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Abstract

A principal asks an agent for his probability assessment of a random event, and wants

to induce the agent to respond truthfully. The agent is probabilistically sophisticated

with Anscombe-Aumann preferences. The principal does not know the agent’s exact

preference. She only knows it belongs do some general class. I consider two such classes.

One class represents individuals who strictly prefer larger monetary payoffs. The other

class represents individuals who, in addition, are averse to risk. I propose a simple

characterization of all such (strictly) incentive compatible mechanisms, for each of the

two classes being considered. I apply the result to the two mechanisms most commonly

encountered: those whose prospects are deterministic, and those whose prospects take

the form of lottery tickets. I show that the first type can only elicit which of the event

or its complement is most likely, while the second type includes the only mechanisms

incentive compatible among those that randomize payoffs over at most two values.
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1 Introduction

Suppose a principal solicits the agent’s subjective probability of a random event. To induce

honest assessments, the compensation structure must be designed with an appropriate degree

of care. If the agent maximizes expected payments, to induce unbiased reports, payments

must take the form of proper scoring rules. If, however, the agent is not risk neutral, proper

scoring rules generally yield biased probability estimates. For example Winkler and Murphy

(1970) and Kadane and Winkler (1988) show that when the principal compensates the agent

according to the quadratic scoring rule, risk-averse agents tend to overestimate the degree of

uncertainty of the event.

This paper departs from the assumption that the agent seeks to maximize expected

payments. The agent has a preference that belong to some general class, which includes as

special case the expected utility theory and the cumulative prospect theory (Kahneman and

Tversky, 1979). The principal need not know the exact preference of the participating agent.

I study the problem of designing compensation structures that induce truthful reports from

any individual whose preference belongs to the class.

If the agent reveals his preference or if it is otherwise known, it is usually possible to

obtain truthful estimates. One can either reverse the bias induced by the proper scoring rule,

or correct the scoring rule to satisfy the incentive compatibility constraint. This approach is

considered in Winkler and Murphy (1970). When the preference is not known, Offerman et al.

(2009) propose a two-stage mechanism. In the first stage, the agent participates in a series

of experiments designed to learn his preference; in the second stage, he is rewarded with a

quadratic scoring rule, his report is then post-processed to correct a possible bias. Similar

procedures are explored in Jaffray and Karni (1999) for agents with state-dependent utilities.

Instead, in this work I focus on single-stage mechanisms. The agent’s only task consists

in submitting a probability report. Instances of single-stage mechanisms in the literature

include notably Roth and Malouf (1979), Grether (1981), Allen (1987), Köszegi and Rabin

(2008), Holt and Smith (2009), Karni (2009), Schlag and van der Weele (2013) and Hossain

and Okui (2013). This vast literature offers a range of methods for eliciting probabilities. The

purpose of this paper is to unify these methods and offer a simple, complete characterization

of all the incentive compatible compensation structures—the structures that induce truthful

reports from any agent represented by the class of interest.

I derive results for two classes of preferences, one more general than the other. Both lie

within the framework of Anscombe and Aumann (1963). They represent probabilistically

sophisticated agents, that is, agents who hold subjective beliefs regarding the event’s proba-

bility. The most general class is that of the first order stochastically monotone preferences. It
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captures individuals who strictly prefer larger monetary payoffs. The other class is that of

second order stochastically monotone preferences. It represents individuals who, in addition,

have strict preference for less risky prospects. The preferences under consideration are fairly

general, they encompass expected and nonexpected utility theories as a special case.

The characterization makes use of proper scoring rules. For the class of first order stochas-

tically monotone preferences, the compensation schemes that satisfy incentive compatibility

are described by a family of bounded proper scoring rules, indexed by real values, that

is point-wise weakly decreasing. The scoring rule at a particular index value gives the

probability that the payment exceeds the value. Strictly proper scoring rules yield strict

incentive-compatibility. For second order stochastically monotone preferences, incentive

compatible compensation structures take the form of a family of negative proper scoring rules,

indexed on the real line, that is point-wise differentiable and with decreasing and bounded

marginals. The scoring rule at a particular index value is a function of the expected payment

to the agent, conditional on that payment not exceeding the index value. Strictly proper

scoring rules also yield strict incentive-compatibility.

In the second part of the paper, I explore some implications of the main result. I first

investigate the deterministic scoring rule method, arguably the best known procedure of

probability elicitation. Deterministic scoring rules reward the agent with nonrandom event-

contingent payments. While the method can induce truthful probability estimates from

agents whose preference is known, it cannot do so without sufficiently precise knowledge

of the preference. The paper shows that, if an individual is only known to have first order

stochastically monotone preferences, the only information that can be elicited is which of the

event or its complement is most likely.

The mechanisms employed in the literature achieve incentive compatibility for a broad

class of preferences through the linearization of the agent’s preference. The principal rewards

the agent with two possible fixed monetary payoffs, effectively transferring some fixed amount

of money upfront and, once the agent has delivered his probability assessment, rewarding

him with a lottery ticket of fixed monetary prize. Although this paper implies many other

schemes can be used, it also shows that, under some regularity condition, these types of

schemes are the only ones to reach incentive compatibility among the schemes whose prospects

can be decomposed as a combination of a deterministic event-contingent payment and an

event-contingent lottery ticket.

The paper is organized as follows. Section 2 introduces the model. Section 3 characterizes

the classes of weakly and strictly incentive compatible compensation structures for agents

with first order and second order stochastically monotone preferences. Section 4 refines the

characterization for the most commonly used compensation structures: one in which the

3



agent is compensated with deterministic event-contingent payments; the other in which the

agent is rewarded with a combination of deterministic payments and lottery tickets. All

proofs are relegated to the Appendix.

2 Setup

Throughout the paper, E denotes the event of interest, Ec the complementary event, and

ω the state variable: ω = E if the event materializes, and ω = Ec otherwise.

2.1 Proper Scoring Rules

Scoring rules are functions used for the evaluation of probabilistic forecasts. They attribute

a score to each pair of forecast and realization. Formally, a scoring rule S : [0, 1]×{E,Ec} 7→ R

takes as input a probability estimate q that E occurs, a state ω ∈ {E,Ec} that indicates the

event’s realization, and returns a score S(q, ω).

Accurate forecasts match empirical probabilities. Proper scoring rules ensure that the

empirical average score is maximized under this condition. The scoring rule S is proper when,

for all p, the expected score when E occurs with probability p is maximized for a report

q = p:

pS(q, E) + (1− p)S(q, Ec) ≤ pS(p, E) + (1− p)S(p, Ec) ∀p, q.

The scoring rule is strictly proper when the inequality is strict whenever p 6= q, that is,

the expected score is strictly maximized for accurate predictions. Proper scoring rules and

their constructions have been thoroughly studied. McCarthy (1956), Shuford et al. (1966),

Hendrickson and Buehler (1971), Savage (1971), Friedman (1983), and Schervish (1989) offer

various characterizations of proper and strictly proper scoring rules. Gneiting and Raftery

(2007) provide a summary of the results.

2.2 The Anscombe-Aumann Framework

Agent preferences are defined within the framework of Anscombe and Aumann (1963).

Anscombe and Aumann consider individuals with preferences over horse/roulette lotteries. In

the context of this paper, a horse/roulette lottery is described by a function that associates a

distribution of monetary payoffs to each state E or Ec. An agent who is given horse/roulette

lottery L gets paid an amount drawn at random according to the distribution function

L(ω), where ω is the state that materializes. If the event E occurs with probability p, a
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horse/roulette lottery reduces to a compound distribution over monetary payoffs given by

GL
p ≡ pL(E) + (1− p)L(Ec).

To allow the elicitation of subjective probabilities, the paper focuses on probabilistically

sophisticated agents (Machina and Schmeidler, 1992). All agents form beliefs about the

likelihood that E occurs, and rank horse/roulette lotteries accordingly. Agent preferences

are defined by a pair (p, V ), where p is the subjective probability of event E, and V is a

real-valued function over distribution functions on monetary payoffs. The agent prefers (in a

weak sense) horse/roulette lottery L∗ to horse/roulette lottery L when

V (GL∗

p ) ≥ V (GL
p ).

If the inequality is strict, the agent strictly prefers L∗ to L.

I consider two main classes of preferences. The first class of preferences describes experts

who prefer more money to less. A preference (p, V ) is first order stochastically monotone if

V satisfies V (F ) > V (G) whenever F first order stochastically dominates G, i.e., whenever

F (x) ≤ G(x) for all x, and F 6= G. The second class of preferences describe experts who, in

addition, are averse to risk. A preference (p, V ) is second order stochastically monotone if,

for all F 6= G, both with finite absolute first moment, V satisfies V (F ) > V (G) whenever F

second order stochastically dominates G, that is, whenever G is a mean-preserving spread of

F , or equivalently
∫ x
−∞ F (t) dt ≤

∫ x
−∞G(t) dt, for all x. First order stochastically monotone

preferences include, as a special case, in increasing order of generality, expected-value

maximizers, expected utility maximizes, and individuals who rank prospects based on the

cumulative prospect theory.

2.3 Compensation Structures

The agent is compensated for his probability assessment. As agents hold Anscombe-

Aumann preferences, it is without loss of generality that I restrict the study to compensations

expressible via horse/roulette lotteries. Throughout, a compensation structure is summarized

by a function Φ that takes as input a likelihood estimate for E and returns a horse/roulette

lottery. For notational convenience, I also introduce the distribution function FΦ(·|p, ω),

which provides the implied distribution of monetary payoffs when the agent reports p and

state ω materializes.

The principal must be able to incite honest behavior without precise knowledge of the

agent’s preference. A compensation structure Φ is said to be incentive compatible for a class
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C of probabilistically sophisticated preferences if, for all (p, V ) ∈ C, and all q 6= p,

V (GΦ(p)
p ) ≥ V (GΦ(q)

p ).

If the inequality is strict, the compensation structure Φ is strictly incentive compatible.

3 Incentive Compatible Compensation Structures

This section presents the main result of the paper. It characterizes the incentive compatible

compensation structures, for first and second order stochastically monotone preferences. In

both cases, the characterization is expressed in terms of scoring rules.

Theorem 1 A compensation structure Φ is incentive compatible for the class of first order

stochastically monotone preferences if and only if, for all x, the probability Sx of getting a

payoff greater than x, defined by

Sx(p, ω) ≡ 1− FΦ(x | p, ω) (1)

is a proper scoring rule. The compensation structure Φ is strictly incentive compatible if and

only if, in addition, for all p 6= q, there exists x such that

pSx(p, E) + (1− p)Sx(p, Ec) > pSx(q, E) + (1− p)Sx(q, Ec). (2)

In particular, if Sx is strictly proper for some x, Φ is strictly incentive compatible.

The theorem asserts that any incentive compatible compensation structure Φ is described

by a family of proper scoring rules F := {Sx : x ∈ R}. By (1) F has the following properties:

1. Sx takes value in [0, 1].

2. The family F is weakly decreasing: if x ≤ y, Sx ≥ Sy.

3. The family F is point-wise right continuous, i.e., x 7→ Sx(p, ω) is right continuous, and

lim
x→−∞

Sx(p, ω) = 0,

lim
x→+∞

Sx(p, ω) = 1.

The principal then compensates the agent by random payments distributed according to

FΦ(x | p, ω) = 1− Sx(p, ω). Incentive compatibility becomes strict when the family F allows

to distinguish between two probability assessments.
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Theorem 1 demonstrates that the mechanisms proposed in the literature are part of a much

larger class of incentive compatible compensation structures. Here incentive compatibility is

also achieved, by necessity, through a randomization of monetary payoffs. The mechanisms

in the literature, such as those of Allen (1987) and Grether (1981) or Karni (2009), hold two

payoffs fixed once and for all, but distribute the actual payoff such that the higher payoff

is awarded with a probability determined by a proper scoring rule. Instead, in Theorem 1,

the compensation structures fix a continuum of payoffs. The distributions of payoffs are

such that, for any cutoff point x, the probability that a payoff greater than x is awarded is

determined by a proper scoring rule.

However requiring incentive compatibility for such a large class of preferences generates

strong constraints on the compensation structures. As an example, if one limits incentive

compatibility to hold only for expected value maximizers, the scoring rules defined by (1)

are merely required to be proper on average. One may wonder if excluding the nonexpected

utility preferences would introduce some flexibility. It turns out not to be the case. This

owes to the well known result that a distribution F first order stochastically dominates a

distribution G if and only if all expected utility maximizers with strictly increasing utility

strictly prefer F to G (see, for example, Mas-Colell et al., 1995).

The next result extends the characterization to risk-averse agents. This case restricts the

class of allowed preferences sufficiently to relax some design constraints.

Theorem 2 A compensation structure Φ is incentive compatible for the class of second order

stochastically monotone preferences if and only if, for all x, the function defined by

S(p, ω) := −
∫ x

−∞
FΦ(t | p, ω) dt (3)

is a proper scoring rule. The compensation structure Φ is strictly incentive compatible if and

only if, in addition, for all p 6= q, there exists x such that

pSx(p, E) + (1− p)Sx(p, Ec) > pSx(q, E) + (1− p)Sx(q, Ec). (4)

In particular, if Sx is strictly proper for some x, Φ is strictly incentive compatible.

Theorems 1 and 2 are similar in spirit. The latter shows that the structures that are

incentive compatible for all risk-averse agents are shaped by a family of proper scoring rules

F ≡ {Sx : x ∈ R}. This family is must compel to the following conditions:

• Sx is weakly negative.
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• The function x 7→ Sx(p, ω) is differentiable and its derivative g(x) is weakly decreasing,

takes value in [−1, 0], and

lim
x→−∞

g(x) = 0,

lim
x→+∞

g(x) = −1.

The family F specifies the distribution of the monetary payoffs according to the equality

Sx = P (X ≤ x)( E[X | X ≤ x]− x). As previously, focusing on individuals who maximize

expected utility does not offer increased flexibility in the design of the compensations. This

owes to the result that a distribution F second order stochastically dominates a distribution

G is and only if all expected utility maximizers with strictly increasing and strictly concave

utility strictly prefer F to G (see, for example, Mas-Colell et al., 1995).

4 Implications for Common Methods

The preceding section describes the entire family of incentive compatible compensation

structures. This section restricts attention to two special cases of compensation structures,

that include those commonly encountered in practice and in the literature.

The first type is the scoring rule method. The principal decides on monetary payoffs as a

function of the agent’s report and of the materialization of the event. The payoffs involve no

randomness. With the second type, the agent is offered one of two possible monetary payoffs.

The payoffs are allocated at random, with a distribution determined by the agent’s report

and the materialization of the event.

4.1 Deterministic Payoffs

In many practical settings the rewards are deterministic monetary payoffs. These rewards

generally depend on the realized state and the agent’s response, but are not random. This

corresponds to paying the agent according to a deterministic scoring rule: The principal

pays the agent an amount S(p, ω) when the agent announces p while the true state is ω. In

the current framework, the principal uses a compensation structure Φ, with an associated

distribution function FΦ(· | p, ω) that is a point mass Dirac distribution, FΦ(x | p, ω) =

1{x ≥ S(p, ω)}. Such compensations are said to be deterministic.

Theorem 1 implies that, for all the scoring rules that are incentive compatible for the

whole class of first order stochastically monotone preferences, for each cutoff payoff x, the

probability that the agent gets at least least x is a proper scoring rule limited to take value
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0 or 1. These are known as binary proper scoring rules, and characterized in the following

lemma.

Lemma 1 Let S be a scoring rule that takes value 0 or 1. Then S is proper if and only if

either S(·, ω) = 0, or S(·, ω) = 1, or

S(p, ω) =

1{ω = Ec} if p > 1
2
,

1{ω = E} if p < 1
2
.

Lemma 1, together with Theorem 1, directly imply the characterization of the incentive

compatible deterministic compensation structures.

Theorem 3 A deterministic compensation structure Φ is incentive compatible for first order

stochastically monotone preferences if and only if one of the following is true:

• Φ(p) gives an identical payoff regardless of p.

• For some M > m, Φ gives payoff M if E and m if Ec whenever p < 1/2, and gives

payoff m if E and M of Ec whenever p > 1/2.

This result essentially asserts that without randomization of the payoffs, and without

knowledge of the agent’s preference, the only information that can be elicited with strict

incentives is whether event E is more likely than Ec. It agrees with the result of Schlag and

van der Weele (2013), who show that no strictly proper scoring rules is strictly incentive

compatible for all expected utility maximizers.

4.2 Binary Payoffs

To overcome the limitations of the deterministic payoffs, most existing mechanisms

randomize the actual reward over two monetary payoffs, an approach common to several

elicitation procedures. The implied distribution of monetary payoffs FΦ(· | p, ω) is a point-

mass distribution with at most two points. I refer to these structures as binary compensation

structures.

Binary compensation structures essentially reward the agent through a combination of

deterministic payment S(p, ω) and a lottery ticket whose prize L(p, ω) and winning probability

α(p, ω) may depend on the expert’s report p and the realized state ω. If the winning probability

is maintained constant at 1 or 0, compensations involve no randomness and reduces to the

previous case. On the other extreme, S and L are maintained constant, and the only variable

part concerns the winning probability.
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This latter design is common in the literature. The principal randomizes agent payoffs

between two fixed monetary values, effectively neutralizing attitudes toward risk. Instead

of giving a payment shaped according to a proper scoring rule, the principal randomizes

over two fixed payments, with a distribution shaped according to a proper scoring rule. The

following result shows that, subject to some regularity conditions, those schemes form the only

incentive compatible binary compensation structure for first order stochastically monotone

preferences.

The regularity conditions restrict the compensations to have smooth variations and

eliminates degenerate cases. I say that a binary compensation structure is regular when the

associated functions S, L, α are continuous in their first argument, L is strictly positive and

0 < α(p, ω) < 1 for p ∈ (0, 1).

Theorem 4 A regular binary compensation structure is incentive compatible for first order

stochastically monotone preferences if and only if, its deterministic payment S and lottery

prize L are constant, and the winning probability α(p, ω) is a proper scoring rule continuous

in its first argument.
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Appendix

Proof of Theorem 1

If Sx(p, ω) defined by (1) is a proper scoring rule, then, for all p, q, and all x,

GΦ(p)
p (x) = pFΦ(x | p, E) + (1− p)FΦ(x | p, Ec)

≤ pFΦ(x | q, E) + (1− p)FΦ(x | q, Ec)

= GΦ(q)
p (x).

Hence either G
Φ(p)
p = G

Φ(q)
p , or G

Φ(p)
p first order stochastically dominates G

Φ(q)
p . So any

individual with first order stochastically monotone preferences weakly prefers prize Φ(p) to

prize Φ(q), which yields incentive compatibility. If, in addition, for Sx satisfies inequality (2)

for some x, then G
Φ(p)
p (x) < G

Φ(q)
p (x) so G

Φ(p)
p first order stochastically dominates G

Φ(q)
p and

the individual strictly prefers Φ(p) to Φ(q).

The converse makes use of the following lemma:

Lemma 2 Let f : R → R be a right-continuous, nonnegative bounded function such that∫
f < +∞. For each n ∈ N, let wn : R → R be a continuous positive function such that∫
wn = 1, and ∫ x+ 1

n

x

wn → 1

as n→ +∞. Then
∫
wnf < +∞ and

∫
wnf → f(x).

Proof. That
∫
wnf < +∞ owes to the boundedness of f . Besides,

∫
wnf =

∫ x+ 1
n

x

wnf + o(1).

Then, by decomposing the integral on the right hand side,∫ x+ 1
n

x

wnf =

∫ x+ 1
n

x

wn(f − f(x)) + f(x)

∫ x+ 1
n

x

wn.

The result obtains by the assumption that
∫ x+ 1

n

x
wn → 1 and that, by right continuity of f ,

∫ x+ 1
n

x

wn|f − f(x)| ≤ sup
y∈(x,x+ 1

n)
|f(y)− f(x)| → 0.
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Suppose that the mechanism Φ is incentive compatible for first order stochastically

monotone preferences. Take any x and consider the weight function

wn(t) =
n2

e−n2(t−x)+n + 2 + en2(t−x)−n .

Observe that the weight function satisfies the conditions of Lemma 2. Any (p, Vn) where

Vn is defined by Vn(F ) = 1 −
∫
wnF is a well-defined first order stochastically monotone

preference. It corresponds to that of an expected utility maximizer, with utility

un(t) =
1

1 + e−n2(t−x)+n
.

By incentive compatibility,

Vn(GΦ(p)
p ) ≥ Vn(GΦ(q)

p ),

so

p

(
1−

∫ +∞

−∞
wn(t)F (t | p, E) dt

)
+ (1− p)

(
1−

∫ +∞

−∞
wn(t)F (t | p, Ec) dt

)
≥ p

(
1−

∫ +∞

−∞
wn(t)F (t | q, E) dt

)
+ (1− p)

(
1−

∫ +∞

−∞
wn(t)F (t | q, Ec) dt

)
. (5)

Any distribution function F is right continuous, and Lemma 2 implies that∫
wnF dt→ F (x).

Hence (5) implies

p(1− FΦ(x | p, E)) + (1− p)(1− FΦ(x | p, Ec))

≥ p(1− FΦ(x | q, E)) + (1− p)(1− FΦ(x | q, Ec)),

and so Sx defined by (1) is a proper scoring rule. If, by contradiction, Φ is strictly incentive

compatible but for some p 6= q, inequality (2) is an equality for all x, then for all x

p(1− FΦ(x | p, E)) + (1− p)(1− FΦ(x | p, Ec))

= p(1− FΦ(x | q, E)) + (1− p)(1− FΦ(x | q, Ec)).

By linearity, for all n > 0, the inequality (5) becomes an equality, which implies Vn(G
Φ(p)
p ) ≥

Vn(G
Φ(q)
p ), and contradicts strict incentive compatibility.
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Proof of Theorem 2

The proof is similar to that of Theorem 1. Suppose that Sx defined by (3) is indeed a

proper scoring rule. Then,∫ x

−∞
GΦ(p)
p = p

∫ x

−∞
FΦ(· | p, E) + (1− p)

∫ x

−∞
FΦ(· | p, Ec)

≤ p

∫ x

−∞
FΦ(· | q, E) + (1− p)

∫ x

−∞
FΦ(· | q, Ec)

=

∫ x

−∞
GΦ(q)
p .

Therefore it is either the case that G
Φ(p)
p = G

Φ(q)
p , or that G

Φ(p)
p second order stochastically

dominates G
Φ(q)
p . So any individual with second order stochastically monotone preferences

weakly prefers prize Φ(p) to prize Φ(q), which yields incentive compatibility. If, in addition,

Sx satisfies inequality (4) for some x, then G
Φ(p)
p 6= G

Φ(q)
p so G

Φ(p)
p second order stochastically

dominates G
Φ(q)
p and the individual strictly prefers Φ(p) to Φ(q).

Conversely, suppose that Φ is incentive compatible for second order stochastically monotone

preferences. Let x ∈ R, and consider again the weight function

wn(t) =
n2

e−n2(t−x)+n + 2 + en2(t−x)−n .

We focus on preferences of the form (p, Vn), where

Vn(F ) = −
∫ +∞

−∞
wn(t)

(
1

|t|+ 1

∫ t

−∞
F

)
dt.

Note that Vn is well defined for all distribution functions F , is second order stochastically

monotone, and that as n→ +∞, by Lemma 2

Vn(F )→ − 1

|x|+ 1

∫ x

−∞
F.

By incentive compatibility, for all n,

Vn(GΦ(p)
p ) ≥ Vn(GΦ(q)

p ),
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therefore,

p(−
∫ x

−∞
FΦ(· | p, E)) + (1− p)(−

∫ x

−∞
FΦ(· | p, Ec))

≥ p(−
∫ x

−∞
FΦ(· | q, E)) + (1− p)(−

∫ x

−∞
FΦ(· | q, Ec)),

so Sx is a proper scoring rule.

If, by contradiction, Φ is strictly incentive compatible but for some p 6= q, inequality (4)

is an equality for all x, then for all x,

p(−
∫ x

−∞
FΦ(· | p, E)) + (1− p)(−

∫ x

−∞
FΦ(· | p, Ec))

= p(−
∫ x

−∞
FΦ(· | q, E)) + (1− p)(−

∫ x

−∞
FΦ(· | q, Ec)).

which implies that for all n, Vn(G
Φ(p)
p ) = Vn(G

Φ(q)
p ). This contradicts strict incentive compati-

bility.

Proof of Lemma 1

Schervish (1989) shows that S(p, E) is weakly increasing in p. If S(·, E) is not constant,

there is a threshold p0 such that, if p < p0, S(p, E) = 0 and if p > p0, S(p, E) = 1. If S is

proper, for all p, q,

pS(p, E) + (1− p)S(p, Ec) ≥ pS(q, E) + (1− p)S(q, Ec). (6)

If p < p0 and q > p0, (6) gives

(1− p)S(p, Ec) ≥ p+ (1− p)S(q, Ec),

hence S(p, Ec) = 1 and S(q, Ec) = 0. Now (6) implies 1− p ≥ p for p < p0 and p ≥ 1− p for

p > p0, so p0 = 1/2.

Proof of Theorem 4

The proof makes use of the following lemmas.

Lemma 3 If S is a proper scoring rule, and if S(·, E) (resp. S(·, Ec)) is constant on some

range of probabilities (a, b), then S(p, Ec) (resp. S(p, E)) is constant on (a, b).
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Proof. Assume for example that S(·, E) is constant on (a, b), and by contradiction that

S(p, Ec) > S(q, Ec) for some p, q ∈ (a, b). Then qS(q, E) + (1− q)S(q, Ec) < qS(p, E) + (1−
q)S(p, Ec) and S is not proper.

Lemma 4 If S is a proper scoring rule that is nonnegative and nonzero, then for p ∈ (0, 1),

either S(p, E) > 0 or S(p, Ec) > 0 or both.

Proof. Suppose S(p, E) = 0 and S(p, Ec) = 0 for some p ∈ (0, 1). As S a nonnegative and

nonzero, there exists q such that s(q, E) > 0 or s(q, Ec) > 0. Then pS(q, E)+(1−p)S(q, Ec) >

0 = pS(p, E) + (1− p)S(p, Ec), and so S is not proper.

We now return to the main proof. If a compensation structure has S = m and L = M

both constant , with α a proper scoring rule, then

1− FΦ(x | p, ω) = 0 if x ≥ m+M,

1− FΦ(x | p, ω) = 1 if x < m,

1− FΦ(x | p, ω) = α(p, ω) if m ≤ x < m+M.

In all three cases, the function (p, ω) 7→ 1−FΦ(x | p, ω) is a proper scoring rule and incentive

compatibility follows from Theorem 1.

Conversely, suppose a regular binary compensation structure Φ is incentive compatible for

first order stochastically monotone preferences. Let R = S+L be the sum of its deterministic

payment S and lottery prize L, and α the winning probability. Denote by Sx the probability

of getting an amount greater than x, defined by (1). By Theorem 1, Sx is a proper scoring

rule for all x.

Step 1. We start by observing that R(·, E) is weakly increasing on (0, 1). Suppose there

exists 0 < p1 < p2 < 1 with R(p1, E) > R(p2, E). With x = R(p2, E), Sx(p2, E) = 0 while

Sx(p1, E) ≥ α(p1, E) > 0. As Sx is a proper scoring rule, f(·, E) is weakly increasing by

Schervish (1989), hence a contradiction. By a similar argument, S(·, E) is weakly increasing

on (0, 1), and R(·, Ec) and S(·, Ec) are weakly decreasing.

Step 2. This steps proves that for all p,

max{R(p, E), R(p, Ec)} = M,

min{S(p, E), S(p, Ec)} = m,

for some m < M .

By contradiction, suppose for example that h(p) ≡ max{R(p, E), R(p, Ec)} is not constant.

The case of min{S(p, E), S(p, Ec)} can be treated in a similar fashion. Observe that h is
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continuous by the regularity assumption. Therefore we can choose pL, pH ∈ (0, 1) such that

h(pL) < h(pH). Take any x ∈ (pL, pH). As at least one of S(pL, E) or S(pL, E
c) is nonzero, so

Sx is nonzero. However, both Sx(pH , E) and Sx(pH , E
c) are zero, which contradicts Lemma 4.

Hence h is constant.

Step 3. This steps shows that R(·, E) is constant on (0, 1), and so, by continuity, on

[0, 1]. If not, let ε = 1
2

min{inf L,R(1, E) − R(0, E)}. ε is strictly positive as L is strictly

positive on its compact domain and R(·, E) is weakly increasing and not constant.

Let qδ = sup{p ≤ 1 | R(p, E) ≤ M − δ}. Note that qδ is well-defined for 0 ≤ δ ≤ ε,

and that qδ → 1 as δ → 0 by continuity of R. Besides, as R(·, E) is weakly increasing,

R(p, E) ≤M − δ when p ≤ qδ. So SM−δ(p, E) = 0 if p ≤ qδ.

As max{R(p, E), R(p, Ec)} = M , R(p, Ec) = M if p ≤ qδ, implying SM−δ(p, E
c) =

α(p, Ec). Sx is a proper scoring rule, which by Lemma 3, and by continuity of R implies that

α(p, Ec) is constant for p ≤ qδ. As qδ → 1 when δ → 0, α(p, Ec) is a constant α0.

There are now three cases to consider.

Case 1: S(0, Ec) ≤ R(0, E). Since R(·, E) is not constant and is weakly increasing, there

exists p1 ∈ (0, 1) such that if p ≤ p1, R(p, E) ≤ R(p1, E) and if p > p1, R(p, E) > R(p1, E).

Let x = R(p1, E). Then Sx(p, E) = 0 for p ∈ (0, p1), and Sx(p, E) ≥ α(p, E) > 0 for

p ∈ (p1, 1), while fx(p, E
c) = α(p, Ec) = α0 for p ∈ (0, p1). By Lemma 3, Sx cannot be

proper.

Case 2: S(1, Ec) > R(0, E). Define p1 as in case 1. Then Sx(p, E) = 0 for p < p1,

Sx(p, E) = α(p, E) for p > p1, and Sx(p, E
c) = 1 for all p. Hence by Lemma 3 Sx cannot be

proper.

Case 3: S(0, Ec) > R(0, E) and S(1, Ec) > R(1, E). There must exist some interval

(p1, p2) such that R(·, E) is constant on (p1, p2), and either R(·, E) > S(·, E) on (p1, p2), or

R(·, E) < S(·, Ec) on (p1, p2). By a similar reasoning as case 1 and 2 respectively, Sx is not

proper.

This shows that R(·, E) is constant on (0, 1) and by a similar argument R(·, Ec), L(·, E),

and L(·, Ec) are constant on (0, 1).

Now suppose for example R(·, E) > R(·, Ec). Let x = (R(·, E) + R(·, Ec))/2. Then

Sx(p, E) = α(p, E) while Sx(p, E
c) = 0, and so Sx is not proper, and R(·, E) = R(·, Ec).

Similarly, S(·, E) = S(·, Ec).
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