dZy s,

maximizing (OA.7) is equivalent to maximizing

o] t K o]
/ / Zakwk’s,tAsefrt dsdt—/ c(Ay)e " dt. (OA.8)
o Jo i 0

Let us rewrite

o] t K o) oo K
/ / Z akwk’s’tAse*” dsdt = / / Z Oéklvk,s,tx‘ls67”t dtds.
0 0 k=1 0 S k=1

Maximizing (OA.8) is then the same as maximizing
oo (0.9} K o0
/ / Z akwkﬁ,tAse_"“t dtds — / c(Ay)e " dt,
0 s p— 0

which is the same as maximizing

o K
</ Z akwh&te_” dt) Ag — c(Ag)e ™,
5 k=1

for (almost) every s. By strict convexity of the worker’s cost, (OA.8), and thus (OA.7), is
maximized if, and only if, for (almost) every ¢,

o K
d(Ay) :/ Zakwk,&te_r(t_s) dt. (OA.9)
5 k=1

This yields existence and uniqueness of the equilibrium, and proves Proposition 3.4.
We now proceed to the proof of Lemma B.3. Observe that, if Y is a linear rating that
is stationary, then, up to an additive constant,

Y = Z/<t ug(t — s) dSy s
k 5=

If Var[Y;] = 1, applying the projection formula for jointly Gaussian random variables, we
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get

w2 SOV / *
= E*[0, | Vi] = Var[Y] (Y, —E [m)_cov[et,yt]%: Sstuk(t t) (dSks — ap A% ds).
Thus,
Wk st = COV[Gt,Y;g]Uk(t — t). (OAlO)

We note that Cov[Y;, 6] is constant and equal to

Cov[Y;, 0, = Zﬁk/ ug(s)e™* ds.
Plugging (OA.10) into (OA.9) yields

Zﬂk/ ug(t)e " dt

K )
[;ak/o u(t)e dt].

OA.4 Complements to the Proof of Theorem 3.6 (and Th.
B.4)

2
?

In this section, we prove Theorem B.4, which is the multisignal signal version of
Theorem 3.6, and we show how to generate the educated guess used in that proof (which
includes the guess candidate of Theorem 3.6 as a special case).

Derivation of the candidate guess
Assume that Y has the linear representation

K

Y, = Z/Q ug(t — 5) dSs,
k=175

with wg integrable and square integrable. It is helpful to make additional regularity
assumptions to derive necessary conditions, so as to pin down a unique candidate for the
coefficients uy. Let B > 0, and assume that every uy, is twice continuously differentiable on
[0, B], and that ug(s) = 0 if s > B. Below, we relax the bounded-support assumption. We
define U = )", Bruy.

We have

Ji(T) = Cov[Yy, Spy—r]
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K oo
=Z/ 5) Cov[dSi s, Shrr]
=1 0

:0']%/ ug(s Pir” / / e =5l dj ds.

Successive differentiations yield

(1) = —okun(r) - /3,;72 / U s (OA.11)
0
2 T 2 o)
i) = —ofui(r) + B [T Ue = as = B [T u(sert as

2 T 2 [e%s)
(1) = —ojui(t) + Biy?U(r) — 5’“77 / U(s)e_(T_S)ds—Bk; / U(s)e™ () ds.
O T

Thus,
fo— ' = o — o2u — Bry*U. (OA.12)

Multiplying (OA.12) by Bi/o? and summing over k yields an ordinary differential equation
(ODE) for U:

JE/ o f/// — U// —U-— ’yzmgU — U// o HQU, (OA.13)

where we recall that
= B
= Z ;f K(s)
k=1"k
Integrating by parts the general solution of (OA.13) gives

K2 —1

U(t) = C1e"™ + Coe™"™ — f/(1) —

/T sinh(k(T — 8))f'(s) ds, (OA.14)

K 0

for some constants C and Cy. Multiplying the expression for f; by B/ ‘71?; and summing
over k gives

Ii2— oo
Fr)=-vem - " L /0 U(s)e ™ ds, (OA.15)

for every 7 > 0. Together, and after simplification, (OA.14) and (OA.15) yield an equation
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that C7 and C should satisfy, for every 7:

f(r) = f(r) — Cre"™ — Cae™ "™

K21 [eB(N1)+T e T et et ]
1

2 K—1 _n+1+n+1_m—1

52

-1
- C
5 2

—B(k+1)+7 —T —KT

e +e +e 76*”
k+1 k—1 kr+1 k-1

K2 —1k2—1e Bt

T B
9 n A2 1/0 f'(4) [k cosh(s(B — j)) + sinh(k(B — j))] dj.

After further simplification, we obtain a system of two equations in C; and Cj:

- L B-1) —B(r+1)
Clﬂ—le +CQI€+16
eB(r—1) B - ) e~ B(s+1) B
1 Ve idj+ S (k1 fidj =
s ) [ e i+ =) [ PG =0
and
C1 O
k+1 k-1

Therefore, solving these two equations,

O = 1 eBED (4 1)2(k% - 1) fo e dj + e BT (5 +1)%(k — 1) f f'(5)e™ dj
1 — % (H + 1) (n 1) _ (/{ _ 1) B(H+1) 5

and

O — 1 eBED(k+1)2(k—1) fo e dj 4 e~ Bt (2 (k—1) fo e dj
S <n+1) B = (k= 1% e

To get candidate coefficients whose support is not necessarily bounded, we send B to infinity
and get

Cy — C° = w - 1/ F (e dj, (OA.16)

and )
-1 0o _ )
Cy — C7° = (R)/ f’(j)e"’” dj. (OA.17)
2/<é 0

Thus, a candidate for U is

K2 —1

U(r) = Coe" + 5% — f/(7) —

/ " sinh(s(r — $))F(s) ds.
0

K
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We plug in the expression of U in (OA.11), which yields the candidate for w:

— 00 /81972 KT o0 Bk72 —KT __ fl/c(T) _ 5k72 /T : _ /!
up(7) = Cf 702(/# — 1)6 +Cf 7013(%2 — 1)6 o2 o2 Jo sinh(k(T —s))f'(s) ds,
OA.138)

and after simplification,

() = Bk;f (sinh KT + Kk cosh kT /00 o df(s) - /r inh Al — $) df(8)> B fllc(;-)
0 0

Ok 14+ k&

Proof that the candidate guess is correct

We show that the candidate for {ug}x defines valid coefficients for the rating. Let uy
be defined by (OA.18), or, equivalently, by (OA.19). That uy is integrable and square
integrable was already demonstrated in the proof of Theorem 3.6 for the one-signal case,
and continues to apply for the multisignal case.

Let
K

Y; = E* Y] + Z/ u(t — 5)(dSk s — o A% ds).
k=175t

If we have Cov[Y; — 17}, Skt—r] = 0 for all 7 and k, then Y; and Sj;—, are independent for

all 7 and k. As Y; — }7,5 is measurable with respect to the information generated by the

signals Si¢—r, 7 >0, k =1,..., K, it implies that Var[Y; — f/}] =0 and thus Y; = }7} In

the remainder, we show that Cov[Y; — }7,5, Sgt—r]=0forall7>0and k=1,...,K. Let

k(1) = Cov[f/}, Skt—r]. We have:

g() / us(s) Cov[dS, sy, Skrr]
0

00 2 oo 0O )
= UI%/ up(s)ds + ﬁk; / / U(s)e =71 djds,
T 0 T

where Ul(s) == ", fiui(s), and so

K
=1

gllc(T) = _O-]%;uk‘(T) - /OO U(.9)6_|T_5| ds.
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Replacing uy, by its definition in (OA.18),

2 2 2
/ / Bry Bry* _ Bry
9e(1) = fr(7) = C1 2 16”7 - CQEZ —1¢ T+ e

B Bi?

5 /0 U(s)e ™l ds.

Further, multiplying (OA.18) by 8k and summing over k, we have

/T sinh(k(1 — 5))f'(s)ds
0 (OA.20)

K2 —1

U(r) = Ci%e™ + C3%e ™™ — f'(7) —

/T sinh(k(1 — 5))f'(s) ds.
0

K

It holds that B
/ U(s)e ™ *ds = lim U(s)e "l ds.
0

B—x 0

Thus,

B B B B )
/ U(s)e_h_‘9| ds = Cloo/ e™e 1Tl ds + CS"/ e e~ ITsl g — / f/(s)e—lr—sl ds
0

0 0
52

0
—1 (B s N B = |T—s] s
/0 /0 sinh(k(s — 7)) f (4)e dj ds.

K

Then, for any B > 7, we write

K
K2 —1

B s 3 B 4
| [ sbtets = g e aas = =5 [ p@e
0 0 0

e—B—I—T

K2 —1

B —
+ / 7(j) [k cosh(s(B — j)) + sinh(s(B — j)) dj
0

L et = )7 G) 4

2 _

Using the expressions for C7° and C5° given by (OA.16) and (OA.17), we get that

B(k—1)+7

-7

- | e e - e—B(H—l—l)-‘rT e T
i k—1 k41 + O k41 +I€—1
kK2—1 & B - .
Ne— T3l 44
o [ e
K2 —1e Bt B _ . . . .
G [ 70 becosh(n(B = )+ sinb(s(5 — )] 0

IL.7



converges to 0 as B — co. Therefore,

[T ueetas=2 [tz - )7 6) 4
0 0 (OA.21)

e e e~ KT e~ KT
CrP | — = —— |+ | —— — .
e [m-ﬁ-l m—l}—’— 2 [li+1 Ii—l:|

Plugging the expression of (OA.21) in (OA.20) yields

gr (1) = fi.(r) = C° B’ e — C5° B’ e "+ M /T sinh(k (1 — s))f'(s)ds
0

pop 2 .2 _q K
By / T o e By e e
- i B di — O _
- ) sinh(k(7 — 7)) f'(4) dj 2 b lk+1 k-1
By e e

5 O [m+l_n—1] = fil(7)-

So g5, = f1.- As f1(0) = gx(0) = 0, it follows that f = g. Uniqueness of the coefficients (up
to measure zero sets) is immediate by linearity, as different coefficients on a set of positive
measure yield a different joint distribution over ratings and signals.
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Part 111
Complements for Section 4

OA.5 Proof of Theorem 4.1 (and Th. 5.1 and B.8)

We prove Theorems 5.1 and B.8, which include as a special case Theorem 4.1. The
constants mq, mg, mag and x are defined in Section B.3.1 of Appendix B.

The first half of the proof derives a candidate optimal rating, obtained through first-order
necessary conditions using a variational argument. The second half, self contained, verifies
that the candidate rating just derived is optimal.

OA.5.1 Candidate Optimal Rating

We use the following shorthand notation:
K K
U(t) = Z/Bkuk(t)a V(t) = Zakuk(t),
k=1 k=1

U ::/ U(t)e "t dt, VO::/ V(t)e " dt.
0 0

We seek to maximize ¢/(A) (where A is the stationary equilibrium action of the worker)
among confidential information structures generated by rating processes with mean zero
and with linear filter u := {uy }¢, which in addition satisfy the normalization condition that
the rating has variance one.

Any such rating process Y can be written as

K

Y; = Z/ up(t — s) dSk 5.
=1 sst

We note that, by Ito’s isometry,
K o0
Varl|V;] = ZU’%/ ug(s)? ds
k=1 70

K K
+ZZ/ BrBrrug(t — i)u (t — j) Covl[b;, 0;] didy,
J<t Ji<t

k=1k'=1

and since 6 is a stationary Ornstein-Uhlenbeck process with mean-reversion rate 1 and scale
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7, we have Cov[f;, 0] = v2e~ =51 /2, so that

Var|Y;| = Zak/ ug(s ds+/ / “b=il4i aj.

Applying Lemma B.3, the problem of maximizing ¢(A) among rating processes that
satisfy the normalization condition thus reduces to choosing a linear filter u that maximizes

[/Ooo V(t)e " dt} [/OOO Ut)e™ dt] :
/ / —li= Zdzdengk/ ug(t)? dt = 1.

This optimization problem is a problem of calculus of variations with isoperimetric
constraint. Assume there exists a solution u* to this optimization problem, where u* is
twice differentiable, integrable, and square integrable.

Let

subject to

L(u, )\0) = F(u) + )\()G(u),

where I and G are defined as

Plu) = [ /O T Vet dt] [ /0 T Ut)et dt} ,
/‘/ UZm@+Z@/ wp(t

The function L defines an unconstrained maximization problem for every given Ag. It
corresponds to the Lagrangian of the constrained optimization problem up to an additive,
u-independent term, where the coefficient )\g is a Lagrangian multiplier. However, we do
not need to invoke the Theorem of Lagrange Multipliers and its extensions to isoperimetric
problems in the calculus of variations. Instead, we will look for a constant Ay that yields
a unique candidate of the unconstrained maximization problem that satisfies the Euler-
Lagrange first-order conditions, and, in addition, satisfies the original constraint. In the
remainder of this proof, we refer to the unconstrained optimization problem as the relazed
optimization problem, as opposed to the original (constrained) maximization problem.

Observe that we can write both F' and G as a double integral, namely,

:/‘/xwwma%ﬁ@%
0 0

I11.2
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while
0o [ee) ,y2 o K .
G(u) :/ / ?U(z’)U(j)e_'J_z‘ didj+ ) opup(j)’e”" | didj.
o Jo k=1
This enables the application of Proposition OA.1 in Part VI of this Online Appendix.
Assume there exists a A\ < 0 such that u = u* maximizes u ~ L(u, \}).!

Proposition OA.1 gives the first-order condition derived from the Euler-Lagrange equa-
tions: if \g = A\j and u = u*, then for all k£ and all ¢, we have L(t) = 0, where

uuwzau%f”+ﬁwm4+Am&%/ U(j)e 7' dj + 2Xo0fur(t) = 0,  (OA.22)
0

and where Uy, Vy, U and V' are defined as above as an implicit function of u.
We differentiate the above equation in the variable ¢t twice, and get, for all £ and all ¢:

0 .
%%ﬂf”+mwat2M%mww+mﬁm/ U(G)e "1 dj + 2X003u(t) = 0.
0
(OA.23)
The difference between (OA.22) and (OA.23) is
(1 — 2o Uoe ™" 4 20072 BrU (1) 4 2X 005 (ug(t) — uf(t)) = 0. (OA.24)

In particular, multiplying (OA.24) by Sk /0o% and summing over k, we get a linear differential
equation that U(t) must satisfy, namely,

(1- TQ)magUge_” + 2)\072m5U(t) +2X(U(t) = U"(t)) = 0,

where we recall that mg = >, 82/0%, mag = >, axBr/0s, and mq = Y, a2 /0.

The characteristic polynomial has roots /1 +v?mg = +. A particular solution is
Ce™ "t for some constant C'. We have assumed integrable functions uy, so in the general
solution we retain the two exponentials with negative rates, and get

U(t) = Cle_rt + Cge_ﬁt,

for some constants C7 and Cs.
For such U, uy satisfies the linear differential equation (OA.24), whose characteristic
polynomial has roots 1. A particular solution is a sum of scaled time exponentials e~"*

nsofar as we find a coefficient \§j that yields a unique candidate which is shown to solve the original
problem, we need not prove uniqueness of the coefficient. However, it is easily seen that A\ < 0 is a necessary
second-order condition. The optimum marginal cost, if it exists, is strictly positive, i.e., F(u*) > 0, since
the optimal solution does at least as well as transparency (giving all information included in all signals to
the market) and transparency induces a positive equilibrium effort by our assumption that mag > 0. This
implies Ay < 0, because F(u*) > 0 and G(u") = 1.
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and e **. As every uy, is bounded, we must consider the negative root of the characteristic
equation, and we get that

ug(t) = Dlyke_” + D27ke_"“t + Dgyke_t, (OA.25)

for some constants D 1, Da 1, D3 .

Determination of the Constants

We have established that the solution belongs to the family of functions that are sums
of scaled time exponentials. We now solve for the constant factors.
We plug in the general form of uy from (OA.25) in the expression for Ly, and get:

Ly =Lyge ™" + Lo e ™ + Ly pe ™",

where the coefficients Ly, Loy, L3 depend on the primitives of the model and the
constants D1 i, Do i, D3 . The condition that L = 0 implies that Ly = Lo = L3} = 0.
First, note that U(t) does not include a term of the form e, which implies that

K
> BiDsi = 0. (OA.26)
k=1
We also observe that
292\ X BiDa
L2,k = 2)\00’%D27k — il Oﬁk2z121 5 2, s
ke —1
so that Ly = 0 for all k implies
Dgyk = a@ (OAQ?)

27
O

for some multiplier a. Next, we use (OA.27) together with (OA.26) to show that

Br Br Y XoBr
_ . . . . . . 2
L3y = o ;:1 ;D1 + 1 ;:1 ;D3 ; + 1 § BiD1,; + 2Xo0}, D3 1,

r r—1 ¢
=1

av’*XNoBrms  afrmag
+ +
k—1 K+

)

and L3 = 0 for every k implies that D3, = 0 for all k. The equation L3 /B8y = 0 is linear
in A\g, and then simplifies to:

2 K 2 K

Y ay“m 1 am

w(Zrgaen ) g penur it oam
=1 i=1
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Next, we use (OA.27) together with (OA.26) to show that

acEmg n ((7' — 1oy, — 27 /\Oﬁk ZIB D
11,1

Ly = 2X\g02D
1,k 00 D1k + 1 2

and, since Lj j, = 0 must hold for every k, we get, since \g # 0,

2 K
2 v B o935 aogmg
Dij = - N BiDy — st OA.29
TSk (7"2 "1 20+ 2)\0r> £ iDL = 5 N T o ( )

We multiply (OA.29) by Bi/0?, and sum over k to get
K
[(k+1) ((r = 1) (mag + 2Xo(r + 1)) — 27*Aomg) ZﬂiDLi = —a (r* — 1) magmgp.
i=1
As by assumption r # 1, the right-hand side is nonzero, which implies
((r = 1) (map + 2X0(r + 1)) — 2v*Aomg) # 0, (OA.30)
and thus

T —a(r? = 1) magmyg
ZﬁlDl’l (K + 1) ((r—1) (map + 2X0(r + 1)) — 292Xomg)”

(OA.31)
Similarly, if we multiply (OA.29) by oy /o7 and sum over k, we get

K 2 K
Yimag Mgy amaemg
i=1 B (7"2 —1 2+ 2Aor> Z;ﬁ M 2600 + 230

B amg (ma (’yzmﬁ —r? 4 1) — 72m(215>
(k1) ((r = 1) (map + 2X0(r + 1)) — 292 Agmg)

Putting together (OA.28), (OA.31) and (OA.5.1) yield a quadratic equation in g of the
form

AN+ BM +C =0, (0A.32)

with coefficients given by, after simplifications using in particular that £? = 1 +y?mg,

A= m’Bl—H
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Maj (72mg (—2&2 + 72+ 1) + (FCQ — 1) (1”2 — 1))

oo (= 1) (mg — 12+ 1)
2
= _?maﬁa
mamg(k+ 1) (r* — &%) + m25 (V*ma(k+ 1) = 2(k + 1) (r — 1)r)
B 4 < n )
B (k — D)ma(k +1)% — op(r+2r—1)
N 474r(/£+r) ’

As k > 1, we immediately have A < 0. Also, C has the sign of

(k—D)mg(r+71)2— miﬁ(ka — 14272 = (k= Dma(k+7)% - mig(/@ -1+ 2r)m§1(/@2 -1).

By the Cauchy-Schwarz inequality, momg > mi g1 SO

(k — Dmg(k +71)% — miﬁ(li —1+2r)my Yk?2 = 1) > mgy {(k=1)(r+ r)? — (k— 14 2r)(k* - 1)}
=ma(k—1)(1—=7)2>0.

Hence C' is positive, A-C' is negative, and Equation (OA.32) has two roots, one positive and
one negative. Besides, as mqyg > 0 by assumption, B < 0. As we have already established
that A9 must be negative, we conclude that

—B+VB?—4AC

Ao = 24

Pulling out the term ), 5;D1; in (OA.29) using (OA.31), we express D j, as a solution of
the linear equation. It follows that

mg [’Y maﬁg — (K —r*)%

(14 k) [2Xo(K2 —1r2) 4+ (1 — r)mag]

Dip=a

where the denominator is nonzero by (OA.30). We can simplify those expressions further.
We define
A= (k= DVr(L+1r)mag + (5 — r)VA,

where
A = (r + k)*(mamg — miﬁ) +(1+ r)2m35.

Then, D, = a\/rci /A with

o Br
e = (k? — r2)m5—2 +(1- KQ)mag—Q.
Ok Ok



Note that, as a rating process induces the same effort level up to a scaling of the rating
process, any multiplier a yields the same equilibrium action. Thus, a candidate optimal
rating process for the original optimization problem is given by the linear filter
uk(t) = Ckﬁe_rt + %G_Ht, Vk.
A o,
If
(5= 1) (5 = Dmag(r + D7+ VA(r = 1))

2V Amg(k — 1)

then the conditions of Proposition B.1 are satisfied, so that the associated rating process is
a market belief for a confidential information structure.

a = 5

OA.5.2 Verification of Optimality

In this (sub)section, we establish that the candidate rating obtained above is indeed
optimal. We consider an auxiliary principal-agent setting. We refer to the principal-agent
setting as the auxiliary setting, and to the main setting detailed in the main text as the
original setting.

Auxiliary Setting. In the auxiliary setting, there is a principal (a female) and an agent
(a male). Time ¢ > 0 is continuous and the horizon infinite. The agent is as the worker in
the original model. He exerts private effort (his action), has an exogenous random ability,
produces output X and generates signals S; = X, S9,..., Sk over time. The various laws
of motion, for the agent’s ability, output, signals, are as in those of the worker in the
original setting. The filtration R captures all information of the signal processes, as defined
in Section 3 and Appendix A. The agent’s information at time ¢ is also R;. The agent’s
strategy, which specifies his private action at every moment as a function of his information,
continues to be a bounded R-adapted process A.

However, the agent’s payoff is not the same as the worker’s payoff of the original model.
In the auxiliary setting, the agent is not paid by a market, but by a principal. Informally,
over the interval [t, ¢ + dt), the principal transfers the amount Y; d¢ to the agent. Here, Y is
a stochastic process interpreted as a transfer rate (payments may be negative). The agent
is risk-neutral; he discounts future payoffs at rate » > 0, and his instantaneous cost of effort
is ¢(+), as in the original setting. The agent’s realized discounted payoff is

/00 e (Y; — c(Ay)) dt.
0

Given Y, the agent chooses a strategy A that maximizes his expected discounted payoff,

IIL.7



namely,

o0
A € argmax E [/ et (Yt - c(ﬁﬂ) dt ‘ Rg] , (OA.33)
A 0

where the expectation is under the law of motion defined by strategy A A strategy that
satisfies (OA.33) is called a best response to the transfer process Y.

In the auxiliary setting, the principal combines features of both the market and the
rater in the original setting. As the market, the principal sets the transfer to the agent, and
as the rater, she observes all the signals the agent generates over time, i.e., she knows R;
at time t. The principal recommends a strategy to the agent, denoted A*—the analogue
of the market conjecture in the original setting. She is risk-neutral and has discount rate

p € (0,7). Her payoff is
/ €_pth dt.
0

For now, there is no need to specify the instantaneous payoff process H. We specialize H
below as we discuss the principal’s optimization program.

A contract for the principal is a pair (A*,Y). The contract is incentive compatible if A*
is a best response to Y. For the most part, we focus on stationary linear contracts. These
are contracts whose transfer processes Y are affine in the past signal increments, and are
stationary: that is, there exist ug, k = 1,..., K, such that, up to an additive constant,

K

Y: :Z/ ug(t — s) dSy s
k=175t

The principal wants to maximize her own payoff over all contracts that are incentive
compatible. This implies that there are two optimal control problems, one embedded into
the other. First, we solve the agent’s problem, and then turn to the principal’s problem.

The Agent’s Problem

We first state conditions of incentive compatibility. The proof follows the same arguments
as in Lemma B.3.

Lemma OA.1 Let (A,Y) be a stationary linear contract. The contract is incentive com-

patible if, and only if,
K 0o
) =D o [ ultear
k=1 70

As is common in principal-agent problems, to solve the principal’s problem using a dynamic
programming approach, we express incentive compatibility in terms of the evolution of the
agent’s continuation value, or equivalently, the agent’s continuation transfer. In the sequel,
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as in the main body of the paper, v, = E[f; | R;] is the agent’s best current estimate about
his ability.

Lemma OA.2 Let (A,Y) be a stationary linear contract. If the contract is incentive
compatible, then there exists constants C1,...,Cg, such that the agent’s continuation
transfer process J defined by

J,=E [ / e Y, ds
s>t

(where the expectation is taken with respect to the law induced by strategy A) satisfies the
SDE

Rt:| 9

K 2
th = (TJt — Y’t) dt + Z <§5W§Mf_2 + Ck) [dSM — (akAt + Bkl/t) dt] s
k=1

and the two transversality conditions

lim E[e_pTJt+T | Rt] = 0, and

T—+00

lim E[e ”"J2, | R =0,

T—>+00

where §g == Zle BrCk. In addition, the equilibrium action is defined by ¢'(Ay) = &, =
Zszl Oéka.

Note that transversality is with respect to the principal’s discount rate, not the agent’s.
Proof. Consider a stationary linear contract (A,Y), where

K

Y, = Z/ up(t — s) [dSk,s — arAsds].
k=175t

Let Jr:=E [ft>T e_r(t_T)Y} de ‘ RT} . We compute

K
/ DY de =Y / / e T D uy(t — 5) [dSks — Asds] dt
t>T =1 /2T Js<T

K
+ Z/ / e_’"(t_T)uk(t —s5)dt [dSy s — Asds].
k=1 s>T Jt>s

Note that, for t > T, E[f; | Ry, 07] = E[6; | 07] = e=“=T)07, so using the law of iterated
expectations, E[0; | Rr] = E[E[f; | Rr,07] | Rr] = Ele= 107 | Ry] = e~ Dy, Hence,
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we can compute Jr as

K
=30 [ et - s asi - Aasar
>T <T
K
][ g
k=1 SZT tZS
_ / / eyt — 8) [ASps — Z 5 / () dr.
t>T Js<T >

Now, let us define the constants C1,...,Ck as

Cy = / e "Tug(7) dr.
7>0

Then

K
dJp = 15 dvp — Y dT + ch [dSk 1 — g Ar AT + rJr dT — 7§BVT T
k=1

K
_ & r
= T4 dvr + (TJT YT) dT + ; Ch dSkyT oA + T Tﬂk”t Y

After simplification, and using that dvy = —kvy dt + &—QR Zle f—’g [dSk — apAs dt], we get
k

K 2
_ Z g Bk
th = (’I“Jt — }/t) dt + 2 (55(1 n /{)(1 n ’l“) — + Ck) [dSk,t — (akAt + ﬂkljt) dt] .

That ¢(A;) = &, follows from Lemma OA.1. m

Lemma OA.3 Let (A,Y) be a stationary linear contract. Suppose J and 51, cee 61( are
R-adapted processes, and that J satisfies the SDE

K

: gl Br
dJ, = —Y,)dt —_ d — (oA dt
Jy = (rJi = Y3) +; <£ﬁ’t(1—|—ﬁ)(l+r) +th>[ Skt — (apAg + Prrg) dt],
(OA.34)
and the two transversality conditions
TEI_EOOE[@ PTJivr | Re) =0, and (OA.35)
pT

TEIEOOE[e Jh, | R = (OA.36)
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where £g =) ;. BrCk.
Then, Jy is the agent’s continuation transfer E [fs>t e Ty, ds ‘ Rt}, the contract is

incentive compatible, and the agent’s equilibrium action satisfies ¢/(Ay) = > axCh.

Proof. We fix a stationary linear contract (A,Y"). Let J and 61, ce Ck be R-adapted
processes such that J satisfies (OA.34), subject to (OA.35) and (OA.36).
Integrating J yields

Jt — eirTJt_H— =

t+1
/ e—r(s—t)
t

and using that J is R-adapted, together with the law of iterated expectations, we get

K /. 2
o Z <§ﬁ,t(1+/;;(1_mﬁk + th) [dSk,t — (arAs + Brir) dt]] ;
k=1

Jt —E [G_TTJt+7- ‘ Rt]

t+1
—E [ / e Ty, ‘ Rt}
t

K

t+7 R 2
+ ZE |:/t e*T(sft) <§5,t(6k —+ Ck t> [dSkt — (akAt + ﬁkVt dt ‘ Rt:|

1+ w)(1+7)
t+1

-e|[ e r]
t

Taking the limit as 7 — 400 and applying the transversality condition (OA.35), we get
J =V, where V is the agent’s continuation transfer, namely,

Vi=E [/ e "5y, Rt] .
t

As in the proof of Lemma OA.2, for any stationary linear contract—incentive compatible
or not—and an arbitrary strategy A of the agent, we have that

2

K 2
Y Bk
dV; = [rV; = Yi] dt _ Cr | [dSk: — A dt
= Vi - ¥ +;(§ﬁ(1+ﬂ)(l+r) 0L ) S = (e + o) ]
with Cy == [ S0 € (t)dr. That J = V implies C = Cy, and thus, by Lemma OA.1,

the contract is 1ncent1ve compatible.
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The Principal’s Problem

The problem for the principal is to choose a contract (A4,Y") such that two conditions
are satisfied:

1. The process Y maximizes

E [/ e P Hydt ' R(]:| .
0

2. The contract is incentive compatible.

In the remainder of this proof, as instantaneous payoff for the principal, we use
Hy = (Ay) — oY (Vi — 1), (OA.37)

where
VA
V(s =1)(r+K)

and A = (r + k) (mamg — miﬁ) +(1+ 7")2m36, as defined in Section B.3.1.

¢ = > 0, (OA.38)

Remarks on the choice of the principal’s payoff. In the original setting, the rater
seeks to maximize the agent’s discounted output. In a stationary setting, it is equivalent
to maximizing the agent’s discounted marginal cost. The marginal cost is the first term
in the right-hand side of (OA.37). However, in the original setting, the agent’s incentives
are driven by the market’s belief process. By Proposition B.1, the market belief process

satisfies
Cov|ug, ]

e =E0 | ] =E[v | ] = fht,

Var (]

using the law of iterated expectations and the projection formula for jointly normal random
variables. Thus Cov|u, ;] = Var[u]. To make the principal’s payoff in the auxiliary
setting and the rater’s objective of the original setting comparable, we include a penalty
term ¢ (v — 1) in the principal’s payoff. Note that E [Y; (v, — Y;)] = Cov[Y:, 1] — Var[Yy].
As a Lagrangian multiplier, the parameter ¢ captures the tradeoff between the maximization
of the agent’s marginal cost and the penalty term, so as to constrain the transfer to be
close to a market belief. Its specific value (given in (OA.38)) is picked using the candidate
optimal rating derived in the first half of this proof.

The principal’s problem is an optimal control problem with two natural state variables:
the agent’s estimate of his ability, v, and the agent’s continuation transfer J. The state v
appears explicitly in the principal’s payoff. Recall that v can be expressed in closed form,
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namely,

=

ﬁk/ —k(t—s)
E M 1dSE s — apAs d
1+K/ <t [ k & S]

Thus, for ¢ > 0, the state variable v is determined by its initial value,

72 B
gy = / €desk7 ,
1+:‘€;le <0 #

and the equation of evolution of v, namely,

-2
dyy = —kyp dt —i—

- B
Z 72 dSk’s — akAs dS] .
k: O

The other state J does not appear explicitly in the principal’s payoff, but must be controlled
to ensure that the transversality conditions are satisfied—by Lemmas OA.2 and OA.3, these
transversality conditions are necessary and sufficient to ensure that the contract is incentive

compatible.

The principal’s problem can then be restated as follows: the principal seeks to find a
stationary linear contract (A,Y), along with processes Cy, k = 1,..., K, so as to maximize,
for all t,

B [ | o o - w)ds

g

subject to:

1. Incentive compatibility: ¢/(A;) = é\a, where we recall that Ea => ak@k.

2. The evolution of the agent’s belief v, given by

dyy = —kyy dt + —_ Z L [dSk.s — arAsds].
o

3. The evolution of the agent’s continuation transfer J, given by

th:(rJt—n)dt+zK:<§ _r B
=\ 1+ k) (14 7) o

where we recall that 25 =>4 Bkak.
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4. The transversality conditions, given by

lim Ele " Jir | Re] =0, and

T—+00

lim Ele " J2, | R =

T—+00
To solve the principal’s problem, we use dynamic programming. The principal maximizes

E[/mpe P (g, — GYi(Yi— 11)) ds R]
t

for every t, subject to the evolution of the state variables v and J, and the transversality
conditions on J. Without the restriction to stationary linear transfer processes, the dynamic
programming problem is standard. We solve the principal’s problem without imposing that
restriction, and verify ex post that the optimal transfer in this relaxed problem is indeed
stationary linear.

Assume the principal’s value function V is C2(R?), as a function of the two states J and v.
By standard arguments, an application of It6’s Lemma yields the Hamilton-Jacobi-Bellman
(HJB) equation for V', namely

~ 1
pV = sup p&a —poyly —v)+ (rJ —y)Vs — iV, Vo
Y,C1,5---,CK
A.
L (rtr) )72E5 v +Z< +JC>2V (OA.39)
—(l—i-H) vJ 1+ ) kCk JJ>s

where to shorten notation we have used the subscript notation for the (partial) derivatives
of V, and have abused notation by using &, and &g to denote ), axcy and ), Brck,
respectively.

We conjecture a quadratic value function V' of the form

V(J,v) = ag + arJ + agv + a3 Jv + agJ? + asv’ (OA.40)

Using the general form of the conjectured value function (OA.40), we can solve for
Y, C1,- .., Cx using the first-order condition. We can then plug these variables expressed as
a function of the coefficients a;’s back into (OA.39), which allows to uniquely identify the
coefficients. We obtain

o Mapr DA R)  mag(x—1) | (x—1)% ma
" dmp(n )22 —p)¢ | 2ms(k+r)  2mp(2+p) | A(2r— p)o
_ (2r—p)pg p(L—r+p)*¢

a1 =0,a0 =0,a3 = yay = —(2r — p)po, and as =

1+7 4(14+7)2(2+p)
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It is readily verified that the second-order condition is equivalent to a5 < 0, and so it is
satisfied for all p < r. After simplification, we obtain the following expressions for y and cg:

1—r+p
y(J,v) = 2r —p)J + ml/, and (OA.41)
) Buln = D) (sl 20 0) = (4 R = p)0)
T 20%(2r —p)¢ 20%mg(r + £)*(2r — p)o '

Thus, we obtain that the optimal processes ék are constant, and we get the optimal
transfer at time ¢, Y;, as a linear function of the state variables Ji, v;:

Qﬁ;pp] . [ﬂ . (OA.42)

Y, =
2(1+r) v

We insert the optimal control Y; back into the equations that determine the evolution of
the state variables. Doing so yields a linear two-dimensional stochastic differential equation,

namely
2
o gl &
K |&g, NS C’
d M - M [Jt] T S A ) [ASps — apAr di]
V¢ V¢ 1 k
mg Ui
where
Ly gﬁ+r 1—r+p
M= |""TF 7T T o1t
0 —K

The matrix M has two eigenvalues, —(r — p) and —k, which are generically distinct, and
negative for p < r. We can write

Vvt

K
[Jt] =2 / (fke‘(r“’)(t_s) + gke_”(t_s)) Sk — axAedt],
k=175t

where f, and gy, are two-dimensional vectors that can be expressed in closed form as:

mj(r-+#) (r—k—p) 4 map(h=D(L4ktp) g
§, = | TR0 of T TG rR @26 of | | and
0
_ (k—1)(map(147)2=(r+k)(2r—p)(r—k—p)¢) Bi
_ 2mg (1) (rFR) @r—p) —F—)® o7
8k ’ £=1 Bk §
L mg oy
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Moreover, when we plug the expressions of the state variables into (OA.41), we get a
stationary linear transfer process

Y; = Z /<t up(t — s) [dSk,s — apAsds],
PR

with linear filter
ug(t) = erf(rfp)T + Gre 7,

where

_ mp(r+R)r—rk—p) ax  mag(s = DA +rK+p) B

2mg(r+K)(r—k—p)poi  2mg(r+K)(r—k—plpoi’
G o (5= D) (Map(L7) & (5 + 1) (5 =1+ p)) B
2mp(r + K)(k — 1+ p)o op

Fy: and

The equilibrium action for the agent is stationary, and given by

, A+ mag(k —1)(r+K)(2r — p)é
c(A) = 2mp(r + K)2(2r — p)o '

Thus, the contract (A,Y) just defined is an optimal stationary linear contract for the

principal.
Note that, as p — 0,

¢(A0) T (2mas + /BT

4(k 4+ r)mg

and {uy }r converges to the linear filter associated with the market belief of the conjectured
optimal rating, derived in the first half of this proof.

Back to the Original Model

Now, we connect the auxiliary model and the original model, and conclude the verification.
We prove by contradiction that the candidate rating obtained in the first half of this proof
is indeed optimal. We continue to consider the auxiliary model. Let (A*,Y™*) be the
incentive-compatible contract defined by

(A7) = 1 (2mag + VBT

4(k+r)mg
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and

. (k—1) ((Ii—l)mag(r+1)\/77+ \/Z(,i_r)) K ) *
o 2\/&7@3(/@ —r) ' ; /sgt uj(t — s) [dSk,s — ap AL ds).

The market belief Y,* is defined as the conjectured optimal rating of the original setting,
while A* is the corresponding equilibrium action. Consider an information structure M ,
generated by some rating process, that induces a stationary action A LetY = E[0; | M\t]
Note that (21\, f/) is a well-defined incentive-compatible stationary linear contract. We
show that ¢/(4*) > ¢/(A). Let (A®),Y(®)) be the optimal incentive-compatible stationary
linear contract defined above, as a function of the principal’s discount rate p. Let V() be
the corresponding principal’s expected payoff. Note that, for every confidential exclusive
information structure M generated by a rating process, the equilibrium market belief of the
original setting, s = E[0; | M|, satisfies Cov[u, 1] = Var[u], and thus the principal’s
expected payoff for EorltractA(A*,Y*) is V* := /(A*)/p, while the principal’s expected
payoff for contract (A,Y) is V =/ (A)/p.

Then, for every p € (0,7), the inequalities pV (P > p‘7 = (fAl) must hold. However, as
p— 0, (AP) = ¢(A*), and the linear filter of Y(?) converges pointwise to the linear filter
of Y*. Thus, Cov[Y¥) 14] — Var[Y(®)] — 0, which in turn implies that pV'(#) — ¢/(A4*).
Hence, ¢/(A*) > ¢/(A).

OA.6 Proof of Corollary 4.2

In this section, we prove the following (which is more general than Corollary 4.2, because
it applies to the general, multisignal version of the model, and it includes the case of public
ratings):

Proposition OA.1 Suppose the rater has access to a source of independent noise. Let
M be either confidential (resp. public), in the sense described in Section B, and let A be
the (stationary) effort level it induces. For all A’ € [0, A], there exists a confidential (resp.
public) information structure M’ that induces effort level A’.

To show that any action in the range [0, A] can be attained in the equilibrium of an
alternative confidential /public information structure, we modify the rating process that
achieves A to depress incentives to any desired extent. To do so, we use a source of
independent noise. In addition to the K signals described in the general model of Section 5,
we include one additional signal, indexed by K + 1, which is entirely uninformative about
both the worker’s action and the worker’s ability. Let us assume Sk is a two-sided
standard Brownian motion. Consider the two-sided process

b= [ e asi..
s<t
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From Lemma B.3, if Y has linear filter {ug}x, the equilibrium action A in both the public
and confidential cases is the solution to

Cov|[Yy, 04
/ Rl SN2 ) —TrT
d(A) = Var[Y]] E ak/ ug (T dr.

Consider the alternative rating process Y = (1 —a)Y + a&, for some a € [0, 1], which is
a well-defined rating process for the information generated by the K + 1 signals. Consider
the information structure generated by the rating process )A/, and the induced equilibrium
action, A. We have

S K

-~ Cov|Y,, 0 o0

d(A) = 70"[ b ] ak/ up(T)e” " dr
Varl|Yy] = 0

(1 —a) Cov[Yy, 6] /OO o
(1 —a)?Var[Y;] + a? Var[¢ Zak 0 ur(r)e " dr

1—a ,
= A=)+ a2 Var] Varvy] -

By varying a over the interval [0, 1], ¢/(A) covers the entire interval [0, /(A)], and thus A
covers the interval [0, A]. Besides, as Y and & are independent, for 7 > 0,

Cov[V;,Yisr] = (1 — a)? Cov[Yy, Yigr] + a® Cov[&y, & ).

By It6’s isometry, we get

e 1
Cov[é&, &r] = / et ) ds = 56_7— = Var[{]e™”
0

Moreover, by Proposition B.9, if Y is proportional to the the belief associated with a public
information structure, Cov|[Y;, ;4] = Var[Y;Je 7. Thus,

Cov[ﬁ, ﬁ+7] =((1- a)2 Var[Y;] + a’ Var[])e ™ = Var[ﬁ]e_T

Invoking Proposition B.9 again, we find that Y is proportional to the market belief of a
public information structure. Hence, A also denotes the equilibrium action under that
structure. In conclusion, under both the public and confidential information structure, any
action in [0, A] can be induced in equilibrium.
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OA.7 Proof of Theorem 4.3

First, we provide the explicit specification of the functions appearing in the statement

of Theorem 4.3. Define
(r2 — 1)(112 -1)

W= Ry
and
o (K2 —1)(r + 1)ert ((/@ —1)2(r — 1)eTt + ert ( R(E) — (k2 —1) (1+ 7’)))
2l = 2V/R(t) (5 +1)?e*" — (k= 1)?) ’
as well as
R (s + 120 = et e (VRO — (52 = 1) (1+7)) )
es() = 44/ R(t) ((k? 4 1) sinh(xt) + 2k cosh(kt)) ’
where
R() = (k=12 ((1=r)%(r — k)22 ;r(l +1)%(r + K)?) (coth(kt) — 1)
(e 1% + 1)2(T2; 7)" (coth(st) + 1) + 4k (/<c2 — 1) (7“2 - 1) e "csch(kt)
(e 121 —r)2(k + )25 (coth(kt) — 1)
2r '

Then the optimal rating that is referred to in Theorem 4.3 is given by
use = cr(t)e 7 4 ep(t)e ) g (t)e Y.

Turning, to the proof, the rater designs a linear rating Y, where

t
Y;,‘:/ us,ths
0

T
/ Agds,
0

where A is the worker’s equilibrium effort strategy given the rating Y, and s — u; is twice
continuously differentiable. The smoothness assumption on the linear filter u is used to pin
down a unique candidate rating (up to scaling and shifting).

It is convenient to impose, without loss, that the rating Y is equal to the market belief,
up to an additive constant. Proposition B.1 (which is stated for the case of stationary linear

to maximize
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ratings to fit the main framework of this paper, but that remains valid for the nonstationary
case) remains valid: Y is equal to a market belief, up to an additive constant, if and only if
Var[Y;] = Cov[Y;, 0;]. Using It6’s Isometry, as in the proof of the baseline confidential case
explained in Section OA.5, we have that Var[Y;] = Cov[Y:, 6] is written

t N2 [t o N2t '
02/ u]%t dj + / / ui,tujyte_"_ﬂ didj = / uj’te_‘]_” dj.
0 2 Jo Jo 2 Jo

In the proof of Proposition 3.4 detailed in Section OA.3, we derived the equilibrium
action of the worker for any linear rating, stationary or not. Its adaptation to the finite
horizon case is immediate, and we get that

T
d(A5) = As = / ug e "% de.

S

Hence, the rater wants choose us; to maximize

T T T T ot
/ Agds = / / u&te_r(t_s) dtds = / / usﬂge_r(t_s) dsdt,
0 0o Js o Jo

subject to the constraint

t A2 [t gt o A2 [t '
02/ U?,t dj—|—2/ / uwuj’te*"*jldidj = 2/ uj7te*b*t| dj,
0 o Jo 0
for every t.

Observe that the objective is separable in £, so that the problem for the rater reduces
to maximizing, for every ¢,
t
/ us e ds,
0
by choosing us; such that
t A2t o A2t '
02/ u?t dj + / / Uj U e 1l qg dj = / u;j el dj. (OA.43)
o 7 2 JoJo 77 2 Jo 7

Fix some t. We consider the relaxed problem for the rater, which internalizes the
variance-covariance constraint in the objective: the rater seeks to maximize

t t N2t o N2 A
/ us e ds + Ao / u?t dj + A= / / Uj U te_‘l_ﬂ didj — \— / ujte_b_t‘ dj,
o o 7 2 JoJo 7 2 Jo 7

where )\ is the Lagrange multiplier.
To simplify notation, we momentarily abandon the subscript ¢ from the control variable,
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so that wus; is now written us. The first-order condition, that is, the Euler-Lagrange
necessary condition adapted to our setting by Proposition OA.1 of Part VI of this Online
Appendix, yields

t 2
e + 2\ ou, + /\72/ uje_b_s‘ dj — /\%e‘s—t =0, (OA.44)
0

and the Legendre second order condition is
A <0. (OA.45)

We differentiate twice (with respect to s), and get
t 4 A2
r2e” + 22 0%u!! — 20y ug + /\72/ uje =l dj — /\?e‘s*t =0. (OA.46)
0

Subtracting (OA.46) from (OA.44) yields the following ODE that us must satisfy:

(1 —72)e"™ + 2X0%us — 2Xa*u? + 2Mv*u, = 0.

s

Letting k = y/1 4+ 2 /02, the general solution of the above ODE is

2
1—r —As

us=C"e /\S+C’+e’“+me
It remains to identify the constants. To do so, we use the second-order condition (OA.45),
the first-order condition (OA.44), and the constraint (OA.43), where v2 = o?(k? — 1).
Fixing A, the first-order condition (OA.44) yields a linear system of two equations in C*
and O, which allows to express C™ and C'~ as a function of A\. Plugging the resulting
function ug into (OA.43), we obtain a quadratic equation in A, with only one positive root.
The details of these expressions are lengthy and omitted.

This yields a unique candidate for the optimal rating, whose general form is described in
the statement of Theorem 4.3. It is tedious but straightforward to verify that the coefficients
are those given above.
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Part IV
Complements for Section 5

OA.8 Proof of Theorem 5.2 (and Th. B.10)

We prove Theorems 5.2 and B.10. The constants mg, mg, mqes and k are defined in
Section B.3.1 of Appendix B.

The proof proceeds as in the proof of the baseline case of Section OA.5. The first half
of the proof derives a candidate optimal rating, and the second half is self-contained and
verifies that the candidate rating just derived is optimal.

OA.8.1 Candidate Optimal Rating

Recall the shorthand notation of Section OA.5 that will be used here as well:

K K
) = Zﬂkuk(t); V(t) = Zakuk(t)
k=1 k=1
Up = /OO Ut)e "t dt, Vo = /OO V(t)e "t dt.
0 0

We want to maximize ¢/(A), with A the stationary equilibrium action of the agent,
among all public information structures generated by some rating process Y that satisfies
the variance normalization Var[Y;] = 1 and that is proportional to the market belief. Such
rating processes can be described by their linear filter u := {uy}x, and are written as

K

Y, = Z/ up(t — ) [dSk,s — apAsds].
k=1 /st

As in Section OA.5, we note that, by It0’s isometry, for 7 > 0,

[e.e]

K
Cov|Y, Yiir] = Zcr,% up(s)uk(s + 7)ds
k=1 0

K K
+ Z Z /i< /<t+7' BB uk(t — i)up (t + 7 — j) Covib;, 0;] dj di.

k=1k'=1
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Hence, as Cov[0;,0;] = 726_|i_j‘/2, after a change of variables in the last term, we get

K o0
Cov|Y,, Yiir] = ZO’%/ ug(s)uk(s + 1) ds+/ / e lit+T—il di dj.
k=1 0

By Proposition B.9, the rating process Y is proportional to the belief of a public
information structure if, and only if, Cov[Y;, Y ,] = €77 for every 7 > 0.

Using the expression for Cov[Y;, Yy .| just obtained, and applying Lemma B.3, our
optimization problem is thus that of maximizing

722 [/OOO U(t)e™ dt] [/OOO V(t)e™ dt] ;

subject to the continuum of constraints

Zak/ up () ug(j + 1) dy—i—/ / “tr=ilgidj = e,

for every 7 > 0.

The continuum of constraints makes it difficult to solve this optimization problem
directly by forming the Lagrangian, as we have done for the proof of confidential case.
Instead, we solve a relaxed optimization problem with a single constraint: we maximize

F(u), defined as
Flu) = [ /O T U@et dt} { /0 T Vet dt} ,

(as before, the original objective without the constant factor 42/2), subject to G(u) =
where

147>

G(u) = g(u,0) + (1 —r) / e g(u,7) dr,
0
with
K (3]
Zai/ ug(Hur(j +7) d]+/ / e ltm=il i dj.
=1

Assume there exists a solution u* to this optimization problem, where u* is twice differ-
entiable, integrable, and square integrable. As will be shown, the solution of this relaxed
constrained problem satisfies the original continuum of constraints.

As in the confidential setting, we work with an unconstrained problem that internalizes
the above constraint. Thus, we relax the problem a second time, and we let

L(u, )\0) = F(u) + AoG(u)
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be the Lagrangian, from which we remove the additive terms that do not depend on
u. Assume there exists some \§ < 0 such that u* maximizes u — L(u, \}).> As in the
confidential case, we apply Proposition OA.1 to get first-order conditions, namely: if A\g = A
and u = u*, then for all k =1,..., K and all ¢, Li(t) = 0, with

Li(t) = Fi(t) + oGr(1),

Fy(t) = arUpe™™ + B Ve,
and

Gut) = 2tun(t) +%, | UG)e b4

+(1- 7‘)0,3 /000 e " ug(t +7) + ug(t — 7)) dr

/ e—”/ U(j)e Pt djdr
0 0

2 00 0o .
+(1- r)ry fk / e”/ Ui)e 7= didr.
0 0

Throughout the proof, any function A defined on the nonnegative real line is extended
to the entire real line with the convention that these functions assign value zero to any
negative input. By convention, the derivative of h at 0 is defined to be the right-derivative
of h at 0, which is well-defined for h twice differentiable. Let some function h: Ry — R
be twice differentiable and such that h, h’, h” are all integrable. Throughout the proof, to
compute derivatives of integral functions, we use the following arguments.

First, if H(t) = [;° h(i)e 1" 7= di for some 7 > 0, then

+(1—=7) 722ﬁk

t+1 ) o7} )
H(t) = / h(i)e 7D dj + / h(i)e! Tt ds,
0 t+1

so that
H"(t) = H(t) — 2h(t + 7).

Similarly, if instead H(t) = [;° h(j)e P+t dj then if t > T,

t—1 ) [e¢) )
)= [ h@e g+ [ nGge it aj
0

t—1

and for every t,
H"(t) = H(t) — 2h(t — 7).

2As in the confidential setting, it is easily seen that \j < 0 is a necessary second-order condition.
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Finally, if H(t) = [;~ e [h(t +7) + h(t — 7)] d7, then

H'(t) = e ""h(0) + /Ooo e TN (t+T)+h(t—7)]dr,

and
H"(t) = —re " h(0) + e "1 (0) + / e TN (t+7)+ Rt —7)]dr.
0

We can now compute py, == Lj, — L} as

pr(t) = Li(t) — Li(t) = axUp(1 — %)™
+ 2001 [uk (t) — uf(t)] + 2007 BeU ()

+ Mol - r)o? /OOO gt +7) + up(t — 7)) dr
(1 - r)o? /OOO eIt + 7) + ul(t — 7)) dr
— Mo(1 = 7)o} [—re " ur(0) + up(0)e "]

+ (1= 1728 /OOO U — 1) dr

+ Xo(1 —7)y2Bs /OOo e "TU(t + 1) dr.

Next, we let

Jp(t) = /000 e " [uk(t + 1) + up(t — 7)) dr, and
K
J(t) = Bedr(D).

We observe that J; = —2ruy, + r?Jy. Plugging Ji, in the expression for py:
pr(t) = aplUp(1 — r2)e™" + 2)\go} [ug(t) — ui(t)] + 20072 BrU ()
+ 2rXo(1 — r)oug(t) + Xo(1 — 7)(1 — 2o Jp(t) + Xo(1 — )y BrJ (1).
After differentiation, we get

pL(t) = r2aU0(1 — 7"2)67” + 2)\00,% [u’k'(t) — u%”(t)] + 2)\0725U”(t)
+2rxo(1 — r)a;%u’k'(t) + X1 —7r)(1 - 7"2)0,% [—2ruk(t) + Tka(t)]
+ Mo(1 —7)72Bs [—27‘U(t) + T‘QJ(t)] .
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Finally, we let gz :== p}, — r*py,. We have
ar(t) = 2Xg03 [ug(t) — ug" ()] — r22\g0% [ug(t) — ug(t)]
+ 20072 B U (t) — 2r° Moy BiU (¢)
+2rXo(1 — r)atul(t) — 2r°\o(1 — r)oiug(t)
—2r\o(1 —7)(1 — r)oug(t)
—2r (1 = m)V2BU(t).

We must have gi(t) = 0 for all £ and all ¢. In particular, and since Ay # 0,

hence
U"—U"" —r*(U-U")+v*mgU" —r*y*mpU+r(1—r)U" —r(1—r)U—r(1—r)y*mpU = 0.

The characteristic polynomial associated with this homogeneous linear differential equation
has roots ++/1 +v?mg = +x and +,/r. As we have assumed that the solution to the
optimization problem is admissible, it follows that U must be bounded, and we discard the
positive roots. Thus, U must have the form

U(t) = Cre VT 4 Che™™, (OA.47)
for some constants C7 and Cs.

Next, pick an arbitrary pair (¢,7) with ¢ # j, and define (;;(t) == Biajzuj (t) — Bjotu;(t).
That (8iq;(t) — Bjqi(t))/(2X0) = 0 yields, after simplification, the following differential
equation for (;;:

Gy = G = Gy = G+ (1 =) (¢ — Gg) = 0.

The characteristic polynomial associated with this homogeneous linear differential equation
has roots £1 and £/7. As (;; must be bounded, we get that (;; has the form

Cij(t) = Che™ VTt 4 Che™t, (OA.48)

for some constants C] and C5.
Putting together (OA.47) and (OA.48), we get that

ug(t) = DLke_‘/;t + Dzyke_”t + Dg,ke_t, (OA.49)

for some constants D, Do, D3 .
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Determination of the Constants

We have established that the solution belongs to a family of functions that are sums
of some given scaled time exponentials. We now solve for the constant factors Dy, Do,
D3y, k> 1.

We first note that, since the term e~ vanishes in Equation (OA.47) that gives the
general form of the function U, the equality

K
> D3y =0 (OA.50)

obtains.
Using (OA.50), we plug (OA.49) in the equation for Ly(t) and get that

Li(t) = Lige ™" + Loge ™ + Ly pe ",

where Ly, Lo and Lsj, are scalar factors that will be expressed as a function of the
primitives of the model and the constants Dy i, D2 1, D3 . Note that the exponential e‘ﬁt,
which appears in the general form of uy(t) given in (OA.49), vanishes after simplification,
while instead an exponential e appears, which is not present in uy(t).
We observe that
2 2 K
29° Ao Bk (7’ K ) Zﬁ'Dz,i

Lgk QJk/\o(T’ )
(k=1 (k+1)(k—7r)Kk+T) ‘

’ (r—r)(k+r)

2002 (r — k%) D 2\ —
_ 007 (1 — K?) 2k 0Bk (k* =) Z/Bz .
(r—r)(k+7) mg(r —k)(k +1)

Doy +
—1

using that v? = (k2 — 1)/mg. That Loy = 0 for all k implies
Br

=
O

Doy =a (OA.51)

for some constant a. It can be seen that if a = 0, then Dy, = Dy = D3} = 0 for all
k, in which case u; = 0 and the variance normalization constraint is violated. Hence, in
the remainder of the proof, we assume a # 0. (As it turns out, as ratings yield the same
market belief up to a scalar, the precise value of a is irrelevant, as long as it is nonzero.) In

particular,
K

E ar Do = amqg,
k=1
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and
K
Z BrDa . = amg.
k=1

Using (OA.50), (OA.51), and 7% = (k? — 1)/mg, we get

(K =1) b s o B o N
L3,lc_ (\/77—1)(7"—1—1) B;Bl 1,1+W;ale,z

5]€ 2)\00']% aﬁkmaﬁ a(li + 1))\0ﬁ]€
i D3 ; D .
Zal 3Z+r+1 3+ K+ * r+1

(OA.52)

As L3y, = 0 for all k, we can multiply (OA.52) by S /0%, sum over k, and use (OA.50) to
get that D3, = 0. In addition, after plugging D3 j, = 0, the term L3, simplifies to

(=% 1) Aof Z@Du+

K
Bk o aBkmag alk+1)AoBk
V= T0 s 7 ;:1: a; D1+ + — 0, (OA.53)

K4+ r+1

which we will use to determine Aq.
Finally, given Dy ) = afy/oi and D3y = 0, and using that 7> = (k* — 1)/mg, the
remaining constant L j simplifies to

_ Qg (K2 = 1) Mo K LWt}
b <ﬁ+1 Gy ﬁ(rﬂ)mﬁ) 2 AP T

aagmg  aXoBi(k + 1)
k+1 r+1 '

As Ly, = 0 must hold for every k, we multiply (OA.54) by B¢/0%, sum over k, and we get
an equation that the term ), 3;D;; must satisfy:

( =t - (H_J)Mmﬂ )iiﬁDu+AMV?+D§i@Du
i=1 =1

Vr+1l  (Vr=1)r(r+1)mg v
amagmg  aomg(k + 1) _0. (OA5)
k+1 r+1 ' '
As myg > 0 and mg > 0,
amasmpg — aromg(k + 1) 40 (OA.56)

k+1 r+1
which implies that the factor of ), 5;D1; is nonzero. Similarly, if we multiply (OA.54) by
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ay/ a,% and sum over k, we get an equation that the term ). a;Dq; must satisfy:

Vi1 G- DV T D v
amamg  aXomeg(k+1)

k+1 r+1

Now we can solve for ) . o;Di1; and Y, ;D1 4, using (OA.55) and (OA.57). Plugging in
the solutions in (OA.53), we get a rational expression in )y, whose denominator is

- (52 = 1) Aomag ) LD
— BiD1; + ———F——= o; Dy
( 25D 2 oDy

—0. (OA57)

(k+1)(r+1)2 (Vr=1)vr (Vr+ 1)2 mag(K+r)+(r+1) Ao (r+1) (Vr + 1)3 (r—k)(k+7)2,
and whose numerator is
—a(r+1)* (Vr — k) (mamg(k +1r)* — (k + )m24(k + 2r — 1))

+4da(k + 1) Ao(r + 1)Vr (Vi + 1) map (Vr — k) (k+71)
+a(k+ 122 (Vr + 1)4 (Vr — k) (k+ 7).

We observe that the numerator, which must equal zero, yields a quadratic equation in Ag,

a(vr—r) (AN;+ B+ C) =0, (OA.58)
where:
A=(r+12(r+0)? (Vr+1)",
B=4(k+ 1)(k +7) (V7 + 1) Vr(r + )mag,

C=—(r+1)> (mamg(n+r) (n+1)m§5(n+2r— 1)),
—(r+1)*((k+7)? (mamg — miﬁ) +(1- r)QmiB) .
Next, we have that A > 0, and also that C' < 0, which owes to the Cauchy-Schwarz

inequality mqomg > miﬁ and to k > 1. Hence, there are two real roots of (OA.58), one
negative, and one positive. As B > 0 and we have established that \g < 0, it follows that

—B++VB? - 4AC
A0 = ;
2A
which, after simplification, reduces to
(r+1) (\/A + 2\/77ma5)

T T (A D )
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with A = (1 + k)?(mamg — miﬁ) +(1+ r)2miﬁ.
Finally, (OA.54) and (OA.55) yield a linear equation that determines Dy :
ay/r(r+1)mg (/1 — k) (k+7) ag
(5 +1) (1 = 1) Vimas + 20 (Vi + P (2 = #2) ) O
a(r + D)v/rmas (541 = = 1) +ado (r = i) (Vi + 1) (5 +7) i
((r2 = 1) Vimas + 20 (V7 + 1) (12 = 12)) o

Dy =—

Letting A = (k — 1)y/7(1 4+ 1)mag + (k — 7)V/A, we can make further simplifications, and
express the solution in a form similar to that of the confidential case. We have

up(t) = adkﬁe_‘/;t + aﬁ—ge_”t,

A oi
with
K — /T r—1
d, = \[Ck + A vr %,
K—T K—r1 0
and, as in the confidential setting,
o
e = (K — r2)mﬂf§ +(1- /@2)ma56—§. (OA.59)
Ok Ok

As in the case of confidential ratings, because a rating process induces the same effort level
up to scaling, all constant multipliers a yield the same effort level. We can use, for example,
a =1 in the preceding expressions.

If

(5= 1) (5 = Vmap(r + Dy + VA = 1))
VBmg (Vi +1) (Vr — ) |

then it can be verified that the corresponding rating process satisfies the conditions of
Proposition B.9, so is a market belief for a public information structure.

a=—

OA.8.2 Verification of Optimality

We now establish that the candidate rating obtained above is indeed optimal. We
continue to use the auxiliary setting introduced in Section OA.5, with the same variables
and notation, except for the principal’s instantaneous payoff function H. To define the
principal’s payoff, we introduce an additional state variable, A, with initial value Ag = 0,
and which evolves according to

dA; = —rAydt + Y dt. (OA.60)
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Instead of using H as in the auxiliary setting of Section OA.5, we let

Y;
H, = (A) — 51Y(Y, — — 02 Y, — A
¢ =C(Ar) — 1Y (Ve — 1) — @2 t(l—i—r t>,

where
WA and VA(r—1)
I+r—DE+r) T k=D +r)

and A is as defined in Section B.3.1, namely, A = (r + £)*(mamg — miﬁ) +(1+ r)ZmZE.

Compared to the case of the confidential setting of Section OA.5, we require two penalty
terms to ensure that the principal’s payoff (in the auxiliary setting) and the rater’s objective
(in the original setting) are comparable. As in the confidential exclusive case, the term
$1Y: (Y, — ;) can be interpreted as a Lagrangian term ensuring that the optimal transfer
for the principal is close to a market belief (in the sense of the original setting). The second

¢1 =

term, ¢oY; (% — At>, is new. It captures the public constraint: together with the first

term, it ensures that the transfer for the principal is close to a market belief derived from
a public information structure. Indeed, recall that any public market belief u satisfies
Cov|u, pe+r] = Var[u]e™7, by Proposition B.9. If

t
A= / =)y, ds,
0

it is immediate that A satisfies (OA.60) for Y = p and

¢ Var (11
E Al = —r(t—s) _ vab M) 1— —(14n)t )
(e Ae] /0 e Cov [us, pt] ds Trr ( e )

Thus,

E [Mt (ﬁ:_t B At>:| _ Vf-:_[:ut]e—(l—‘,-r)t‘
r r

As opposed to the first penalty term, this expectation does not vanish for finite values of ¢,
because Ag = 0 (more generally, as long as Ag is set independently of the contract, the above
expectation cannot be zero for every market belief). However, it converges exponentially to
zero as t grows, and this turns out to be sufficient for our purposes. The specific values
for ¢1 and ¢o are carefully selected using the conjectured optimal rating derived from
Euler-Lagrange-type necessary conditions in the first half of this proof.

The principal’s problem is an optimal control problem with three state variables: the
agent’s estimate of his ability, v, the state associated with the public constraint, A, and the
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agent’s continuation transfer, J. The state variables evolve according to

dl/t — RVt dt + mi Z Bk dSkt - OékAt dﬂ

k=1 %
K s k—10
dJy = (rJy — ;) dt + (B =+ Ck) [ASk,e — (arAe + Brre) df],
1 mg 1 +r Jk

dAt = —T‘At dt + xftdt,

with &g := >, BxCk and C}, = f7’>0 e "Tuy(7)dr. As in the confidential exclusive setting
considered in Section OA.5, the principal’s problem can be restated as follows: the principal
seeks to find a stationary linear contract (A,Y’), along with processes Cy, k = 1,..., K,
which maximizes, for all ¢,

&0 Ys
E |:/ pe*P(S*t) (c/(AS) — ¢1Y8(Y5 — I/S) — (ﬁQY; (1 g >> ds Rt:|
t
subject to:
1. Incentive compatibility: ¢/(A;) = Za, where Ea =3 akCA'k.
2. The evolution of the agent’s belief v, given by
dvyy = —kiy Z B dSk s — apAsds].
me o C
3. The evolution of the state A, given by dA; = —rA;dt + Y; dt.
4. The evolution of the agent’s continuation transfer J, given by
SN 7 Bk
dJy = (rJe — V) dt + T 5 tC dSy: — (ap Ay + dt],
t (7” t t) ; <€5,t(1 n )(1 n r) kt> [ k,t (Oék t /BkVt) ]
where 55 = 5@
5. The transversality conditions, given by
lim Ele " Jir | Ri] = and lim Ele ""JZ, | R =

T—r+00 T—+00

We use dynamic programming to solve the principal’s problem. The principal maximizes

E |:/toop€ p(s=t) (5045 ¢1}/s(}/s ) ¢2Y <1f_ _A5>)d5

Iv.11
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for every t, subject to the evolution of the state variables and the transversality conditions.
As before, we solve the principal’s problem without imposing the restriction that transfer
processes be stationary linear, and verify ex post that the optimal transfer in this relaxed
problem is stationary linear. Assume the principal’s value function V is C?(R3), as a
function of the states J, v and A. By standard arguments, 1t6’s Lemma yields as HJB
equation

pV = sup péa — pdry(y — v) — péoy <y — A) — vV, +(rJ —y)Vi+ (=rA +y)Va

YsClyeesCK I+r
G(r—Dr+r), k=1 1 (Gr-1 ’
+A?VVJ+27VW+§ (ﬁu_k+0kck> Vi,
mg T mg — \mg T o)
(OA.61)

where, as before, to shorten notation, we have used the subscript notation for the (partial)
derivatives of V', and have abused notation by using £, and &g to denote ), axci and

> Brcr, respectively.
We conjecture a quadratic value function V' of the form

V(J,v,A) = ap+ arv + aaJ + asA + aqvJ + asvA + ag JA + ar? + agJ? + agA’. (OA.62)

We plug (OA.62) into the dynamic programming equation (OA.61) and solve for the
optimal control variables y, ¢y, ...,cx. The equation is quadratic in (y,¢1,...,cx). The
second-order conditions are

o1+ 1(;—7—27’ > 0, and (OA.63)
as < 0. (OA.64)

That condition (OA.63) is satisfied is immediate by the definition of ¢; and ¢3. Assuming
momentarily that (OA.64) holds, the first-order conditions yield as maximizers

(ag — 2as) (r +1) (r+1) (—as + 2a9 + pp2)
WA = et e’ T Bt e ) (0A.65)
(T+1)(—a4+a5+P¢1>y (a3 —az) (r+1)
20((r +1)¢1 + ¢2) 20 ((r +1)¢1 + ¢2)’
(k=1 (magp(k+2r+1) —as(r + 1) (s +7)) B p

2agmp(k + 1)? ol 2as o}

cx(J, A\ v) = (OA.66)

Note that y is affine in the three state variables, and every ¢ is constant. Define

p=+(p+2)(p+2r).
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We then plug the optimal controls in (OA.61) to identify the coefficients ay, ..., ag.
Contrary to the confidential exclusive case, the system is linear-quadratic. There are two sets
of coefficients that satisfy the equality (OA.61) and the second-order conditions. However,
only one set of coefficients yields a state J that satisfies the transversality condition. Keeping
that set of coefficients, we get:

a; = az = az = 0,

VApQ2r —p)(p+r+1) (plp+2)+ (r—1—p)p)
(k=D(p+2)(r = Dr(r+1)%(k+r) 7

VAR ((p+2)(r—1=p)p+2r)+ (p—r+D(p+r+1)p)

as —

o (r—1)(p+2)(r — Dr(r + D2(s + 1) ,
o VAp©2r —p) (22— (p+2)r +p(5—p—1))
o Ak — )r2(k +r) ’
_2VAp(p—r+ 1)’ (ptr+ 1)’ (p—ptr+1)
e (k—D(p+2)2(r—1)2r+D)4(rx+r)
ag = _\/ZP(QT —p) (p2 +p—pr+2r(r+ 1)) B VApp(p — 2r)?

8(k — )r?(k + 1) 8(k —1)r2(k +r)’

4o — VAP (p—p+r+1)

8(k —1)r2(k+71)
The expression for ag does not impact the calculations that follow. Therefore, it is omitted.
Note that, if p < 7, the coefficient ag is negative, hence (OA.64) is satisfied, and the
maximizers are determined by the first-order condition. After inserting the coefficients
ai,...,ag into (OA.65) and (OA.66), we obtain the optimal processes ék, which are constant
(and whose expression is lengthy and omitted), as well as the optimal transfer at time ¢, Yz,
as a linear function of the state variables Jy, vy, Ay:

b1 Ji
Yi=|b2| - [Ae], (OA.67)
bs vt
with
_ 5 — _ = 1 2 22\ (A5 _ 5 _ 2
b Zrmp)0mpt2)  plpmp ) ((p+1)>—r?)(p—p—2)
4r 4r (p+2)(r—1)(r+1)2

We insert the optimal control Y; into the equations that determine the evolution of the
state variables. Doing so yields a linear three-dimensional stochastic differential equation,
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namely

3 T Aog
Jy o O e C I TS R = R
d A =M M|+ 0 [dSk s — A dt],

Vt vt k=1 k—1 @
mﬂ O']%

where ot r

r—b  —by &3 7 — b3
M= +r
'_ by —r + by b3
0 0 —K

The matrix M has three eigenvalues,

_1
g

1
b= (30— P+ V2Vplo+p+ 1)+ 22 —r(p+ 20— 2) — 2r),

or=7 (30— = V2Vplot p+ 1)+ 27 —r(p+ 25— 2) - 2r),

and 0y, == —k. As p — 0, it holds that 6; — —/r, and o, — —r. Hence, if p is close to zero
(i.e., p < po, for some py > 0), the eigenvalues of the matrix M are distinct and negative.
We can write

Jt K
Al =) / (fke“f“-S) + el 4 hke‘sh“—”) [dSk — aAedi],
V¢ k=1 s<t

where fi, g and hy are three-dimensional vectors that can be expressed in closed form (the
expression for p > 0 is lengthy and omitted). From (OA.67), we get

K

vi=Y / wn(t — ) [ A — apAr dt],
k=175t

with ug(7) = Fr.e% ™ + Gred™ + Hyer™, for some constants Fi, Gi, Hi, k = 1,..., K that
depend on the parameters of the model, and, in particular, on p. As p — 0, we can simplify
these constants. We obtain Gy — 0, and

(k= Dmg (Vr — &) (5 +7) o

2

ma (Vi -+ 1)4/2 (/7 =) %

Fk—>
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(5~ 1) (VA + (5~ Dmas (s v — i+ 1) — VAT) 5,

' ms (Vi +1) /2 (V7 —r) o7
(k—1) ((’”v — Dmag(r + 1)vr + VA — r)) 8,
Hp — — B
VAmg (\r+1) (/r — k) o2
Also, as p — 0,
A mp (s +1)? o (5= 1) (VAT — (5~ Dma(s +2r + 1)) g,
k—>\/zmﬁ(\/;+1)2(/€+7’)ail%+ VAms (Vi + 12 (r+7) pt
Thus,
~ (k—1) (momw(m +7)?2 = (k—1)m (,<; +2r4+1) + 27”%5\/5)

)

VAmg (v +1)% (k5 +1)

(k — 1) (1 - (%ﬂ)j (Qmag + %)

dmg(k + 1)

and so, after simplification,

C/(At) —

Back to the Original Model

We conclude the verification and connect the auxiliary model and the original model.
The procedure is analogous to the confidential case described in Section OA.5. Let (A*,Y™)
be the incentive-compatible contract defined by

el () o)

. (k—1) <(/§ — Dmas(r + 1)+ VA(k — r)) K ) .
Y= Vo (D (=) .kzl/s<tuk(t—s) [dSk,s — o As ds] .

Here, Y;* is the market belief of the conjectured optimal rating of the original setting, and

A} is the conjectured optimal action. Let M be a public information structure, generated
by some rating process, which induces a constant action process A LetY := E[0; | M ¢]-
Observe that (A Y) is an incentive-compatible stationary linear contract. We show that

d(A*) > (A) For p < po, let (A) Y () be the optimal incentive-compatible stationary
linear contract defined above.
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Let V* be the principal’s expected payoff under contract (A*,Y™), V her expected
payoff under (A\, l/;), and V() her expected payoff (AP Y(P). For every public exclusive
information structure M generated by some rating process, the equilibrium market belief of
the original setting, pu; = E[0; | M], satisfies Cov|[u, ] = Var|u], and Cov|ug, pie+r] =
Var[ule™™ for all 7 > 0, by Proposition B.9. Thus, under (i, A), with A the equilibrium
action, the state variable A is expressed as A; = fg e "(=%) 1. ds, and the principal’s payoff
is

/000 e ! (C/(A) — Prpe(pe — vi) — Popue (ﬁ:r - At)) dt = Cl(ft) — b2 i+ :;?f [f:ti o)

Hence, as p — 0, pV* — /(A*), and oV = c’(g). For every p small enough, V(®) >
V must hold, because (A Y(¥)) is optimal. However, as p — 0, ¢/(AP) — /(A%),
and the linear filter of Y (¥) converges pointwise to the linear filter of Y*. In particular,
Cov[Y) 1] — Var[Y(?)] — 0, and, for every 7 > 0, COV[Yt(p), Y;(_fl] — Var[Yt(p)]e*T — 0.
Together, these two limits imply that, as p — 0, pV ) — pV* — 0. Thus, pV») — ¢/(A*%),

implying that ¢/(A4*) > ¢/(A).

OA.9 Proof of Theorem 5.3 (and Th. B.12)

As for the exclusive cases, the first half of the proof derives a candidate optimal rating
obtained through first-order necessary conditions, and the second half verifies that the
candidate rating just derived is optimal. Recall that the constants m, mg, map and s are
defined in Section B.3.1 of Appendix B. The constants mZ, mg, mgﬁ, me, mg, mgﬁ, and R
are defined in Section B.3.3.

OA.9.1 Candidate Optimal Rating
We continue to use the shorthand notation of the proof for the exclusive cases:

K K
U(t) = Zﬂkuk(t), V(t) = Z agug(t),
k=1 k=1

Uy :—/ U(t)e " dt, VO:—/ V(t)e " dt.
0 0

We seek to maximize the equilibrium marginal cost ¢/(A), where A is the stationary
equilibrium action of the agent, among all confidential information structures with nonex-
clusive signals Si,..., Sk, that are generated by some rating process Y that satisfies the
variance normalization Var[Y;] = 1 and that is proportional to the market belief. Recall
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that such a rating process takes the form

K

Y, = / u(t — s) [dSk,s — apAsds],
=30 [ - ]

where u = {uy }1 is the associated linear filter.
Proposition B.11, accounting for the variance normalization, yields the constraints that
Y must satisfy to be proportional to the market belief: for every nonexclusive signal Sy,

Cov[@t, Y;j] COV[S].C’t, }/H-T] = COV[Sk’t, 0t+7—], Vt, V1 > 0.

An equivalent constraint, more convenient to work with, is as follows: for every nonexclusive
signal Sy,

COV[9t7 1/;5] COV[(Sk,t-‘rT - St)a )/t—l—T] = COV[(Sk‘,t-i-T - Sk,t)7 et—‘rT]? Vt7VT > 0.

Lemma B.3 continues to hold and maximizing the equilibrium marginal cost is maximizing

722 UOOO Ut)e™ dt] [/OOO V(t)e dt] )

Recall from the proof for the corresponding result in the confidential exclusive setting
that the variance normalization constraint can be expressed in terms of the linear filter as

K e’} 2 0 0 o
Zag/ up(s)? ds + 7/ / U@ U(je 7= didj = 1.
= " Jo 2 Jo Jo

As for the constraints associated with the nonexclusive signals, we have:

K 2 00
Covl[f, Y] = Z/ u(t — s) Cov[fy, 0] ds = 7/ U(s)e ®ds,
p—1 Vst 2 0
T 2 T 2
Covl(Stir—Sua) besr) = | 55 CoVlr, Oriri] ds = 2T / erds = P00,
0 0
and using It0’s isometry,
2 T 2 T o0 o
Cov[(Skyir — Si), Yies] = L [ / up(s)o? ds + 7 / / U()el didj] .
2 Lo 2 JizoJj=0

Thus, the constraints that the linear filter {ug}, must satisfy are:



and forall 7 > 0,and all k =1,..., Ky,
Hk(u,T) = ,Bk(l — G_T),

where we define
2 o) [e’) o K [e%)
G(u):% / / U(U(j)e " didj+ ) / ou;(t)? dt,
0o Jo iz Jo

Hy(u, ) = [/OOO U(t)e dt} [ai /OTuk(s) ds + B’“f /0 /]OZ (et didj]

As in the exclusive public setting, it is difficult to solve the optimization problem directly,
given the continuum of constraints. We solve a relaxed optimization problem with 1 + 2K
constraints: one constraint is associated with the variance normalization, to which we
append two constraints for every nonexclusive signal. We thus maximize F'(u), defined as
in the exclusive setting, namely

F(u) = [/Ooo U(t)etdt] [/Ooo V(t)e dt] :

subject to

< Br
"H, dr = ———— k=1,. K
/0 e k(u,7)dr rA+7) v ,- .-, Ko,
4 B
FTH dr = ———— VE=1,. K
/0 € k(u7T) T /%(l—i-/%)’ ) PR AN

Assume there exists a solution u* = {uj }1, to the relaxed problem, where u* is four times
differentiable, integrable, and square integrable. It will be shown that the solution of this
relaxed optimization problem satisfies the original (continuum of) constraints.

To solve the relaxed problem, we consider the Lagrangian

L (u, Ao, { Mk fe<rio, 1 sk i<Ko) = F(u) + Ao G (u)
Ko .
+ Z)\m-/ e ""Hi(u,7)dr
i=1 0
0

Ko
+) A / e " H;(u, ) dr.
=1
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* *

Assume there exist \J, TR IR ")\H,Ko such that u* maximizes

u— L (ll, )\67 {)‘:,k}k’SKoa {/\:,k}kSKO) :

Assume A < 0.> We shall define these constants in such a way that there is a unique
solution to the unconstrained maximization problem (up to a scalar factor), that, in addition,
solves the constraints of the relaxed optimization problem.

In the sequel, we drop the star notation for simplicity. Throughout, let

T 2 T [e's) o
2 (T) ZUi/ ug(s) ds+5’”/ / U(j)e~ "1 di dj.
0 2 Ji=o Jj=0

Applying Proposition OA.1 in Part VI of this Online Appendix, we get first-order
conditions: for all k and all ¢, Li(t) = 0, where Ly, is defined as follows.
If k£ indexes an exclusive signal, then

Li(t) = Upare ™ + Vo Bre ™

+ o (2a,§uk(t) +725k/ U(j)e =t dj)
0
Ko .
+ Bret Z Ari / e "Tzi(T)dr
i=1 0
Ko o
+ Bre”t Z i / e "zi(T)dr

=1 0
K
U 2 [e%¢) T 0
+ 7052)’” / / e e P dsdr Y Ay
o Jo

i=1

2 00 T . Ko
+ 7U062k7 / / e el ds dr Z Aisi-
0 0

=1

3The inequality is a Legendre second-order condition.
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If, instead, k indexes a nonexclusive signal, then we must include two additional terms:
Li(t) = Upoye™™ + Vo Bre ™"
e.)
+ o <2a§uk(t) +725k/ U(j)e i dj)
0

Ko o
+ Bre™" Z Ari / e "Tzi(r)dr
i=1 0

+ Bret Z i / e "zi(T)dr
=1 0
2 0o T Ko
+ Uog’” / / e el dsdr 3 Ay
o Jo P

2 e’} T Ko
+U052’” / / e e dsdr Y Ay
o Jo i=1

oo

+ A\ iUooi / e "Tdr
t - )

+ Ak Uoop / e R dr,
t

where we note that

e—rt

e "Tdr = ,
,

—iit
_z e
e "Tdr = —,
¢ R

[ee) T 2 —rt —t
/ / 6—r76—|s—t\ dsdt = |: € —_ e :| ’
0 0 7"(1 —T ) 7“(1 — T)
00 T R 2671% eft
—RT _—|s—t| dsdt = o )
/0 /oe N T )

We first obtain conditions on u; when k indexes an exclusive signal. In the same fashion

\,\
8 8
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as in the public exclusive case, we obtain

Lk(t) — lel(t) = aka(l — 7’2)67”
+ 2/\00% [uk(t) — u'k'(t)] + 2)\’725].3U(t)

—rt Ko ﬁ ’Y
T Unfe Z Ari— (OA.68)

2e—Ht KO B'W
+ Uo Bk B z;)\m;-
1=

Now, let k denote the index of a nonexclusive signal. We then obtain

Li(t) — LY(t) = axUp(1 — r?*)e ™
+ 22007 [us(6) = w (1)] + 2207° BT (1)

e "t zo: )\”ﬁz'}/
ZO: A 15’7

e—rt

+ (1 =)\ Uooi .

+ Uoﬁk

fnt

(OA.69)
+ Uoﬁk

e—mf

+ (1 — &)\ pUoot -

The equality L, — L} = 0 must hold for every k. Multiplying (OA.68) by f ’“2, and

summing over the exclusive signal index k, multiplying (OA.69) by B¢/(20%) and summing
over the nonexclusive signal index k, and aggregating those two summations, we get that

2X0 [U(t) — U" ()] + 2X0v°mpU (t)

is equal to a sum of two exponentials with rates —r and —&.

As by assumption, Ag # 0, the characteristic polynomial associated with this linear
differential equation has the familiar roots +=1/1 + v2mg = £k. As U is bounded, it implies
that U, expressed as a sum of a particular solution to the above ODE and a solution to the
homogeneous ODE, can be written as the sum of three exponentials:

U(t) = Clefrt + Cgefﬁt + Cgefp"t. (OA.70)

Plugging back (OA.70) into (OA.68) and (OA.69) and equating to zero, we obtain K
additional differential equations, one for every uy. Accounting for the fact that uz must
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remain bounded, the general solution of these equations yields that uy is the sum of four
exponentials, that is,

u(t) = Dy e + Doge ™ + Dy e ™ + Dype ™, (OA.T1)

for some constants D ., D2 1, D3 1, Dy 1.

Determination of the Constants

We plug the general form of uy obtained in (OA.71) in the expression for L (t). We get
that, for both exclusive and nonexclusive signal indices k, Lj can be written in the form of
a sum of four exponential terms

Ly =Lyye "+ Loge ™™ + Ly e ™ + Lyge ",

where, as in the exclusive cases, the constant factors Lj , Lo, L3, and Ly depend on
the primitives of the model and the constants Dy, Do, D3 and Dy . Asserting that
Ly = 0 is equivalent to Ly = Loy = L3 = Ly} = 0.

Let
K K
A=) ayDiy, Bi =Y BDin,
k=1 k=1
KO KO
By =" Bidrks By =Y Bidnk,
k=1 k=1
and let

fr,z’ = / eiTTZZ’ (T) dr,
0

5,{,2' = / e_””zi(T) dr.
0

For a nonexclusive signal index k, we have the following;:

((r* = 1) 0 (2A0r D1 g, + UoAri) + 72 (—Br) (2B1Xor + ByUp) + 7 (r* — 1) Upary,)

L —
Lk r(r2—1) ’
2)\0 ((KL2 — 1) O']%Dzk — BQV2BR)
Loy = K2 —1 ’
Laj = ((#* = 1) 0} (280 (D3 + Dag) + Uoei) — 728k (2BsiAo + BilUp))
3.k — ~ /A )
’ R(R?—1)
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1 B B B
Lag==Be (o2 =5 + 2+ ) +2Bst+ By ) ),
2 r—1 k—1 k—1

1 B B Ko Ko

2 K r
= Ui 2) Meibii+2> MNi&i+2W .
+25k<7 0((/%—1)/%+(r—1)r>+ ;:1 ki T ;:1 i+ 0)

Instead, for an exclusive signal index k, we have the following:

(2207 (r* = 1) 07 D1k + 7> (=k) (2B1Aor + B,Uo) + 1 (r* — 1) Upau)

Ly =

r(r2—1) ’

2X0 ((* —1) 03 Das — Bay*B)

L2,k = B )
ke —1

(2% (&% — 1) Xoo? (D3 + Dag) — v*Br (2BsiAo + BilUp))

Lz = — ,
R(R?—1)

1 B B B

Log = =B [ v*o [ 2 L 22 4 3 ) 1 2Byt+ By
’ 2 r—1 -1 k-1

1 ) B. B, = =
+ 58k (’Y Uo ((,% )Y + = 1)r> + 2;>\m€m + 2;)\r,i€r,i + 2Vo> ~
Similarly, Hj can be written in the form of a sum of four exponential terms and a constant:
Hy = Hyge " + Hype ™ + Hape ™ + Hype ' + Hsy,

where it can be shown that

_ U (B1v?8k — (r* — 1) 02 D1 1)

H,y

ok r(r2—1) ’
o\ = Uo (Bav*Br — (k* — 1) 07 Do)
2k k(K2 —1) ’
.. Do (B37v*Br — (7* — 1) o} (D31 + Da))
Bk R(R2—1) ’

1 2B, 2By 2Bs3
Hyp = Z’YQUOBIC <—r —

— — By(2
1 K1 A1 4(t+3)>7

1 (40} (kkDyj + 1 (k(Dsy + Dag) + £Da )
Hs ). = ZUO .

RKT

(B Bl D) )

Using that Lo j, = 0 for all k, we immediately get Ds ;, = afi/ U]% for some scalar a, and
thus By = amg. Using Ly = 0 for all k, we get that D, is proportional to Bk/a,%. As
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the term in e~! vanishes in (OA.70), we get By = 0, which in turn implies Dyj = 0 for
all k. Using that H3; = 0 for every nonexclusive signal index k, we infer that D3, is also
proportional to S/ a,% for every nonexclusive signal index k. Summing the term Hjj over
these indices, and equating to zero, we get

Ko
B3 = BiDsp.
k=1

Next, for an exclusive signal index k, L3, = 0 implies that D3 is proportional to 3;/ U]%
for the exclusive signal indices as well. Further,

K
Z BrD3p =0

k=Ko+1

implies that D3} = 0 for exclusive signal indices k.
Similarly, H; j = 0 implies that

Br 7
D=1 __p,.
PN
As L3, =0, we get
B,Uy
B — . OA.72
* T 2k ( )

Then, plugging this value of B3 into the equation L3 = 0 for nonexclusive signal indices k,
we get that, for some v,
B

)\Hk = 1/72.
’ o
k

Furthermore, B, = umg.
Finally, > 1) Ly ; = 0 implies that

r (7"2 — 1) mgﬁ

B, = —
" —'yzmg—i—r?—l’

and plugging B, back into the equation Lqj = 0 gives

2
B Y Tﬁkmgﬁ roy,

A= UFTap Tk
ot a,% (r2 — k?) a,%
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Then, computing Z,i(:l Ly j, and equating to zero, we get

(r2 = 1) U (ma (12 = 2) + mzs (52 = 12))

)

By = —
! 22o(r — k) (k + 1) (r2 — &2)
and ) ) )
D UQ(’}/,Bkma-f-Oék(?” —li))
Lk = — IN02 (12 — k2 '
00, (r? — k?)
Note that we have
amg By B3
U f—
L R TR

A A
VO:amag 71+A 3 '
K+ 2r R+

At this stage, beside a, only two unknown variables remain: Ay and v.
We plug the values of the variables obtained thus far to express the values of Ly, Hs 1,

and G. This yields two quadratic equations in A\g and v, obtained by setting L, j to zero

and set Hsj equal to G (which is equal to 1).*
Solving for the quadratic system of equations, we obtain, after simplification,

VI (54 D)mig(s+ 1) = (5 + Dmag i + 1))
(kD) (R+ 1)

Ao = (k+1) (kh+ D)/r(k+1)(R+7)
and
_ Vi (r+1)mgﬁ Jr\/E
S R+L\(r=R)R+T) )]

where v is chosen to be the unique negative root of the quadratic equation that results (the
other root is the unique positive root and is associated with a minimum of the objective

function), and where, as in Section B.3.1,
(1+2r+ /%)(mgﬁ)2 B
(r+r)2k+1)

(1+2r +r)m2g
(r+r)2(k+1)

€ €
mgmg
K2 _ 12

_ (R+1)(A+1)
A= 2(k — k)

(We prove below that A > 0, so the square root is well-defined.)
Plugging back these expressions into the variables obtained so far, and (re)defining

A= (5= 1) (VF(U+ )mag + (2 = r)VA)

4The expressions for Ly, Hs g, and G are lengthy and therefore omitted. The details of the derivation

and the two equations are available upon request.
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we obtain after simplification, for a given factor a, the following variables.
For k=1,..., Kg:

D1, — —
b A(r2 — &2) o2’
D2,k: = CL%,
Ok
R (k+1) - (52 — 1) Vr(r+1) (maﬁ (7’2 — /<c2) —i—m”ﬁ (7‘2 — 52)> B
A NP (& + D) (12 — &2) o2’

and for k=Ko +1,...,K:

a(/i2—1)ma5\/?&_a(/{2—1) (r? = K?) VT ay

Dij=— il
Lk A of RPN op’
B
DQ,k =0,
O
D3 =0.

)

It can be verified that the rating process Y defined by such linear filter {uy }; satisfies the
initial set of constraints for every a, except for the normalization constraint; but as rating
policies yield the same market belief when multiplied by a scalar, the exact value of a does
not need to be determined.

To conclude, we show that A > 0, or equivalently that dg > 0, with

(k+ 1) (r+ r)2(1 4+ 2r + &)
(r+r)2k+1)

k4 1D (r+ k)2
do = (Q)#mzmg—O%-?r—&—n)miﬁ—i-

2
K2 _ R2 (mZ,B) .

We can express dgy as

K T K 2
do = W(mim% — (m&p)?) + F((mG)?, (mEs)?),

where the first term is nonnegative, by the Cauchy-Schwarz inequality, and the second term
is the quadratic form

g P ) = (i () (10 212) (‘mgﬁ)i) |

az1 ag) \(mgg)
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where

(k=R)(2r* + 1+ r)(L+&)(k+ &) +4r2(1+ K+ &) +2r(1 + £ + /)?)
(1+R)(r+ k)2

ail = ,

ajg = ag = —(1 4+ 2r + k),

r(r4+ (24 7)k) + (1 + 2r + K)A2
2 _ 12 :

a2 =

To prove that this quadratic form is positive semidefinite, we need to check that the three
principal minors are nonnegative. Clearly a11; > 0 and aso > 0, and finally

2r(14+7)2(1 4 &) (r + )2 >0,

a11G22 — 12021 = (1 + I%)(T + I%)Q(IQ + ,%) =

as required.

OA.9.2 Verification of Optimality

We now verify that the candidate rating introduced above is optimal among all ratings.
We continue to use the auxiliary setting introduced in Section OA.5, with the same variables
and notation. However, we must redefine the principal’s instantaneous payoff function, H.

To do so, we first introduce K extra state variables, A7,..., A, with initial value

1
Apo= - /<0 e "= dsy,

and which evolve according to

1
dAL, = —rAp, dt + - [dSk, — apAydt]. (OA.73)
We also introduce K additional state variables, AT, ..., A%, , with initial value
1 .
Ko _ —R(t—s) dS
A € S
o=z, X
which evolve as )
dAR, = —RAE, dt + z [dSk; — apArdt]. (OA.74)

Instead of using H as in the case of confidential exclusive ratings, we redefine H as
follows:
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Ko 2
Hy = (A) — 1 Vi(Ye — 1) + Z¢2,k <W1) -Y Z,t)
k=1

2mgr(1+1)
K
- ZO b3k <W_1) — YA¥ >
=\ 2mph(1 + &) )
where
qbl = A/’f’,
a rm” (k% — 1) B
ok =15 o =,

Ik Wak
. f(r? — 1) (mggﬁ(l +7)+ VAr? - ;%2)> B,
P may/r(L+ #)(r% — #2) o2

The parameter A is defined as in Section B.3.1.

Compared to the case of confidential exclusive ratings, we now include 1 + 2K penalty
terms. As before, these penalty terms ensure that the principal’s payoff in this auxiliary
setting and the rater’s objective in the original setting are comparable. The (by now usual)
term ¢1Y;(Y; — 1) is a penalty term that ensures that the optimal transfer of the principal
remains close to a market belief of the original setting. To ensure that the optimal transfer
is close to a market belief that incorporates all relevant information of the nonexclusive
signals, we add an additional penalty term for every nonexclusive signal Sg:

Br(k* — 1) . Br(r* —1) p
oot (s~ 080e) =00 (i iy o)

To grasp the intuition behind this term, recall that, by Proposition B.11, for every
nonexclusive signal Sk, any market belief that includes all relevant information about S

satisfies
Cov [ety Sk,th] = Cov [,U,t, Sk,th] ) VT > 07Vt7

or equivalently,
Cov [et, Sk:,t — Sk,t—’r] = Cov [,Ut, Skﬂf — Sk’,t—r] N VT > O,Vt (OA75)

Note that

2 2
Cov [0¢, Skt — Skt—r] = Bk% (1 — e*T) = M (1 — e*T) i

2mg
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Hence,

/ e "m Cov [, Skt — Skp—r| dT = / e " Cov [0, St — Sk t—r)dT
0 0

~ Be(k?—1)
C 2mgr(1+7)’

and

/ e " Cov (g, Skt — Ski—r) dT = / ™" Cov [01, Syt — Ski—r) dr
0 0

Bk 1)
~ 2mghR(1+R)

Next, remark that
/000 e " Cov [, Skt — Ski—r| AT
_E [Mt /0 a— (Sk:,t — [ Asds — Skar + fic, arAs ds) df]
r

[MtAZ:,t] )

where the second equality is obtained by change of variables and integration by part.
Similarly,

=E [,utl/ e T(t=9) [dSk,s — . Ag ds]
s<t
=E

/ e " Cov (e, Skt — Skp—r)dT =E [,utAz,t] )
0

So, if p is a market belief that incorporates the information of nonexclusive signal Sy, we

have ) )
E[Bk(ﬂ_l) 2AG _1))_%1&% —0.

— AL, | =0 d E|————=
2mgr(1+r) He k’t] > o [ngf%(l—i-/%

If © was a market belief, but did not incorporate the information of nonexclusive signal
Sk, then these expectations would, in general, be nonzero. The factors ¢, and ¢35, are
chosen so as to induce the principal to choose, as optimal transfer, a market belief that
does incorporate such nonexclusive information.”

5 In other words, the factor )
¢27k67'r7 o ¢37k67'ﬁ—

corresponds to an infinitesimal Lagrangian multiplier associated with the constraint of nonexclusivity

Cov [0t7 Sk,t - Sk,t—r] = Cov [/Lz, Sk,t - Sk,t—T] .
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In the remainder of this proof, we will also use the following notation:

o r(mpg)*(k* — 1)
Dyo = apdok =rmi + o8
k=1

)

mpg(r? — i?)

ngﬁmg(KZQ -1)

Ko
Dyp=> Brdor =rmpg+
k=1

)

mg(r? — #?)

R(K? = 1)my (mgﬁﬁ(l +7r) + VA2 — ,%2))
mgy/r(L+ &) (r? — /?) ’
S (s = Dymiy (mzg/r(1+ 1) + VAG? = 7))

‘I)3ﬁ = ;5k¢3,k = mgﬁ(l + /%)(7"2 _ ,%2)

Ko
O3, = Zak¢3,k =
k=1

The principal’s problem is then an optimal control problem with the following natural
state variables: the agent’s estimate of his ability, v, the agent’s continuation transfer .J, and
the states associated with the nonexclusive constraints. We have the following equations
for the evolution of the state variables:

K
—1
dy; = —kyp dt + r Z B—g [dSk+ — o A dt],
mg k=1 Ok
(&g r—1p
th = (TJt — Y}) dt + (6 7'1; + Ck) {dSk’t — (OékAt + /BkVt) dt] 5
= \mp 1+7roy

1

dAzt = —TA};tdt —|— - [dSk,t - ak-Atdt] 3 VIC — 1, . e ,K(),
9 b /r‘l
1

dAZ,t = _’%Az,t dt + E [dSkyt — oAy dt] , Vk=1,..., Kj.

Recall that, as in the exclusive cases, &g = ), BxC, and Cj = fT>0 e "Tu(T)dr.
As in the verification part for the confidential exclusive setting, detailed in Section OA.5,
the principal’s problem can be restated as follows: the principal seeks to find a stationary

linear contract (A4,Y), along with processes ék, k =1,...,K, such that, for all ¢, the

principal maximizes
[e.e]
E [/ pe PO H ds
¢

subject to:

1. Incentive compatibility: ¢/(A;) = Ea = akak.
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2. The evolution of the agent’s belief v,

K
-1
dvy =~ dt + LS P ag, g ds).
m,B k=1 Uk

3. The evolution of the agent’s continuation transfer .J,

K

~ 2 ~
th = (rJt — Y;g) dt + Z (fﬁ’t(l—i-/ﬁ;‘)y(l—i-ﬂfg + Ck,t) [dSk,t — (CkkAt + ,Bkljt) dt] s
k=1 k

with E/j = Ek ﬂkak
4. The evolution of the states A} and Af, for k =1,..., Ko,

1
dAL, = —rAy, dt + — [dSk — apAdt], VE=1,..., Ko,
’ ’ T

1
dAZt - _/%Aztdt‘f‘ = [dSkjt — akAtdt] , Vk=1,..., Kj.
’ ’ R

5. The following transversality conditions

lim Ele " Jir | Re] =0, and

T—+00

lim Ele " J2, | R =0.

T—+00

We use dynamic programming to solve the principal’s problem. The principal maximizes
the expected value of

o ( (& X 5]6(’%2 — 1)
—p(s—t o _ RN T AT
/t pe <§a,s o1Ye (Ve — 1) + ];:1: P2,k Yt <2m6r(1 +7) Ak’t>

Ky 2
Br(k* —1) :
- ¢3,kYt <H - AZ t )
; 2mpgk(1l + k) ’
conditional on Ry, for every ¢, subject to the evolution of the different state variables and
the transversality conditions. As in the proof of the exclusive cases, we solve the principal’s
problem without imposing the restriction that transfer processes be stationary linear, and
verify that the optimal transfer in this relaxed problem is indeed stationary linear.

Assume the principal’s value function V is jointly twice continuously differentiable, as
a function of all the state variables. The Hamilton-Jacobi-Bellman (HJB) equation for V'
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reads

oV

sup  péa — pP1y(y —
Y,C1,5--,CK

0
—py Z (oA} s — D3kAT )

k=1

+VI(rd —y) u+ZVk< 2+ >+ka< RAL B’“ >
JJ _ K Jv _1
2 \mg (1+ = mg(l+r)
122 -1 2 Ko VJr VJK _1
+V ;‘i ) +Z( k k >< /il ﬁk—ka,%ck)
mg = mg —|—r
Ko Ko
Vkl/'l‘ Vkl/.‘{ K — 1 TT Vk.‘?:? 9
+;< r + 3 ) ;(27"2 rk + 282 ) Tk

To shorten notation, we have used the following superscript/subscript notation for the

(partial) derivatives of V. We use superscripts to denote the variables (v, J, A", A¥), and
subscripts to denote the index of the variables A” and A”. For example

% 02V %
JJ . YV Jro._ —
V=g VT grgap Vi dALONE

We have also abused notation by using Ea and 5} to denote ), o and ), Bicy, respec-
tively.

We conjecture a quadratic value function V' of the form

V(J,v, A", A®) = ag +a’ J +a"v +a?" Jv + a7 I + 0"y

+ Z (apA}, + ail" JAL + af"vA}, + afAf + a" JAf + afFvAf)

+ Z af AAT + Y

(aijTAT + az"‘“A"A")
k,g=1

1<k<j<Ko

(OA.77)
After we substitute (OA.77) into the HJB equation (OA.76), we solve for the optimal
control variables y, c1,

,ci . The right-hand side of the resulting equation is a sum of
two quadratic functions, one in y, the other in (cq,

cr). These quadratic functions are
strictly concave when the following second-order conditions are satisfied

$1 >0 and o’ <.
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It is immediate that the first inequality is satisfied by the definition of ¢;. Let us assume
momentarily that the second inequality holds. The first-order conditions then yield the
value of the optimal control variables, which allows to identify the constant factors of the
quadratic value function. We get:

and

a’’ = —p(2r — p)or,
v (2r — p)p (2r2R(r + R)P1 — R(r + &) Do g + 212 D3 5)
- 2r2(1 + r)&(r + &)

=p(r—1-p)

X ((r=1—=p)d] +d5 ¢1P2 5 + d5” p1P3 5 + d55 @3 5 + ds§ Do 3P 5 + dbs 03 5)
-1

x (41 +7)*2+p)1)

where

2 — =2r(l4+7)+p(2+p)
2 - r2(1+r+p)
2(r2—&(1+p)—p2+p)+r(B+i+p))
Rir+/)1+&+p)

s 8P+ 1) —4r?(r+3)p 42 (r+1—21%) p? + (r + 3)p* + p*
2= 4ri(r —1—p)(r+ 14 p)(2r + p)
5 = (= p(L+ )2+ )+ p)(R+ 1+ p) = 2% — dr (i + 2+ p)
—2r* (B + k(4 +p) — p* + p+3)

% (28%p + k(=4 + p(5p + 6)) + p(1 + p)(8 + 3p))
+7’(f%2(2+p(4+p))+Fw(6+p(6+p))+p(1+p)(2+p)))

X (kr?(k+ L4 p)(E+1)(r = L= p)(r+ 1+ p) (R +7+p)) .

)

127
ds” =

)

9

and

b= (282(1+ p)® + /p(2+ p)(2 + 3p) + p* (1 + p)(2 + p) + 2r* + 4r* (i + 1)
+2r2(R(f +4) + 1) — 2r (28%(1 + p) + £(2+ p(8 +3p)) + p(1 + p)(2+ p)))
x (R2(R 414 p) 28+ p) (R +7)2(r—1—p)) .
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Since ¢1 > 0, we have /7 < 0 as long as p € (0,2r). Thus, the second-order conditions are
satisfied. For k =1,..., Ky,

g P2r —p)pa

e = 2r ’
Je  (2r—p)pos i
ap = ———
r+ K
g = P = 1= p)d1 +d5 @y 5+ A Py ) G
K ar(L+r)1+r+p)dy ’
gor = P =R = p) ((r =1 — p)d1 + dg"Pa g + d§"P3.5) d5

204+ 7)(r+ &)1+ &+ p)dr

where

—4r* +p+rp+p?

dy" = ;
2r2(2r + p)
= 3r2+r(1+ &) — (L+p)(k+p)
R(r+&)(r+&+p) ’
P —2r2 = 2r& + p(1 + & + p)
2 2r2(r + & + p) ’
5 — T2—p(l—f—p)—i—r(l—l—?ﬂ%—f—p)—/%(1—}—2;)).

R(r + k) (26 + p)
Finally, for 1 < k,j < K,

(ITH' _ (7" —k— p)p2¢2,k¢)3,j
MO dr(r+ R)(r + R+ p)dr

and for 1 < k <j < Ky,

PP kd2,; . .

a'r'7: _ 87‘2(2T+p)¢1 lf k < Js
kj = P05 TR

W e LE= 0
p(—=r+R+p)2¢3 o3, - .

ki _ 2(r+k)?(2&+p)d1 if k <,
Ukj =\ p(=r+i+p)?¢s
4(r+rR)Z(2R+p) b1

if k=j.
The constant term ag is unwieldy and irrelevant for the sequel. Therefore, its closed form

expression is omitted.
In turn, the controls are expressed as follows. If k > Ky, i.e., if Sg is an exclusive signal,
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then

B Qg ~ (k=1) (mag(1 +2r + k) = (r + K)(2r — p)d1) Bk
ek (v, A) = 2(2r — p)qﬁla,% 2mg(r + k)2 (2r — p)qﬁlaz ’

while if k < Ko,

B oy (k—1) (map(1 +2r+ k) — (r +&)(2r — p)o1) B
Ck(‘]a v, A) - 9 = ) P)
2(2r — p)pr0}, 2mg(r + k)2(2r — p)p10},
B /%(7“ + /%)¢2,k — 2T2¢37k
Ar2i(r + )y
and finally,
b/ J
b v
y(JaV’A)_ b" : AT |
b* AP
where

bJ:QT—p,

wolmrte @r—pPys  (2r—p)Psps

24+2r | 4r2(r+1)¢;  2(r+ Di(r+ i)’

= 47”¢1¢2’
m__(r_’%_p)
T 2(r+ Ry P3-

In the above equations, ¢ = (¢21,

s 2,K,) and @z = (P31, - .., D3 K )-
Plugging these controls back into the equations of evolution of the state variables, we
obtain a (2 4+ 2K))-dimensional stochastic differential equation:

& eet)s A
Jt Jt % + Ck,t
=M+ mao? [dSk; — apA;dt],
A Al k=1 ey/r
Af Af e /i
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where

—(7’ _ ,0) M —p —(bT)T —(b”)T

1+r
vl © —K 0 0
0 0 —rIg, O
0 0 0 —#lg,

In these equations, I, denotes the Ky x Ky identity matrix, and ey € RX0 is the vector
with one in the k-th component and zeros elsewhere. The matrix M has four eigenvalues,
—r, —k, —k, —(r — p), which are distinct and negative for p € (0,7). Therefore, we can write

Jy
K

‘/Z;tr _ Z /<t (f]:efr(tfs) + e | gReRl=s) 4 flfef(rfp)(tfs)) [AS)s — e Ay i,
k=15=

A:‘i

for some (2 + 2Kj)-vectors {7, f*, f% £P which can be expressed in closed form as a function
of the parameters of the model (as in the public exclusive case, the expression for p > 0 is
lengthy and thus omitted). It follows that

K

V=) / up(t — s) [dSks — Ay dt]
k=175t

with
up(T) = Fle T+ Fie T + Fle " + kae’("’p)T.
In the limit as p — 0, each factor converges, and the first and last exponential become

a single exponential with rate —r and factor F" + F'”. For nonexclusive signals Si, k < Ky,
we have

a(;{Q —1)\/r <ma5(r2 — /%2) + mgg("fz - 702)) By

F'+ FP - — Bk
+ )\(7"2 _/%2) 0—,%’
P — aﬂ—’;,
Ok
I (k2 = D)Vr(r +1)(mag (TZ — &%)+ mlg(r? - n2)> Br
k1 (& + DA — i2) -t

while for the exclusive signal Si, k > Ky,

a(k? — 1)ma5ﬁ& B amfg('r2 — H2)\/77%
A O']% A az’

F'+ FP — —
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F* —>a&,
o}

F* 50,
where the scaling factor is

(k=1) (map(l+7) = (r? — & )¢1)
2mga(r? — k%)

a=—

The limit of &, as p — 0 is

, (“—1)(mgﬁ(“+1)(T+H)+ma6(’%+1)(r+’%)) (k—1)(k—#) [A
c(4) = 2mp(r + k) (1 + R)(r + &) + 2mpg(k + 1) \/7

We observe that, as p — 0, the value obtained for ¢/(A) corresponds to the conjectured
optimum of the original model, and the optimal transfer ¥ corresponds to the conjectured
optimal market belief of the optimal rating of the original model, presented at the end of
Part 1.

0OA.9.2.1 Back to the Original Model

We can now conclude the verification, in a way very similar to the confidential setting
detailed in Section OA.5. We will therefore skip the details.

Let (A*,Y™) be the incentive-compatible contract defined by Y* as the market belief of
the conjectured optimal rating of the original setting, defined by the linear filter described
at the end of Part I, and A} the associated conjectured optimal action.

Let M be a confidential information structure with nonexclusive signals Sk, k < Ky,
associated with market belief ¥ and stationary action A; (A,Y) is then a well-defined
incentive-compatible stationary linear contract. We want to show that /(4*) > ¢/(A).

Let (A, Y () be the optimal incentive-compatible stationary linear contract defined
as the optimal solution above, as a function of the discount rate of the principal p, with
V(®) the corresponding principal’s expected payoff. Under both (A*,Y™*) and (A Y) the
expectation of the penalty term in the principal’s payoff vanishes. Thus, the principal’s
expected payoff for contract (A* Y™) is V*i=c¢ '(A*)/p, while the principal’s expected
payoff for contract (A,Y)is V := /(A)/p. Then, for every p € (0,7), the inequalities
pV() > pV = ¢(A) must hold. However, as p — 0, ¢/(A®)) = ¢/(A*), and the linear filter
of Y(?) converges pointwise to the linear filter of Y*, as shown by the limits above. Thus,
the expectation of the penalty term of the principal’s payoff converges to zero, which in
turn implies that pV () — ¢/(A*). Hence, ¢/(A*) > ¢ (A)

V.37



OA.10 Missing Formulas for Theorem 5.4 (and Th. B.13)

The missing formulas for Theorem B.13 are

k—1 MRg(0+r—7—1)

= T -0 tr—Ry)

(0 —7) (mapRg + 2) (0 —7)(k+r)mgRg

= (r—r)z &= (k2 —1)2 ’
where
A M(k+T) ((1 —0?)mg + (k* — 1) mﬁ)
o (6 = Dms(r —9) |
(k—1) ((57 1)(r + )mg + (& + Dymi3(r +1 -6 — Fu))
Rg = ,

(06 —1)mg(r —0)
Mag ((7“2 —1)mg — (K = 1) m%)
(6 — k)mpg

(r2 = 52) (2 = 1) Mim = (6 = Dm (0 + DAL+ mis(r = 9)) )
(6 = 1)(6 — k)mg(r — 0) ’

zZ =

+

in terms of A\; and J.
The parameter A; is a function of d, and we accordingly write A;(0) when convenient.
It holds that
(r—20)((k—1)og (r(6+r+1) = 86%) + (0 + k) (0% — kr)) (A1 + Ag)

Al = ,
! (1 — /{)O'/BDl + Uaﬁ(/i + T)DQ

where
A= (k*—1) miﬁ ((6+£K)? = (k+ Dop(26 + k£ — 1)) ((k* — 1) 05 + 2004 (1 — k%)) ,
Ay = (k+71)? (x2aa'mamg — (k+ 1)U§Bmiﬂ(((5 — 1D +r)(r—r)+z(0+r—1-1))),

with
r=(K+1og(0+r—1r—1)+ 0 +r)(r—rK).

The expressions for Dy and Ds are somewhat unwieldy. It holds that
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Dy = (k= 1)(k +1)%05 (6" — r* — 20° + 2r® (20° + 20k + K* — 1) — 26°1(26 + 2k — 1))
—(k+ 1)05((5+/<c)(53 (6% + 30K +r—1) + 740 — 25 + 1)
+7%(6(3 — k) =3k + 1) + 17 (0*(3k — 1) — 26° + 6 (4k* — K+ 1) + 4k (k* — 1))
+0% (3(1+ K)(1 — 8) — 8?) )
+ (5 + 5)2(53(25/@ + 04+ k)+rH6— k) + (0 +1)r3 (6 — k)
+72 (% (k+ 1) — 6° — 6k + 26 (K + 1)) — 6°r (&7 —5m+5+m(4n+3))>,
and
Dy = (k> — 1) 0% ((5 — 18k —1) — % (200 + 1)2 + (1= 8)(k — 1))
+77(46° + 0*(Th + 1) + 6 (4x* + K — 1) + 2k (k> — 1))
+ 6% (6 - 26% — 50k — 4k% + r+1) )
+ (6 + ) (53 (5 (1—3x2) = 82(k + 1) + (5 — 1)k)
+7%(6%(k — 1) + 6 (3k* = 1) + k (4> + Kk — 3))
+72 (831 — 3K) + 62 (3 — 9x?) — Ok (4k% + K — 1) — 4k? (K* — 1))
+ 0% (2(3k+ 1) + 50K+ 0+ 1 (857 — k= 5)) ) = 2(6 + k)2 (r — k) (87 = wr)”.
Finally, regarding 4, consider the polynomial
P(2) == by + b1z + bp2? + b3z + byzt + b52° 4 28,
with

bo = ¢ (C+Vgap)

by == % (—2?75 (QC - 776) — Gap ((41/} - 1)776 + 7/}) - ’gaﬂ‘\/m> >
by = =2 (7 + €) — g (05 + 1) — lgas /< + 02 — 20,
by = % (2 (15 — 2)ng + gap (Np + ) — Igaﬁl\/m> :

bs = 21g + gap,
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where g =1 —mj/mg, 00 =1 —mg/ma, 0ap =1 —mgz/mas and

0 k(1 —a:;) —i-ag’ = k2(1 —:25) +0',3’
B 2(k = 1)(r +1)2x(x + 1)m
Jod r (Jamamg(m +r)2 4+ (k—1)m 5 Q2r+1)x—(k— l)aﬁ)) ’
o= Dot XX+ +y) (= 1os—caplrtr)
2rx(x +1) r+1

We show the following lemma.

Lemma OA.1 The polynomial P is irreducible and admits no solutions in terms of radicals.
It has exactly two positive distinct roots o, 5+. Let6_ =r6_, 0p = 7“5+. It holds that either
(62 —r)A1(6-) <0 or (62 —r)A1(64+) < 0, but not both. The parameter § is equal to J_ if
(62 —7)A1(0-) < 0, and to §, otherwise.

Proof. Throughout, we use the notation
P8 ="y DPap = Map — Mg = Mg, Pa = Ma — Mg = Mg,

We rule out the trivial case pg = 1.

We recall that the exponent 0 is given by one of the roots (if any) of the polynomial P,

defined as

2 4
P(x) = ag + a1z + agx® + azx® + agx* + asx® + aga®,

with

o =72 (4 =1) 1) (6417 G (6= 1) 41) + 62 1) 2
—2(k — D)imagpas(k +7+1)(k+7) — (k= 1) (pg — 1) m (IQ +r+1) )
a1 =2r% ((k* = 1) pg + 1) ((k +7)* (mgpa (& — V)pg + 1) + (k — l)paﬂ)
+ (1= K)Magpas (26 + 7+ 1)(k+1) — (k= 1)* (pg — 1) mZs(k + 1+ 1))
as :T(Q(K—l)maﬁpaﬁ(ﬁ—{—T) ((1—/{),05 (7“ —2/{(/@—}—1)—{—7“) —|—I€(T’ —l—r—|—2) + K (7“—{—2
—r(r+1)) + (5 + 1) (mgpa (k= Dpg +1) (k = V)ps(r — 2k — 2) + 7 — 2)
+(I€—1)piﬁ ((k=1)pg(r—2k—2) — Kk(r+2) 7‘—2))
+ (k=1 (pg — D)mlg(r+r+1) (2 (s —1)p5—|—r + K(r +2) +r+2)),
ag =7 (2(k +7)* (mgpa (1 = £)ps (k= Dpg + 5+ 3) = 2) — g (v — 1)?pp + &> = 1))
+4(k — 1)Mmagpas(k + 1) ((/{2 — 1) pg+r(k+r+1)+ 1)
+2(k = 1)%(pg — 1)mis (5 = 1) pg + 6(k +2) +r* + 2(k + 1)r + 2))

)
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ay = —(k —1)? (pg—1) miﬁ ((KQ — 1) pg + 2K + 1)
+ (5 +7)? ((k = Dpag (k= 1pg +2) = mapa (& = 1)pg + 1) (ps(1 — &) + 2r — 1))
+ 2(k — Dmappas(s + 1) ((k = 1)pa(r — k) +r — 2k)

as = 2(k + r)2 (mgpa (k=1)pg+1)+(k— l)piﬁ)
—2(k = 1)magpag(26+ 7+ 1)(k+71) —2(k — 1)? (pg—1) miﬁ(/{ +r+1),

ag = mgpa(k + r)? —2(k — 1)mapgpas(k +1) — (K — 1) (pg—1) miﬂ.

We first show that such a root exists; in fact, we show that exactly two positive roots of P
exist. We break the analysis in a series of claims.

1. The polynomial P is (for general parameters) irreducible and cannot be solved by
radicals.

2. The coefficients ag and ag are strictly positive.
3. The polynomial P has at most two (real) positive roots.
4. The polynomial P has at least two positive roots.

We then show that these roots yield values of different signs for the candidate A\g providing
a criterion to select the correct root. (An alternative selection criterion, of course, is to
compare the value of the objective at each of these two roots.)

Step 1: P cannot be solved. For this it suffices to use a simple (not nongeneric)
example. We consider the case of three signals (the first one being the only nonexclusive
one) with a1 = = a3 =1, fy =0, =k, k =1,2,3, v =1, r = 3, giving (up to a
multiplicative constant),

P(x) = 15172°% 4 103562° + 1555221 — 3138823 — 979772% — 59688z + 7154.

Irreducibility can be determined using the Mathematica® programming language, using
the (exact) command IrreduciblePolynomialQ. The GAP package RadiRoot formally
determines whether a given polynomial has a solvable Galois group; applying it to this
polynomial establishes that it does not, and hence, its roots cannot be expressed by radicals.

Step 2: The coefficients ag, ag are positive. First, we note that

piﬁ < (1= pg) mgpa, (OA.78)

as
Pag — (L= pg)mppa = (Mag — nap)® — (Mo — nq) (mp —ng) <0
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by the Cauchy-Schwarz inequality. Hence,

ag = mgpa(k + r)? —2(k — Dmagpas(k +1) — (K — 1)2 (pg—1) miﬁ
- pi,@(’f +7)?

1 —pgs
(5= 1) (05 — 1) s + pas(s + 1)

prm— >0.
1 —pgs

— (k= 1)%(pg — 1) mlg — 2(k — 1)magpas(r + 1)

As for ag, we first note that we can ignore the factor 72 ((/{2 — 1) pg + 1) (positive).
Using also (OA.78) to minorize mgp, (its coefficient being positive), we have

(k4 7)? (mgpa ((K* = 1) ps + 1) + (5* = 1) plg)
)

—2(k — 1)kmagpas(k +7+1)(k+71) — (K — 1)? (pg —1) miﬁ(ﬁ +7r+1)?
> —2(k — 1)kmagpas(k + 17+ 1)(k+71) — (kK — 1)2 (pg—1) miﬁ(/@ +r 4+ 1)2

+(H—|—T‘)2 (pa,é’ (("i _1) ,Oﬁ+1) + (K2_1)p36>

1 —pg
_ (k—1)(pg — 1) mag(k + 7+ 1) + kpas(k + 1)) 2
L—pg

9
which is positive.

Step 3: The polynomial P has at most two positive roots. We establish this result
by applying Descartes’ rule of sign, which states that an upper bound to the number of
positive roots of a polynomial is given by the number of changes of signs in the sequence of
its coefficients. We show that the sequence changes signs twice at most (in fact, exactly,
though we won’t need this).

We define
(k—1)pg+1
ng=——————
r
(52 =1 ps+1
C = 7’2 )

2(k = 1) ((k = 1) (ps = 1) Map + pap(s + 7)) ((Pap — Map) (K + 1) + Map(k — 1)pp)

Gap = y
r ((/@ —1)2(1 - pp) miﬁ + mgpa(k + 1) — 2(k — 1)magpas(k + 7“))
(k=1)(r+1)mas(s+7)((pp—1)map+pas)
p = o (("i—l)(Pﬁ—l)ma5+Paﬁ(n+r))(ma/j(n+r—(n—1)p5)—paﬁ(n+r)) +1

2r
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This corresponds to the consecutive change of variables

VE—1(k+71)’
VE—1"
TG0

2 (Yap (K —11p) = 1) (ap (k =g +7+1) = 1)

_, Za(Wag¥ag (Yag (115 — K) +2) +1)
mg(k +r)?

K2+ k=12 £ D+ (2rp — k) (rng — 1) — rng — 2670 + K1 + 11

Yol = e —rng) (k4 1) (r— 2 + 14+ 2) — (rmg — 1) (5 — 27 + 1))

pagﬁzl:

Map —

WaB —

« )

2 _
H_>C7‘ s
rng — 1
rng — 1
_)
2] 1

where

D= (r+1)y/(rms — 1) (5 — 200 + 1) + (1 — 12

The sign in front of p,g is chosen positive (negative) if mqg is positive (negative), and
similarly, the sign in front of D is positive if

((k =1) (pg = D) map + pap(k + 7)) (Mag (£ + 1 — (k= 1)pg) — Pap(k + 7))

is positive. Finally, we do the change x — rz.
We note for future reference that ¢,ng > 0, and also

2 _
C_nﬂ_ 7”2

which implies in particular that
¢+ = 2mg > (¢ —mp)* > 0.

(We occasionally take the square root of the left term in what follows.)
Up to a positive multiplicative constant (namely, ag), P is equal to P, where

]5(,2) = by + b1z + baz? + b3z + byt + bs2° + 25,
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with

bo = ¢ (¢ +¥gap) ;
b1 = (¢ (215 + gap) »

1
by =3 (—277,6’ (2€ = 18) — gap (40 — L)ng + ) — |ga5‘\/m> ’
by = =2 (7 + ©) = a5 (05 + ¥) = lgasly/C + 42 ~ 20ms

1
ba= 3 (2 (158 —2)ng + gas (g +¥) — |ga5|\/m> ’

b5 = 277B + Jap-

We already know that by > 0 (since by = ag/ag), and it is plain that sgnb; = sgnbs. We
now show the following in turn.

The coefficient bs is negative. (This is not entirely obvious because both ¢ and g, can
take either sign.) Without loss, consider the case in which g,g < 0 (the other case is entirely
symmetrical). If 1) > 0, then go3 > —(/% (because by > 0) and so

b3 = gagp <\/m— g~ ¢> —2(n3+¢) (OA.80)
 C(CEE 0~ + ) + 2
,(/) ’

an expression that is readily maximized over the domain {v,(,n5 : { > 77%}, with maximum
0 at (¢,¢,mg) = (1,0,0). If instead ¢ < 0, the maximum of (OA.80) over g,z and
{0, mg = ¢ > n%} obtains at gog = 0, and (1, (,n3) = (—=1,0,0), and is equal to zero as
well.

We note that this implies that there can be at most one switch of sign in the sequence
{bo, b1, b2, b3} if be < 0, and similarly on {bs, by, b5,bs = 1} if by < 0. The conclusion will
follow more generally if by > 0, then b; > 0 (and similarly, if by > 0, then b5 > 0).

If by > 0, then by > 0. Suppose not, that is, suppose by < 0, or gog < —21m5(< 0).
Clearly then

by = % <2776 (g —2C) + gap <\/C +1p? = 2¢mp + (1 — 4)ns — w))

is largest when ( is smallest. Either the relevant constraint is (OA.79), and substituting
for ¢ into bs to majorize it, we are left with an expression that is easily seen to admit as
maximum over

{(gap:m8: %) : 213 + gap < 0,13 > 0777;23 + 1 gap }
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the triple (gag,n8,%) = (—1,1/2,1/4), equal to 0. Or the constraint ¢ + 1g,g binds,
and eliminating ¢, the maximum over {213 + go3 < 0,73 > 0} is seen to be 0, achieved at
(9B, Mg, ¥) = (—1,0,0). Hence, by < 0.

If b4 > 0, then b5 > 0. This case is handled exactly as the previous one: if b5 < 0, then
gap < —2np(< 0), and by being decreasing in ¢, we majorize by by replacing ¢ by its
minimum value, corresponding to one of the two constraints; we then consider the two
possible binding constraints for ¢, > 77[2_3 > 0,( +YPgas > 0, and show that the maximum
is 0.

Step 4: The polynomial P admits at least two positive roots. Because ag > 0

and ag > 0, it suffices to show that P(z) < 0 for some z > 0, or equivalently, P(z) < 0 for
some z > 0. We consider the polynomial @) given by

Q(z) =23 +ng(z — 1)z — (.

Its coefficients are given by (—(, —n3,n3,1). Hence, recalling that nz > 0,{ > 0, it follows
that Q has at most one positive (real) root. Yet clearly, Q(0) < 0 while lim, o, Q(z) = 4o00;
in fact, Q(\/ﬁ) = 7}% — ¢, which is negative, given (OA.78). Hence, ) admits exactly one
root z* in the interval (/7, 00).

We will show that P(2*) < 0. At z*, it holds that ¢ = (2*)? +-15(z* — 1)2*, by definition
of Q. We eliminate ¢ from P using this identity, and obtain that

Pt = 5 (14 27) (26 4+ 1a((" = 15" = 20) + 90 = D2

~lgosl#* (2 + DU s (G = )5 —20)+ ()

We argue that the negative last term dominates the (possibly positive) other terms appearing
in the brackets. To do so, compare their magnitude by taking the difference of the squares,
and compute

(=) (" + 1) (V2 s (= = 1) 2" = 20) + (°)°)
— (26" 4 mp((z" = 12" = 20) +w(=* — 1))
2
= (20 = 2+ 2) s+ 2) ()2 = ms),

2

which is positive, because z* >, /n3. Hence, ]5(2*) < 0.

How to select the root. We have not only shown that P, or P, admits two positive
roots z < z, but have found in Step 4 a value 2* such that z < z* <Z. By definition, the
value of z* is the root of a polynomial, defined in Step 4 as Q.
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The rational function that gives \g as a function of x is equal to

_ Qu1(2)Qs(2)
Qs(x)

where @ are polynomial in z, with @; being cubic and Q2 quadratic (with a negative
discriminant, and hence no real roots). Applying the same change of variable to () as
in Step 3, we obtain a new polynomial, which is precisely (up to a positive multiplicative
constant) Q. Hence, Q changes signs at z* /7, resulting in precisely one of the two roots
being associated with a negative value for the corresponding \g. We omit the details. m

Q(x)

OA.11 Proof of Theorem 5.4 (and Th. B.13)

We proceed as for the other three cases. The first half of the proof derives a candidate
optimal rating, while the second half verifies that the candidate rating just derived is
optimal. We recall that the constants mg, mg, mqg and s are defined in Section B.3.1,
while the constants m[, mg, mgﬁ, mé, m%, me, 8 and & are defined in Section B.3.3.

OA.11.1 Candidate Optimal Rating

We continue to use the shorthand notation of the proof for the exclusive cases:

K K
Ut) = Bru(t), V()= opup(t),
k=1 k=1

Uo ::/ Ut)e tdt, VO::/ V(t)e " dt.
0 0

We maximize ¢/(A), with A the stationary equilibrium action of the agent, among all
public information structures with nonexclusive signals S, ..., Sk,, that are generated by
some rating process Y that satisfies the variance normalization Var [Y;] = 1 and that is
proportional to the market belief. We express such a rating process Y via its linear filter
u = {ug},

K 00
Y, = Z/ up(t — ) [dSks — apA* ds].
k=1"0

Proposition B.11 and Proposition B.9 yield the constraints that ¥ must satisfy to be
proportional to the market belief. Namely:

1. The constraints of nonexclusivity: for every nonexclusive signal S,

COV[QI‘A }/;f] COV[Sk,ta }/t-l-T] = Cov [Sk‘,ta 0t+T]7 Vt) VT > 07
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or equivalently,

Cov|0y, Yy Cov[(Sk,t4r — St), Yirr] = Cov|[(Sk4r — Skt), Otsr], vt, VT > 0.

2. The constraints of publicness, together with the variance normalization:

Cov [Y;, Yy ] =€, vr, V7 > 0.

Recall from the proofs of the optimal ratings for the nonexclusive confidental and
exclusive public cases, in Sections OA.9 and OA.8 respectively, that the constraints can be
expressed in terms of the linear filter of the rating process as follows:

Gu,1)=¢" and Hi(u,7)=pr(l—e7) Vr>0,Vk=1,..., Ky,

with
2 o] [ee) ) ) K o]
G(u,7)= 72/0 /0 U@ U (j)e P didj + Za,%/o u(s)ug(s + 7)ds,
k=1

Hi(u,7) = [/0 U(t)e‘tdt} [oi /OTuk(s) ds+6k;2 /; /OO U(j)e =l didj| .

=0Jj=0

We solve a relaxed optimization problem with 2 + K constraints: one constraint is
associated with the variance normalization, one constraint associated with the constraints
of public ratings, and one constraint associated with each nonexclusive signal. Specifically,
we maximize F'(u), defined as

Flu) = [ /O T U@t dt} [ /0 T Vet dt} ,

and equal to a constant times ¢/(A), subject to

G(u,0) =1,
& 1
/ e ""G(u,T)dr = ,
0 1+7
/ooe_”Hk(u,T)dT: L, Vk=1,..., K.
0 r(1+47)
Assume there exists a solution u* = {uj}, to the above problem that is four times

continuously differentiable, integrable, and square integrable, and which in addition satisfies
the continuum of constraints of the original problem.

V.47



Let

L (u, gy A, {>‘T7k}kSK0) = F(u) + )\()G(u, 0) + A / e*”G(u, T) dr
0

Ko o
+ E )‘m'/ e ""H;(u,7)dr.
i=1 0
Assume there exist Aj, A], Artse - ,)\; K, such that u* maximizes

w L(w, A, AL <o) -

Assume A} /A§ > —r. We will choose these constants in such a way that there is a unique
solution to the unconstrained maximization problem (up to a scalar factor), which in
addition solves the constraints of the original problem.

In the sequel, we drop the star notation for simplicity. Throughout, let

2 i 616’72 T > N —li—j] 4: 3.
zi(T) = Uk:/ ug(s) 5 / / U(j)e "7 didj.
0 i=0 Jj=0

As in the other three cases, we apply Proposition OA.1 of this Online Appendix, and
get the following first-order conditions: for all k and all ¢, it holds that Ly (t) = 0, where Ly,
is defined as follows.

If k£ indexes an exclusive signal, then

Lk(t) = ankefrt + Vbﬂkeft
+ Xo <zaguk(t) + %8s, / U(j)e b=t dj)
0

+ )\10,% / e " ug(t + 1) + uk(t — )] dr

+ At / / e Tt djdr
+A15k/ / Jelerr=il 4 dr

+ Bre tZ)\M / ez (r) dr
0

26—7’1‘ e—t Ko 51,,}/2
+ UoB [r(l —r?) B r(1— 7’)] ;/\m’ 2
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If k£ indexes a nonexclusive signal, then
Li(t) = Upoye™ ™ + Vo Bre™"
+ o (2a,§uk(t) +725k/ U(j)e i dj>
0

+ Mo} / e " uk(t +7) + up(t — 7)) dr
0
2 00 00 )

+ Alﬁ,ﬂ/ e”/ U(j)e i+t djdr
2 Jo 0

2 0 0 )
+)\15ké/ e_”/ U(j)e_“'”_]ldj dr
0 0

Ko 00
+ ,Bkeit Z /\r,z‘ / e "z (T) dr
i=1 0

2e Tt e’ < pin®
. )\ri
+Uoﬁk |:7"(1—T2) 7"(1 _T):| zz; 2

efrt

+)‘r,k:U00']% e

We first obtain conditions on u; when k indexes an exclusive signal. In a similar fashion as
in the case of public exclusive information structures, we obtain that

Li(t) — LL(t) = axUp(1 — r?)e ™
+ 2)\00’2 [uk(t) — u/k’(t)} + 2/\0’725kU(t)

+ Mo} / e "M ug(t+ 1) +up(t — 7)) dr
0
- )\1013/ e up(t+ 1)+ ul(t — 7)) dr
0
— Ao} [—re " ug(0) + g, (0)e "]
+ M2 B / e "TU(t+T)dr
0

2 &0

Z)‘ ﬂz"YQ
r L=t g
=1

+ Uo Bk

Let
pr(t) = Li(t) — Li(t),
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and let

Ji(t) = /000 e " [u(t +7) + up(t — 7)) dr,

Observe that
JU(t) = —2rug(t) + r2 T (),

and, inserting Ji in py:

pk(t) = OékU()(l — Tz)eirt + 2/\00’%(uk(t) — ’U,Ik/(t)) + 2/\0’)/2ﬁkU(t)

26—7’15 Ko ; 2
+2rhofus(t) + M (1~ 2o i(1) + My (1) + Ui oy AM-BT”.
=1

After differentiation, we get

() = r?aly(1 — r?)e™" 4+ 2o} [uy (1) — ui" ()] + 22072 8U" (1)
+ 2r A opul (1) + A (1 — r?)op [—2ruk(t) + r2Ji(t)]

2 2 2 20 &\ B
+ Ay B [=2rU () + 12T (8)] + r*Uo B — Z;)\W-Q.

Finally, let
qi(t) = pi(t) — rpr(t).

We have
qr(t) = 2/\00,3 [u'k’(t) — u’,;”(t)] — 7'22)\00,% [uk(t) — ug(t)]

+ 200728, U" (1) — 2r° X2 BrU (2)

+ 2r\popul(t) — 2r* N otu(t) (OA.81)
— 2r Ao (1 — r?)ug(t)

—2r M2 BRU(2).

We must have g (t) = 0 for all k£ and all ¢, and this defines a differential equation that wug
must satisfy.
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Now, let k denote the index of a nonexclusive signal. We have:
Lk(t) — L/k/(t) = aka(l — T2)€7Tt + 2)\00’2 [uk(t) — u%(t)} + 2)\0’}’2,8kU(t)

+ )\10’2 / e " ug(t + 1) +uk(t — )] dr
0

o0
— )\102 / e T [u%(t +7)+ u%(t — 7')] dr
0

K

2677'25 0 ,3 2 efrt

+ Uy By Z)\m‘ Z;/ +(1_T2))\r,kU00_]% o
=1

Compared to the case of exclusive signals, we note the presence of one additional term in

the expression for Ly (t) — L{(t). However, this term being a constant factor of e~ the

chain of transformations we used for the case of exclusive signals continues to yield the

same equation (OA.81). Hence, the differential equation obtained for uy, by setting g = 0

when k denotes a nonexclusive signal, is the same as when k denotes an exclusive signal.
Thus, multiplying (OA.81) by ki and summing over k’s, we get

20

szl fo%qk(t) = o (U"(t) = U™ (1)) = r*2(U(t) = U"(t)) + Aov*msU" (1)
) — Xor*PmpU(t) +r2U" (t) — rAU(t) — rAy*mpU (t).
As U is bounded, we can discard the positive roots. We conclude that U has the form
U(t) = Clef\/mt + Ce™ ", (OA.82)

for some constants C7 and Cs.

Since ), %qk = 0, U is the solution of a homogeneous linear differential equation,

whose characteristic polynomial has roots /1 +v?mg = £k and £/7(r + A1 /Xo) (recall

our assumption that A;/Ag > —r).
Next, let us fix an arbitrary pair (4, ) with i # j, define (;;(¢) = 2(Bio2u;(t) —Bja?ui(t)).
We have

Bipi(t) — Bipi(t) = Mo(CF5(8) — G (1)) = r* Ao (i () — ¢15(8)) + rAaGi (8)" — rAaGij (1),

and since 3;p; — B;p; = 0 must hold, we obtain a homogeneous linear differential equation
that (;; must satisfy. The roots of the characteristic polynomial are &1 and £/ (r + A1 /o).
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As (;; is bounded, we can discard the positive roots. We conclude that (;; has the form
Gi(t) = Cle VDot 4 Coest 1 Che ™, (OA.83)

for some constants C| and C%.
Putting together (OA.82) and (OA.83), it holds that

up(t) = Dy pe VMt L Dy emrt 4 Dy et (OA.84)

for some constants D, Dy and D3 ). We can anticipate that Dsj = 0, because U does

not include a term et.

Determination of the Constants

A

We plug the general form of uy, from (OA.84) into the expression for L. For both exclusive
and nonexclusive signals S, Li can be written in the form of a sum of three exponential
terms, namely

Let

Ly = Ll’ke_(st + LQ’ke_Kt + Lg}ke_t + L4’k€_rt,

where the constant factors Lqy, Loy, and L3} depend on the primitives of the model,
as well as on the constants Dy, Dy and Dsj. Asserting that Ly = 0 is equivalent to
Liy=Lox=1L3p=0.

We solve for the constant factors Dy, Doy and D3y, k=1,..., K, as well as the vari-
ables Ao, A1, A i, using both the first-order condition that L; = 0, and also the constraints
Gi(u,7) =€ 7 and Hi(u,7) = (1 —e™ 7).

First, we note that for both exclusive and nonexclusive signals Sy, the term Ly, is

2 (/\0 (7“2 — /€2) + /\17") (’)/Qﬁk Zi:lK 52'D27Z' — (HQ — 1) O’%DQ’]C)
(k=1 (k+1)(k—7r)K+T)

By assumption, we have

()\0 (7“2 — /12) + )\17’) #0,
which, together with L, = 0, implies that

¥ Br Z BiDs; — (k% — 1) 0jDay, = 0,

i=1K
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so that, for every k,
Dy =a—. (OA.85)

3,k erUof’; D Bidai+ B> Girai
=1
202 ()\0 (7“2 — 1) + Alr) v B4, ()\0 (7‘ — 1 + )\17“
r?2—1 Ds, (r—1)(r ZB"

V2B (Ao (r? — 1) + Air)
(k—1)(r2 = 1) 1%, BiDay,

for some expression (; (whose expression is lengthy and therefore omitted). Thus, as

VoBr,

>\0 (7"2 — 1) +)\1T 75 0,

solving for Ds j, in the equation L3 = 0 yields that D3 is proportional to 3/ a,%. Moreover,
the term e~! vanishes in (OA.82), which yields the equality

K

> BDsi =0,

k=1

which, in turn, implies D3 = 0.
We have thus identified two factors. Therefore, we may already write

ug(t) = Dy pe~ Tt—l—aﬁk Kt
k
Using this simplified expression for uy, we also get
PBulr +7+2) o
(T + 7+ k
= D
C’“ 2(7 + Dr(r +1)(7 +7) ZB’ (rr) "

aBr (V*mpg(k + 1+ 2) +2(k+1)(r+1))
2k + Dr(r+1)(k+71)

Given this simplification in the expression for ug, we now get to the remaining equations
that characterize the unique solution to the problem. These are the equations (OA.86a)—
(OA.86e) below. The numerator of Lyj for an exclusive signal S, must be zero, which
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yields the equation

Ko
0= —v*UoBk(r — 7)(r — k) Z Bixa; — Mir (r® — 1) of(r — k) D1 g

=1 OA .86a
+7r(r—r1) (a)\lﬂk ('meB —r24 1) + (7“2 — 1) Upa(r — /@)) ( )

+ 72>\1r,8k(r — R).

The numerator of Ly for a nonexclusive signal S must be zero, which yields the equation
0=—UoB(r —7)(r —x (Z Bida, )
+(r—1) ((r —1) Uooz(r — k) Aa g + airfy (72m3 —r? 4 1) +r (r2 — 1) Upay(r — k)

K
- >\17’ (7"2 - 1) O’,%(T’ — H)Dl,k + ’}/2)\17’,3k(7’ — /1) Z ﬁiDl,k-

i=1
(OA.86Db)
Because L3 = 0, we must have
2 Ko Ko
7 Uo Bk
= m Z Bira,i + Bk Z GiAg,i
ﬂk (av*mg (Ao (r* — 1) + A7) + (k= 1) (r2 = 1) Vo) (OA.86¢)
CERIGES
Y Bkz ()\0 (7“ —1 +)\1’I“
+ (7_ — 1) Z B’LDI k-

The public constraint, i.e., the equation Gy(u,7) = e 7, also yields an equation that
involves a sum of three exponential terms, and can be written as

_5 _ _
Gie " +Goe T =€,

where (G1 and G3 are constant factors obtained by plugging the expression derived for uy
above into the definition of the function G(u, 7), and by simplifying the resulting expressions,
using k2 =1 + 'meﬁ.

We must have G; = 0, which yields the equation

(T +7( ’ 1 2 12
0= (2 T+I€ Zﬁlez Zﬁlez +§Zo—iD1,i'
k=1

(OA.86d)
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We then incorporate the constraint of nonexclusivity, Hi(u,7) = Br(1 —e™7), for every
nonexclusive signal Si. After plugging the expression obtained for u; just obtained, the
term G (u, 7) is expressed as a sum of three exponentials and a constant term:

Hk(u, T) = Hk,lei&— + Hk,2€77— + Hk73.

Because Hj o = 0, it holds that, for every nonexclusive signal index £,

VB e
Dip=——""—+ D1 i A.
1k = 1)o? kglﬁ 1, (OA.86e)

Finally, we must also have Go = 1, which yields

1 K BiD1;
Loy, (—ze=mBiDui ams )y (OA.86f)
2 T—1 k-1

where we note that

K
amg 1
Uy = iD1 .

0 ,{I+1+T+1k21/87, 1,2

However, we will not use (OA.86f). As will be verified, equations (OA.86a)—(OA.86e) yield a
unique candidate u, up to the scalar constant a which is pinned down by (OA.86f), and this
candidate satisfies the first-order condition, and the public and nonexclusivity constraints.

Throughout, we use the notation

mn

_ B

We describe (c}!, ¢f,, Ar i, Ao) as a function of A; and d; then, A as a function of §; finally,
we define § as one of the positive roots of some polynomial.

First, we briefly sketch how to solve the system, then state the solution.

1. First, we solve (OA.86a), (OA.86b) for ¢y, taking the sum ZkK:o ck Bk as a parameter.
We multiply each by Sk, and add them up, giving us an affine equation for Z?:o ¢k Bk,
which we solve for.

2. Using the solution for each ¢, we obtain an expression for each of them, which is a
function of A1, Ag and S0 BrArk

3. We plug the formula for ¢x, k < K in (OA.86¢), which yields an equation for each
Ak (as a function of A\, A9 and 25200 BrAr k)

4. Taking ZkK:(’O BrArj as a parameter, we solve for each A, multiply by 3, add them
up, which gives us an affine equation for Zf:oo BrAr.k, which we solve for.
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5. We plug back into each of our formulas for ¢;, and A, j, and obtain a solution for each
of them, as a function of \p, A1 and § only. Using that A\g = %, we may eliminate
Ao altogether, and obtain the formulas for ¢ and A, ;. given below.

We then turn to (OA.86d) and (OA.86e). Substituting for ¢, and Ay, (OA.86e) becomes
a quadratic expression for \; (and independent of Ag), while (OA.86d) is quadratic in A\
and affine in Ag. Using that Ao = 53715, this becomes another expression that is quadratic
in A; and independent of A\g. We may eliminate the quadratic term by taking the weighted
average of these two quadratic expressions, thereby obtaining an equation that is affine in
A1. Solving it gives us A1 as a function of § only, given below. Using that Ay = %, the
formula for Ag follows. Plugging these two formulas into either quadratic expression gives
us a condition that § must satisfy, which turns out to be precisely P(0)P*(d) = 0, with P
as defined below, and P* a product of polynomials of degree no larger than two that admit
no real roots.
The above procedure yields the solution

Cok

(S )

k Rk ) k Rk )

where k is the index of a nonexclusive or an exclusive signal, and Cj,Cs ) and Ry are
given by

Crr = (K7 —1) (6 — 1) (mag (r* = 1 — (k* — 1) pg)
+(k+7) ((m+ DA (pg — 1) +ma5 K — r))) ,
Co=(r—0) ((k+1)Bk (0—1) ((r+1)map(6 —+1—7)+(k+7) ((0+1) A +mps(r—9)))
(52 = 1) s (5 — Dy — M (s + 7))
+ (6 — w)agma(k+7) (k+ 1)pg(6+ Kk —1r—1) = (6 = 1)(r + 1))),
Ry = (k+ L)op (1 = 8)map(6 —7) (r* =1 — (k* — 1) pg)
+(r—r)(k+71) (M ((/{2 —1)pg — 6%+ 1)+ (6 —1)m{5(0 — r)) .

The Lagrangian coefficients A, are given by

N Lo
r,k - R;ﬂ b

where
Log =71 ((k+1)B ((r+ 1)mag(6 — 1) + (k+7) (AL(6 + &) + mis(r + 1 =6 — K)))
+apma(k+7) (K +1)pg(d +r—r—1)+ (1 =0)(r +1))),
R}, = aimg(/@ +7r)((0—-1)(r+1)—(k+1)pg(d+K—1—1)).
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Finally,

Ao = 52ri1r2'
It is time to define Ay given §, namely
N T (R0
where
Qr=(6+1)(*—7r) = (k—1D)pg (r(6 + K+ 1) — 6?),
and

Q2 = (K* — 1)2 (1—pg)mig ((k+1)ps(25 + £ — 1) + (6 — 1)?)
+2(k* = 1) Ma Mg (r* — &%) ((k+ 1)pp(26 + £ — 1) + (6 — 1)?)
+ (k1) (mgmg, (k+ Dpplr +1 =68 — k) + (0 = 1)(r +1))?
+ (s + 1) (me)? (5 + Dpg(r+1 =6 — K)>+ (1 = 6)*(k — 2r — 1)),

61 = do + d16 + da6? + d30® + dud* + ds6° + dgd®,

do = =1 ((s* =1) ps
+1) ((k=1) (pg—1) map (2(k+ 1)+ (5+1)ps (— (=267 +7(r+2)+2)) +r(k+7+2))
+mgs(k+7) ((k+1)ps (2%2 —26(r+1)+7r)+r(r+2)—r1)),
di = 1 (8 = 1) ps + 1) (5= 1) (5 — 1) mas ((+ D)5+ 1) — 4r(s + 1)py)
+mog(k+71) (pp(—r(dr +1) + 3k +7r+1) + (k= 1)(r + 1))) ,

+(k+1)ps (55—2 (k*—1) pg(—2k+2r+1)+£*(r+1)+rr(r+2)—r(r(r+3)+9)—4)

+r(Br+r(k+r+3)+5)+2) +miz(k+r) (k

+pg (K(k(k+5) = 2) + (k* = 1) pg (k(4x — 1) +2r* — (T + 1)r — 1) — (k — 3)r* +

(k(K*4+r=10) =2)r —2) + (k= 1)r* + 36r +r + 1)),
ds = mgg(K

+7) (ps (2(k = 1) + K% (=4r® + 7+ 1) + k7 (r +7+6) + £*(3r — 1) —r(r(r +5) +2))

+ (k=1 (=r—1) (rPP+1) + (k — 1) (6 + l)p%(m +r(5k —4r — 1) — 1))
—(k=1)(pg — 1) mag ((r +1) (r2+1) (k+7)

— (k+1)pg (k— wr® +4 (k* = 1) rpg + £*(3r — 1) + (r +5)r)) ,
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dy = —mgg(k +7) (—k
+pg (5 (K2 +K+2) + Br = 1)r? + (k — 1) (5 + D)pg(k —2r — 1) — (46 + K +5) r — 2)
+r(k+rr+r4+3)+1) —(k—1)(pg— 1) mag (—&
+ (k+1)pg ((/@271)p5+52+572r273(n+1)r+1)+r(ﬁ+r(n+r+3)+3)),
ds = (k= 1) (pg = 1) Mg ((r + 1) (5 +7) = 4r(x + 1)pp)
+m35(/<;+r) (pp(—k(Ak +1)+3kr+r+ 1)+ (k—1)(r+1)),
do = g+ 1) (—(+ )pg — 5+ 20 + 1) = (5 — 1) (p — 1) ms (5 + 1)+ 5 — 7).

Finally, we are left with pinning down §. Namely, § must be one of the roots (if any) of the
polynomial P, defined as

P(x) = ag + a17 + agx® + azx® + agx* + azz® + aga®,

with

ao = 7° ((K* = 1) pg +1) ((k + 1) (mgmg, ((* = 1) ps +1) + (k2 = 1) (m&p)°)

( k1) = (k=1)% (pg = D) mig(r + 1 +1)%),
a1:2r2((/€ —1),05—1— )((H—{—’I“) ( smg (k= 1)pg+ 1)+ (k—1)(m aﬁ)Q)
+ (1 — K)magmig (26 + 1+ 1) (k + r) — (k—1)?(pg — 1) aﬂ(/ﬁ—i-r—i-l)),
agzr(2(m—1)magma5(m+r) ((1—m)p5( — 2K (/<a+1)+r)+/£(7“2+7“+2)+/<;2(7"+2)
7T(T+1))+(I€+T) (mﬁm (k=1)pg+1)((k—=1)pg(r =26 =2) + 1 —2)
+(k—1)(m aﬁ) (k= 1Dpp(r —26—2) —k(r+2)+r—2))
+ (k=12 (pg—1)m aﬁ(/@+r+1 (2 (m —1),054—7" + K r+2)+r+2)),
az =7 (2(k+1)? (mgmg, (1= w)pg ((k = Dpg +£+3) =2) = (mp)* ((k —1)*pg + K% — 1))
+4(k — D)magmegg(k + 1) (( ~1)pg+r(c+r+1)+1)
—}—2(/{—1)2(;)5—1) aﬁ((” —1)p5+/€(/{—|—2)+7’ —l—2(/{+1)7‘—|—2)),
a4:—(f1—1)2(pg—1)m36 ((m2—1)p5—|—2/§—|—1)
+(r47)? (k= 1)(mG)* (k= 1pp +2) —mpmg, ((r—1)ps +1) (ps(1 = k) +2r — 1))
+2(k — 1)maﬁmgﬁ(“ +7) ((k = )pp(r — k) +7 —25),
2 (mamg, (k= Dpg +1) + (5 — 1)(mgp)?)
—2(k = Dmapmes(26 + 7+ 1)(k +7) — 2(Kk — 1)? (pg—1) miﬁ(/@' +r+1),
ag = mem&(k +1)* — 2(k — Dmagmeag(k +1) — (K — D2 (ps — 1) miﬁ.

—2(k = )rmagmegg(k + 7+ 1)
(
1

(
(
)

as =2(k+ 1)
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OA.11.2 Verification of Optimality

We verify that the candidate for optimal ratings just obtained is optimal. As in the
other three cases, we use the auxiliary setting introduced in Section OA.5, but we redefine

the principal’s instantaneous payoff.

We introduce the extra state variables A, A, ..., A% , with initial value
AO = 07
r 1 —r(t—s)
k0 — € dSk,S)
T Js<o

and which evolve according to
dAg = —rA;dt + Yy dt,
1

We let the principal’s instantaneous payoff function be defined as

H, = C/(At) - ¢1Yt(Yt - Vt)

Y; &0 Bk(’{Q — 1) T
— oYy <1 T At) +Z¢3,k <2mﬁr(1—|—r) Y;tAk,t> )

k=1

where ¢ is the fraction with numerator

Mas(r = 8)(pag(6 = 1)+ 1)(12 = 8)(k = 1) + (1 + 36 + 35 + r))

+ pa(2 = 1)(0% + 7(4+ 37 + 7% = 6%)) — 4r(r + 1)(6% - 1))

+ A1 (k+1)(r+ k&) (2r(52 ~1)(6+1) = pg(k —1)((r* +6*) (0 + k) +2r(1+6 — 52 +n))),

and denominator
(r+1)(r=8)0r+d)k-—Dr+r)((r+1)(6—1)+pg(l+r—06—r)(k+1)),

with, as in the first half of this proof, pg = mj /mp and pog = Mg /mqp. Additionally,

(r+ )0~ 8*)

QSQ = r+ 52 ¢17
Qy
b3k =T
Ok
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rtR) (maﬁa + ) (= 4 6) + (r+ /) (mIg(L+7 =8 — k) + (6 + H))\l)) 5,
(r+ 8&)(ma(L+7)(6 = 1) + m(1 +7 — 0 — k)(1 + k) o2’

where \; is defined by Equation (OA.87) in the first half of this proof. In the remainder of
this proof, we also use the following notation:

Ko
D3, = § aRQ3 kK
k=1

L R (mas (4 7)(=r+8) + (+ K)(mIs (147 = 8= K) + (6 + 1)A1) )
« (r+r)(mg(L+r)(6 —1) +mE(l+r—6—r)(1+kK))

— n
=rm Moa;

Jo
O3 5= Z Bro3,k
=1

P14 1) (mag(1+ 1) (=7 +6) 4 (1 + K£) (ms(1+7— 3= &) + (6 + A1) )
(r+6)(ma(l+r)(0 —1)+mi(l+r—0—k)(1+k))

=Trmgs — mg.
The value of A is defined as in Section B.3.1.
Compared to the benchmark confidential exclusive setting, the principal’s payoff includes

2 + K penalty terms. The penalty terms ¢1Y;(Y; — 1) and ¢2Y; (%
role as in the public exclusive case: they ensure that the optimal transfer of the principal

remains close to a public market belief (however, the two penalty factors ¢; and ¢y differ

Br(k?-1)
2mgr(1+r)

each nonexclusive signal Sj, ensure that the optimal transfer is close to a market belief
that incorporates the relevant information of the nonexclusive signals (compared to the
confidential nonexclusive setting, only one state variable per signal is required).

The principal’s problem is an optimal control problem whose state variables are: the
agent’s estimate of his ability v, the agent’s continuation transfer J, and the aforementioned
state variables associated with the public and nonexclusive constraints. The state variables
evolve as follows:

— At) play the same

from the public exclusive case). The penalty terms —¢s3 ( — Y}A,’;t), one for

—1
5 & % + Ck> [ASke — (e + Brre) dt],
k

K
dJy = (rJy = Vi) dt + (
k=1

K
-1
dvy = —kypdt + i Z &5 [dSk+ — axArdt],
mg k=1 O

dAt = (—TAt + Y;t) dta
1
dAzt:—TAztdt‘F*[dSk,t_akAtdt]a k=1,...,Ky.
b b ""

IV.60



As in previous cases, £g == >, BCr and C = [ . e Tug(7)dr.
As in the proof of the baseline exclusive setting detailed in Section se:excluconf, the
principal’s problem reduces to finding a stationary linear contract (A,Y), along with

processes Cy, k=1,..., K, such that, for all ¢, the principal maximizes

E [/ pe PO H ds
t

®|
subject to:
1. Incentive compatibility: ¢/(A4;) = o = >k aC.

2. The evolution of the agent’s belief v,

K
-1
dv; = —krp dt + A Z ﬁ—’; [dSk,s — s Asds].
mg 7 %k

3. The evolution of the agent’s continuation transfer .J,

K

~ 2 ~
th = (TJt — Y;g) de + Z (fﬁ’t(l—i-/ﬁ}’;(l—l-T‘)f'g + Ck,t) [dSk’t — (OzkAt + /Bkl/t) dt] s
k=1 k

with E/g = Ek 6k5k
4. The evolution of the state A,

dAs = (—rAy + Yy) dt.
5. The evolution of the states A}, for k =1,..., Ko,

1
dA}, = —rAL, dt + = [dSks — oA dt], Ve =1,..., K.
, , .

6. The following transversality conditions

lim Ele " Jir | Re] =0, and
T—+00
lim E[e "".J} =0.
Lo [T I [ R =0
Using dynamic programming without imposing linearity or stationarity of the transfer
processes, and assuming that the principal’s value function V' is jointly twice continuously
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differentiable, the HJB equation is:

~ y
V = su o« — pod —v) — po 7 _A
p 8 P 23 pd1y(y — v) — ppay <1 , >

Y,C15--,CK

_1) r _ J _ v _ A
—i—pZ(]ﬁ k(2m ) yAk>+(rJ YV =V + (=rA+y)V

2
Vi & & 1 — 1By
_pAT L ER A
+Z< it >Vk+ 2 ;U’“(mﬁl—i-rak—i_ck

+V”@w—1mvwv+vwm—m2+§§@”(@m—lmk+2 >

0.C
mp(1+7) 2my p mg(L+7)  FF
Ko
ka /8 Vkrg 2
+§3 +D_ 55 0h
k=1

As in Section OA.9 which proves the optimal rating of the nonexclusive confidential
case, we have used a short superscript/subscript notation for the (partial) derivatives of V|
where we use superscripts to denote the variables (v, J, A, A"), ~and subscripts to denote the
index of the variable A". Besides, we abuse notation by using §a and 55 to denote ), axcy

and ), Bicy, respectively.
We conjecture a quadratic value function V' of the form

V(J,u,A;A") = ap + alJ+a’v+d* A+ a’ Jv +a TA + a"PvA
Ko
+a?l T2 + a4 aM A+ Z (ap A}, + ail" JAL + af"vA}, + aﬁTAAZ)

k=1
+ Z rr T‘A’r‘

1<k<j<Ko

After substituting this quadratic expression into the HJB equation, we solve for the
optimal control variables y,ci,...,cx. The right-hand side of the resulting equation is
a sum of two quadratic functions, one in y, the other in (¢1,...,cx). These quadratic
functions are strictly concave when the following second-order conditions are satisfied:

P2

>0 and o’/ <0, (OA.88)
1+7r

o1+

We will later verify that, if the principal’s discount rate is low enough, the second-order
conditions hold. If the second-order conditions hold, then the first-order conditions yield
the values of the optimal control variables, which in turn allow us to identify the coefficients
of the quadratic value function.
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As for the public exclusive case studied in Section OA.8, there are two sets of coefficients
that satisfy the equations of the first-order conditions. However, only one solution gives a
state J that satisfies the transversality conditions. It is therefore the solution that we keep.

It is helpful to introduce the following variables:

¢ = (1+71)p1 + o,

b= \/g,(gr + o) (L +7)(2r + p)p1 — (2 — p)oa),
. (HT)\/wl(zrti)ga?wp)?

B = p+ (2 £ )6,

We then get:
a’ =a"=a"=a;, =0, Vk=1,...,Ky,

and
2r —

a’l’ = —8(7"5(7“ f)g (@,(27“ —p)+4o1rp(r+ 1) + ¢o(—2r — 22 — p+ 3Tp)>,

b @r=p)pp (201602414 ) + Bus(2p(r + 1) = p1(2+ 20 + )
©T T+ 1)(5+ 26+ pd)7s ’
2N (2r = p)p(pp + (21 + p)(P2 + rd2 — p9))

B 4r2(r+1)

S (1—7+p)in®ss | 2Py
3¢y 55

)

a” = [16(r2 — (149?97 +
y po o
16(r +1)(2 + p)(p + 26 + pd)?’
P*(2p — ¢+)( — 2010472 (1 = 7+ p) + B3,5(p4(—2r + p) + 20p(r + 1)))
4r3(r 4+ 1)(p + 20 + pd) P+

oM P(=p+ A +7)2r+p)p1 — (1—71—p)o)
8r2(1+r)

auA .

I

)

where the constants for the term a*” are given by

di = (147 +p) (- (42 = YA+ p) + P21 =1+ p) (25— 74))

sr(r + 1)olp — 52) ) )
T 20+ 00 . (_¢2(r+1)(2T+P)+2¢(T—1>2+<p+(2+p)),
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_ 92 _ 2 2 _ 9 2
d2:<2PP (I=r+p)+@-(4r"=p)(1+r+p) —P1p (1—7’+p)>

16r%(r +1)p(p — ¢+) _ i
- P+ 20+ po = (_¢2(7’+1)(2r+p)+2¢(r—1)2+<p+(2+p)>

X (2p¢ + 2rp — 2r, + ppy).

Next, for 1 < k < K,

Jr __ _p(4’r2 - p2)@—¢3,/€

U= 4r2¢, ’
= 90 (®as(— 20p(1 = 7+ p) + (20 — p)) + 2015472 (1 = 7+ p) )
ay = - = = ,
" 2r3(p + 20 + p9) @2
G P (Pr = 20) b3k
Ar2g.
Finally,
1 3 (B —p) s P .
. (1+r)p (;0;@5)%,1@%,3 if k< j,
Uj = Y (147)p° (B4 —p)2 ko
PR if k=j.

The constant term ag is unwieldy and irrelevant for the sequel. Therefore, it is omitted.
Having derived the expressions for a’”, let us briefly return to the second-order conditions.

Let us assume ¢1 > 0, which can be verified. The first of the second-order conditions given

by (OA.88) is B

®2 ¢ r(r+1)

= = >0
1+r 147 r 4 §2 1 ’

CLJJ (7"+5)2 ¢2
7%_ 2r <¢1+1+r><0'

Therefore, for p close enough to zero, the second-order conditions are satisfied.
The controls are then expressed as follows. If k > Ky, i.e., if Sy is an exclusive signal,
then

o1+

and, as p — 0,

(S, v, A AT) =

1<4r2<r+1>ak 2d(r +1)(k — 1)y <r+1><2r+p)@¢3vk)

¢\ (2r— p)ag mg(r + k)%(2r — p)a,% B TPy
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while if £ < K, i.e., if S is a nonexclusive signal,

o L4 (r+ Dy, 2da(r+ 1)(k — 1) By
c(J,v A A7) = (( (2r — ,0)0,% - mp(r + k)?(2r — P)01%>’

where

Ci=@_(2r —p) + (2r 4+ p)(ré1 + r’p1 — ¢o) + (=212 + 3rp),
(r + K)2r — p)o—(P3,6(20 = ¢1) + G194r(1 + 7+ p))

dg = —2m,, r2(1+2r+/£)—|— z aE
’ 7 (p +2¢+p¢)¢+

Finally,
b/ J
U A Ay = [0 Y
Y\J, Vs A, - bA A 3
b | AT
where
y — 2r—p)o-
drop
o (S (U +0))01 | 20p(r+1) + @4 (2 + 2% — 20— p) o
- = Iy z — = N — 3,8
p+ 20+ pd 2r3(p + 26 + pd)p+ g
ph — PP+ —2p)
dr¢ ’
. 1+7)p(2r +
oo _{ 2)p£ p)(bg.
TP+

In the above equations, ¢3 = (¢31,..., 03 K,)-
Plugging these controls back into the equations of evolution for the state variables, we
obtain a (3 + Kj)-dimensional stochastic differential equation:

Es(k—1)8 =
" I | metrier T O
v 14 x—1 B
A =ML, +; ™ o [y — a Ay df],
Al Al o0 /r
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where

T’—bJ —b”—}“—*r _bA _(br>T

0 —K 0 0
M =
b’ v W= (b)T
0 0 0 —rlg,

In these equations, Ix, denotes the Ko x K identity matrix, and e; € RX¢ is the vector
with one in the k-th component and zeros elsewhere. The matrix M has four eigenvalues,
—0p, —k, —1, —(r — p), where
5, =" —r
2¢
These eigenvalues are distinct and negative for sufficiently small p > 0 if the second-order
conditions (OA.88) are satisfied. Therefore, we can write

Ji
K
el _ Z/ (fl‘ge—ép(t—s) + fkne—n(t—s) + fge—r(t—S) + f]fe_p(t_s)) [dSks — apA, dt],
At k=155t
Ar
for some (3 + Ko)-vectors £, £, £ £ (k =1,..., Ko) that can be expressed in closed form

as a function of the parameters of the model (as in the other cases, the expression for p > 0
is lengthy and thus omitted). It follows that

K

Y; = Z/ uk(t — S) [dSk,t — oAy dt] ,
k=175t

with
ug(T) = F,fe_‘spT + Ffe ™ "m+ Fle T + F,fe_(r_p)T.

In the limit as p — 0, each factor converges, the first exponential to an exponential with
rate —0 and the last two to a single exponential with rate —r and factor Fj + ka. For
nonexclusive signals Sy, k < Ky, we have

B
29
O}

Bk
27
O

F) — ad®

Fi—a

F[ +Ff -0,
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while for the exclusive signals Si, k > K,

k Qg
F) —>a (ce/BQ + de2> ,
Ok Ok
Ff — aﬁ—g,
Tk

Fj 4+ F — 0,

where d", c®,d® and 0 > 0 are defined as in Part I of this proof.
The scaling factor is

(r+ 1) — ) — K) (5 — D5
2mpgr(d +1)(r+6)(6 — K)o
Mmapr(r +1)%(k — 1)

mg(r+6)(0 — k)(r+ K)o

(r4+8%)(r —r)(k — 1)

2mgr(1496)(6 — k)

The limit of é\a as p— 0 is

d(A) = — (r+ P50 mas(r+1)(r—0)(x = 1)P35
(r+9)%¢ mp(8 +1)(r + 0)2(r + k)
n r(r+1)(mamp(r + k)% — miﬂ(n —1)(142r+x))

ma(r + 0)2(r + k)26

map(r + 8?)(k —1)
mg(1+8)(r+8)(r+ k)’

As in the other cases, we observe that, as p — 0, the value obtained for ¢/(A) corresponds
to the conjectured optimum of the original model, and the optimal transfer Y corresponds

to the conjectured optimal market belief of the optimal rating of the original model.

Back to the Original Model

We now conclude the verification. The arguments are similar to those of the public

exclusive setting explained in Section OA.8. Therefore, we skip the details.

Let (A*,Y™) be the incentive-compatible contract defined by Y* as the market belief of
the conjectured optimal rating of the original setting, given by the linear filter described at

the end of Part I, and A} the associated conjectured optimal action.
Let M be a confidential information structure with nonexclusive signals S, k < K,
associated with market belief Y and stationary action A; (A,Y) is then a well-defined
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incentive-compatible stationary linear contract. We want to show that ¢/(A*) > ¢/(A).

Let (A, Y () be the optimal incentive-compatible stationary linear contract defined
as the optimal solution above, as a function of the discount rate of the principal p, with
V(P) the corresponding principal’s expected payoff. R

Let V* be the expected payoff for contract (A*,Y™), and V be the expected payoff for
contract (A\, 17) As p — 0, by a direct extension of the argument used in Section OA.8,
pV* = ¢(A*) and pV — ¢/ (A).

For every p € (0,7), the inequalities pV(?) > pV = ¢/(A) must hold. However, as p — 0,
it holds that ¢/(A®) — ¢(A*), and the linear filter of Y(¥) converges pointwise to the
linear filter of Y*. By an argument similar to the one in the exclusive public setting of
Section OA.8, this implies that pV () — pV* — 0 as p — 0, so pV(?) — ¢/(A*) and hence
d(A*) > d(A).

OA.12 Proof of Proposition 5.5

For a rating process Y with linear filter {uy}x, let

K
Vi(t) = Z o pug(t),
k=1

for ¢=1,..., L. The extension of Equation (32) of Lemma B.3 to the multiaction setting is

immediate: the equilibrium actions A1, ..., Ay, are pinned down by the first-order conditions
Cov [9t Y;g] &0 _

'(A :’/ "V, (t) dt ve=1,..., L OA.89

' (Ar) Var[v] J, e o(t) dt, s ( )

As in the baseline model, the equilibrium action is constant.
The rater seeks to maximize the discounted expected output, which is equivalent to
maximizing the drift of the output process,

L
> ai Ay,
=1

over linear filters {uy}; that define the rating process Y by

K

}ft :Z/ uk(t—s) dSkjs,
k=1" <t

subject to (OA.89). With quadratic costs, using without loss a normalized factor ¢ = 1,
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this optimization problem reduces to maximizing

Cov [0, Y] ¢
TV(t) dt. 0OA.90
o Zau/ 0 (0A.90)
Let .
L Dre1 1,00
ak: — L—.
Dl o
Maximizing (OA.90) is the same as maximizing
Cov |:0t7 ﬁ} o) -
~/ e "V (¢) dt, (OA.91)
Var [Y}} 0

over {ug}g, where
K
¥, = Z/ wp(t — 5) S,
k=1 <t
and

_ K
t) =) apup(t)
k=1

Note that the objective (OA.91) is the equilibrium marginal cost of the fictitious setting,
under the confidential information structure generated by the rating process Y.

Thus, the linear filter of the optimal confidential rating for the original setting is the
same as the linear filter of the optimal confidential rating for the fictitious setting.
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Part V
Complements for Appendix B

OA.13 Proof of Proposition B.1

If Y is a belief for a confidential information structure M, then Y; = pus, with u; =
E*[0; | M;] = E*[6; | jut], the second equality follows from the law of iterated expectations.
As the pair of variables (6;,Y;) is Gaussian, we apply the projection formulas to get

Covlf,, Y]

E*[et ’ Y;f] = Var[Y}]

(Y: — E*[Y3]),
and thus Cov[f, Y;] = Var[Y;] and E*[Y;] = 0.

Conversely, if Cov[f;,Y;] = Var[Y;] and E*[Y;] = 0, then the projection formula implies
E*[0, | Y] = Y:. If Y; = E*[0; | Y}], then Y is the belief u for the confidential information
structure induced by Y, M; = (V).

OA.14 Proof of Lemma B.2

We note that the concept of equilibrium, presented in Definition 3.1, depends on the
worker’s information only through the set of worker strategies, and so remains valid without
modification. The same observation applies to the proofs of Proposition 3.4 and Lemma
B.3, which does not depend on the specific information available to the worker, because the
optimal effort level specified by the equilibrium turns out to be independent of the history
of realizations, and so independent of the worker’s information.

OA.15 Proof of Proposition B.5

In this section, R = {R¢}+>0 is the natural augmented filtration generated by X, and
let F be the natural augmented filtration generated by the pair (6, X).

Note that if Y is as in the theorem statement, Y is a Gaussian process as well. Let
assume, without loss, that the worker exerts zero effort, and that E[Y;] = 0 for every ¢. In
this case,

t
Xi=Z1y +/ 0, dt.

0

The proof makes use of the following lemma.

Lemma OA.1 Fiz T > 0 and let £ be a square-integrable predictable process adapted to R
defined over [0,T]. Suppose that there exists a function f(s,t) defined on {(s,t) € [0,T)?:
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s < t}, continuously differentiable in t, that satisfies the uniform Lipschitz continuity

condition
*8f( )—Ljf( )
R TR A

for some M and all triples (x,y, z), and such that for every s < t,

S‘7\4|x_y|a

[ Bl | Raz = 15,0
Then, .
E [/0 (€x — Of (z,x)/0t)* daj} =0.

Proof of Lemma OA.1. Let us consider a sequence {¢¥} of simple processes (as defined,
for example, in Karatzas and Shreve (1991), Chapter 3), such that

B [/OT@;? —§x>2dm} 0.

That £ is square integrable and progressively measurable guarantees existence of such a

sequence.
For every integer k > 0, let {(s¥,t¥]}; be a subdivision of the interval (0, 7] such that

lim max|tF — s¥|=0,
k—+oco 1t

and
€’£:E['£\RS§]-

The Cauchy-Schwarz inequality implies

éE /OT <§x—%§($,x)>2dx :éE zl:/s:c (fx—%:(x,x)>2dx]
<E Z/f (fm—ﬁ’;)de]
S NCEIENRS
w8 |3 7 (e[e1Ry] B [eiRe])0n
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+E

ZZ:/S:’“ (E [ﬁx | RS;«] = g‘:(sf,x)yd;c]
Z/:k (%f(sf’”f) - %ic(x,x)fdx] |

Let us show that each term converges to zero. First, by choice of the sequence of simple
processes, we immediately get

+E

lim E

k——+o0

Z/Zk (gx _ g’;)de] —0.

Also, by choice of the subdivisions, we immediately get

[ (Bl irg))a] <o

Then, the hypothesis that, for every s < t, we have

E

/ B[, | R dz = f(s,1)

implies that ¢ — f(s,t) is absolutely continuous when ¢ > s, and thus for almost every
w € Q and almost every t > s,

E¢ | Rs|dx = %{(s,t).

In turn, this last equality implies

;/j <E |:£z Rsf] - (thc(sf,m)>2da:] =0.

Next, we observe that by Jensen’s inequality,

ry]) <m](e-¢) | ma].

lim E

k—+4o0

(Ble -

which after integration implies

[ (s

th

RS?Dzdx < /k E [(gx - 5’;)2 ’ RS?] dz,

Si

Ry| -E|é
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and so, by the law of iterated expectations,

B[] (e[ -2t o] '0r] <

Z/t (515’;)2dx] .

Finally,
E

th 2
L (Of g of kK3
ZL(sk z) — Zh(a, dz| < M |tF — sF)P—o0.
Hence, each term converges to zero, which naturally implies

/OT <€x— Z(m))de] 0,

E

and concludes the proof. m
We now return to the main proof of Proposition B.5.

Let T > 0. In most of the proof, we work on the finite horizon [0, T.
Let the process L be defined by L; = —fg 0sdZ1 s, and H be the Doléans-Dade

exponential of L, i.e.,
1 t
H; = exp <Lt — / Hgds) .
2 /o

The Novikov condition is satisfied on [0, 7] (e.g., Corollary 3.5.13 of Karatzas and Shreve
(1991)).Therefore, H is a martingale density process for some probability measure Q

equivalent to P on Fp. By the Girsanov-Cameron-Martin Theorem (e.g., Theorem 3.5.1 of
Karatzas and Shreve (1991)),

t
Wt + / 05 dS (: Xt)
0

is a standard Brownian motion on F, for ¢ € [0, 7], with respect to Q.

We observe that Yr is a square-integrable random variable measurable with respect
to Ry. In addition, under @, X is a standard Brownian motion. Thus, invoking the
Martingale Representation Theorem under @ (e.g., see Karatzas and Shreve (1991), Section
3.4), there exists a square-integrable predictable process § = {&;}4c[0,r) adapted to R such
that, almost surely with respect to @,

T
Yr = EQ[Yy] + / & dXy, (OA.92)
0
where E9 denotes the expectation operator under Q. Since P and @ are equivalent
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probability measures, we immediately have that (OA.92) also holds almost surely under P.
Then, using E[Y7] = 0 and E[dX;] = 0, we get

T
Yr = / & dXy
0

(in the almost sure sense).
The conditions of the proposition statement imply that

t+7 t+7
Cov [YT,/ (dX, — 0, dx) ‘ Rt} = Cov [YT,/ AR
t t

RJ
t+71

=/ B¢, | R dr,
t

where the equality is obtained using It0’s isometry, and uses the fact that £ is adapted to
R and that Z; remains a standard Brownian motion in the filtration R. We conclude by
application of Lemma OA.1.

OA.16 Proof of Proposition B.6

Here, we prove that the optimal exponential smoothing system dominates any moving
window system under confidential (exclusive) information structures, in the context of two
signals, S; = X (the output) and Sy = S.% For simplicity, given that the parameters of the
output process a3 = (31 are normalized to 1, we simply write « for as, 8 for §s, o for oy
and € for o9.

Recall that a moving window system is defined, up to an additive constant, by a
two-parameter rating process

t
Y; :/ cdX;+ (1 —c)dS;
t—1
at time ¢, which is the market information M;. The parameters are 7 > 0, the size of the
moving window, and ¢, the relative weight put on the output.

Straightforward calculations yield that, in the stationary equilibrium, equilibrium effort
a™vV, if positive, satisfies

(™) =251~ ) + e+ (1~ o) - g, (0A.93)

SWe suspect that the result generalizes to more signals, but have not investigated this claim.
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with
(1-e™)

2(2102+ 72 (t+e 7 —1)(B—Bc+c)2+ (c—1)%1e?)’

Instead, an exponential smoothing system is defined (up to an additive constant) by a
two-parameter rating process

Y, = / e A= (edX; + (1 - ¢)dS;),
J<t

at time ¢, which is the market information M;. Here, the parameters are A > 0, the
coefficient of smoothing, and ¢, as before, the relative weight put on the output.
It is readily verified that, in the stationary equilibrium, equilibrium effort a®, if positive,

satisfies
€S

p

d(a®) =7*(B(L —¢) +c)(c+ (1 - C)a)m,

(OA.94)

with
A

(A +1) (02024_%4_(0_1)262)-

es

pe =

Our objective is to prove that the maximum over (¢, A\) of the right-hand side of (OA.94)
exceeds the maximum over (¢, 7) of the right-hand side of (OA.93).

We will prove this pointwise in ¢. First, note that if (5(1 —¢) + ¢)(¢+ (1 — ¢)a) <0,
there is nothing to show. So we are left with showing that

supmin f(c,7,A) >0,
A>0 720

where - o
1Y l—e mw
A) = - .
f(c7 T? ) r + )\ r p

Let ) )
_ (B -c)+¢
202+ (¢ —1)2e?’

which is clearly nonnegative. Computing f, we obtain

ey = €@+ =g +g)e” — (T =D (g+ A+ ("~ 1) (A +7)
U 2 (e (r+ (T = 1)g) 4+ 9) (g + A+ De (A + 1) (202 + (¢ — 1)2€2)

The elementary inequality
e(r—1)4+1>0
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implies that
e(t+(r—1)g)+9 =0,

and so the denominator of f is positive. We note that the numerator is quadratic in A,
concave, with

fle,7,0) =0 =€) (g+1r(e™ —1) <0,
and it is readily verified that also df(c, 7,0)/OA > 0. So it suffices to show the discriminant
T is positive. A simple calculation shows that this discriminant is quadratic and convex in
g, as
d?7
dg?

Evaluating the minimum of 7 with respect to g, we get

=2(e"+ e (T2(r—1)r—1)+2r+1)—1)* > 0.

rngin? = (z—1%" (" - 1)* (1 —2)((r+D)2"+r—1)+rz(z" +1)Inz),

where z := e” > 1. Hence it remains to argue that
lI-z)((r+a"+r—1)+rz(z"+1)lnx >0,

or equivalently,
(1—2)((r+1z"+r—1)
x(z"+1)

This is clearly true for x = 1, and the derivative of the left-hand side with respect to z is

+rlnz > 0.

r(z—1) (#¥ +1) + 1 — 2
22 (27 +1)?

Y

which is positive because
r(z—1) (:1:2’"4-1)+1—:U2T:T(y%—1)(y+1)+1—y

2r(1+21r(y—1)—1)(y+1)+1—y

1

= i(y - 1)27

2r

where y := z“", and we use Bernoulli’s inequality in the second line.
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OA.17 Proof of Lemma B.7

We note that 6, and p; are jointly normal, and as pu; is the market belief, Cov[0;, ] =
Var[u] by Proposition B.1, so applying the projection formulas, we obtain
Covl[by, > +*

— — Var[u].

Var[0; | 1] = Var[f] — Var[y] 2

OA.18 Proof of Proposition B.9

If Y is a belief for a public information structure M, then Y; = u;, where, by definition,
pe = E* [0 | My] = E*[0; | {its}s<t]. The second equality follows from the law of iterated
expectations, using that M is a filtration and thus M; includes all information about {s}s<¢.
Conversely, if Y; = E*[0; | {Ys}s<t], then Y is the belief i for the public information structure
that corresponds to the filtration generated by Y, M; = o({Y5}s<¢). This proves the second
part of the proposition.

We now proceed to the proof of the first part. Note that the correlation between 6; and
0y satisfies
_ Cov(t;, 01 -] — e

\/Var[6]/Var[0; ]

since, as 6 is a stationary Ornstein-Uhlenbeck process with reversion rate 1 and scale ~,

-7
)

Corr[&t, 9t+7‘]

A2 42
Covl[l;,0i1-] = ?e”, and Var[f;] = Var[0,,.] = 5

Let © be the market belief process induced by some public information structure M. Assume
 is a linear and stationary rating process. We have E*[u;] = E*[6;] = 0. As M is also a
confidential information structure, p is also a belief for a confidential information structure.
Conditionally on py, the random variable 6; is then independent from every u;—., 7 > 0,
because p; carries all relevant information about ;. Thus, Cov|[f, uy—r | ] = 0. Let
7 > 0. The projection formulas for jointly Gaussian random variables yield

Cov0y, p1e] Covps—r, pue]

Cov|[0, pi—r | pe] = Covl[by, p—r] —

Var (]
Hence,
Cov|0;, pi—r] Cov|0;, pii—+]
C —7 =V: —— =V —r , A.
ov[lu’t Ht] ar[ﬂt] Cov [et’ //Jt] ar[lu’t ] Cov [01577', Mth] (O 95)
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using stationarity of (u,6). Writing p; as

K
pe= " [ e s)idSi, - apdzds
k=155t

for some linear filter {u/, ..., uk}, we get, using Cov[fy, ;] = v?e~7/2,
72 K 00
Cov|pi—r,0i—7] = Zﬁk/ ul(s)e”*ds, and
2= 0
2 K 00
Cov|ui—r,0;] = g Z ﬁk/ u’,:(s)e_(TH) ds =e¢"" Cov]pu—r,0i—7].
2= 0

Plugging these last two expressions into (OA.95), we have
Covlju ir1) = Covlpu . ju) = Varlu,_Je™™ = Var[ue ™.

Now, we prove the converse. Let Y be a linear stationary rating process that is a belief
for a confidential information structure, and satisfies

Cov|Yitr, Y] = Var[Yile ™,

for every 7 > 0. Writing Y; explicitely as

K

Y, = Z/ u) (t — 5) (dSks — ap A% ds),
=1"s<t
for the linear filter {ul’, ... ,uk-}, we get, as above,

Cov|Y,—r,0,]) =e 7 Cov]Y;_;,0,_;] = e 7 Covl|Yy, 0,
using the stationarity of (Y, 0), and we have by assumption on Y that

_ Cov[V, Y]  Cov[V;, V]
~ VarlY,_,]  Varly]

—T

Therefore,

COV[0t7 }/;f] COV[}/t—’TW }/t]
Var|Y]

Cov[t,Y,— | Yi] = Cov[b, Y] — =0.

As 0 and Y are jointly Gaussian, it implies that 6; and Y;_, are independent conditionally
on Y; for every 7 > 0, so the market belief associated with the public information structure
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that is the filtration generated by Y satisfies
E*[0: [ {Ys}o<t] = E*[0: | Vi] = V2.

The conclusion follows from the second part of the proposition, proved above.

OA.19 Proof of Proposition B.11

The proposition has two parts. We begin by the proof of the first part of the proposition.

e If Y is a belief for a confidential information structure M, with nonexclusive signals
S1,...,5Kk,, then Y; = i, where, by definition,

Mt = E*[et | Mt] = E*[et | {Sk’,s}sgt,k:L...,Koa,U't]'

Note that the second equality follows from the law of iterated expectations, using
that M, includes all information about {Sg s}s<tk=1,. K, Conversely, if Y; = E*[6; |
{Sk,s}s<t k=1, Ky Yz], then Y is the belief 11 for the confidential information structure
induced by rating Y and the history of signals Si,..., Sk,.

e If Y is a belief for a public information structure structure M, with nonexclusive
signals S1, ..., Sk,, then Y; = p;, where, by definition,

Ht = E* [‘9t ’ Mt] = E*[Qt | {Sk,s}sgt,kzl,...,Ko, {Ms}sgt],

using that M is a filtration and includes all information about {Sj s}s<t k=1, K-
Conversely, if Y; = E*[0; | {Sks}s<tk=1,.... ko> {Ys }s<t|, then Y is the belief u for the
public information structure that is the filtration generated by Y and the signals
Sl, ceey SK()'

We now proceed to the proof of the second part. Let Y be a stationary linear rating
that is the belief of a confidential or public information structure with nonexclusive signals
S1,...,5Kk,. At a given time ¢, conditionally on Y;, the random variable 6; is independent
from all past nonexclusive signals Sy s, s < t. That is, Cov|[f;, Sk s | Yi] = 0 for every
k=1,..., Ky, as the market belief Y; carries by assumption all relevant information about
0; that is already contained in the nonexclusive signals. Hence, for every k = 1,..., Ky,
every t and every 7 > 0,

Cov(bitr, Skt | Yegr] = 0. (OA.96)

By the projection formulas for jointly Gaussian random variables,

COV[9t+Ta Y;H—T] COV[Sk,t, Y;H—T]

Cov[lir, Skt | Yitr] = Cov[betr, Skt] — Var|[Yi,]
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By Proposition B.1, Cov[fiir, Yiir = Var[Yi;.|. Thus,
Cov|bliir,Yiir] = Cov]bisr, Skt Vo =1,..., Ko, Vt, V7 > 0. (OA.97)

Conversely, suppose Y is a rating process that is a market belief associated with a confidential
structure which satisfies (OA.97). Reversing the argument above, the equality (OA.96)
must hold. As all random variables involved are jointly Gaussian, given any time ¢, such
equality implies that conditionally on Y;, the random variable 6; is independent from all
past nonexclusive signals S 5, s <t, k=1,...,kg,. Hence, by Proposition B.1

E* [et ’ {Sk,S}SSt,k:L...,Koa}/t] — E*[et ’ }/t] - }/%a

and it follows from the first part of the proposition, proven at the beginning of this section,
that Y is a market belief for a confidential information structure with nonexclusive signals
S1,...,5Kk,. If instead Y is a market belief associated with a public structure, then

E" [0 | {Sk,s}s<th=1,...ko: {Ysts<t] = E*[0; | Y{] = Y7,

and applying again the first part of the proposition, Y is a market belief for a public
information structure with nonexclusive signals S, ..., Sk,.
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Part VI
Ancillary Mathematical Results

In this part, we derive the first-order conditions for the type of control problems
considered in the paper by adapting the classical Euler-Lagrange conditions.

Let N, M, K, L, be positive integers. For £ = 1,...,L, let F* : Rf — R, and G* :
RA*M _, R, where every G¢ can be written

G (153K s s (YL - YR M) = YkiYht a7

for some k,k’,4,7". In other words, letting

F(x,y1,-.,ym) =Y F )G (yi,-...ym),

M=

(=1

we have that F(x,-) is a quadratic form, and F(x) are the coefficients.

For every i = 1,..., M, let ¢; : Rﬂ\_f — R be a (possibly shifted) projection, in the
following sense: ¢;((x1;...;2n)) = x;+ 9 for some j and some 6 > 0. Let U be the space of
measurable functions u : R, — RX that are continuous, integrable and square integrable.

Define Giﬂ.((ym; YK (YILMG - YK, M) 8S

aG((yl,l; e ;yK,1)7 ceey (yl,M; < yKM))
OYr,i

)

and let

~

Fri(x,y1,. -, ym) = Z F{X)GL (Y1 YM)-
=1

We consider the problem of maximizing
/RN F(x,u(¢1(x)),u(p2(x)),...,u(ém(x))) dx, (OA.98)
Y
over control functions u € Y.

We make the following assumptions:

1. For every ¢, every u € U, x — F'(x)G*(u(¢1(x)),u(¢2(x)),...,u(dr(x))) is inte-
grable on Rf.

2. For every ¢,i,k, x — FK(X)G?i(u(gZ)l(x)),u(¢2(x)), ...,u(¢p(x))) is integrable on
RY N {¢; =t} for every t.
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3. The map

t FU(x)Gli(u(¢1(x)), u(d2(x)), - -, u(énr(x))) dx

RYN{¢;=t}

is piecewise continuous, where the integral is taken with respect to the Lebesgue
measure on RY N {¢; = t}.

Compared to standard problems of calculus of variations (see, for example, Burns (2014),
Chapter 3), this optimization problem involves delayed terms and integrals over a domain
whose dimension is unrelated to the dimension of the control. The classical Euler-Lagrange
equations do not hold. However, the argument can be adapted to yield the following
first-order condition.

Proposition OA.1 Assume the control function u* € U mazimizes (OA.98). Then, for
every k and every t,

M

Z / N(on—ty Fk,z‘(X7 u*(61(x)), w*(¢a(x)),. .., u* (dar(x))) dx = 0.

=1

Proof. For a control function u € U, let
J(u) := /RN F(x,u(¢1(x)), u(d2(x)), ..., u(¢nm(x))) dx

and assume J(u) is maximized for u = u*.

The proof relies on classical variational arguments. Fix k and let v : Ry — R, where
we write v = (v1,...,vx) and where vy = 0 for k&’ # k, and assume vy, is continuous with
bounded support. Let j(e) = J(u* 4 ev). Differentiating under the integral sign (see, for
example, Theorem 6.28 of Klenke (2014)), we get

/RNZF’“X“ (01(x)), -, u*(Pn(x)))vr(¢i(x)) dx

+ =1

We observe that j is maximized at e = 0, and so j'(0) = 0.
Suppose by contradiction that, for some ¢,

Z/RNO{¢ 1} Fioi (%, 0 (61(x)), u*(¢2(x)), - - -, u*(Par(x))) dx

is nonzero—for example, positive. The sum is piecewise continuous with respect to t, and

VI.2



so by continuity,

Z/RNQ{@—t’ Fioi(x, 0" (¢1(x)), u*(¢2(x)), .. ., u*(¢pr(x))) dx

is positive for ¢’ on an interval to the left or the right of t. Let I; be such an interval, and
let v be a function that is zero outside of I; and that is positive inside I;. Then

M
0< /t’elt ;/RNﬁ{qﬁizt’} Fri(x,u*(¢1(x)), u*(¢2(x)), ..., u* (dpr(x))) vk (t') dx dt’

M
= / B ut(@1(x)), u (92(x)), - - w (@ (%)) o (@i(x)) dx
i=1 /RY
which contradicts j/(0) = 0. =
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