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Abstract

An expert has full or partial probabilistic information about a random state. The

expert is asked to make a prediction regarding a property of the state distribution, that

is, to answer a question about the distribution. The expert receives a payoff that may

depend on his own report and the subsequently realized state. For which properties

can a payoff rule be devised so as to induce the expert, as a strict best response, to

answer the truth? In a finite world, the payoff rules that provide strict incentives to

the expert exist if and only if the property partitions the simplex of distributions into

a power diagram. These payoff rules can be fully characterized as weighted averages

of elementary payoff functions. They can be used both as an incentive device and to

evaluate the performance of forecasters.
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1 Introduction

A decision maker often has less information relevant for her decision than does some other

agent. In this paper, I examine protocols for eliciting and evaluating information provided by

an expert when such information consists of statistical forecasts, or, as defined formally in the

paper, properties of probability distributions. Given a finite set of possible states Ω, a random

state is drawn according to some probability distribution P . The expert privately observes P

or observes some information about P , and is asked to announce the value of a property of

interest regarding P . The term property has a fairly general meaning, it captures arbitrary

features that a distribution can possess. Classical real-valued properties include the mean

and median of a variable, measures of dispersion such as the variance, risk measures such

as value at risk and expected shortfall. Properties can be multidimensional, for example to

represent a confidence interval or a variance-covariance matrix. They need not be numerical,

for example they can record the principal components of a random vector, or capture an

ordering of events from the most to the least likely.

The protocols or mechanisms considered in this paper are (general) scoring rules, defined

by analogy to the classical probability scoring rules developed by Brier (1950), Good (1952),

McCarthy (1956), De Finetti (1962) and Savage (1971), among others. A scoring rule assigns

a payoff to the expert as a function of his prediction and the state realization. In a large

part of the paper, the focus is on strictly proper scoring rules, that is, scoring rules such

that the expert, whose payoff is equal to the obtained score, reports truthfully as a strict

best response when sufficiently informed. This benchmark is classical in the literature and

is motivated by the idea that, in applications, when the expert is indifferent between two

responses, we lose the ability to distinguish between a correct and an incorrect expert or to

motivate an individual whose access to information is costly. I expand on these points in

Section 5 and Appendix A.

I address two central questions. First, for which properties does a strictly proper scoring

rule exist? And second, fixing the property, how can we construct such scoring rules, and

how can we characterize them? Interestingly, many properties are not “elicitable,” i.e., a

strictly proper scoring rule does not exist: the declared predictions do not supply enough

information to enable the enforcement of strict incentives. However, there are also a number

of relevant cases for which they do.

The main body of the paper focuses on properties that take finitely many possible values,

which is both tractable and allows for a range of applications (noting that if a property takes

a continuum of values, the values can always be partitioned into bins which makes it finite);

the case of properties that take a continuum of values is relegated to Appendix B. Properties
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are elicitable precisely when they partition the simplex of distributions into a power diagram,

a geometric object based on the notion of nearest neighbors. The characterization implies,

for example, that the mean, mode, median, some risk measures such as the value at risk,

the ranking of events from the most to the least likely are elicitable, whereas measures of

dispersion and symmetry such as the variance, skewness, kurtosis, other risk measures such as

the expected shortfall, confidence intervals, the pair of most correlated elements of a random

vector are not elicitable. If a property is not elicitable then it means that, to motivate the

expert, or to evaluate his performance, we must ask for more information, and so the expert

must know more. The proper and strictly proper scoring rules are generated by the mixtures

of some given baseline functions that are entirely determined by the property itself. I provide

several examples of such constructions.

For properties that take values in a set endowed with a natural ordering of its elements,

such as the median of a random variable, an alternative class of scoring rules is introduced,

the order-sensitive scoring rules. Order sensitivity means that the closer the estimate is to

the true value of the property of interest (in terms of its rank in the ordering) the larger the

expected payoff. For a strictly proper scoring rule to be strictly order sensitive, the property

must partition the distributions into “slices.” For example, a strictly order-sensitive scoring

rule can be designed for the median, but not for the mode, even though both properties are

elicitable.

The objective of this paper is to propose a general framework. The paper informs us as

to what can be asked to an expert from the angle of the provision of incentives, and how

to do so. Alternatively, since scoring rules are the negative of loss functions, it informs us

as to when we can evaluate the performance of an expert over time, if the expert outputs

information on uncertainty. The reason for eliciting one property versus another is outside

the scope of the paper: I focus on the elicitation problem and abstract away from what the

elicitor does with what is elicited. The elicitor may be a decision maker who collects and

aggregates forecasts from different experts to help her choose between alternatives. She may

be one of potentially many customers who each confronts different choices, and to whom the

expert sells information in his area of expertise. She may be an experimenter in the lab, who

wants to ask questions to the subjects of an experiment under uncertainty. In this paper,

I simply assume that an elicitor wants to learn some distribution property, and the expert

need not know how such information is to be used. For example, in risk management we are

typically soliciting estimations of risk measures, and may want to know if more information

is needed to supply appropriate incentives or to properly evaluate risk managers. In this

case, no more is needed when using the value at risk, while more is needed when using the

expected shortfall.
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Of course, one may attempt to extract full information by eliciting the entire distribution,

from which we can derive the value of any property, but it may not be desirable and,

sometimes, it may not be feasible in practice. The expert may be partially informed, and

may unable to form a precise estimate of the entire true distribution (or it may be overly

costly to do so). For example, in the assessment of the risk of a financial portfolio, or of

market and credit risk, one often constraints the analysis to the relevant risk measures. As it

turns out, asking for too much information to an expert who does not have this information

may lead to erroneous reports that are not even consistent with the expert’s information,

and from which one cannot back out the expert’s actual beliefs. In addition, the state space

may be too large and the distribution too complicated. Such environments are common in

weather forecasting. For example, Accuweather, one of the largest media company selling

commercial weather forecasting services, sells highly refined forecasts, spanning up to 90 days

and taking various forms. In such environments, one cannot reasonably consider the full state

distribution, but only a small part of it. Similarly, in lab experiments with rich uncertainty,

it becomes practically difficult for the experimenter to ask for all the state probabilities, even

if theoretically possible; in such situations, the experimenter may want to know what sort of

questions she can ask for which she can reward truthful answers.

The paper proceeds as follows. The remainder of this section reviews the literature.

Section 2 presents the model. Section 3 begins by presenting the main results under the

assumption that the expert is fully informed about the state distribution, and Section 4

considers the general case of partially informed experts. Section 5 demonstrates a simple

application of the framework to the problem of testing forecasters. Section 6 concludes.

Appendix A motivates the concept of elicitability from the viewpoint of motivating an expert

to learn information at a cost. Appendix B considers the case of continuous properties. The

remaining appendices include the proofs omitted from the main text.

1.1 Related Literature

The literature on forecast evaluation and elicitation goes back to Brier (1950) and Good

(1952). Brier and Good envisioned schemes to measure the accuracy of probability assessments

for a set of events, in the context of weather forecasting. These schemes, the quadratic and

logarithmic scoring rules, were later recognized as part of a much larger family of functions,

the strictly proper probability scoring rules, first axiomatized by McCarthy (1956), De Finetti

(1962), and Savage (1971). Over the years, proper scoring rules have been extensively studied

(Gneiting and Raftery (2007) provide a survey of the literature). This stream of the literature

concerns mostly probability scoring rules, whose purpose is to motivate or evaluate the expert
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regarding estimates of the entire probability distribution. In contrast, this paper is concerned

with the elicitation of more specific information regarding state uncertainty.

Closer to this paper are the works of Fan (1975), Bonin (1976), and especially Thomson

(1979), who design compensation schemes to elicit, from local branch managers, the production

output that can be attained with some given probability. Relatedly, Savage (1971) designs

scoring rules to elicit expectations of random variables, and, in the context of government

contracting, Reichelstein and Osband (1984) and Osband and Reichelstein (1985) propose

incentive contracts that induce a contracting firm to reveal truthfully moments of its prior

about project costs. The most general structure is provided in second chapter of the

dissertation of Osband (1985), which allows to elicit more general information embedded

within linear partitions of distributions of random vectors. In the recent years, several

works on property elicitation have appeared, notably in the statistics and computer science

literature. It is difficult to do justice to this stream of literature given its interdisciplinary

nature and its ramification to other fields. Notably, in an influential article, Gneiting (2011)

discusses elicitable properties and studies a number of cases applied to statistical problems,

Abernethy and Frongillo (2012) study the elicitation of linear properties, Frongillo and Kash

(2015a) deal with the communication complexity of eliciting properties, Frongillo and Kash

(2015b) and Fissler and Ziegel (2016) discuss the elicitability of multidimensional properties

and their applications to risk management. Finally, while property elicitation explores the

ability to elicit information in the space of distributions, Chambers and Lambert (2018) study

elicitation in the time dimension and describe proper scoring rules for dynamic beliefs.

This paper also relates to the stream of the literature about forecast testing. In forecast

testing, the question is about how to know if a forecaster is well informed about the

probability distribution. Foster and Vohra (1998) initially showed the impossibility of testing

forecasters for calibration tests, and the most general results, that apply to essentially any

test, were obtained independently by Shmaya (2008) and Olszewski and Sandroni (2008). The

manipulability results continue to hold when forecasters are asked to communicate partial

information on state distributions under the form of an elicitable property, however it is

possible to evaluate their relative performance, as do Al-Najjar and Weinstein (2008) and

Feinberg and Stewart (2008) in the context of probability forecasts. I expand on this point in

Section 5.

2 Model

There is an expert and a finite set Ω of possible relevant states, where ∆(Ω) denotes the

set of probability distributions over Ω. For state ω and probability distribution P , P (ω) is
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the probability that ω occurs.

Before the state publicly realizes, an individual, referred to as the elicitor, who could

be a decision maker, a manager, or an experimenter, wants to elicit, from the expert, some

facts about the state distribution. For example, she may want to ask what is the mean of

some random variables, which ones of such and such events is more likely to occur, and so on.

These “facts” represent partial information about the state distribution and are captured by

distribution properties. Formally, I define a distribution property, or simply property, as a pair

(Θ, F ). The first element, Θ, is the value set of the property, i.e., a set in which the property

takes values. The second element, F , is the level-set function, it is a multivalued map from

Θ into ∆(Ω). The level-set function records, for every property value θ, the collection F (θ)

of all the probability distributions which have property value θ. For example, the mean

of a random variable X can be written as a pair (R, F ), where P ∈ F (m) if, and only if,

the mean of X under P ,
∫
X dP , equals m. For every θ ∈ Θ, F (θ) must be nonempty. In

the main body of the paper, Θ is finite; I refer to these properties as finite properties, or

simply properties. The case of continuous Θ is considered in Appendix B and I refer to

those properties as continuous properties. Equivalently, with finite properties, the expert is

asked to answer some question about the uncertainty over states, and there are finitely many

possible answers.

A property may assign a unique value to every probability distribution. If so, the level

sets {F (θ), θ ∈ Θ}, are pairwise disjoint. These properties are said to have no redundancy.

Other properties may associate several values to the same distribution. When such is the case,

some level sets overlap, and the property has some amount of redundancy. For example, the

median exhibits some redundancy, because distributions for random variables may have more

than one median. A property function is defined as a function Γ that associates some property

value Γ(P ) ∈ Θ to every distribution P ∈ ∆(Ω) (formally, the requirement is Γ−1(θ) ⊆ F (θ)

for each θ). When the property has no redundancy, there exists exactly one property function,

which then suffices to conveniently represent the property. But in general we need two or

more property functions to describe a distribution property.

Throughout I restrict attention to the properties (Θ, F ) that satisfy two conditions:

(a)
⋃
θ F (θ) = ∆(Ω), which means that the property is well defined for every distribution of

∆(Ω);

(b) for all θ1 6= θ2, F (θ1) 6⊆ F (θ2), which means that no property value is purely redundant.

The two assumptions are without loss of generality. All properties can be redefined on the

entire set ∆(Ω) by assigning a dummy value to the distributions for which it is not originally

defined. And as the scoring rules we seek to construct offer the same expected score for all
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correct predictions, removing property values that are fully redundant does not impact the

analysis.

The payoffs to the expert are specified by mean of scoring rules, whose original definition is

a straightforward extension that accounts for the sort of general predictions being considered

here. Given a property with value set Θ, a scoring rule is a function S : Θ× Ω 7→ R that

assigns to every prediction θ and every state ω a real-valued score S(θ, ω). The scores that

scoring rules generate may be interpreted and used in various ways, as long as the expert

complies with the general principle that higher expected payoffs are always preferred. In

most of this paper I assume that the scoring rule specifies the payoff the expert receives in

exchange for his prediction.

The elicitation mechanisms are specified by the property (F,Θ) the elicitor wants to

learn and the scoring rule S that assigns payoff values. The timing of events is as follows.

First, Nature selects a distribution P ∈ ∆(Ω), which the expert observes. Second, the expert

reports a prediction θ ∈ Θ. Third, public state ω is drawn at random according to P and the

expert gets payoff S(θ, ω).

Of course, whether there actually exists such a true state distribution is a matter of

interpretation. We may equivalently assume that the expert has subjective beliefs on the state

uncertainty, and that he reports according to these subjective beliefs. In the next section, I

consider the case of a fully informed expert who knows P , or an expert whose beliefs reduce

to a single state distribution; that is, the expert is probabilistically sophisticated. In the

section that follows, I consider the case of an expert who forms vague beliefs and is averse to

ambiguity with maxmin preferences in the sense defined by Gilboa and Schmeidler (1989).

Experts are assumed to be risk neutral, however it is not a binding assumption: if the expert

is an expected utility maximizer (with or without ambiguity aversion), then, no matter the

expert’s utility function, the expert will continue to report as if he were risk neutral when

paid in “probability currency.”1

The objective is to construct scoring rules that induce the expert to provide a correct

property value as a best response or as a strict best response. In the terminology of De Finetti

(1962) and Savage (1971), such scoring rules are called proper and strict proper, respectively.

That is, proper scoring rules ensure that all true predictions yield the maximum expected

payoff under the actual state distribution. Strictly proper scoring rules ensure that the

maximum expected payoff is attained if, and only if, the prediction is correct.

1If the expert gets score s normalized to be within [0, 1] following his report and the observed state, and
if he is given a lottery ticket worth x dollars with probability s and y dollars with probability 1− s, for x > y,
then independently of the utility function, the expert will want to report as he were risk neutral. The random
payments over two fixed prizes have the effect of “linearizing” the (generally nonlinear) utility function. It is
a common method Savage originally refers to as paying in probability currency.
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Definition 1 A scoring rule S for property (Θ, F ) is proper if, for every prediction θ and

every distribution P ∈ ∆(Ω), whenever θ is true under P , i.e., whenever P ∈ F (θ), then

θ ∈ arg max
θ̂∈Θ

Eω∼P [S(θ̂, ω)].

Scoring rule S is strictly proper if it is proper and if, for every prediction θ and every

distribution P ∈ ∆(Ω), whenever θ is false under P , i.e., whenever P /∈ F (θ), then

θ /∈ arg max
θ̂∈Θ

Eω∼P [S(θ̂, ω)].

I abuse notation and use the same symbol for a random element and its realization. To avoid

all ambiguity, in expectations, the notation Eω∼µ[g(ω)] is used to denote the expected value

of g when random element ω is distributed according to µ. In the sequel S(θ, P ) denotes the

expected score Eω∼P [S(θ, ω)].

One primary objective of this paper is to describe properties that can be elicited truthfully

and as a strict best response, as long as the expert knows the state distribution. These

properties are said to be “elicitable.”

Definition 2 A property is elicitable when there exists a strictly proper scoring rule.

Even though the concept of elicitability works with fully informed experts, as explained in

Section 4, it is not necessary for the expert to know the state distribution exactly for the

property to be elicited truthfully.

The concept of properness is concerned with how the expected scores of correct predictions

compare with those of incorrect predictions, not with how the expected scores of incorrect

predictions compare with one another. Suppose, for example, that we elicit the mean of a

random variable, and that the true mean is 100. Proper scoring rules tell us that forecasting

mean 100 maximize expected payoffs. But they do not tell us, a priori, how the payoffs from

forecasting mean 99 compare to those from forecasting mean 10. In such a case, however, it

may be desirable that the expert who reports 99 gets more than the expert who reports 10.

This idea is captured by the concept of order sensitivity.

Suppose the value set of the property of interest is ordered. Given a true forecast θ and

two incorrect forecasts θa, θb, whenever θa is “in-between” θ and θb, θa can be viewed as

“more accurate” prediction than θb according to the ordering of the property values. Order

sensitive scores reward forecast θa at least as much as forecast θb. This concept relates to the

notion of scoring rule efficiency of Friedman (1983) and Nau (1985). Scoring rule efficiency

compares probabilistic predictions according to their distance to the true distribution, with
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respect to some metric. Order sensitivity compares statistical predictions according to their

rank relative to the true property value.

Definition 3 A scoring rule S for a property (Θ, F ) is order sensitive with respect to the

ordering ≺ on the value set Θ if, for all distributions P , all forecasts θ true under P , i.e.,

such that P ∈ F (θ), and all forecasts θa, θb such that either θ � θa ≺ θb or θb ≺ θa � θ,

S(θa, P ) ≥ S(θb, P ). Scoring rule S is strictly order sensitive when the inequality is strict

whenever P /∈ F (θb).

Through the remainder of the paper, let RΩ be the space of (real valued) functions on Ω,

equivalently, RΩ is the space of random variables. Every state distribution P is an element

of RΩ by associating a distribution with its density—since there finitely many states, both

concepts are equivalent. Since RΩ is a linear space, I refer to members of the space as vectors,

and in this context, distributions are also vectors. The set RΩ is naturally endowed with the

scalar product

〈X, Y 〉 =
∑
ω∈Ω

X(ω)Y (ω).

The expected payoff to the expert who announces θ is then S(θ, P ) = 〈S(θ, ·), P 〉, where

S(θ, ·) is the state-contingent payoff.

It is useful to view the set ∆(Ω) as a simplex in the Euclidean space RΩ, as most results

of this paper have a geometric interpretation. In particular, every property has a simple

graphical representation as a finite covering of the simplex. In most cases of interest, the

covering is a partition except at the boundary points of the level sets. Figure 1 illustrates

the case of two properties in the context of weather prediction where the states of interest

are snow, rain and shine. Figure 1(a) represents the property associated with the most likely

weather state, and Figure 1(b) the property associated with the ordering of weather states

from most to least likely.

3 Fully Informed Experts

In this section, I assume the expert is fully informed about the state distribution: he

knows P , and responds to incentives so as to maximize his expected payoff. Under full

information, elicitable properties are exactly the properties for which an incentive device

exists that yields a truthful report as a strict best response, and these incentive devices are

captured by strictly proper scoring rules. In the next section I argue that full information is

not required, but that in general the expert needs to know the property he is being asked

about to provide informative reports.
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P (snow) = 1

P (rain) = 1

P (shine) = 1

Most likely to snow
Most likely to rain
Most likely to shine

(a)

P (snow) = 1

P (rain) = 1

P (shine) = 1

P (snow) ≥ P (shine) ≥ P (rain)
P (snow) ≥ P (rain) ≥ P (shine)
P (rain) ≥ P (snow) ≥ P (shine)
P (rain) ≥ P (shine) ≥ P (snow)
P (shine) ≥ P (rain) ≥ P (snow)
P (shine) ≥ P (snow) ≥ P (rain)

(b)

Figure 1: Graphical representations for two finite properties.

3.1 Elicitability and Proper Scoring Rules

A first objective is to understand when a property can be elicited with strict incentives,

and when it cannot.

Indeed, strictly proper scoring rules may exist, but do not always exist. For example,

consider the problem of predicting which one of a finite number of events E1, . . . , Em ⊂ Ω is

most likely. Such a property can be elicited via the scoring rule defined by S(Ei, ω) = 1{ω ∈
Ei} which is immediately seen as being strictly proper. Now consider a simple example

in a three-state world, with a random variable X taking values 1, 2 or 3. Let us look at

the property that indicates whether X has “high” or “low” variance, where the levels of

variance are determined with respect to some arbitrary threshold. This property is depicted

in Figure 2. In this case a strictly proper scoring rule does not exist. If a scoring rule

S strictly motivates the expert to make a truthful report when P has low variance, then

S(“low variance”, x) > S(“high variance”, x), as a distribution with an almost-sure state

X = x has a zero variance. But expected payoffs S(θ, P ) are linear in the true distribution

P . So for such a scoring rule, S(“low variance”, P ) > S(“high variance”, P ) for every state

distribution P : the expert induced to make truthful predictions when the variance is low is

always best off reporting low variance levels even when the true variance is high. Thus, in

this case, the amount of information included in the predictions are insufficient to enforce

strict incentives.

A necessary condition for existence of strictly proper scoring rules is that the level sets of

the property be convex; that is, the distributions that share the same property value must

form a convex shape. This insight was already present in the pioneering work of Osband

(1985), in the context of distributions on Rk. Here, consider two distributions over states, P

and Q. The argument relies on the simple observation that the expected payoff to the expert
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P (X = 3) = 1

P (X = 2) = 1

P (X = 1) = 1

Low variance
High variance

(a)

P (snow) = 1

P (shine) = 1

P (rain) = 1

Shine with at least 50% chance
Otherwise more likely to rain
Otherwise more likely to snow

(b)

Figure 2: Two nonelicitable properties.

when predicting θ under any mixture of P and Q,

Eω∼λP+(1−λ)Q[S(θ, ω)],

equals the mixture of the expected payoffs when predicting θ separately on P and Q,

λ Eω∼P [S(θ, ω)] + (1− λ) Eω∼Q[S(θ, ω)].

Suppose S is a strictly proper scoring rule and θ is a prediction that is correct for both P

and Q. By reporting θ, the expert maximizes the expected payoff under both distributions.

Per the above equality, the payoff remains optimal under any mixture of P and Q. Since S is

strictly proper, it must be the case that θ is a correct prediction for all mixtures of P and Q.

Hence all level sets must have a convex shape. Clearly, in the case of the variance depicted in

Figure 2(a), the property does not partition the distributions into convex subsets.

However, convexity is generally not sufficient.2 The exact characterization makes use of a

well-known geometric structure called a Voronoi diagram. Voronoi diagrams specify, for a set

2This can be seen with the property pictured in Figure 2(b). Consider three possible states of the
weather tomorrow: shine, rain, or snow. We want to know if it will shine with at least 50% chance (θA),
or, if not, whether it is more likely to rain (θB) or to snow (θC). The property partitions the distributions
in convex subsets. Yet there does not exist a strictly proper scoring rule. To see this, let us use the
notation P = (P (shine),P(rain),P(snow)). Let P0 = (1, 0, 0), P1 =

(
1
2 ,

1
2 , 0
)
, P2 =

(
1
2 , 0,

1
2

)
, P3 =

(
1
4 ,

1
4 ,

1
4

)
.

Consider a proper scoring rule S. Both predictions θA and θB are true under P1, so S(θA, P1) = S(θB , P1).
Similarly, S(θA, P2) = S(θC , P2), S(θA, P3) = S(θB , P3) = S(θC , P3), S(θB , P0) = S(θB , P0). By linearity
of the expected score, 2S(θA, P3) = S(θA, P1) + S(θA, P2), so 2S(θC , P3) = S(θB , P1) + S(θC , P2) implying
S(θB , P1) = S(θC , P1). Also, since the vectors P0, P1, P2 are independent, S(θB , ·) is entirely specified by
S(θB , P0), S(θB , P1), S(θB , P3), and S(θC , ·) is entirely specified by S(θC , P0), S(θC , P1), S(θC , P3). However,
S(θB , P0) = S(θC , P0), S(θB , P3) = S(θB , P3), and S(θB , P1) = S(θC , P1). Hence S(θA, ·) = S(θB , ·) and S
cannot be strictly proper.
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of points called sites, the regions of the space that comprise the points closest to each site.

Specifically, consider a metric space E with distance d, together with vectors x1, . . . , xn ∈ E
that are the sites. The Voronoi cell for site xi includes all the vectors whose distance to xi is

less than or equal to the distance to any other site xj. The collection of all the Voronoi cells

is called the Voronoi diagram for the sites x1, . . . , xn. Observe that the set of distributions,

when viewed as a simplex in RΩ inherits its Euclidean metric. In this context it makes sense

to talk about Voronoi diagrams of distributions, as well as Voronoi diagrams of random

variables, since random variables are the elements of RΩ. Voronoi diagrams have applications

in several fields; see Aurenhammer (1991) and De Berg et al. (2008) for a literature review.

To understand the role that Voronoi diagrams play in the characterization, it is helpful

to start off with a simple sufficient condition: if the level sets of a property form a Voronoi

diagram of distributions, then the property is elicitable. The argument is as follows. Let

(Θ, F ) be a property. Let each level set F (θ) be the Voronoi cell of some distribution

Qθ ∈ ∆(Ω). Suppose that the expert is allowed to announce a full distribution Q, and is

rewarded according to the Brier score S(Q,ω) = 2Q(ω)− ‖Q‖2. Aside from being strictly

proper, the Brier score has the property that the closer the announced distribution is to that

of Nature (in the Euclidean distance), the larger the expected payoffs (Friedman, 1983). In

consequence if we were to force the expert to choose his report among the set of Voronoi sites

{Qθ, θ ∈ Θ}, his best response would be to produce the Qθ that is the closest to Nature’s

distribution. By forcing the expert to report one of these distributions, the expert reports

the Voronoi cell that contains the distribution of Nature, thereby revealing a true value for

the property. Because there is a one-to-one mapping between property values θ and sites Qθ,

the reward scheme corresponds to asking a value θ for the property and paying the expert

according to the strictly proper scoring rule S(θ, ω) = 2Qθ(ω)− ‖Qθ‖2.

That the property partition ∆(Ω) into a Voronoi diagram of distributions is not necessary,

because the logic of the above argument applies to other probability scoring rules and

other distances. But it leads the way to the exact characterization, which turns out to be

a generalization of this result. Instead of focusing on a Voronoi diagram in the space of

distributions, we look at a Voronoi diagram in the entire space RΩ. Specifically, the properties

that are elicitable are precisely those whose level sets are included in a Voronoi diagram of

random variables.

Theorem 1 A property (Θ, F ) is elicitable if, and only if, there exists a Voronoi diagram

{Cθ}θ∈Θ in the space of random variables such that for every θ ∈ Θ, F (θ) = Cθ ∩∆(Ω).

Intersections of Voronoi diagrams with linear subsets are otherwise known as power

diagrams in these subsets (Imai et al., 1985, Aurenhammer, 1987). Power diagrams are often
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interpreted as extensions of Voronoi diagrams in which a weight factor on the sites shifts the

distances between vectors and sites. With that identification in mind, Theorem 1 can be

reformulated as follows: the property is elicitable if and only if the level sets of the property

form a power diagram of distributions.

Proof of Theorem 1. Let (Θ, F ) be a property and let {Xθ}θ∈Θ be a family of random

variables indexed by property values. Consider the Voronoi diagram of this family in the space

RΩ. Denote by Cθ the Voronoi cell for Xθ, that is, the set of all the functions X : Θ→ R that

are at least as close to Xθ as to any other site Xθ′ , with respect to the Euclidean distance.

Suppose F (θ) is the part of Cθ that is located on the simplex.

Consider the scoring rule S(θ, ω) = 2Xθ(ω)− ‖Xθ‖2. The expected payoff for prediction

θ, under distribution P , is

Eω∼P [S(θ, ω)] = 2〈Xθ, P 〉 − ‖Xθ‖2 = ‖P‖2 − ‖P −Xθ‖2.

This means that the expected payoff of prediction θ under P is maximized across all possible

predictions if and only if

‖P −Xθ‖ ≤ ‖P −Xθ̂‖ ∀θ̂ ∈ Θ,

which is to say that P belongs to the Voronoi cell Cθ of Xθ. Since F (θ) = Cθ ∩∆(Ω), the

expected payoff of prediction θ under P is maximized if and only if P ∈ F (θ), thereby

establishing the strict properness of S.

To get the converse, assume there exists a strictly proper scoring rule S for a property

(Θ, F ). We need to construct random variables {Xθ}θ∈Θ such that the associated Voronoi

diagram in RΩ partitions the simplex ∆(Ω) into the level sets of the properties. To do so, we

will use Xθ(ω) = S(θ, ω) + kθ, where kθ is a constant to be specified later.

Saying that distribution P is in the Voronoi cell of Xθ is saying that

‖P −Xθ‖2 ≤ ‖P −Xθ̂‖
2 ∀θ̂ ∈ Θ,

or equivalently, after expanding the terms,

−‖S(θ, ·) + kθ‖2 + 2kθ + 2〈S(θ, ·), P 〉 ≥ −‖S(θ̂, ·) + kθ̂‖
2 + 2kθ̂ + 2〈S(θ̂, ·), P 〉 ∀θ̂ ∈ Θ.

If the choice in kθ is such that ‖S(θ, ·) + kθ‖2 − 2kθ equals a constant c independent of θ, we

can cancel these terms and the last inequality becomes

Eω∼P [S(θ, ω)] ≥ Eω∼P [S(θ̂, ω)] ∀θ̂ ∈ Θ.

13



Note that, for every θ, ‖S(θ, ·) + kθ‖2 − 2kθ is a parabola as a function of kθ. As long as c is

chosen to be greater that ‖S(θ, ·)‖2 uniformly across property values—so that it intersects

all the parabolas—it is always possible to select constants kθ that satisfy this requirement.

For such a choice of kθ and Xθ, we have that for every distribution of Nature P , announcing

prediction θ maximizes the expected payoff if and only if P is located in the Voronoi cell of

Xθ. As S is strictly proper, a prediction θ maximizes the expected payoff if and only if it is

true, that is, if P ∈ F (θ). Combining the two statements, we find that every level set F (θ) is

the part of the Voronoi cell of Xθ located on the the simplex ∆(Ω).

Theorem 1 essentially asserts that, as scoring rules vary, their associated value functions

project onto power diagrams—or equivalently onto linear cross sections of Voronoi diagrams.

Indeed, given a scoring rule S, the expert gets as expected payoff maxθ S(θ, P ). The expected

payoff, as a function of the true distribution of Nature P , is the value function. Saying that

S is strictly proper is equivalent to saying that the projection of associated value function on

the domain of distributions partitions ∆(Ω) exactly as the level sets of the property F (θ)

do. The properties we can elicit via strictly proper scoring rules therefore correspond to the

projections of all the value functions. In the case of a finite property, the value function

describes the upper envelope of a finite number of nonvertical hyperplanes. Moreover, by

an appropriate choice of S, any such envelope can be obtained. Therefore the level sets of

properties we can elicit via strictly proper scoring rules correspond exactly to the projections

of hyperplane envelopes, which turn out to be the power diagrams.

The geometric characterization of the Voronoi test is appealing. As long as the dimension

of the simplex of distributions is small, a quick visual check gives a good sense of whether the

property satisfies the condition of Theorem 1. Figures 3, 4, 5, and 6 depict on the left side

the simplex of distributions partitioned into level sets for, respectively, the rounded mean,

the median, the most likely state and the ranking of states according to their probabilities,

all of which are classical exemplars of finite properties. The right side of each figure maps

a Voronoi diagram (along with the sites, all located on the simplex) that matches exactly

the partition of level sets. Hence, all these properties are elicitable. Naturally the number

of states must be kept artificially low to enable a 2-dimensional rendering of the simplex.

However the Voronoi construction typically extends directly to higher dimensional simplexes.

And in most cases, the 2-dimensional visual test is sufficient to get convinced of its existence.

The examples in the remainder of this section provide the scoring rules that enable us to

elicit those properties.3

3The ranking of states is not included in the list of examples and I discuss it here briefly. More generally,
let E1, . . . , En be arbitrary events of any finite state space Ω, and consider the property that gives a ranking
of these events by their likelihood. A simple generalization of Example 1 below yields that the scoring rules
of the form S(σ, ω) = κ(ω) +

∑n
i=1 λi1{ω ∈ Eσ(i)} are strictly proper, where σ is an ordering of events and
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P (X = 3) = 1

P (X = 2) = 1

P (X = 1) = 1

Mean of X is in [1.0, 1.5]
Mean of X is in [1.5, 2.0]
Mean of X is in [2.0, 2.5]
Mean of X is in [2.5, 3.0]

(a) (b)

Figure 3: The mean.

P (X = 3) = 1

P (X = 2) = 1

P (X = 1) = 1

1 is a median
2 is a median
3 is a median

(a) (b)

Figure 4: The median.

P (snow) = 1

P (rain) = 1

P (shine) = 1

Snow is most likely
Rain is most likely
Shine is most likely

(a) (b)

Figure 5: The most likely state of Nature.
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P (snow) = 1

P (rain) = 1

P (shine) = 1

P (snow) ≥ P (shine) ≥ P (rain)
P (snow) ≥ P (rain) ≥ P (shine)
P (rain) ≥ P (snow) ≥ P (shine)
P (rain) ≥ P (shine) ≥ P (snow)
P (shine) ≥ P (rain) ≥ P (snow)
P (shine) ≥ P (snow) ≥ P (rain)

(a) (b)

Figure 6: The ranking of states from most to least likely.

P (X = 3) = 1

P (X = 2) = 1

P (X = 1) = 1

[1, 3] is a 80% confidence interval
[1, 2] is a 80% confidence interval
[2, 3] is a 80% confidence interval
[1, 1] is a 80% confidence interval
[2, 2] is a 80% confidence interval
[3, 3] is a 80% confidence interval

Figure 7: Confidence intervals.

P (X = 3) = 1

P (X = 2) = 1

P (X = 1) = 1

[1, 3] is an interval for the 10th to 90th percentile
[1, 2] is an interval for the 10th to 90th percentile
[2, 3] is an interval for the 10th to 90th percentile
[1, 1] is an interval for the 10th to 90th percentile
[2, 2] is an interval for the 10th to 90th percentile
[3, 3] is an interval for the 10th to 90th percentile

Figure 8: Intervals for the 10th and 90th percentiles.
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It is not difficult to exhibit properties that fail the Voronoi test. We already saw the

variance fails the convexity test in Figure 2(a), a condition weaker than the Voronoi test. In

Figure 7, we are interested in a 80% confidence interval for a random variable.4 The property

fails the Voronoi test because of the large overlap for two of its level sets, corresponding

to intervals [1, 2] and [2, 3]. In this region, the densities cannot be equidistant to two

distinct random variables. Whatever the scoring rule being used, there will be cases where

a expert who reports one of the two intervals will not maximize his expected payoff, even

when both intervals are correct. In general, to be able to elicit the predictions of the finite

properties considered here, there must exist situations for which two or more predictions are

simultaneously correct. But those situations should almost never happen, in the sense that

the level sets should be a proper partition of the space of distributions except for a measure

zero set of points which belong to two or more level sets. To properly elicit confidence

intervals, we must reduce the overlap. For example we can require that predictions take the

form of symmetric intervals as in Figure 8, that are the ranges between the 10th and the 90th

percentiles. It is easily seen that the Voronoi test is then satisfied, and so the property is

elicitable.

In general, to learn a property that is not elicitable, one must ask the expert a more

precise question whose answer conveys more than just the information of the property. For

example, the variance of a random variable is not elicitable at any precision level. However, it

is possible to elicit the variable’s mean and its second moment to an arbitrary precision, from

which the variance is derived to an arbitrary precision. The expected shortfall is a commonly

used risk measure that is not elicitable but can be obtained from conditional moments and

quantiles, both of which are elicitable to an arbitrary precision.

Although Voronoi diagrams and convex partitions look alike, a Voronoi test can be much

stronger than a convexity test. This is especially true in high dimensions. Nonetheless, most

properties that exhibit a high level of symmetry are naturally shaped as Voronoi diagrams.

Nonsymmetric cases can arise as well. For example, the property that gives the most likely

of a list of (possibly overlapping) events. In such cases, the Voronoi sites are typically off the

density simplex, precisely to shape the asymmetric structures. These cases are somewhat

harder to visualize.

Now let us focus on a property that passes the Voronoi test of Theorem 1. How can we

construct strictly proper scoring rules? The next result asserts that the proper and strictly

proper scoring rules are essentially the mixtures of a finite number of carefully chosen proper

σ(i) denotes the i-the most likely event, 1{ω ∈ E} has value 1 if E occurs and 0 otherwise, κ is arbitrary
and λ1 > λ2 > · · · > λn > 0.

4For a discrete random variable X, [a, b] is a 80% confidence interval if the probability that X ∈ [a, b] is
at least 80% and if there is no interval [c, d] ( [a, b] for which X ∈ [c, d] with at least 80% probability.
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scoring rules. These proper scoring rules form a base. Fixed once and for all, the base is

entirely determined by the property being elicited.

Theorem 2 Let (Θ, F ) be a property that satisfies the Voronoi test in Theorem 1. There

exist ` ≥ 1 proper scoring rules S1, . . . , S`, called a base, such that a scoring rule S is proper

(resp. strictly proper) if, and only if,

S(θ, ω) = κ(ω) +
∑̀
i=1

λiSi(θ, ω), ∀θ ∈ Θ, ω ∈ Ω,

for some function κ : Ω 7→ R, and nonnegative (resp. strictly positive) reals λi, i = 1, . . . , `.

Theorem 2 has a fairly strong interpretation. Given any elicitable property, there exists a

fixed, finite number of baseline payoff functions, here represented by Si, such that all the

possible ways to elicit the property are payoff-equivalent to randomizing over those fixed

payoff functions Si. The probabilities of drawing each payoff function are fixed arbitrarily.

One can also scale the payoffs by a constant factor and add an additive state-dependent payoff

κ(ω), it does not affect incentives. However, the probabilities of draws, the constant scale

and the additive random payoffs are the only degrees of freedom. This linear representation

is particularly convenient when one wants to satisfy an optimality criterion, as illustrated in

Appendix A.

Sketch of proof for Theorem 2. The full proof of Theorem 2 is in Appendix C. It is

based on the following idea. Let S be a proper scoring rule. Properness is captured by the

following constraints:

S(θ, P ) ≥ S(θ̂, P ) ∀θ, θ̂ ∈ Θ,∀P ∈ F (θ).

There are uncountably many inequalities. However, whenever the property satisfies the

criterion of Theorem 1 the sets F (θ) are polyhedra. Observing that the inequalities are

linear in P , they need only be satisfied at the extreme vertices of these polyhedra. Thus the

properness condition boils down to a finite system of homogeneous inequalities. By standard

arguments (see, for example, Eremin (2002)), the solutions form a polytope that consists of a

cone in the space of scoring rules, which is being copied and translated infinitely many times

along some linear subspace. The directrices of the cone generate the “base” scoring rules.

The kernel of the system, which gives rise to the translations, produces the complementary

state-contingent payoffs. Adding strict properness substitutes some weak inequalities for

strict ones in the above system, which complicates matters. Nonetheless the outcome remains

intuitive: the strict inequalities only slightly perturb the solution space by excluding the
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boundary of the translated cone. In effect, this exclusion is responsible for the strictly positive

weights to all the scoring rules of the base.

Below are several examples that illustrate the representation of Theorem 2. I show how

to obtain the base scoring rules for Examples 2–5 in Section 3.2. The proof that the scoring

rules of Example 1 are proper and strictly proper is immediate. The converse, that there

exists no other proper scoring rule, is tedious and omitted.5

Example 1 Consider the property that gives the most likely of n events E1, . . . , En of state

space Ω. The events are arbitrary, and not necessarily pairwise incompatible. This property

is elicitable, and it turns out to have only one base scoring rule. All the proper (resp. strictly

proper) scoring rules S are written

S(Ej, ω) =

κ(ω) + λ if ω ∈ Ej, i.e., Ej is true,

κ(ω) if ω 6∈ Ej, i.e., Ej is false,

for arbitrary functions κ and nonnegative (resp. strictly positive) scalar λ. Note that these

scoring rules also elicit the mode of a random variable as a special case.

Example 2 Suppose the state is the realization x of some random variable X that can take

n possible values x1, . . . , xn. The median of X is an elicitable property, and the proper (resp.

strictly proper) scoring rules take the form

S(m,x) = κ(x) +
n−1∑
i=1

λi ·


−1 if m > xi, x ≤ xi

0 if m ≤ xi

+1 if m > xi, x > xi

 ,

where the scalars λ1, . . . , λn−1 are nonnegative (resp. strictly positive).

In this case, too, the family of all proper and strictly proper scoring rules takes a very

simple form. After algebraic manipulation, it can be seen that all the scoring rules S that are

proper (resp. strictly proper) for the median are written even more simply as

S(m,x) = κ(x)− |g(m)− g(x)|,

for arbitrary functions κ and g, where g is nondecreasing (resp. strictly increasing).

Note that, although the setting of this section is discrete, the scoring rules just displayed

remain proper (resp. strictly proper) when X takes a continuum of values. Although, in this

5A proof is available upon request.
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case, the scoring rules (and below, for the variance at risk) differ from the schemes defined by

Thomson (1979) who elicits quantiles, it can be shown that they are equivalent.6

Example 3 Let us divide the range [0, 1] into n intervals of equal size,
[
j−1
n
, j
n

]
, j = 1, . . . , n.

Suppose the state is binary, ω ∈ {0, 1}, and consider the property corresponding to the interval

of probability for state 1. This property is elicitable, and the proper (resp. strictly proper)

scoring rules are

S
([

j−1
n
, j
n

]
, ω
)

= κ(ω) +
n−1∑
i=1

λi ·


n− i if j > i, ω = 1

0 if j ≤ i

−i if j < i, ω = 0

 ,

where the scalars λ1, . . . , λn−1 are nonnegative (resp. strictly positive). After simplification,

we find that the proper (resp. strictly proper) scoring rules for probability intervals take the

form

S
([

j−1
n
, j
n

]
, ω
)

= κ(ω) + (g(j)− g(1))ω +
1

n

j−1∑
i=1

(g(j)− g(i)),

for arbitrary functions κ and g, where g is nondecreasing (resp. strictly increasing).

An interesting special case is κ(ω) = −ω/2 and g(k) = k/n. We then have

S
([

j−1
n
, j
n

]
, ω
)

= κ(ω) +
1

n
(j − 1)ω +

j(j − 1)

n2
.

As n grows large, probability intervals become increasingly finer and eventually converge to

singleton probabilities. Informally, at the limit, reporting an interval
[
j−1
n
, j
n

]
becomes the

same as reporting a probability p, where j/n→ p. Then, 1/n→ 0 and j(j − 1)/n2 → p2/2,

and thus, in the limit, we obtain scoring rule S(p, ω) = −ω/2 + pω− p2/2 = −1
2
(p− ω)2, and

we rediscover the Brier score or quadratic loss.

Example 4 Suppose random variable X, with possible realizations x1, . . . , xn, is associated

with the value change of a portfolio investment over some fixed period of time. The value at

risk (VaR) is a common risk measure of the loss of investment. Formally, the value at risk of

the investment at confidence level α defined by a value v such that the probability of a loss

greater than v is at least 1− α, and at the same time, the probability of a loss less than v is

at least α—that is, the value at risk is the same as the α-quantile of the loss. Suppose the

state is the realization x of the (random) investment gain X, so that −x is the loss over the

period considered. The value at risk is an elicitable property, and the proper (resp. strictly

6A proof is available upon request.
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proper) scoring rules are

S(v, x) = κ(x) +
n−1∑
i=1

λi ·


−(1− α) if v > −xi, x ≥ xi

0 if v ≤ −xi
+α if v > −xi, x < xi

 ,

where the scalars λ1, . . . , λn−1 are nonnegative (resp. strictly positive).

After simplification, we find that all the scoring rules S that are proper (resp. strictly

proper) for the value at risk at confidence level α are written

S(v, x) = κ(x) + (2α− 1)(g(v)− g(x))− |g(v)− g(x)|,

for arbitrary functions κ and g, where g is nonincreasing (resp. strictly decreasing).

Example 5 As in Example 2, suppose the state is the realization of some random variable

X. For J ≥ 2, let m1 < · · · < mJ and let us consider the property associated with the interval

[mj−1,mj] that includes the mean of X. Assume that the values of the mj’s are chosen so

that for all distributions, at least one interval includes the mean and every interval includes

the mean for some distribution. The mean interval property is elicitable, and the proper (resp.

strictly proper) scoring rules take the form

S ([mj−1,mj] , x) = κ(x) +
J−1∑
i=1

λi ·

{
x−mi if mj > mi,

0 if mj ≤ mi

}
,

where the scalars λ1, . . . , λJ−1 are nonnegative (resp. strictly positive).

3.2 Strictly Order-Sensitive Scoring Rules

I now discuss order sensitivity and its interplay with properness. Consider a scoring rule

that takes value in a set attached with a natural ordering of its elements. The result below

is a test for the existence of strictly order-sensitive scoring rules. As expected, the test is

stronger than the Voronoi test of Theorem 1. But it is also easier to carry out. A property

passes the test if and only if it partitions the distributions into “slices,” as in Figure 9(a),

and as opposed to Figure 9(b).

Theorem 3 Let (Θ = {θ1, . . . , θn}, F ) be a property, with θ1 ≺ · · · ≺ θn. There exists a

scoring rule that is strictly order sensitive with respect to the order relation ≺ if, and only if,

for all i = 1, . . . , n− 1, F (θi) ∩ F (θi+1) is a hyperplane of ∆(Ω).7

7Hyperplanes of distributions can be viewed as hyperplanes in the Euclidean space RΩ that intersect the
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P (ω1) = 1

P (ω2) = 1

P (ω3) = 1

θ1

θ2

θ3

θ4

θ5

θ6

(a)

P (ω1) = 1

P (ω2) = 1

P (ω3) = 1

θ1

θ2

θ3

θ4

(b)

Figure 9: Strict order sensitivity can be enforced on the left property only.

Sketch of proof for Theorem 3. The proof of Theorem 3 is in Appendix C. The proof

idea is best conveyed through an example. Consider a strictly order-sensitive scoring rule

for a property whose value set Θ contains three elements, θ1, θ2 and θ3. If both θ1 and θ3

are correct predictions under some distribution P , but θ2 is not, then the expected payoff,

under P , is maximized only when responding θ1 or θ3. Adding a small perturbation to P ,

we can pull out a distribution P̃ for which the only true prediction is θ1, while announcing

θ3 yields an expected payoff that is nearly maximized and larger than that derived from

announcing θ2. This contradicts strict order sensitivity. This means that, whenever we choose

some P ∈ F (θ1) and Q ∈ F (θ3), the segment of distributions must go through F (θ2). More

generally, suppose the property takes more than three values. For any two distributions

P ∈ F (θi) and Q ∈ F (θj), i < j, the segment of distributions starting from P and ending

at Q must pass by, in order, through F (θi), F (θi+1), . . . , F (θj), by which the hyperplane

separation holds. The converse can be made clear through an explicit construction of the

strictly order-sensitive scoring rules, which is the object of Theorem 4.

For example, we can apply Theorem 3 to the case of the median and the mode of a

random variable X. For the median, Figure 4 suggests that the property passes the slice test

of Theorem 3.8 In contrast, consider the mode of X. This property gives the most likely

value of X. Figure 5, for which the mode is a special case, clearly indicates that the property

fails the test of Theorem 3.9

simplex of the state distributions.
8Indeed, choosing two consecutive values for X, x and y, we easily verify that F (x)∩F (y) is a hyperplane.

If both are possible median values under a distribution P , then P (X ≤ x) ≥ 1
2 , P (X ≥ x) ≥ 1

2 , and
P (X ≤ y) ≥ 1

2 , P (X ≥ y) ≥ 1
2 . Hence P (X > x) = P (X ≥ y) ≥ 1

2 , and, as P (X ≤ x) + P (X > x) = 1,
P (X ≤ x) = 1

2 . The converse is immediate. This means that the set F (x) ∩ F (y) is the hyperplane defined
by
∑
z≤x P (X = z) = 1

2 . Hence the criterion of Theorem 3 is satisfied.
9To be convinced of this assertion, choose two consecutive values of X, x and y. The set F (x) ∩ F (y)
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Strictly order-sensitive scoring rules are also strictly proper, and the form of the strictly

proper contracts follows the rule given in Theorem 2. One benefit of properties that admit

strictly order-sensitive scoring rules is that the base scoring rules are easily derived; they are

0− 1 factors of the normals to the boundaries of consecutive level sets. Together Theorem 2

and Theorem 4 can be used to obtain the strictly proper scoring rules for any property that

satisfies the condition of Theorem 3.

Theorem 4 Let (Θ = {θ1, . . . , θn}, F ) be a property with θ1 ≺ · · · ≺ θn. Assume there exists

a strictly order-sensitive scoring rule S with respect to the order relation ≺. The scoring rules

S1, . . . , Sn−1, defined by

Si(θj, ω) =

0 if j ≤ i,

ni(ω) if j > i,

form a base, with ni being a positively oriented normal (i.e., oriented towards F (θi+1)) to the

hyperplane of random variables in RΩ generated by F (θi) ∩ F (θi+1).

The proof of Theorem 4 is in Appendix C.

It remains to characterize the order-sensitive scoring rules. As it turns out, as long as

a strictly order-sensitive scoring rule exists, all the proper (resp. strictly proper) scoring

rules are also order sensitive (resp. strictly order sensitive), so that the characterization of

Theorem 4 still applies. The result implies that when a property admits a strictly order-

sensitive scoring rule, it does so for exactly two order relations, one being the reverse of the

other. As demonstrated in the sketch proof of Theorem 3, the result breaks down without

the existence requirement. It breaks down even when restricted to weak order sensitivity,

which, obviously, exists for all properties.

Proposition 1 Let (Θ = {θ1, . . . , θn}, F ) be a property with θ1 ≺ · · · ≺ θn. Assume there

exists a strictly order-sensitive scoring rule with respect to the order relation ≺. A scoring

rule is proper (resp. strictly proper) if and only if it is order sensitive (resp. strictly order

sensitive), with respect to ≺.

The proof of Proposition 1 is in Appendix C.

Put together, Theorem 4 and Proposition 1 are particularly useful to obtain the base

necessary to the design of proper scoring rules. I illustrate this use with a few cases below.

First, let us return to Example 2 about the median property of random variable X. Let xi

be the i-th smallest value taken by X. The hyperplane that separates two consecutive level

contains all distributions P such that P (X = x) = P (X = y), equality that indeed defines a hyperplane.
However it is only part of a hyperplane, because there are distributions that assign the same probability to
both x and y, and yet whose most likely values are attained elsewhere. As F (x) ∩ F (y) does not cover an
entire hyperplane of distributions, it fails the above criterion.
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sets of the median, for respective values xi and xi+1, is, as established previously, specified

by equation
∑

k≤i P (xk) = 1
2
. And so, the functions ni defined by

ni(x) =

−1 if x ≤ xi,

+1 if x > xi,

are positively oriented normals for each i = 1, . . . , n − 1. The normals generate the n − 1

base scoring rules used in Example 2,

Si(m,x) =


−1 if m > xi, x ≤ xi,

0 if m ≤ xi,

+1 if m > xi, x > xi.

The base scoring rules for the variance at risk of Example 4 are obtained in a similar fashion.

The hyperplane that separates two consecutive values of variance at risk, xi and xi+1, is

specified by equation
∑

k≤i P (xk) = α. A set of positively oriented normals is then

ni(x) =

−(1− α) if x ≤ xi,

+α if x > xi,

for i = 1, . . . , n− 1, which are then used to generate the base, and eventually yield the proper

and strictly proper scoring rules displayed in Example 4.

Next let us return to Example 3, that describes the property that gives a probability

interval Ij =
[
j−1
n
, j
n

]
for state 1. These intervals are naturally ordered by I1 ≺ · · · ≺ In. The

hyperplane that separates two consecutive level sets is specified by the set of distributions P

such that both P (1) ∈ Ii and P (1) ∈ Ii+1, that is, P (1) = i/n. Hence the following

ni(ω) =

1− i/n if ω = 1,

−i/n if ω = 0,

defines a positively oriented normal for every i = 1, . . . , n− 1, from which we can derive the

base scoring rules of Example 3.

Finally, let us return to Example 5, which concerns the mean interval of some random vari-

able X. Using the same notation as this example, the hyperplane that separates to consecutive

intervals [mi−1,mi] and [mi,mi+1] for the mean is given by the equation
∑

k xkP (xk) = mi,

and the functions ni defined by ni(x) = x−mi are positively oriented normals, which generate
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the scoring rules proposed in Example 5.

4 Partially Informed Experts

In this section, the expert is no longer assumed to know perfectly the state distribution.

Instead, he is partially informed and believes that several state distributions are possible.

This belief, the set of distributions the expert deems possible, is a closed subset of ∆(Ω).

When a state distribution is included in the belief, that distribution is compatible with the

belief. The expert is endowed with maxmin preferences as defined in Gilboa and Schmeidler

(1989), he evaluates a risky prospect as the worst case expected payoff under all the possible

state distributions compatible with his belief. Note that, when asked to supply a property

value as report, the expert may decide randomly over several values—unlike the special case

of full information, randomized reporting strategies cannot be eliminated without losing

generality.

With partial information, the expert may be certain that some property values are correct

(or incorrect) but, because the belief generally does not reduce to a singleton, he may also be

unsure. Let us say that an expert knows a property value when, according to his belief, this

property value matches the state distribution for sure. Similarly, let us say that an expert

knows a property when he is able to identify at least one property value that he knows, even

though he may not be able to identify all the property values that match the actual state

distribution.

In a context of partial information, it is natural to ask is if the incentive schemes known

to work with fully informed experts continue to work with partially informed experts when

these experts have the information we request from them.

Proposition 2 Suppose a property is elicitable and an expert is rewarded according to a

proper scoring rule. If the expert knows the property value θ, then reporting θ is a best

response.

The argument is immediate. Let B denote the expert’s belief. If the expert knows θ, then

B ⊆ F (θ). Let θ̃ be any property value other than θ. As S is proper, S(θ, P ) ≥ S(θ̃, P ) for

every P ∈ F (θ), and so also for every P ∈ B. Hence, for all state distributions the expert

believe possible, supplying θ makes him as least as well off as reporting any other property

value, and so at least as well off as any reporting strategy, including randomized strategies.

Thus, Proposition 2 says that a report the expert knows to be correct continues to be

a best response, so that strictly proper scoring rules cause no distortion when applied to a

partially informed expert. Of course one may also ask if, as in the case of a fully informed
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expert, the incentives are strict. When a property value is possible according to the expert’s

belief, meaning that at least some state distribution is compatible with the belief, by extension

let us say of the property value that it is compatible with the belief. Note that a response

that is compatible with an expert’s belief need not be correct. One may want to ensure that,

at least, an expert believes that his own responses are possibly correct. As long as the expert

knows the property, this condition holds.

Proposition 3 Suppose a property is elicitable and an expert is rewarded according to a

strictly proper proper scoring rule. If the expert knows the property, then the expert can only

best respond by reporting values compatible with his belief. In addition, if the diameter of

the expert’s belief falls below some positive threshold, then the expert only best responds by

reporting correct values.

Proof. Let the expert have belief B and know the property value θ. Let θ̃ be a property

value not compatible with B. For every P ∈ B, we have P ∈ F (θ) but also P 6∈ F (θ̃), and

so S(θ, P ) > S(θ̃, P ), because S is strictly proper. By Proposition 2 reporting θ is a best

response, so that any reporting strategy in which the expert chooses to report an incompatible

property value with positive probability cannot be a best response.

Finally, if a property value does not match the state distribution, then the Euclidean

distance between the state distribution and the level set of that value, which by Theorem 1

is a Voronoi cell, is nonzero. Hence, if the expert’s belief has a small enough diameter, this

belief, which includes the actual state distribution, does not intersect with that level set so

that the incorrect property value is not compatible with the belief. Since there are finitely

many property values, it is always possible to select a positive threshold so that any belief

with a diameter less than the threshold is guaranteed not to intersect any level set of a

property value that does not match the state distribution; in that case, no incorrect property

value is compatible with the expert’s belief.

Thus, as long as the expert knows the property of interest, a partially informed expert

is induced to answer coherently with his own belief in all mechanisms for which telling the

truth is a strict best response for a fully informed expert. If the belief is precise enough, then

the partially informed expert will always best respond by sending a report guaranteed to be

correct, but it need not be otherwise. Except for the case of binary properties, it is generally

not possible to design a scoring rule that ensures that all best responses always yield correct

reports even when the expert knows the property.10 In order to achieve this effect, one must

10A minimal example is as follows. Consider an environment with binary state ω ∈ {good,bad}. The
property is the probability of the good state belonging to interval [0, 1/3], [1/3, 2/3], or [2/3, 1], respectively.
No matter the scoring rule employed, there always exists a belief and a property value fully compatible with
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make use of the ambiguity aversion of the expert and have the elicitor pick one of several

possible scoring rule, after the expert makes the report, and without committing to any

randomized selection.

If an expert does not know a property, then in general little can be said: the expert’s

only best response may be to send a report inconsistent with his own belief.

Proposition 4 Suppose a property is elicitable and an expert is rewarded according to a

strictly proper scoring rule. If the expert does not know the property, then it is possible that

in all best responses, the expert never supplies a report compatible with his belief.

Proof. Consider the case of a binary state ω ∈ {good, bad}. The property is whether the

good state has probability less than (or equal to) 1/3, more than (or equal to) 2/3, or between

1/3 and 2/3 (endpoints included). Let S be defined as follows:

S
([

0, 1
3

]
, good

)
= −2, S

([
0, 1

3

]
, bad

)
= 1,

S
([

1
3
, 2

3

]
, good

)
= 0, S

([
1
3
, 2

3

]
, bad

)
= 0,

S
([

2
3
, 1
]
, good

)
= 1, S

([
2
3
, 1
]
, bad

)
= −2.

It is immediate to verify that S is strictly proper for the property being considered.

Suppose the expert is believes that the probability of the good state is either 1/4 or 3/4.

The expert does not know this property. There are two property values compatible with

the belief, [0, 1/3] and [2/3, 1]. However, if he reports any of these two values with positive

probability, the expert’s worst case expected payoff is negative, whereas the payoff is always

zero when reporting the only incompatible property value [1/3, 2/3].11

Related to Proposition 4, if the expert knows the property of interest but is asked to

report the full state distribution (so, is asked to answer a question he may not know the

answer to) and is rewarded according to a strictly proper probability scoring rule, such as the

quadratic scoring rule, then it is generally not possible to back out correct property values,

even if the property is elicitable. An analogous result holds when the expert is asked to

report the value of a property that is finer than the expert’s belief.

Proposition 5 Consider an elicitable property and suppose an expert who knows the property

is asked to report an entire distribution, and is rewarded according to a strictly proper

probability scoring rule. Then, there can be a unique best response and the reported distribution

can be entirely uninformative about the expert’s belief.

the belief such that reporting another, not fully compatible property value is a best response. The proof is
simple but tedious and is omitted.

11The expert’s belief is not convex in this example. With more than two states, it is possible to construct
a similar but tedious example in which the belief is convex.
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Proof. The argument is general but is best illustrated by a simple example. As in Proposi-

tion 4, consider the case of a binary state ω ∈ {good, bad}. The property is now whether

the good state has probability less than (or equal to) 1/2, or more than (or equal to) 1/2.

The expert believes that the good state has probability no greater than 1/2, so he knows the

property. Suppose the expert is asked to send an estimate p of the probability that the state

is good, and is rewarded, for example, according to the quadratic scoring rule that delivers

the payoff −(1− p)2 if the state is good, and −p2 if the state is bad. It is easily seen that

the unique best response is to report probability 1/2, and by symmetry, the same unique

best response holds in the reverse case in which the expert believes that the good state has

probability no less than 1/2.

These last two results motivate the elicitation of partial information, when the full

distribution is not needed. If the expert’s belief is too vague and we ask for fine information,

the expert may respond in a way that does not reflect his own belief and is uninformative,

so as to protect himself against the worst case. The problem is avoided when asking for

information just coarse enough so that the expert can form unambiguous assessments.

One may want to ensure that the expert we solicit knows the property. Can the elicitor

design a payment scheme that only attracts the experts who are knowledgeable? Formally, let

us define a contract as a finite collection of state-contingent payoffs. An expert who is offered

such a contract can either reject the offer, and get zero payoff, or accept the offer and choose

one state-contingent payoff from the menu. The menu may be indexed by property values,

but in general need not be. The goal is to design a contract that an informed expert, who

knows the property, accepts, while an expert who does not know the property declines. The

result below demonstrates the impossibility to design such screening contracts, in a strong

sense, independently of the property of interest.

Proposition 6 Consider a contract C. If a fully informed expert is at least weakly better

off accepting the contract, then an ignorant expert, i.e., an expert whose belief is the entire

simplex of distributions, is also at least weakly better off accepting the contract.

Proof. The proof is short and directly inspired by the manipulability of tests or contracts

by minimax arguments, in particular Sandroni (2003) and Olszewski and Sandroni (2007). If

an expert is fully informed and forms belief P regarding the state distribution, his expected

payoff from state-contingent payoff π is 〈π, P 〉. Suppose it is always in the best interest of an

expert who is fully informed to accept the contract, no matter his belief. Then,

min
P∈∆(Ω)

max
Q∈∆(C)

∑
π∈C

Q(π)〈π, P 〉 ≥ 0.
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Since C and Ω are finite, and expected payoffs are linear in P and Q, we can apply von

Neumann’s minimax theorem to get

max
Q∈∆(C)

min
P∈∆(Ω)

∑
π∈C

Q(π)〈π, P 〉 = min
P∈∆(Ω)

max
Q∈∆(C)

∑
π∈C

Q(π)〈π, P 〉.

Hence, there exists Q such that, if an ignorant expert randomizes over the state-contingent

payoffs of the contract C according to Q, the worst-case expected payoff of the expert is

nonnegative, so that the ignorant expert is always at least weakly better off accepting the

contract.

It is worth noting that the negative result hinges on the fact to that we consider an expert

in isolation. For example, suppose instead that there is a population of experts and consider

any elicitable property of interest to the elicitor. In the simplest case, a positive fraction of

the population knows the property of interest, while the rest of the population is ignorant.

The elicitor offers to two or more experts to work for her in the following manner. If an

expert i accepts the offer, he is randomly matched against another accepting expert j and

gets ε+ S(θi, ω)− S(θj, ω) where θi is the report made by expert i, and θj the report made

by expert j (the offer is canceled in the event that the elicitor is unable to get more than one

expert to work for her). In this case, if ε is positive but small enough, no ignorant expert is

willing to accept the offer, while the informed experts are strictly better off accepting. In

the general case of a diverse, heterogeneous population, one can ensure that only the best

informed experts accept the offer by selecting ε arbitrarily small (if ε = 0, only the most

informed experts accept). This fact results from a simple unraveling argument.

5 An Application to Forecast Testing

While the main model of this paper is geared towards the use of scoring rules as incentive

devices, one major area where scoring rules are used in practice is the evaluation of forecasters

and the calibration of learning models, where the average score of forecasts over time provide

an assessment of relative performance. In this section, I apply the framework of this paper to

the problem of comparing the quality of two (or more) experts who provide forecasts over

time. It is convenient to separate the two cases of Bayesian and non-Bayesian experts.

Bayesian Experts

There are two experts i = 1, 2. As in the model of Section 2, there continues to be a finite

set of states Ω, but there are now infinitely many time periods indexed t = 1, 2, . . . . At every
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date t, a state realizes. Alongside the sequence of states, there is a sequence of pairs of signals,

one signal for each expert. So, at every date t, three variables are drawn at random: the

state ωt, the signal y1
t of expert 1, and the signal y2

t of expert 2. Each signal takes value in a

finite signal space Y . The sequence of states and signals is generated according to probability

measure µ.

There is an elicitable property of interest, (Θ, F ), about the state distribution. The

two experts provide, from one period to the next, forecasts about the property for the next

period’s state distribution. It is important that there be at least two experts, however the

results of this part and the next generalize to more than two experts.

In this part I suppose that the probability measure µ is common knowledge and that

experts form their beliefs based on the signals that they observe. At date t, they know the

history of signal realizations and the history of state and forecast realizations, up to date

t. (Alternatively, we can assume that signal realizations remain private but that previous

signals are irrelevant to infer the state at a given date, conditionally on the state history.) At

date t, the private information of expert i is the signal of the next period, yit+1. Therefore, at

date t, given history ht, expert i’s assessment of the probability that the next state be ωt+1

is µ(ωt+1 | ht, yit+1).

Let us say that expert i is more informed that expert j, if, at every date and for every

history, expert i’s signal distribution given the state is more informative than that of expert

j according to the Blackwell ordering of information structures (Blackwell, 1951, 1953).

Let S be any strictly proper scoring rule for (Θ, F ). The difference of average scores over

the first T periods between expert 1 and expert 2 is defined as

∆S(T ) =
1

T

T∑
t=1

(S(θ1
t , ωt)− S(θ2

t , ωt)),

where θit is the forecast of expert i for date t. Because scoring rules are the negative of loss

functions, computing the average score is a common way to measure the performance of a

forecaster over time. Informally, ∆S(T ) is an indication of “how much” expert 1 outperforms

expert 2 over the first T time periods.

Proposition 7 If expert 1 is more informed than expert 2, then with probability 1,

lim inf
T→∞

∆S(T ) ≥ 0.
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Proof. For both experts i = 1, 2,

Eθit,ωt

[
S(θit, ωt)

∣∣ ht−1

]
= Eyit

[
Eθit,ωt

[
S(θit, ωt)

∣∣ ht−1, y
i
t

] ∣∣ ht−1

]
= Eyit

[
max
θ

Eωt

[
S(θ, ωt)

∣∣ ht−1, y
i
t

] ∣∣∣ ht−1

]
,

because expert i’s forecast for date t maximizes his expected score given the information

available to him, history ht−1 and signal yit. At date t and for history ht−1, the information

structure of expert i is captured by the conditional probabilities µ(ωt | yit, ht−1) for ωt ∈ Ω

and yit ∈ Y. By assumption, for every date and at every history, the information structure

of expert 1 is more informative than the information structure of expert 2 according to

the Blackwell ordering. Interpreting the problem of announcing the forecast at date t as a

decision problem whose utility is given by the score, a direct implication of the Blackwell

ordering is that, at every date t and for every history ht−1,

Ey1t

[
max
θ

Eωt

[
S(θ, ωt)

∣∣ y1
t , ht−1

] ∣∣∣ ht−1]
]
≥ Ey2t

[
max
θ

Eωt

[
S(θ, ωt)

∣∣ y2
t , ht−1

] ∣∣∣ ht−1

]
.

Hence,

Eθ1t ,ωt

[
S(θ1

t , ωt)
∣∣ ht−1

]
≥ Eθ2t ,ωt

[
S(θ2

t , ωt)
∣∣ ht−1

]
.

We apply Dawid’s calibration theorem (Dawid, 1982) (strictly speaking, we apply an extension

of this theorem, see Shiryaev (1996), chapter 7, section 3, corollary 2) to get that with

probability 1,

lim
T→∞

∣∣∣∣∣ 1

T

T∑
t=1

S(θit, ωt)−
1

T

T∑
t=1

Eθit,ωt

[
S(θit, ωt)

∣∣ ht−1

]∣∣∣∣∣ = 0

which together with the last inequality implies the limit stated in the proposition.

Proposition 7 says that an expert almost never outperforms a better informed expert

on the average score in the long run. In general, when using strictly proper scoring rules,

the more informed expert will outperform the less informed expert in the long run, however,

whether it occurs depends on the probability measure that generates the sequence of states

and signals, on how fine or how coarse the property is, and on how informative one expert

signal is versus the other.

Non-Bayesian Experts

There are two experts i = 1, 2, a finite set of states Ω, and infinitely many time periods

t = 1, 2, . . . . At every date t, a state ωt realizes publicly. Let µ be the probability measure
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that generates the sequence of states. In this part, experts are not Bayesian, they do not

observe private signals. Instead, some experts have knowledge of µ while others do not. An

expert is said to be informed when he knows the data generating process µ. Informed experts

make truthful reports. As for the case of Bayesian experts, there is an elicitable property of

interest, (Θ, F ), about the state distribution, and the experts provide forecasts about the

property at each date t for date t+ 1.

It is the baseline model used in the literature on forecast testing, adapted to the prediction

of properties. A classical question in this literature is how to distinguish between the expert

who is informed and the expert who is not. While it may be difficult or even impossible to

assess the information quality of an expert in isolation—see, for example, Foster and Vohra

(1998) for calibration tests, and Shmaya (2008), Olszewski and Sandroni (2008) for general

tests (it is worth noting that the arguments that those papers use to prove the manipulability

results continue to hold for the properties considered here)—positive results exist for groups

of experts if at least one of the experts in the group is informed, by comparing the forecasts

of the different experts, as in Al-Najjar and Weinstein (2008) and Feinberg and Stewart

(2008). In this part I illustrate how to use long run average scores to distinguish between the

informed and the uninformed expert in the context of property forecasting.

In the one-expert case, it is known that randomization helps uninformed experts to cheat

and pretend to be informed. To permit the use of such cheating strategies, I assume that in

addition to the history of public state realizations, experts have access to a random number

generator, which they may use as they wish to generate forecasts. The history of state and

forecast realizations is public. Let ht be the history from date 1 to date t included.

Let S be any strictly proper scoring rule for (Θ, F ). The difference of average scores over

the first T periods between expert i and expert j is defined as

∆Sij(T ) =
1

T

T∑
t=1

(S(θit, ωt)− S(θjt , ωt)),

where θit is the forecast of expert i for date t.

Before stating the formal results, I introduce some definitions. Given a sequence of states,

the performance of expert i is said to be asymptotically as good as that of expert j when, for

all ε > 0, ∆Sij(T ) ≥ −ε for all T chosen large enough.

For δ > 0, let Pδ be the set of distributions “close” to the generating process µ,

Pδ = {ν ∈ ∆(Ω∞) | ∀t, ω1, . . . , ωt, |ν(ωt|ω1, . . . , ωt−1)− µ(ωt|ω1, . . . , ωt−1)| < δ}.

The definition resembles the notion of merging of probability measures (Blackwell and Dubins,
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1962, Kalai and Lehrer, 1994, Lehrer and Smorodinsky, 1996). Given a sequence of states, a

sequence of forecasts (θt)t≥1 is said to be approximately correct if forecasts are arbitrarily

accurate except possibly for a proportion of periods that vanishes in the long run: for all

δ > 0, there exists a distribution ν ∈ Pδ such that

lim
T→∞

1

T
|{t ≤ T | θt is true under ν(·|ω1, . . . , ωt−1)}| = 1,

where |S| is the cardinality of finite set S.

In the proposition below, expert i denotes either expert 1 or 2, and expert j denotes the

other expert.

Proposition 8 If expert i is informed, then almost surely the following obtains:

(1) The performance of expert i is asymptotically as good as that of expert j.

(2) If the performance of expert j is asymptotically as good as that of expert i, then the

sequence of forecasts of expert j is approximately correct.

Proposition 8 formalizes two facts. First, any informed expert is almost surely guaranteed

to maximize his performance in the long run, no matter the strictly proper scoring rule

employed for the evaluation. Second, if some expert has a performance that becomes as

good, asymptotically, as that of an informed expert, then almost surely that expert makes

predictions that are essentially as accurate as those of any informed expert except for a

fraction of dates that vanishes to zero in the long run. In that sense, evaluating experts with

the average score gives a test that separates the informed experts from charlatans, as long as

one of the experts is known to be informed. For the case of reports of the full distribution,

Feinberg and Stewart (2008) and Al-Najjar and Weinstein (2008) propose tests respectively

based on cross-calibration and a comparison of likelihood ratios that also separates the two

types of experts. These tests are more advanced and have stronger properties, my objective

here is simply to illustrate some basic properties of the average score, commonly used in

practice.

Naturally, the assumption that at least one expert is informed is key. Without that

assumption, the difference of average scores is not conclusive: it does not enable us tell if

one or both experts are informed. Indeed the two-expert case reduces to the one-expert case

when both experts make the same forecasts, and in the latter it is already known that no

test can distinguish the informed from the uninformed.

The proof makes use of two simple lemmas proved in Appendix D.

Lemma 1 For any sequence (ut)t≥1 of bounded, nonnegative reals, limT→∞
1
T

∑
t≤T ut = 0 if

and only if, for all ε > 0, limT→∞
1
T
|{t ≤ T | ut < ε}| = 1.
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Lemma 2 For all δ > 0, there exists ε > 0 such that for all property values θ, θ̃, and all

state distributions P ∈ ∆(Ω) such that θ is true for P , if S(θ̃, P ) ≥ S(θ, P )− ε, then there

exists Q ∈ ∆(Ω) with maxω |P (ω)−Q(ω)| < δ such that θ̃ is true for Q.

Proof of Proposition 8. If expert i is informed, then

Eθit,ωt

[
S(θit, ωt)

∣∣ ht−1

]
= max

θ
Eωt [S(θ, ωt) | ht−1] ≥ Eθjt ,ωt

[
S(θjt , ωt)

∣∣ ht−1

]
.

In addition, by Dawid’s calibration theorem (Dawid, 1982), almost surely, for both experts

k = 1, 2, we have

lim
T→∞

∣∣∣∣∣ 1

T

T∑
t=1

S(θkt , ωt)−
1

T

T∑
t=1

Eθkt ,ωt

[
S(θkt , ωt)

∣∣ ht−1

]∣∣∣∣∣ = 0.

Putting these facts together, we get lim infT→∞ Sij(T ) ≥ 0. This proves part (1) of the

proposition.

Let us prove part (2). By Part (1) we know that the performance of expert i is asymp-

totically as good as that of expert j almost surely. When the performance of expert j is

also asymptotically as good as that of expert i, ∆Sij(T ) → 0. So applying again Dawid’s

calibration theorem, we get that almost surely,

lim
T→∞

1

T

T∑
t=1

(
Eθit,ωt

[
S(θit, ωt)

∣∣ ht−1

]
− Eθjt ,ωt

[
S(θjt , ωt)

∣∣ ht−1

])
= 0

when the performance of expert j is asymptotically as good as that of expert i.

Since Eθit,ωt
[S(θit, ωt) | ht−1] ≥ Eθjt ,ωt

[
S(θjt , ωt)

∣∣ ht−1

]
, Lemma 1 applies and for all ε > 0,

lim
T→∞

1

T

∣∣∣{Eθjt ,ωt

[
S(θjt , ωt)|ht−1

]
≥ Eθit,ωt

[
S(θit, ωt)|ht−1

]
− ε
}∣∣∣ = 1.

Now take any δ > 0. By Lemma 2, there exists ε̃ > 0, and some probability measure

ν ∈ Pδ over sequences of states such that, if

Eωt [S(θit, ωt)|ht−1] ≥ Eωt [S(θ, ωt)|ht−1]− ε̃,

then θ is true for state distribution P with P (ωt) = ν(ωt | ht−1). So, if we choose ε = ε̃ in

the limit above, we get that for a fraction of periods that converge to 1 as T grows infinite,

the forecasts of expert j are true for the state distributions associated with measure of state

sequences ν. And hence the sequence of forecasts of expert j is approximately correct.
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6 Concluding Remarks

In this paper, I discuss the problem of eliciting or evaluating forecasts of properties of

probability distributions. The expert’s payoff is controlled via a scoring rule that generalizes

the classical probability scoring rules, and whose inputs are the expert forecast and the

realization of the random state. There exists a simple geometric characterization of the

elicitable properties, i.e., the properties that can be elicited truthfully as a strict best response

from any expert whose information on the state distribution is precise enough. Moreover, if

an expert does not know the property, then asking the expert for this property or for more

information may result in erroneous and inconsistent reports. The proper and strictly proper

scoring rules are structured as the nonnegatively weighted average of some functions that are

fixed and attached to the property under consideration. For properties that take values in an

ordered set, additional characterizations are obtained.

In most of the paper, the emphasis is on the fundamental aspect of the problem. I

embrace the canonical setting of Savage (1971). I choose to do so because the existence and

characterization of proper and strictly proper scoring rules is the critical element in most

applications of this literature, without which results are no longer possible. A focus on a

more specific environment would prevent the deployment of the theory to other applications.

For example, a number of works study environments in which the main players are experts

who provide forecasts in probabilities. In many cases, the results of these works continue

to hold, possibly with some adaptation, with forecasts of elicitable properties, because they

use features of probability elicitation that are shared with the elicitation of general elicitable

properties discussed in the general theory of this paper. For example, the methods of Shmaya

(2008) and Olszewski and Sandroni (2008) to obtain impossibility results for the testing

of informed versus uninformed experts continues to apply when experts forecast general

elicitable properties. For positive results, the cross-calibration method of Feinberg and

Stewart (2008), which tests multiple competing experts simultaneously, also applies. The

fact that the property is elicitable is important. In the latter case, for example, the result

owes to a convexity argument which would not be true of general nonelicitable properties.

This paper focuses on individual forecasts, but a stream of the literature also uses scoring

rules in a market context. For example, Ostrovsky (2012) studies the information aggregation

properties of financial markets operated either by a batch auction or by a dealer. The dealer

setting uses a fixed demand/supply schedule modeled via a strictly proper scoring rule, as in

Hanson (2003). With minor modifications, one can derive analogous results with the scoring

rules presented in this paper and extend the results of Ostrovsky (2012) to a broader class of

securities to aggregate information on some particular properties of a potentially complicated

35



distribution. It is also worth noting that several classical solutions to betting market designs,

for example as proposed by Johnstone (2007) and by Lambert et al. (2015), also transpose

directly to the predictions of distribution properties, as the only input required is a proper

scoring rule. The problem of designing incentive contracts, as in the work of Clemen (2002),

or the problem of designing screening contracts, as in the works of Olszewski and Sandroni

(2007) and Babaioff et al. (2011), have solutions that can be adapted to the case of more

general property forecasts.

Finally, while many properties are elicitable, there are also a number of properties that

are not. Yet, eventually, all properties can be elicited in some indirect fashion under the

assumption that the expert is full informed—at worst, we can use the standard methods

of elicit the full probability distribution, and then subsequently compute the value of any

property we wish to have. But asking for the full distribution may be difficult in practice, or

unnecessarily cumbersome, and it is not always required. For example, predictions of the

variance on its own cannot be elicited, but we have seen that predictions of the mean and

variance together can be elicited, which follows from the observation that the mean and the

variance are isomorphic to the first and second moments which are both elicitable. More

generally, when a property does not convey enough information to induce truthful reports,

we can rely on a finer property. A natural question to ask is what is the smallest amount of

information we must ask to obtain truthful answers to what we really want to know, and the

characterization obtained in this paper may be a modest first step towards an answer.
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A Costly Information

Strict properness ensures that truthful responses are the only best responses. The literature

usually focuses the search on this criterion, one major reason being that, if there is a cost of

acquiring information, then one can simply scale up a strictly proper scoring rule to motivate

the expert to learn that information. In this appendix, I explain how this idea works in

the context of property elicitation, and argue that the concept of elicitability captures the

distribution properties for which there exists an incentive device that motivates learning of

the property.

The model is a small modification of the model of Section 2. There continues to be a

finite set of states Ω and a distribution P that governs the draw of the state, but the expert

no longer knows P . Instead, both the expert and the elicitor share a common prior on P .

Let this common prior be µ. It is a probability measure over the elements of ∆(Ω) which

represent the possible state distributions. Thus, in this model, both the expert and the

elicitor start equally uninformed. In particular, they both believe that the probability of

state ω is EP∼µ[P (ω)]. Let P denote the corresponding prior state distribution.

Consider a property of interest (Θ, F ). The expert is asked to provide a forecast for this

property. Before his announcement, the expert faces a choice. He can decide to remain

uninformed. Or, he can decide to become informed and learn the true state distribution

P , but doing so he incurs cost c > 0. After the announcement and once the state realizes,

the elicitor pays the expert an amount π(θ, ω) that is a function of the expert’s forecast

and the realized state. In this more specific context, I refer to π as payment scheme (as

opposed to scoring rule). The expert is risk neutral and seeks to maximize his expected

payoff. A payment scheme is incentive compatible when it induces the expert to make a

truthful prediction. The focus is on priors that are nondegenerate in the following sense:

every property value is false with nonzero probability.

Proposition 9 If property (Θ, F ) is elicitable, then for every nondegenerate prior µ, there

exists at least one incentive-compatible payment scheme such that the expert chooses to become

informed.

Proof. Let S be any strictly proper scoring rule for the property of interest. Because S is

strictly proper, for every P , S(θ(P ), P ) ≥ S(θ(P ), P ). In addition, because µ is nondegenerate,

with positive probability on P , θ(P ) is false under P , and so S(θ(P ), P ) > S(θ(P ), P ). Hence,

EP∼µ[S(θ(P ), P )] > EP∼µ[S(θ(P ), P )] = S(θ(P ), P ).
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Thus, there exists λ > 0 such that if we use payment scheme π = λS,

EP∼µ[π(θ(P ), P )]− π(θ(P ), P ) > C.

The payment scheme is incentive compatible because S is proper. The left-hand side of the

inequality is the difference of expected payoff of an informed expert and the expected payoff of

an uninformed expert. The difference being greater than the cost of becoming informed, when

facing such payment scheme, the expert is strictly better off choosing to become informed.

To simplify I take the extreme situation in which the expert goes from fully uninformed

to fully informed. Naturally, by the same logic, an analogous result to Proposition 9 holds

when the expert starts already partially informed (whereas the elicitor is fully uninformed),

and faces the choice of becoming better informed at some cost. One may also enrich the

model with different levels of information at different costs.

What is important for the result of Proposition 9 to hold is that the property be elicitable.

Here is an instance of what can happen with a nonelicitable property. Consider an environment

with two states, a good and a bad state, and a property that distinguishes between two

levels of informativeness of the state distribution. If either the good or bad state occurs with

probability greater than or equal to 2/3, then the distribution is said to be “fairly informative.”

If the good and bad state each occurs with probability less than or equal to 2/3, then the

distribution is said to be “poorly informative.” Clearly, this property is not elicitable, because

it trivially fails the test of Theorem 1. Further, it is easily verified that the only proper

scoring rules (and thus the only incentive-compatible payment schemes) assign a score that

may depend on the state but never depend on the forecast. This impossibility to depend on

the forecast implies that the only property that an incentive-compatible payment scheme can

elicit is the trivial property that carries no information at all on the state distribution. In

this case, it is always impossible to induce the expert to become informed, no matter the

prior µ or the cost c.

The example is extreme because the impossibility holds for all priors. In the current

setting, depending on the prior, it is not always necessary that the property be elicitable to

induce the expert to become informed. The reason is that in this simple environment, when

the expert chooses to become informed, he becomes informed fully all at once. So, even if a

payment scheme pays the same when the expert reports two particular property values, it

may still motivate the expert to become informed if it induces him to disentangle between

some other property values, as long as the prior µ makes these other values sufficiently likely

to occur. Still, elicitability remains a necessary condition for Proposition 9 to hold.

Proposition 10 If property (Θ, F ) is not elicitable, then there exists a nondegenerate prior
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µ such that for all incentive-compatible payment schemes, the expert chooses not to become

informed, no matter the cost c > 0.

Proof. The key ingredient of the proof is the observation that, if the property is not elicitable,

then there exists two different property values, θa and θb, such that for every proper scoring

rule S about (Θ, F ), we have S(θa, P ) = S(θb, P ) for all P that makes θa or θb true. Note

the ordering of quantifiers: this observation is not directly implied by the definition of strict

properness. It owes instead to the lattice structure of properties.

Specifically, the same argument used in the proof of Theorem 1 can be used to see that any

scoring rule that is proper for (Θ, F ) elicits a strictly coarser property (at worst, it elicits the

trivial property that includes no information at all). And, if scoring rule SA elicits property

A and scoring rule SB elicits property B, then scoring rule SA + SB elicits the information

combined in property A and B together, the join of the two properties. So, since there are

finitely many elicitable properties that are coarser than (Θ, F ), there exists a finest coarser

elicitable property. No scoring rule that is proper for (Θ, F ) can elicit more than this finest

coarser elicitable property, which remains strictly coarser than (Θ, F ). Hence the observation

above.

Next, take any prior µ which gives positive weight to θa and θb, and gives zero weight to

other property values. In that case, every incentive-compatible payment scheme yields the

same expected payoff to the informed and the uninformed expert, who therefore is strictly

better off remaining uninformed to avoid the cost.

Note that whenever incentive-compatible schemes exist, payoffs can always be chosen to

be nonnegative, i.e., the elicitor pays the expert but the expert never pays the elicitor. This

feature is often desired in practice. Below I refer to them as nonnegative payment schemes.

There are infinitely many incentive-compatible, nonnegative payment schemes. If the

elicitor maximizes or minimizes some objective function, then the set of relevant schemes

is refined further. Recall from Theorem 2 that incentive-compatible payment schemes are

described by a fixed number of parameters. This number depends only on the property being

elicited. And importantly, incentive compatibility, nonnegative payoffs, and the incitation to

effort all translate into linear constraints for those parameters. Optimal payment schemes

are therefore solutions of optimization problems under linear constraints, an appealing

property that simplifies greatly the finding of optimal schemes. In particular, if the elicitor’s

objective function is linear in the different scores—as in the common case of expected payment

minimization—then the optimal schemes are the solution of a linear program.

To illustrate this last point, consider the following example. The elicitor wants to elicit

the most likely state of Nature. The prior µ is arbitrary but nondegenerate, in the sense

defined above. The elicitor wants to obtain truthful forecasts, wants the expert to acquire
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the information, and wants to offer nonnegative payoffs while minimizing the expected payoff

at the same time.

From Example 1 we know that this property is elicitable and that the incentive-compatible

payment schemes take the form

π(θ, ω) =

λ+ κ(ω) if θ = ω,

κ(ω) if θ 6= ω,

for κ an arbitrary function of the state and λ a nonnegative real number. The constraint

that the payoffs be nonnegative is κ(ω) ≥ 0 for all ω. The constraint that the expert chooses

to become informed is written

E[π(θ(P ), P )] ≥ c+ π(θ(P ), P ). (1)

We note that the incentive constraint to become informed, Equation (1), does not depend on

κ which enters additively in both sides of the inequality. To minimize payments to the expert,

the elicitor should set κ = 0. Then, expected payments are minimized when the constraint

(1) is binding, which requires to set

λ =
c

EP∼µ[maxω P (ω)]−maxω EP∼µ[P (ω)]
> 0,

since of course EP∼µ[maxω P (ω)] > maxω EP∼µ[P (ω)] for nondegenerate prior µ. This

characterizes the unique optimal payment scheme,

π(θ, ω) =
c

EP∼µ[maxω P (ω)]−maxω EP∼µ[P (ω)]
1{ω = θ}.

B Continuous Properties

While the main body of the paper concerns discrete properties, this appendix concerns

properties that take values in a one-dimensional continuum. I focus on the distributions that

assign positive probability to every state, and slightly abusing notation I continue to denote

by ∆(Ω) the set of these distributions.

For technical tractability, I restrict attention to properties (Θ, F ) that satisfy three

conditions:

Real Valued Θ is a subset of the real line.

No Redundancy The sets F (θ) are pairwise disjoint.
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Continuity Their (unique) property function is continuous and nowhere locally constant.12

I refer to these properties as regular real-valued continuous properties. As long as we are

interested in properties that vary along a single dimension, these assumptions are not very

restrictive. Common properties such as the mean and moments, variance and covariance,

entropy, skewness, kurtosis, all satisfy the three conditions.

Finally, I also focus the discussion on (strict) properness. Indeed, for the properties that

satisfy the three conditions, any scoring rule that is proper (resp. strictly proper) is also

order sensitive (resp. strictly order sensitive) for the usual ordering on the real line.

Proposition 11 Consider a property that satisfies conditions (Real Valued) and (No Re-

dundancy), and whose property function is continuous. A scoring rule is proper (resp. strictly

proper) if and only if it is order sensitive (resp. strictly order sensitive).

The proof of Proposition 11 is in Appendix E.

Convexity of the level sets remains a necessary condition as for finite properties. However,

unlike the case of finite properties, the continuity condition imposed on the properties

examined in this appendix makes this condition sufficient.

Theorem 5 If (Θ, F ) is a regular real-valued continuous property, then it is elicitable if and

only if, for all θ ∈ Θ, F (θ) is convex.

For instance, the mean and moments of a random variable pass the convexity test (part (2) of

the theorem)—and so can be elicited via a strictly proper scoring rule. However the variance,

skewness and kurtosis fail the convexity test. The covariance of two random variables also

fails the convexity test. Finally the entropy, which measures the level of uncertainty contained

in a probability distribution, fails the convexity test as well. We therefore cannot properly

motivate experts to report values for these properties.

Sketch of Proof for Theorem 5. The proof is in Appendix E, and the idea is as follows.

We have already seen how elicitability implies convexity, as already argued by Osband (1985).

Now let us get the converse. By continuity, Θ is an interval. Let θ be any property value in

the interior of Θ. The distributions over states can be partitioned into three subsets, D<θ,
D=θ, and D>θ, that are respectively the sets of distributions whose property value is less than

θ, equal to θ, and greater than θ. If we require that every level set of the property be convex,

a continuity argument shows that all three sets are convex. The separating hyperplane

theorem gives existence of a hyperplane Hθ that separates D<θ from D>θ. The property

being nowhere locally constant, the hyperplane ends up being the linear span of the set D=θ.

This yields existence of a linear functional on RΩ defined as Lθ(f) = 〈gθ, f〉 where gθ ∈ RΩ.

12The property function is not constant on any open set of distributions.

41



Assume without loss of generality that Lθ(P ) is strictly positive when P ’s property value

is greater than θ, and strictly negative when P ’s property value is less than θ.

It can be shown that the continuity of the property implies that θ 7→ gθ is continuous on

Θ. Thus we can define

S(θ, ω) =

∫ θ

θ0

gt(ω) dt,

for an arbitrary θ0. We get, for all distributions P ,

Eω∼P [S(θ, ω)] =

〈∫ θ

θ0

gt dt, P

〉
,

=

∫ θ

θ0

〈gt, P 〉 dt.

Let θ∗ be the unique value of the property under P . The condition imposed on gθ ensures

that, for all t ∈ (θ, θ∗), 〈gt, P 〉 = Lt(P ) > 0 (with a symmetric inequality for t ∈ (θ∗, θ)),

thereby making S strictly proper.

Once it is established that the property of interest passes the convexity test of Theorem 5,

it remains to design the strictly proper scoring rules. In the characterization below, I impose

a smoothness condition on the scoring rules. Since the property varies continuously with

the underlying distribution, it is reasonable to require that payments vary smoothly with

the expert’s prediction. To formalize the idea, I say that a scoring rule S is regular if it is

uniformly Lipschitz continuous in its first variable: it means there must exist c > 0 such that

for all θ1, θ2 ∈ Θ and all ω ∈ Ω,

|S(θ1, ω)− S(θ2, ω)| ≤ c|θ1 − θ2|.

Looking at the regular scoring rules as the only acceptable scoring rules does not limit the

range of properties to which the characterization applies. Regular strictly proper scoring

rules are guaranteed to exist whenever the criteria of Theorem 5 are satisfied. On the other

hand this restriction is useful in that it permits a simpler description of the scoring rules.

Assume the property passes the convexity test of Theorem 5. The next result asserts

that there exists a particular base scoring rule, such that the family of strictly proper scoring

rules is fully characterized (up to arbitrary state-contingent payoffs) by integrating the base

scoring rule scaled by any nonnegative, nowhere locally zero weight. For proper scoring rules,

the weight need only be nonnegative. In addition, the base scoring rule is unique up to a

weight factor.

Theorem 6 Let (Θ, F ) be a regular real-valued continuous property such that, for every θ,
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the level set F (θ) is convex. There exists a bounded scoring rule S0 such that a regular scoring

rule for the property is proper (resp. strictly proper) if, and only if, for all θ and ω,

S(θ, ω) = κ(ω) +

∫ θ

θ0

ξ(t)S0(t, ω) dt, (2)

for some θ0 ∈ Θ, κ : Ω 7→ R, and ξ : Θ 7→ R+ a bounded Lebesgue measurable function (resp.

and such that, for all θ2 > θ1,
∫ θ2
θ1
ξ > 0).

Sketch of proof for Theorem 6. The full proof is in Appendix E, and the idea is as

follows. In the proof of Theorem 5, we have built functions gθ ∈ RΩ that are such that, for

all θ and all P ∈ ∆(Ω), the value 〈gθ, P 〉 is respectively strictly positive when P ’s property

value is greater than θ, strictly negative when it is less than θ, and zero when it equals θ.

Now substitute S0(t, ω) for gt(ω) in (2). For all P ∈ ∆(Ω), and all property values θ, θ∗ where

θ∗ is a correct property value under P ,

S(θ∗, P )− S(θ, P ) =

∫ θ∗

θ

ξ(t)〈gt, P 〉 dt, (3)

which makes S proper, and even strictly proper with the additional condition of positive

integral on ξ.

We now get the converse. First, as S(·, ω) is assumed to be Lipschitz continuous, it is

in particular absolutely continuous. Hence it has an integral representation: there exists a

function G : Θ× Ω 7→ R, where θ → G(θ, ω) is Lebesgue measurable for every ω such that,

for all θ, ω,

S(θ, ω) =

∫ θ

θ0

G(t, ω) dt,

where it is assumed without loss of generality that S(θ0, ·) = 0. Moreover, for all ω, θ 7→ S(θ, ω)

is differentiable for almost every θ and its derivative is given by G. Define the linear functional

Ψθ on RΩ by

Ψθ(f) = 〈G(θ, ·), f〉.

Hence, outside a set of measure zero, θ 7→ S(θ, P ) is differentiable for all distributions P , its

derivative at θ being given by Ψθ(P ). The second step makes use of the fact that when the

expected payoff is maximized, its derivative, when it exists, must be zero. Then, defining the

functional

Φθ(f) = 〈gθ, f〉,

an equality Ψθ = ξ(θ)Φθ must hold for some ξ(θ). This is a direct consequence of the fact that

the kernel of Φθ is the linear span of the distributions having property value θ. And so, in
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particular, the kernel of Φθ must be included in the kernel of Ψθ. ξ must remain nonnegative

not to violate the order sensitivity property, which is implied by properness (Proposition 11).

If, in addition, S is strictly proper, then the integral of ξ must be strictly positive on every

segment, a direct consequence of Equation (3).

For example, take Ω ⊂ R. The distribution mean is (trivially) continuous, and satisfies

the convexity condition of Theorem 5. It therefore admits a strictly proper scoring rule.

In fact, we can easily find one: observing that the mean squared error Eω∼P [(θ − ω)2] is

minimized precisely when θ equals the mean, paying the expert some positive amount minus

the squared error yields a strictly proper scoring rule. Differentiating the quadratic term

leads to a possible definition of S0, S0(θ, ω) = ω − θ, which is at the heart of the scoring rule

design of Osband (1985). Altogether, Theorem 6 gives all the regular proper and strictly

proper scoring rules for the mean,

S(θ, ω) = κ(ω) +

∫ θ

a

(ω − t)ξ(t) dt,

that are given in Reichelstein and Osband (1984) and Savage (1971). Another simple example

is the dichotomous state space Ω = {0, 1}. The probability of occurrence of ω = 1 is,

obviously, a continuous property. Following the above example of the mean and according to

Theorem 6, the form of its proper and strictly proper scoring rules is given by

S(θ, ω) = κ(ω) +

∫ θ

0

(ω − t)ξ(t) dt,

which is the Schervish representation of probability scoring rules (Schervish, 1989).

Economic interpretation. Behind the integral representation of scoring rules lies a simple

economic interpretation. From the perspective of the risk-neutral expert, being remunerated

according to a proper scoring rule is essentially the same as participating to an auction that

sells off some carefully designed securities. Assume property values are bounded. Consider

the auction that sells securities from a parametric family {Rθ}θ∈Θ; here Rθ(ω) specifies the

net payoff of the security Rθ when the realized state of Nature is ω. Net payoff is gross

payoff minus initial price, which can be normalized to zero. In this auction, buyers bid

on the security parameter. They are asked to bid the maximum value of θ for which they

are willing to receive security Rθ. The winner is the bidder with the highest bid (ties are

broken arbitrarily). Let us look at the special case in which the expert competes against a

dummy bidder, whose bid y is distributed according to some density f . When the state ω∗
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materializes, the expert who bids x makes expected profit

P (y ≤ x) E[Ry(ω
∗) | y ≤ x] =

∫
y≤x

Ry(ω
∗)f(y) dy. (4)

Take any strictly proper scoring rule S of the form (2). Choosing density f(y) = ξ(y)/
∫

Θ
ξ

and security Ry(ω) =
(∫

Θ
ξ
)
S0(y, ω), (4) can be re-written∫

t≤x
ξ(t)S0(t, ω∗) dt,

which is precisely the amount the expert would get through scoring rule S, up to a state-

contingent payoff. Conversely, take any bounded density function f nowhere locally zero. The

expert’s expected profit derived from participation in the auction equals the remuneration

he would get with some strictly proper scoring rule. The auction interpretation is especially

relevant when used on multiple experts, in which case dummy bidders are not needed.

However, with multiple experts, these auctions no longer constitute the only valid incentive

devices.

The family of securities that the must be auctioned off depends on the property of interest.

When eliciting an event’s probability, the goods for sale are securities that pay off the same

positive amount if the event occurs and zero otherwise, minus the parameter. When eliciting

a distribution’s mean, they are securities that pay off a positive factor of the realized value of

the underlying variable, minus the parameter. Note that in this special case, the auctions are

essentially second-price auctions: for these families of securities, the gross payoff is fixed and

buyers, in effect, end up bidding on the price.

When we want experts to choose among a few alternative predictions, we can employ

the properties examined in Sections 3 and 4 as approximations of continuous properties.

We can combine the results of this appendix and those sections to derive the proper and

order-sensitive scoring rules. Let (Θ, F ) be a regular real-valued continuous property. Let

α0, αn ∈ R ∪ {+∞,−∞} be respective lower and upper bounds of the possible values for

the property, and α1 < · · · < αn−1 be arbitrarily chosen in the interior of Θ (which is an

interval). Consider a finite, approximate version (Θ̃, F̃ ) of the continuous property. Instead

of the exact value, it rounds up nearby property estimates: it gives an interval of the form

[αj, αj+1] that includes the exact value of the continuous property (Θ, F ). F̃ ([αj, αj+1]) is

therefore the set of distributions whose values, for the property (Θ, F ), lie within [αj, αj+1].

The collection of intervals, Θ̃, is naturally equipped with the ordering [α0, α1] ≺ · · · ≺
[αn−1, αn]. Suppose there exists a strictly proper scoring rule for the continuous property.

Theorem 5 says that each F (θ) is a hyperplane of ∆(Ω). As F̃ ([αi−1, αi]) ∩ F̃ ([αi, αi+1]) =
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F (αi), a direct application of Theorems 3 and 4 yields the following corollary:

Corollary 1 If property (Θ, F ) is elicitable, then there exist strictly proper (and strictly

order-sensitive) scoring rules for the approximate property (Θ̃, F̃ ). A scoring rule S is strictly

proper (or strictly order sensitive) for the approximate property if, and only if,

S([αj, αj+1], ω) = κ(ω) +
∑
i<j

λini(ω),

for any function κ : Ω 7→ R and strictly positive scalars λ1, . . . , λn−1, ni being a positively

oriented normal to the hyperplane generated by F (αi).

Consider, similarly to Example 3, the property that gives, for an event E, some interval[
j−1
n
, j
n

]
that includes the probability of E. Event E’s probability is a regular continuous

property. The hyperplane of distributions that give probability θ to the event has equation∑
ω∈E p(ω) = θ, and ω 7→ 1{ω ∈ E} − θ is a positively oriented normal. This gives the

strictly proper scoring rules

S
([

j−1
n
, j
n

]
, ω
)

= κ(ω) +
n−1∑
i=1

λi ·


n− i if j > i, ω ∈ E
0 if j ≤ i

−i if j > i, ω /∈ E

 .

C Proofs of Section 3

In the proofs of this appendix S(θ) denotes the function S(θ, ·) for a scoring rule S :

Θ× Ω 7→ R. For a subset of V of a given linear space, dimV denotes the dimension of its

linear span. A convex polyhedron in a given convex subset C of a linear space is said to be

nondegenerate when it has the same dimension as C. Finally, as in the main text, |S| denotes

the cardinality of finite set S.

The proofs make use of the following lemma.

Lemma 3 If property (Θ, F ) is elicitable, then, for all θ, F (θ) is a nondegenerate closed

convex polyhedron of ∆(Ω), and, for all θ̃ 6= θ, either the intersection of F (θ) and F (θ̃) is a

degenerate closed convex polyhedron, or this intersection is empty.

Proof. The result is implied by Theorem 1, according to which the elements F (θ), θ ∈ Θ,

form a power diagram of distributions.

46



C.1 Proof of Theorem 2

The proof uses the following lemma.

Lemma 4 Let E be an n-dimensional Hilbert space with an inner product 〈·, ·〉. Let y1, . . . , ym

be m vectors that generate E. Consider the two systems of inequalities

〈yi, x〉 ≥ 0, i ∈ {1, . . . ,m} (5)

and

〈yi, x〉 > 0, i ∈ {1, . . . ,m}. (6)

If both systems admit a nonempty set of solutions, then there exist vectors s1, . . . , s` of E such

that the set of solutions of (5) is {λ1s1 + · · ·+ λ`s`, λ1, . . . , λ` ≥ 0} while the set of solutions

of (6) is {λ1s1 + · · ·+ λ`s`, λ1, . . . , λ` > 0}.

Proof. As (5) is a homogeneous system of weak inequalities, its set of solutions is a cone.

Let {s1, . . . , s`} be a set of directrices of the edges of this cone. As by assumption there exists

a nonzero solution, this set is not empty. The parametric form of the solutions of (5) is given

by the set {
∑

i λisi, λ1, . . . , λ` ≥ 0} (Eremin, 2002). The remainder of the proof shows that

the cone C = {
∑

i λisi, λ1, . . . , λ` > 0} is the set of solutions of (6).

Part 1. This part shows that any element of C is solution of (6).

Each vector sk of {s1, . . . , s`} is solution of a (n− 1)-boundary system of the form{
〈yi, sk〉 = 0, i 6∈ Ik,

〈yi, sk〉 > 0, i ∈ Ik,

for Ik a subset of {1, . . . ,m}. Let x0 be a solution of (6). Then x0 is also solution of (5)

and so x0 =
∑

i λisi, with λi ≥ 0 for all i. There cannot exist j with 〈yj, sk〉 = 0 for all k,

otherwise 〈yj, x0〉 = 0 and x0 would not be solution of (6). Therefore ∪kIk = {1, . . . ,m}.
Let x̂ ∈ C, with x̂ =

∑
i µisi, with µi > 0 for all i. Since ∪kIk = {1, . . . ,m}, for all j

there exists k such that µk〈yj, sk〉 > 0 and µk〈yi, sk〉 ≥ 0 for all i 6= j. By summation, for all

i, 〈yi, x̂〉 > 0, and so x̂ is solution of (6).

Part 2. This part shows the converse, that any solution of (6) is in C.
Let x̂ be a solution of (6). Let B0 be the open ball of diameter δ centered on x̂, and B1

the open ball of diameter 3
4
δ with the same center. If δ is chosen small enough, any vector of

B0 is solution of (6) since its inequalities define an open set of E .
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For ε > 0, let t = ε
∑

i si, and let B′1 = B1 + t be ball translated by t. If ε is chosen small

enough, the open ball B′1 remains contained in B0. In this case, x̂, which also belongs to B′1,

is the image of some x0 ∈ B1. As x0 is solution of (5), we can write x0 =
∑

i λisi, with λi ≥ 0

for all i, and hence x̂ =
∑
µisi, with µi = λi + ε > 0 for all i. Therefore x̂ ∈ C.

I return to the proof of Theorem 2. Denote by S the space of scoring rules, i.e., the linear

space of functions S : Θ × Ω 7→ R, considered as a Hilbert space whose inner product is

defined as 〈S1, S2〉 =
∑

θ,ω S1(θ, ω)S2(θ, ω).

Part 1. Suppose that property (Θ, F ) is elicitable. By definition S ∈ S is proper if, and

only if, for all θ, θ̂ ∈ Θ,

〈S(θ), P 〉 = 〈S(θ̂), P 〉 ∀P ∈ F (θ) ∩ F (θ̂), (7)

〈S(θ), P 〉 ≥ 〈S(θ̂), P 〉 ∀P ∈ F (θ)\F (θ̂), (8)

with the last inequality being strict if and only if S is strictly proper.

By Lemma 3, for all θ ∈ Θ, the level set F (θ) is a bounded convex polyhedron, and so

is the convex hull of a set of vertices Vθ. We can supplement the set of vertices Vθ of each

polyhedron F (θ) by vertices of the other polyhedra that belong to its boundary, in such a

way that, for all θ, θ̂ ∈ Θ, and all P belonging to both F (θ) and Vθ̂, P also belong to Vθ. Let

us write Vθ as {P θ
1 , . . . , P

θ
`θ
}.

Let S ∈ S be proper (resp. strictly proper). Let θ, θ̂ ∈ Θ. If P ∈ Vθ ∩ Vθ̂, then

P ∈ F (θ) ∩ F (θ̂) and so by (7), 〈S(θ), P 〉 = 〈S(θ̂), P 〉. If P ∈ Vθ\Vθ̂, then P ∈ F (θ) and

P 6∈ F (θ̂), since by construction of Vθ, P ∈ F (θ̂) and P ∈ Vθ implies P ∈ Vθ̂. So by (8),

〈S(θ), P 〉 ≥ 〈S(θ̂), P 〉 (resp. 〈S(θ), P 〉 > 〈S(θ̂), P 〉).
I now show the sufficiency of these two conditions. Assume that if P ∈ Vθ ∩ Vθ̂, then

〈S(θ), P 〉 = 〈S(θ̂), P 〉, and if P ∈ Vθ\Vθ̂, then 〈S(θ), P 〉 ≥ 〈S(θ̂), P 〉 (resp. 〈S(θ), P 〉 >
〈S(θ̂), P 〉). Let P ∈ F (θ) ∩ F (θ̂). Then P is a linear combination of vectors in Vθ and Vθ̂,
and since the equality 〈S(θ), Q〉 = 〈S(θ̂), Q〉 holds for all vectors Q that belong to these

two sets, by linearity 〈S(θ), P 〉 = 〈S(θ̂), P 〉. Now let P ∈ F (θ)\F (θ̂). Then P =
∑

i λiP
θ
i

for some nonnegative scalars λi that sum to one. Since P 6∈ F (θ̂), there exists k such

that λk > 0 and P θ
k 6∈ F (θ̂). Hence P θ

k ∈ Vθ\Vθ̂, and 〈S(θ), P θ
k 〉 ≥ 〈S(θ̂), P θ

k 〉 (resp.

〈S(θ), P θ
k 〉 > 〈S(θ̂), P θ

k 〉). For i 6= k, we either have P θ
i ∈ Vθ ∩ Vθ̂ or P θ

i ∈ Vθ\Vθ̂, and so in

both cases 〈S(θ), P 〉 ≥ 〈S(θ̂), P 〉. Hence

〈S(θ), P 〉 =
∑
i

λi〈S(θ), P θ
i 〉 ≥

∑
i

λi〈S(θ̂), P θ
i 〉 = 〈S(θ̂), P 〉
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with a strict inequality when S is strictly proper. Therefore, a scoring rule S is proper if,

and only if, S is solution of the following finite linear system in the space S,{
〈S(θ)− S(θ̂), P 〉 = 0, θ, θ̂ ∈ Θ, P ∈ Vθ ∩ Vθ̂,

〈S(θ)− S(θ̂), P 〉 ≥ 0, θ, θ̂ ∈ Θ, P ∈ Vθ\Vθ̂,
(9)

and S is strictly proper if, and only if, S is solution of the system{
〈S(θ)− S(θ̂), P 〉 = 0, θ, θ̂ ∈ Θ, P ∈ Vθ ∩ Vθ̂,

〈S(θ)− S(θ̂), P 〉 > 0, θ, θ̂ ∈ Θ, P ∈ Vθ\Vθ̂.
(10)

Part 2. Let S0 be the space of solutions of the finite system of equalities (in S)

〈S(θ)− S(θ̂), P 〉 = 0, θ, θ̂ ∈ Θ, P ∈ Vθ ∩ Vθ̂

corresponding to the first part of (9) and (10).

Part 2(a). Let S⊥0 be the orthogonal complement of S0 in S. Let S ∈ S0. Then, for any vector

X of S, 〈X,S〉 = 〈X⊥⊥, S〉, with X⊥⊥ ∈ S0 and where X⊥⊥ +X⊥ is the decomposition of

X according to the direct sum S = S0 ⊕ S⊥0 . Therefore, there exists vectors Y1, . . . , Ym in

S0 such that the solutions of (9) in S are exactly the solutions of the finite system of weak

linear inequalities in S0

〈Yi, S〉 ≥ 0, i = 1, . . . ,m (11)

and the solutions of (10) are the solutions of the finite system of strict linear inequalities in

S0

〈Yi, S〉 > 0, i = 1, . . . ,m. (12)

Part 2(b). Let K be the kernel of (11) in S0, and K⊥ be its orthogonal complement in S0.

For each Yi, write Y ⊥⊥i + Y ⊥i its decomposition according to the direct sum S0 = K ⊕K⊥.

We can easily describe K: S ∈ K if and only if S ∈ S0, and if, for all θ, θ̂ ∈ Θ and all

P ∈ Vθ\Vθ̂, 〈S(θ)− S(θ̂), P 〉 = 0. Since (Vθ ∩ Vθ̂)∪ (Vθ\Vθ̂) = Vθ, K is simply the solution of

〈S(θ)− S(θ̂), P 〉 = 0, θ, θ̂ ∈ Θ, P ∈ Vθ. (13)

Any S such that S(θ) = S(θ̂) for all θ, θ̂ ∈ S is solution. By Lemma 3, F (θ) has as dimension

the cardinality of Ω for all θ, and so the linear span of Vθ is RΩ. Consequently, if S is solution

of (13), then 〈S(θ)− S(θ̂), P 〉 = 0 for all θ, θ̂ and all P ∈ RΩ, implying S(θ) = S(θ̂). Hence

K = {S ∈ S | S(θ, ω) = S(θ̂, ω)∀θ 6= θ̂}.
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Part 2(c). Let’s consider the following two systems of inequalities in K⊥:

〈Y ⊥i , S〉 ≥ 0, i = 1, . . . ,m (14)

and

〈Y ⊥i , S〉 > 0, i = 1, . . . ,m. (15)

If S ∈ K⊥, 〈Yi, S〉 = 〈Y ⊥i , S〉, and the solutions of (11) (resp. (12)) are the elements of K
added to the solutions of (14) (resp. (15)). The systems (14) and (15) have full rank in K⊥,

and since by assumption there exists a strictly proper scoring rule, both admit at least one

solution. By Lemma 4, there exist vectors S1, . . . , S` ∈ K⊥ such that S is solution of (14)

(resp. of (15)) if and only if S is a nonnegative (resp. strictly positive) linear combination of

S1, . . . , S`.

Therefore, S is solution of (9) (resp. of (10)) if, and only if, S = κ+
∑

i λiSi, for κ ∈ K
and λ1, . . . , λ` ≥ 0 (resp. λ1, . . . , λ` > 0).

C.2 Proof of Theorem 3

If part. The construction of strictly order-sensitive scoring rules is done in Theorem 6 and

in Proposition 1.

Only if part. Let S be a strictly order-sensitive scoring rule.

Step 1. This first step shows that for all i and j > i + 1, if P ∈ F (θi) and P ∈ F (θj)

then P ∈ F (θi+1). Suppose by contradiction that there exist i and P with P ∈ F (θi),

P 6∈ F (θi+1), and P ∈ F (θj) for some j > i+ 1. By Lemma 3, F (θi) is a convex polyhedron

of nonempty relative interior. Since P ∈ F (θi), there exists a sequence of vectors {Pk}k≥1 of

the relative interior of F (θi) that converges to P . By continuity limk→∞ S(θi, Pk)→ S(θi, P ).

Let δk = S(θi, Pk)− S(θi+1, Pk). Since Pk and P both belong to F (θi), but not to F (θi+1),

δk > 0, and δk converges to δ = S(θi, P ) − S(θi+1, P ) > 0. Therefore inf{δk}k≥1 > 0. Let

ε = inf{δk/2}k≥1. By continuity, there exists K such that

|S(θi, P )− S(θi, PK)| ≤ ε/2,

and

|S(θj, P )− S(θj, PK)| ≤ ε/2,

so that, since θi and θj both contain P , S(θi, P ) = S(θj, P ) and

|S(θi, PK)− S(θj, PK)| ≤ ε.
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Hence, S(θj, PK) > S(θi, PK)− ε = S(θi+1, PK) + δK − ε > S(θi+1, PK). However, PK is in

the relative interior of F (θi), which means according to Lemma 3 that θi is the only true

value of the property for PK . Since i < i+ 1 < j, and S is strictly order sensitive, we should

have S(θi+1, PK) > S(θj, PK), which creates a contradiction.

Step 2. Now let 1 ≤ j ≤ n− 1. Let Bj = F (θ1)∪ · · · ∪F (θj), and Cj = F (θj+1)∪ · · · ∪F (θn).

By Lemma 3, Bj and Cj are polyhedra of dimension |Ω| and nonempty relative interior,

with Bj ∪ Cj = ∆(Ω). Let i ≤ j < j + 1 ≤ k. If P ∈ F (θi) and P ∈ F (θk), an iterative

application of the claim of Step 1 above yields P ∈ F (θi), F (θi+1), . . . , F (θk). In particular,

P ∈ F (θj) ∩ F (θj+1). Therefore Bj ∩ Cj = F (θj) ∩ F (θj+1). By Lemma 3, the dimension

of F (θj) ∩ F (θj+1) is at most |Ω| − 1, so that there is a hyperplane of distributions H that

contains Bj ∩ Cj. Suppose that there exists a distribution P of H that does not belong to

Bj ∩Cj . Since Bj ∪Cj = ∆(Ω), P ∈ Bj or P ∈ Cj . Suppose for example that P ∈ Bj . Then

there exists a distribution Q in the relative interior of Cj with Q 6∈ H. Note that the segment

(P,Q] contains only elements of Bj or Cj. Since both sets are closed, the segment intersects

Bj ∩ Cj, which is impossible since (P,Q] does not intersect H. So Bj ∩ Cj must be the full

hyperplane of distributions H, H = Bj ∩ Cj = F (θj) ∩ F (θj+1), which concludes the proof.

C.3 Proof of Theorem 4

Part 1. Define

S(θk, ω) = κ(ω) +
∑

1≤i<k

λini(ω),

with λ1, . . . , λn−1 ≥ 0, and κ ∈ RΩ.

As nk is oriented positively, 〈nk, P 〉 ≥ 0 for all P ∈ F (θk+1), . . . , F (θn), and 〈nk, P 〉 ≤ 0

for all P ∈ F (θ1), . . . , F (θk). The inequalities are strict if P /∈ F (θk) ∩ F (θk+1).

Let P ∈ F (θk). If j < k,

Eω∼P [S(θk, ω)]− Eω∼P [S(θj, ω)] =
∑
j≤i<k

λi〈ni, P 〉 ≥ 0,

and, if j > k,

Eω∼P [S(θk, ω)]− Eω∼P [S(θj, ω)] = −
∑
k≤i<j

λi〈ni, P 〉 ≥ 0.

Therefore S is a proper scoring rule. If, in addition, λ1, . . . , λn−1 > 0, the inequalities become

strict when P 6∈ F (θj), making S strictly proper.
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Part 2. Now assume S is a proper scoring rule. Then, for all P ∈ F (θk) ∩ F (θk+1),

1 ≤ k < n, 〈S(θk), P 〉 = 〈S(θk+1), P 〉, and so 〈S(θk+1)− S(θk), P 〉 = 0. Theorem 3 says that

F (θk) ∩ F (θk+1) is a hyperplane of ∆(Ω). Its linear span is a hyperplane Hk of RΩ, thus

S(θk+1)− S(θk) = λknk, where nk is a normal to Hk oriented positively.

Let P ∈ F (θk+1), P 6∈ F (θk). As S is proper, 〈S(θk+1), P 〉 ≥ 〈S(θk), P 〉, so λk〈nk, P 〉 ≥ 0.

Since P 6∈ Hk and nk is positively oriented, 〈nk, P 〉 > 0, implying λk ≥ 0 (λk > 0 if S is

strictly proper).

Therefore

S(θk) = S(θ1) +
∑

1≤i<k

(S(θi+1)− S(θi)) = κ+
∑

1≤i<k

λini,

with κ = S(θ1).

C.4 Proof of Proposition 1

Assume the property has a strictly order-sensitive scoring rule with respect to the order

relation ≺, and let θ1 ≺ · · · ≺ θn be the elements of the value set of the property. Let S be a

proper scoring rule. Theorem 4 shows that S takes the form

S(θk, ω) = κ(ω) +
∑

1≤i<k

λini(ω),

with λ1, . . . , λn−1 ≥ 0. Let P ∈ ∆(Ω). Since the normals are positively oriented, 〈nk, P 〉 ≥ 0

if P ∈ F (θk+1), . . . , F (θn) and 〈nk, P 〉 ≤ 0 if P ∈ F (θ1), . . . , F (θk), the inequalities being

strict if P /∈ F (θk) ∩ F (θk+1). So, for all θ, θk, θj, if θj ≺ θk ≺ θ and P ∈ F (θ), then

Eω∼P [S(θk, ω)]− Eω∼P [S(θj, ω)] =
∑
j≤i<k

λi〈ni, P 〉 ≥ 0.

Similarly, if θ ≺ θk ≺ θj,

Eω∼P [S(θk, ω)]− Eω∼P [S(θj, ω)] = −
∑
k≤i<j

λi〈ni, P 〉 ≥ 0.

Hence S is order sensitive. If S is strictly proper, the λi’s are strictly positive, making the

above inequalities strict, and S becomes strictly order sensitive.
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D Proofs of Section 5

D.1 Proof of Lemma 1

Assume without loss of generality that 0 ≤ ut ≤ 1. If

lim
T→∞

1

T

T∑
t=1

ut = 0,

then, for all ε > 0,

lim
T→∞

1

T

T∑
t=1

ut1{ut ≥ ε} = 0.

As
1

T

T∑
t=1

1{ut ≥ ε} ≤ 1

T

T∑
t=1

ut
ε
1{ut ≥ ε},

we have

lim
T→∞

1

T

T∑
t=1

1{ut ≥ ε} = 0.

For the converse, suppose that 1
T

∑T
t=1 ut does not converge to zero. Then, there exists ε > 0

and a subsequence (wt)t≥1 such that, for all T , 1
T

∑T
t=1 wt ≥ ε. Hence,

1

T

T∑
t=1

wt1
{
wt ≥

ε

2

}
≥ ε

2
,

so 1
T

∑T
t=1 ut1{ut ≥ ε/2} does not converge to zero. As ut1{ut ≥ ε/2} ≤ 1{ut ≥ ε/2},

1
T

∑T
t=1 1{ut ≥ ε/2} does not converge to zero.

D.2 Proof of Lemma 2

For a set of state distributions P, let Pc be the complement of P in ∆(Ω), and define

Bδ(P) = {Q ∈ ∆Ω | ∃P ∈ P ,maxω |Q(ω)− P (ω)| < δ}.
Fix θ, θ̃ ∈ Θ. By contradiction, suppose that for some δ > 0 and all ε > 0, there exists

some P ∈ F (θ) such that P ∈ Bδ(F (θ̃))c and S(θ̃, P ) ≥ S(θ, P ) − ε. Choosing ε = 1/n,

we can generate a sequence of distributions (Pn)n≥1 such that Pn ∈ F (θ) ∩ Bδ(F (θ̃))c and

S(θ̃, P ) ≥ S(θ, P ) − 1/n. Observing that F (θ) ∩ Bδ(F (θ̃))c is compact, we can extract a

subsequence that converges to some P∞ ∈ F (θ) ∩ Bδ(F (θ̃))c and that satisfies, by continuity,

S(θ̃, P∞) ≥ S(θ, P∞). But as S is strictly proper and P∞ ∈ F (θ), it must be the case that

P∞ ∈ F (θ̃), contradicting P ∈ Bδ(F (θ̃))c.
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The constant ε may depend on the choice of θ, θ̂, however since there are finitely many

such pairs, the result also holds uniformly.

E Proofs of Appendix B

In the proofs of this appendix, I use the following notation. For a finite set S, |S| continues

to denote the cardinality of the set. For an arbitrary function f , {f = α} denotes the set

{x | f(x) = α}. Given a subset S of a linear space, S◦ denotes the interior of S, 〈S〉 its linear

span, and 〈S〉a its affine span. For a scoring rule S, I let

SP (t) = Eω∼P [S(t, ω)].

The proofs make use of the following elementary lemmas.

Lemma 5 If Φ is a linear functional on RΩ such that ker Φ ∩∆(Ω) 6= ∅, then ker Φ is the

linear span of its intersection with ∆(Ω).

Proof. Let f0 ∈ ∆(Ω) with Φ(f0) = 0. Take any f ∈ ker Φ. As f0 > 0, if α is chosen large

enough, f + αf0 > 0. So, defining β = ‖f + αf0‖∞ and f1 = (f + αf0)/β, we have that

Φ(f1) = 0 and f1 ∈ ∆(Ω). Hence f = βf1 − αf0 ∈ 〈ker Φ ∩∆(Ω)〉.

Lemma 6 If h : [a, b] 7→ R+ is a Lebesgue measurable function with
∫
h > 0, then there

exists ε > 0 such that {h ≥ ε} has strictly positive measure.

Proof. As {h > 0} is the limit of the monotone increasing sequence of sets {h ≥ 1/k} and

{h > 0} has strictly positive measure, the sets {h ≥ 1/k} must have strictly positive measure

as k grows large enough.

Lemma 7 If h : [a, b] 7→ R+ is a Lebesgue measurable function that is strictly positive almost

everywhere, and A ⊂ [a, b] is a measurable set of strictly positive measure, then
∫
A
h > 0.

Proof. As A ∩ {h > 0} is the limit of the monotone increasing sequence of sets (A ∩ {h ≥
1/k}), for k large enough, the set A ∩ {h ≥ 1/k} must have strictly positive measure, and∫
A
h ≥ λ(A ∩ {h ≥ 1/k})/k > 0.

E.1 Proof of Proposition 11

The proof is a simple adaptation of Proposition 3 of Nau (1985). Let Γ be the associated

property function. Assume S is proper. Let θP , θQ be two property values, and let P be a
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distribution such that Γ(P ) = θP . Consider the case θP < θQ and let R be a distribution such

that θQ ≤ Γ(R). Consider the function f : λ 7→ Γ(λR+ (1− λ)P ). Observe that the function

is continuous. Noting that f(0) = θP < θQ ≤ Γ(R) = f(1), there exists some λQ ∈ (0, 1] such

that f(λQ) = θQ. Let Q = λQR + (1− λQ)P .

As S is proper S(θP , Q) ≤ S(θQ, Q). By linearity of the expectation operator, the

inequality can be re-written as

λQS(θP , R) + (1− λQ)S(θP , P ) ≤ λQS(θQ, R) + (1− λQ)S(θQ, P ),

1− λQ
λQ

(S(θP , P )− S(θQ, P )) ≤ S(θQ, R)− S(θP , R).

The left-hand side of the inequality is nonnegative by properness of S, which makes the

right-hand side of the inequality nonnegative as well. Hence S is order sensitive. By an

analogous procedure, if S is strictly proper, then S is also strictly order sensitive.

E.2 Proof of Theorem 5

Let (Θ, F ) the a regular real-valued continuous property and Γ be the associated property

function.

Part (1) ⇒ (2). Let S be a strictly proper scoring rule. Take P,Q ∈ ∆(Ω), and 0 < α < 1.

Suppose P,Q ∈ F (θ). Then, for all θ̂ 6= θ,

Eω∼P [S(θ̂, ω)] ≤ Eω∼P [S(θ, ω)],

and

Eω∼Q[S(θ̂, ω)] ≤ Eω∼Q[S(θ, ω)],

and so, by linearity of the expectation operator,

Eω∼αP+(1−α)Q[S(θ̂, ω)] = α Eω∼P [S(θ̂, ω)] + (1− α) Eω∼Q[S(θ̂, ω)]

≤ α Eω∼P [S(θ, ω)] + (1− α) Eω∼Q[S(θ, ω)]

= Eω∼αP+(1−α)Q[S(θ, ω)],

which, by strict properness, implies αP + (1− α)Q ∈ F (θ). Hence the convexity of the sets

F (θ).
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Part (2) ⇒ (1). First remark that, as Γ is continuous, the set of values taken by the

property, Θ, is an interval of the real line. This can be seen by applying the intermediate

value theorem to the continuous function α 7→ Γ(αP + (1− α)Q), defined on [0, 1] for any

P,Q ∈ ∆(Ω).

Step 1. Let us start by showing that if, for all θ, {Γ = θ} is convex, then it is also the case

that {Γ ≥ θ}, {Γ > θ}, {Γ ≤ θ} and {Γ < θ} are convex. I prove the first case, the other

three work in a similar fashion.

Let θ ∈ Θ◦, and P,Q ∈ ∆(Ω), with Γ(P ) ≥ Γ(Q) ≥ θ. Consider the function f(α) =

Γ(αP + (1 − α)Q) defined on [0, 1]. Note that f is continuous. To prove that {Γ ≥ θ} is

convex, it suffices to show that the image of f is the interval [Γ(Q),Γ(P )]. We already know

that [Γ(Q),Γ(P )] ⊆ f([0, 1]) by continuity of f , observing that f(0) = Γ(Q) and f(1) = Γ(P ).

So let

a = sup{α ∈ [0, 1] | f(α) = Γ(Q)},

b = inf{α ∈ [0, 1] | f(α) = Γ(P )}.

By continuity of f , the above two sets are closed and nonempty, so f(a) = f(0) = Γ(Q)

and f(b) = f(1) = Γ(P ). Also, by convexity of the level sets of Γ, f([0, a]) = {Γ(Q)} and

f([b, 1]) = {Γ(P )}. Besides, if, for some α∗ > a, f(α∗) < f(0) then by continuity f(α) = f(0)

for some α > α∗, violating a’s definition. Similarly, there does not exist α∗ with f(α∗) > f(1),

and f([0, 1]) = [Γ(Q),Γ(P )]. So {Γ ≥ θ} is convex.

Step 2. Let θ ∈ Θ◦. Let’s start by showing the existence of a nonzero linear functional Φ on

RΩ, such that

{Γ < θ} ⊂ {Φ ≤ 0},

{Γ ≥ θ} ⊂ {Φ ≥ 0}.

By the previous step both {Γ < θ} and {Γ ≥ θ} are convex, and since they are disjoint

with nonempty relative interior, we can apply the separating hyperplane theorem and find a

nonconstant affine function Φ on the affine span of ∆(Ω), Φ({Γ < θ}) ≤ 0 and Φ({Γ ≥ θ}) ≥ 0.

Φ naturally extends to a linear functional on RΩ.

Step 3. Using the same θ as in the preceding step, as {Γ < θ} and {Γ > θ} are open sets

of ∆(Ω), we have that {Γ < θ} ⊂ {Φ < 0} and {Γ > θ} ⊂ {Φ > 0}. In summary, we have
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existence of a linear functional Φ on RΩ satisfying

{Γ < θ} ⊂ {Φ < 0},

{Γ ≥ θ} ⊂ {Φ ≥ 0},

{Γ > θ} ⊂ {Φ > 0}.

By a symmetric argument, there exists a linear functional Ψ that satisfies

{Γ < θ} ⊂ {Ψ < 0},

{Γ ≤ θ} ⊂ {Ψ ≤ 0},

{Γ > θ} ⊂ {Ψ > 0}.

Next we prove that Φ and Ψ are positively collinear. If they are not collinear, then

ker Φ ∩∆(Ω) 6= ker Ψ ∩∆(Ω) by Lemma 5. As ker Φ ∩∆(Ω) ⊆ {Γ = θ} and ker Ψ ∩∆(Ω) ⊆
{Γ = θ}, there exist P,Q ∈ {Γ = θ} such that Φ(P ) = 0 with Ψ(P ) < 0, and Φ(Q) > 0 with

Ψ(Q) = 0. So,

Φ

(
P +Q

2

)
> 0 and Ψ

(
P +Q

2

)
< 0.

By continuity of Φ and Ψ, there exists an open ball B centered on (P +Q)/2, such that Φ(B)

contains only strictly positive values and Ψ(B) contains only strictly negative values. Since

B ∩∆(Ω) 6= ∅, these assertions imply that Γ is both greater than or equal to θ and less than

or equal to θ on B ∩∆(Ω), and so equals θ on this open set of ∆(Ω). This contradicts the

regularity assumption on Γ. So Ψ and Φ are collinear, and, by their sign properties above,

are positively collinear, implying {Γ = θ} = ker Φ ∩∆(Ω).

Thus, for all θ ∈ Θ◦, there exists a linear functional Φθ on RΩ such that {Γ = θ} =

ker Φθ ∩∆(Ω).

Step 4. We can choose Φθ such that ‖Φθ‖ = 1, and orient Φθ such that Φθ(P ) > 0 for

some given P ∈ {Γ > θ}. By continuity of Γ and convexity of ∆(Ω), Φθ has the following

properties:

{Γ < θ} = {Φ < 0} ∩∆(Ω),

{Γ = θ} = {Φ = 0} ∩∆(Ω),

{Γ > θ} = {Φ > 0} ∩∆(Ω).

Let us write Φθ(P ) as 〈gθ, P 〉, for some gθ ∈ RΩ.

Step 5. This steps shows that the function θ 7→ gθ is continuous on Θ◦.
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Let us begin by showing that, for all θ0 ∈ Θ◦, limθ→θ0 Φθ(f) = 0 whenever f ∈ ker Φθ0 ∩
∆(Ω). To see this, let f ∈ {Γ = θ0}, and, for any ε > 0, consider the open ball Bε of radius ε

that is centered on f . Note that Φθ0 takes both strictly positive and strictly negative values on

Bε, meaning that Γ takes values that are both above and below θ0. By continuity of Γ, there

exists some δ > 0 such that (θ0−δ, θ0+δ) ⊂ Γ(B∩∆(Ω)). In particular, for all θ ∈ (θ0−δ, θ0+δ),

there is g ∈ Bε∩∆(Ω) with Γ(g) = θ, hence |Φθ(f)| = |Φθ(f − g) + Φθ(g)| ≤ ‖Φθ‖‖f − g‖ ≤ ε.

Therefore, we have that limθ→θ0 Φθ(f) = 0.

Observing that ker Φθ0 = 〈ker Φθ0 ∩∆(Ω)〉 by Lemma 5, the above limit remains valid

whenever f ∈ ker Φθ0 .

Now we can extend the limit to all members of RΩ. Take any sequence {θk} that converges

to θ0. Then, because gθ is finite-dimensional and bounded, Φθk converges, uniformly, on a

subsequence of k’s. Suppose that Φ∞ is the limit. We have just shown that ker Φθ0 ⊆ ker Φ∞,

which implies that Φ∞ = αΦθ0 for some α. Since ‖Φθk‖ = 1 by assumption, ‖Φ∞‖ = 1, so

|α| = 1, and the orientation that was decided of Φθ yields α = 1. If for any f ∈ RΩ, it was

the case that Φθk(f) did not converge to Φθ0(f), then for a subsequence of k’s, we would

have that Φθk converges to a functional different from Φθ0 , which we have just ruled out.

Step 6. At last we can construct a strictly proper scoring rule. We let H(t, ω) = gt(ω) if

t ∈ Θ◦ and, using that gt is bounded and continuous, we extend H(t, ω) by continuity on the

entire interval Θ.

Choose any θ0 ∈ Θ and let

S(θ, ω) =

∫ θ

θ0

H(t, ω) dt.

We have that

Eω∼P [S(θ, ω)] =

〈∫ θ

θ0

H(t, ·) dt, P

〉
,

=

∫ θ

θ0

〈H(t, ·), P 〉 dt.

Suppose for example that Γ(P ) > θ, then

Eω∼P [S(Γ(P ), ω)]− Eω∼P [S(θ, ω)] =

∫ Γ(P )

θ

〈(H(t, ·), P 〉 dt,

> 0

since, for all t < Γ(P ), 〈H(t, ·), P 〉 = Φt(P ) > 0. And similarly for t > Γ(P ). Hence S is

strictly proper.
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E.3 Proof of Theorem 6

If part. In the proof of Theorem 5, we construct a function H(θ, ω), that satisfies |H| ≤ 1,

and such that, for all θ and P ∈ ∆(Ω),

〈H(θ, ·), P 〉

is strictly positive when Γ(P ) > θ, strictly negative when Γ(P ) < θ, and zero when Γ(P ) = θ.

Let us set S0 = H. Assume that for all ω and θ, scoring rule S takes the form

S(θ, ω) = κ(ω) +

∫ θ

θ0

ξ(t)S0(t, ω) dt,

for some θ0 ∈ Θ, κ : Ω 7→ R, and ξ : I 7→ R+ a Lebesgue measurable bounded function.

For all P ∈ ∆(Ω),

SP (θ) = 〈κ, P 〉+

〈∫ θ

θ0

ξ(t)S0(t, ·), P
〉
.

Take, for example, θ < Γ(P ):

SP (Γ(P ))− Sp(θ) =

∫ Γ(P )

θ

ξ(t)〈S0(t, ·), P 〉 dt.

As, for all t < Γ(P ), 〈S0(t, ·), P 〉 > 0, we get SP (Γ(P )) − SP (θ) ≥ 0, implying that S is

proper. If, in addition,
∫ Γ(P )

θ
ξ > 0, then by Lemma 6, there is ε > 0 such that A = {ξ ≥ ε}

is of strictly positive Lebesgue measure. Hence,

SP (Γ(P ))− SP (θ) ≥ ε

∫
A

〈S0(t, ·), P 〉 dt

which is strictly positive by Lemma 7, making S strictly proper.

Only if part. Let S be a regular scoring rule for Γ, and θ0 ∈ Θ. If S is proper (resp.

strictly proper), (θ, ω) 7→ S(θ, ω)− S(θ0, ω) is also proper (resp. strictly proper). Thus we

can assume with loss of generality that S(θ0, ·) = 0.

As S(·, ω) is Lipschitz continuous, it is also absolutely continuous and there is a function

G : Θ× Ω 7→ R such that, for all θ, ω,

S(θ, ω) =

∫ θ

θ0

G(t, ω) dt.
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Moreover, for all ω, θ 7→ S(θ, ω) is differentiable except possibly on a measure zero set Z, and

S(θ, ω)

∂θ
= G(θ, ω).

(The measure zero set generally depend on ω, but as ω only takes a finite number of values,

we can always choose Z to be independent of ω.) G can be chosen such that, if S(·, ω) is not

differentiable at θ, G(θ, ω) = 0. Finally, as S is Lipschitz continuous, G is bounded.

For all θ ∈ Θ, define Ψθ on RΩ as Ψθ(f) = 〈G(θ, ·), f〉.
Assume S is proper, and let θ /∈ Z. If P ∈ {Γ = θ}, Γ(P ) 6∈ Z and so SP (Γ(P ))′ = 0,

which yields {Γ = θ} ⊂ ker Ψθ. By Theorem 5, there exists a linear functional Φθ on RΩ

such that {Γ = θ} = ker Φθ ∩ ∆(Ω). As {Γ = θ} is nonempty, applying Lemma 5 yields

ker Φθ = 〈{Γ = θ}〉 and, as {Γ = θ} ⊂ ker Ψθ we have that ker Φθ ⊆ ker Ψθ. Consequently

there exists a real number ξ(θ) such that Ψθ = ξ(θ)Φθ. Choose ξ(θ) = 0 if Φθ = 0 or if θ ∈ Z.

We can choose without loss ‖Φθ‖ = 1. In the proof of Theorem 5, we showed that Φθ

can be chosen such that θ 7→ Φθ(P ) be continuous. Writing ξ(θ) = Ψθ/Φθ leads to Lebesgue

measurability of ξ. Besides, noting that ‖G(θ, ·)‖ = ‖Ψθ‖ = |ξ(θ)|‖Φθ‖ = |ξ(θ)|, boundedness

of ξ follows from boundedness of G.

Therefore, for all P ∈ ∆(Ω), and all θ,

SP (θ) =

∫ θ

θ0

Ψt(P ) dt =

∫ θ

θ0

ξ(t)Φt(P ) dt.

By Proposition 11, S is order sensitive. This implies ξ ≥ 0. Indeed, suppose ξ(θ) < 0 for

some θ 6∈ Z. Take, for example, P ∈ {Γ > θ}. Then,

S
′
P (θ) = ξ(θ)Φθ(P ) < 0,

and SP is not weakly increasing on {t < Γ(P )}, contradicting order sensitivity of S. Hence

ξ ≥ 0. Assume that, in addition, S is strictly proper. Take any θ1 < θ2 and P ∈ {Γ = θ2}.
Then,

0 < |SP (θ2)− SP (θ1)| =
∣∣∣∣∫ θ2

θ1

ξ(t)Φt(P ) dt

∣∣∣∣ ,
≤ ‖P‖

∫ θ2

θ1

ξ,

implying
∫ θ2
θ1
ξ > 0.
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