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Abstract

Suppose a principal Alice wishes to reduce her uncertainty regarding some future payoff. Con-
sider a self-proclaimed expert Bob that may either be an informed expert knowing an exact (or
approximate) distribution of a future random outcome that may affect Alice’s utility, or an unin-
formed expert who knows nothing more than Alice does. Alice would like to hire Bob and solicit his
signal. Her goal is to incentivize an informed expert to accept the contract and reveal his knowl-
edge while deterring an uninformed expert from accepting the contract altogether. The starting
point of this work is a powerful negative result (Olszewski and Sandroni, 2007), which tells us that
in the general case for any contract which guarantees an informed expert some positive payoff an
uninformed expert (with no extra knowledge) has a strategy which guarantees him a positive payoff
as well.

At the face of this negative result, we reexamine the notion of an expert and conclude that
knowing some hidden variable (i.e., the description of the aforementioned distribution), does not
make Bob an expert, or at least not a “valuable expert”. The premise of our paper is that if Alice
only tries to incentivize experts which are valuable to her decision making then she can indeed
screen them from uninformed experts.

On a more technical level, we consider the case where Bob’s signal about the distribution of
a future event cannot be an arbitrary distribution but rather comes from some subset P of all
possible distributions. We give rather tight conditions on P (which relate to its convexity), under
which screening is possible. We formalize our intuition that if these conditions are not met then
an expert is not guaranteed to be valuable. We give natural and arguably useful scenarios where
indeed such a restriction on the distribution arise.

1 Introduction

Consider a principal Alice and a self-proclaimed expert Bob, claiming to have information that may
affect Alice’s future payoff. Alice is interested in reducing her uncertainty about the future payoff. To
do so she would like to offer Bob a contract where the following conditions hold: (1) If Bob is indeed
an informed expert then Bob will have an incentive to accept the contract and reveal his true signal,
and (2) If Bob is uninformed (meaning that Bob does not know more than Alice) then Bob will reject
the contract. In this paper we consider conditions that make such a contract possible.

More concretely, assume that p∗ is the probability that some future Boolean event X will take
the value one.1 Assume that if Bob is informed then he knows the probability p∗ exactly2, while if
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uninformed he does not know the value of p∗. A contract Π determines the reward that Bob will
receive after reporting his signal q (which supposedly equals the true distribution p∗) and when the
outcome of X is later observed to be ω. In such a case, Bob’s reward would be Π(q, ω). (Note that
Π(q, ω) may be negative and in such a case, as the contract is binding, Bob will have to pay Alice
−Π(q, ω)). Bob’s expected reward when reporting q and ω is distributed according to p∗ is Π(q, p∗).

A rich literature, which deals with scoring rules (see the survey [21] and more references in Section
1.3), gives methods of defining a contract Π that addresses Alice’s first goal. This means that Π(p∗, p∗)
can be made larger than some predefined threshold δA, for every value of p∗ (recall that ω is one with
probability p∗). In other words, a risk neutral informed Bob which knows p∗ and has an acceptance
threshold δA, has an incentive to accept the contract. Furthermore, once Bob accepts the contract it
is the unique dominant strategy for Bob to report his true signal (we then say that the contract is
strictly proper). In fact, contracts with very useful properties are known. For example, based on the
Brier scoring rule (also known as Quadratic scoring rule, see [4]), one can get a contract such that
the reward of Bob improves as the Euclidean distance of his report q from the true probability p∗

decreases (in this paper we refer to such contracts as “distance-rewarding contracts”, see more details
in Section 2).

Now that informed experts can be incentivized to reveal their true signal, can we simultaneously
deter uninformed experts from accepting the contract? In other words, can we screen informed experts
from uninformed experts? Unfortunately, it was shown by Olszewski and Sandroni [16], that Alice’s
two goals are conflicting: If every informed expert has an incentive to accept the contract (meaning
for example that Π(p∗, p∗) is positive for every p∗), then an uninformed Bob (knowing nothing but
the description of Π) has a randomized report q such that both Π(q, 1) and Π(q, 0) are positive in
expectation (where the expectation is now only over Bob’s randomized report q).

Our Approach In this paper we attempt to explain the difficulty in screening experts and to
characterize the cases where one can motivate informed experts without rewarding uninformed experts.
We consider a scenario where the probability p∗ belongs to a set of distributions P, where P is not
necessarily the set of all distributions but rather possibly a subset of it.3 We give rather tight conditions
on P under which screening is possible.

In the following we will try to describe these conditions and to give natural examples where such
conditions hold. Furthermore, we will try to argue that when these conditions do not hold then some
experts are not useful to Alice (in some formal sense). The premise of this paper is thus that the
quality of experts can be valued only when experts are guaranteed to be valuable (justifying the title
of this paper). Indeed, we show that even without any restriction on p∗, Alice can offer Bob a contract
such that if Bob is uninformed he will reject the contract whereas if Bob is a “valuable” expert then
he will have an incentive to accept the contract and be truthful.

Our results come in two flavors. In the first, we assume that Alice has some prior P over P. This
prior is also known to Bob (even when Bob is an uninformed expert). In the second, neither Alice nor
an uninformed Bob have any prior over P (this is the setting of [16]). We will start discussing the first
scenario, where indeed our intuition that experts can be screened if and only if they are sufficiently
valuable is much cleaner.

perfectly informed. Such an expert knows p∗ up to some small error ϵ > 0. For simplicity of the exposition in the
introduction, unless explicitly stated otherwise, we assume that an informed expert is perfectly informed.

3In the context of forecast testing, restrictions on the set of distributions were recently considered by Olszewski and
Sandroni [18] and Al-Najjar et al. [1], see Section 1.3 for discussion of related work.
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1.1 Screening at the Presence of a Prior

Consider the case where the prior P (known to Alice as well as to an uninformed expert) is that p∗ is
distributed uniformly between 0 and 1. From the point of view of Alice, the probability that ω = 1
is 1

2 . An informed expert which knows that p∗ ̸= 1
2 has an advantage in predicting ω and thus we

consider such an expert valuable (and the further p∗ is from 1
2 the more valuable the expert is). On

the other hand, if p∗ = 1
2 then although the informed expert knows that p∗ = 1

2 he has no advantage
in predicting ω over an uninformed expert. In other words, being an expert should be determined not
by knowledge of some hidden variable (the value of p∗ in our scenario) but rather by better ability to
predict the event that will eventually be measured (the value of ω).

More generally, consider some prior P and let p̄ denote the expected value of p∗ according to the
prior P. It is easy to argue (by the linearity of expectation), that if p̄ ∈ P (that is, the expected
value is a valid report) and if for every value of p∗ ∈ P it holds that Π(p∗, p∗) > δA (which means
that every informed expert accepts the contract) then an uninformed expert has an incentive to
accept the contract and report p̄, as his expected reward (when p∗ is sampled according to P) is
E[Π(p̄, p∗)] = Π(p̄, p̄) > δA.

In the presence of a prior, we therefore observe that if p̄ ∈ P then screening experts is impossible.
We also have the intuition that in this case, some informed experts (specifically, those who know that
p∗ = p̄) are not valuable. We complement this with a positive result that screening is possible whenever
p̄ ̸∈ P.4 We will demonstrate that this condition is not only tight but it is also quite applicable by
discussing natural examples where p̄ ̸∈ P.

We further observe that our contract can also differentiate between uninformed experts and “par-
tially informed” experts, where a partially-informed expert has a signal q which is at most ϵ away
from p∗. For such a screening to be possible, we need to make sure that ϵ is sufficiently smaller than
the distance between p̄ and p∗.

What if p̄ ∈ P? We can use the same contract that was used when p̄ /∈ P and observe that this
contract is meaningful even when p̄ ∈ P. In such a case we still have that an uninformed expert
rejects the contract. We also have that it is the best response of any perfectly-informed expert which
accepts the contract to be truthful. Finally, every “sufficiently useful” expert, that is one who knows
p∗ which is sufficiently separated from p̄, will accept the contract (with some care, we can make sure
that if p∗ is too close to p̄ an informed expert will reject). In other words, Alice manages to incentivize
useful reports and deter uninformed or non-useful reports. This is different than the original goal of
screening experts, but is arguably even more natural.

We next move to present few examples that demonstrates the usefulness of our characterization.

1.1.1 Examples

As argued above, given a prior P on a closed set P such that p̄ /∈ P, we can show that screening
experts is possible. This can only happen when P is non-convex. Actually, there is always a prior
over non-convex sets for which the average distribution p̄ is not in P; Screening is thus possible with
such prior, for such non-convex sets of distributions. We will now mention several natural examples
of such scenarios.

• Binary outcomes. Consider a binary event X, say an outcome of a coin, and let p be the
probability that ω = 1. There are 3 cases regarding P that we discuss:

4For this statement, we assume that P is closed or alternatively that not only p̄ is missing from P but also some
neighborhood around p̄. This is still very intuitive, as if the distribution p∗ may be arbitrarily close to p̄ then the
usefulness of getting the signal from an informed expert may be arbitrarily small.
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– When p is known to be one of three probabilities (e.g., p ∈ {1/4, 1/2, 3/4}), there exists a
prior under which screening becomes impossible (when a mixture of the two extremes has
expected bias equal to the middle one) as an uninformed expert will accept the contract
and report the expectation. This is the case that p̄ ∈ P. Clearly there also exists another
prior for which p̄ /∈ P, in that case screening is possible.

– If p can be any value in [0, 1] the set P is closed and convex. In this case for any prior P
screening is impossible as the expectation p̄ always belong to P.

– If p is known to be one of two probabilities. For example, a coin may be either fair (p∗ =
1/2) or biased (p∗ = 2/3). In this case, for any non-trivial prior over these two possible
probabilities we have that p̄ /∈ P, which makes screening possible for every non-trivial prior.

• Two samples. Consider a case where p ∈ [0, 1] is the distribution of a binary event, but now
Alice observes two independent samples, each is one with probability p. For example, think
about a factory trying to estimate the defect rate in its production chain by inspecting two
independent samples. In this case, there are actually four possible realizations for the outcome:
{0, 0}, {0, 1}, {1, 0}, {1, 1} with respective probabilities of p2, p(1− p), (1− p)p, (1− p)2. The set
of possible distributions is

P = {p2, p(1-p), (1-p)p, (1-p)2|p ∈ [0, 1]}

and this set is not convex, and moreover, every non-trivial convex combination of elements in
P is not in P.5 This implies that for every non-trivial prior on P the expected distribution p̄ is
not in P. Thus, an immediate implication of our results is that with two samples, screening is
possible for every (non-trivial) prior on P.

• In general, many standard families of distributions are not closed under the mixture operator
(that is, averaging with some prior). For example, taking the average of two (discrete analogs
of) normal distributions may result in a double-peaked distribution that can be far from any
normal distribution. Another example is the set of uniform distributions over subsets of Ω which
is clearly not closed under mixing as well.

1.2 Screening with no Prior

We now consider the case where neither an uninformed expert nor Alice knows a prior over P. This
is the setting of the negative result of Olszewski and Sandroni [16]. We observe that their result
generalizes to the case where p∗ belongs to P, as long as P is compact and convex. This observation
should not be very surprising as the main technical tool of [16] is a Min-Max Theorem. We complement
this result by a positive result - if P is missing one of its convex combination (and some neighborhood
around it) then there exists a contract that screens informed experts from uninformed experts. This
is the case, for example, for a binary random variable with only two possible probabilities.

Aren’t all experts valuable when there is no prior? When we assumed that a prior existed, it
was easy to argue that an expert telling Alice that p∗ in fact equals p̄ is not useful. After all, Alice did
not gain better prediction power for the value of ω. But when Alice does not know anything about

5To see this, consider the set of points G = { (p2, (1− p)2) }p∈[0,1] in R2. We will argue that every non-trivial convex
combination of elements in G does not belong to G, and since G is composed of the first and last coordinates of vectors
in P it will follow that any (non-trivial) convex combination of elements in P is not in P. Indeed, the set G can be
represented by the equation y = (1 −

√
x)2; Since this is a strictly convex function (y′′ > 0), any non-trivial convex

combination of its points will fall strictly above the function’s curve, that is, is not of the form (q2, (1 − q)2) (for some
q ∈ [0, 1]).

4



p∗, how can learning p∗ not be useful? To address this question we recall that Alice needs information
regarding ω in order to select an action in such a way that will maximize her utility. Very loosely,
we show that when P is compact and convex, then regardless of Alice’s utility function, there is some
value q∗ such that learning that p∗ = q∗ does not help Alice to improve her utility (see Theorem 16
for the formal statement). In this respect an expert who knows p∗ = q∗ is not useful to Alice.

It is interesting to note that our proof of the above claim (regarding the existence of q∗) heavily
relies on the negative result of [16]. Therefore, we can reinterpret their result as telling us that whenever
P is compact and convex, then not all experts are useful (and thus screening is indeed impossible).

The existence of q∗ that is not useful, as discussed above, allows Alice to define a contract that
differentiates between uninformed experts and informed experts that are also valuable (in the sense
that they allow Alice to significantly increase her utility). Unlike the analogues results discussed in
Section 1.1 for the case with a prior, the contract here will have to depend on q∗ which may depend
on Alice’s utility and strategy. A similar (though possibly even stronger), dependance occurs in a
different approach which can be referred to as “selling the project”. In this approach, Alice offers Bob
a contract where his reward equals the additional expected utility Alice got due to his report. This
gain can be calculated after the value of ω is observed. With this approach, the expected reward Bob
gets out of the contract is identical to his value as an expert to Alice. Thus this is a different way
one may argue that experts can be valued as long as they are valuable. This observation is mostly
orthogonal to our work, as we show tight characterization for when an expert is guaranteed to be
valuable. In addition, as already mentioned, this approach has the disadvantage that the contract has
to depend on Alice’s utility and strategy, which may be at times rather undesirable. For example,
when the utility function and strategy of Alice are proprietary information that should be kept secret
even from Bob, and therefore she may be prevented from revealing those to Bob (by specifying to Bob
a contract Π which depends on them).

1.3 Related Work

The concern that experts may misreport their forecasts when facing a test can be traced back at least to
Brier [4]. Various scoring rules have been designed to incentivize the experts to report truthfully (see
Brier [4], Good [13] and Savage [20]), without worrying about the possibility of uninformed experts.

A series of work studied the related problem of forecast testing or forecasting. In forecasting, Alice
has an interest in an unbounded sequence of probabilistic events. An expert Bob provides a forecast
for each event before it occurs. In this setting, negative results were shown on the ability to test
if Bob is indeed informed (we omit the formal model from this discussion). It was shown that for
any reasonable test, if an informed expert is guaranteed to pass the test then so does a completely
uninformed expert who provides a fixed sequence of forecasts (independent of the true probabilities);
See, e.g., [10], [11], [15], [19]. Several works searched for ways around these impossibilities. Fortnow
and Vohra [9] assumed limitations on the computational power of the uninformed agent. Al-Najjar
and Weinstein [2] and Feinberg and Stewart [8] assumed the presence of multiple forecasters, where
one of the experts must be informed.

Some recent work by Olszewski and Sandroni [18] and Al-Najjar et al. [1] is the most related to
the current paper, in the sense that they assume a structure on the set of possible distributions in
forecasting settings. They follow two earlier papers ([6, 17]) that show a non-manipulable forecasting
test. In [18] in was shown that in these tests, an uniformed Bob can delay its rejection for an arbitrary
number of periods, and, more generally, that such phenomena must exist for every test, as long as the
class of possible theories is convex. They construct a counter-example of a non-convex set of theories
for which their negative result does not hold. We consider one-shot events and therefore the delayed
rejection is not an issue, and go beyond presenting a counter-example by showing (for our single
period setting) that our convexity restrictions on the class of distributions are essentially necessary
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and sufficient.
Al-Najjar et al. [1] were also concerned by the delayed decision of existing tests and thus they

also restricted the class of possible probabilistic processes. They presented a convex set P∗ of theories
referred to as learnable and predictable; they showed that when the possible theories are drawn from
this set then experts can be tested in a timely manner. Convexity also plays a major role in their
work; While the P∗ class is convex, their test asks the expert to report in advance a period T in
which he will send his predictions for future events (after a learning period), but the class of theories
that are learnable by time T is not convex. This goes along with the premise of the current paper
that non-convexity of the set of distributions may make testing (or screening) accomplishable. It is
interesting to note that [1] raised the question of what is an expert. They argue that it is natural to
expect an expert to provide a report that satisfies their conditions. In our case we argue that experts
that cannot be screened are not just missing valuable expertise but rather their reports are not useful
to Alice.

Subsequent Work - Forecasting In a subsequent work [3], the authors extend the approach of the
current paper to the problem of forecasting. In [3], we again consider the case when the distribution
of each event comes from a subset P. We characterize the conditions on P that allow testing Bob’s
experts. We consider two types of tests. In the weaker type of test, if Bob is completely uninformed
then there exists a sequence of probability distributions (i.e. a choice of nature), which will fail him
(this is a complement to the strong impossibility mentioned above). In the strong type of tests, Bob
passes the test if and only if his stream of forecasts essentially merge to the stream of probability
distributions.

While the setting of forecasting is technically more involved than the “one shot” setting considered
in the current paper, the classifications on P we offer in both papers is in close correspondence (and in
both cases relates to convexity conditions on P). Similarly, the interesting special cases are shared by
the two papers. For example, [3] gives a test of the strong type whenever at each round the observed
event is composed of two independent samples of the same distribution (unknown to Alice but known
to an informed expert).

Organization In Section 2 we present the model and background. In Section 3 we consider the case
that a prior over the true distributions exists, while in Section 4 we drop this assumption and assume
that no prior is given.

2 Model and Preliminaries

Suppose that a principal, Alice, does not know the distribution of a future random outcome. Let Ω
be the set of the possible outcomes, and assume Ω is finite. Let ∆(Ω) denote the set of all possible
distributions over Ω. Let P ⊆ ∆(Ω) be a set of distributions over Ω, where we allow P to be a strict
subset of ∆(Ω). For a distribution p ∈ P let p(ω) be the probability that ω is obtained. A natural
assumption on P would be that it is closed and thus it is compact.

Assume that the true distribution is p∗ ∈ P. A self-proclaimed expert, named Bob, claims to know
almost perfectly the distribution p∗. Bob may be either informed or uninformed:

• Fix ϵ ≥ 0. Bob is ϵ-informed if he has a signal q which is a distribution of Euclidian distance
at most ϵ from p∗. Equivalently, with the Euclidian metric it holds that q ∈ P ∩ Bϵ(p

∗), where
Bϵ(p

∗) is the closed ball of radius ϵ around p∗. We say that ϵ is the accuracy of Bob’s signal.

• We say that Bob is perfectly informed if he is ϵ-informed for ϵ = 0. In other words Bob knows
p∗ exactly (i.e., q = p∗).
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• Bob is uninformed if he gets no signal.

Both Alice and Bob know that the distribution is an element of P. Bob knows if he is informed or
not (and to what accuracy), but Alice does not know if Bob is informed or not.

We will consider two settings. In the setting with a prior both Alice and Bob have a common prior
P over P ⊆ ∆(Ω). Given the prior P over distributions, we let p̄ denote the distribution that is the
expected distribution according to the prior P, that is p̄ =

∫
p pdP (which is always well defined). In

the setting without a prior Alice and Bob have no additional information on the selection of p from P.

Contracts and Payoffs In the setting of screening, Alice wishes to offer Bob a contract such that,
if informed, given his signal Bob will be willing to accept the contract and report his signal, while, if
uninformed, Bob will prefer to reject to contract.

Formally, a contract is represented as a function Π : P ×Ω 7→ R that specifies the payment Π(q, ω)
that Bob is awarded when he forecasts q while the outcome ω is observed. Note that the contracts we
consider are binding contracts, which can give a negative payment to Bob in some circumstances (in
that case, Bob sends money to Alice).

Bob’s action is taken from the set {⊥} ∪ P. Choosing action ⊥ means rejecting the contract,
while choosing q ∈ P means accepting the contract and reporting distribution q ∈ P. By convention,
let Π(⊥, ·) = 0. If Bob is uninformed, a (possibly mixed) strategy for Bob is a randomized action
ξ ∈ ∆({⊥} ∪ P). If informed, a (mixed) strategy for Bob is a mapping ξ : P 7→ ∆({⊥} ∪ P) from
possible signals to randomized actions.

We denote Bob’s expected payment from the contract Π when reporting q under the true distri-
bution p∗ by Π(q, p∗) =

∑
ω p∗(ω)Π(q, ω). Bob seeks to maximize his perceived payment as defined

below. Essentially, given his information (including his signal q when he is informed) he will take
expectation when possible and assume worst case when he has no prior (as in [16]):

• (Informed experts.) If Bob is ϵ-informed with signal q, his perceived payment when choosing
a randomized action ξ(q) ∈ ∆({⊥} ∪ P), for both the cases with or without prior, is defined to
be

inf
p∗∈P∩Bϵ(q)

∫
z∈P

Π(z, p∗)dξ(q) . (1)

That is, for each true distribution he is interested in the expected reward for that distribution,
but he assumes that the true distribution is the worst distribution that is consistent with his
signal.

• (Uninformed experts.) In the case that Bob is uninformed, Bob’s evaluation of his reward
depends on whether we are in the case with or without a prior.

Uninformed experts with a Prior: When there is a prior P Bob’s perceived payment would
be equal to his expected reward when choosing a randomized action ξ ∈ ∆({⊥} ∪ P), which is∫

z∈P

∫
p∈P

Π(z, p)dPdξ =

∫
z∈P

Π(z, p̄)dξ .

with p̄ =
∫
p pdP, the equality arising from the fact that Π(q, p) is affine in p.

Uninformed experts with no Prior: In the case without prior we assume that Bob evaluates
his payment according to the worst-case distribution. In this case his perceived payment when
choosing a randomized action ξ ∈ ∆({⊥} ∪ P) is defined to be

inf
p∈P

∫
z∈P

Π(z, p)dξ .
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Our definitions follow the standard max-min expected utility modeling (see, e.g., [12]), where the
payoff from an event is determined as the minimal expected payoff over a class of possible distributions.
We note that in [16] the perceived payment for an uninformed experts without a prior is essentially
defined to be minω∈Ω

∫
z Π(z, ω)dξ . This definition coincides with ours in the case that for any

outcome the distribution with probability 1 on that outcome belongs to P (which is the case in [16]).
Our definition only requires that for each possible p∗ ∈ P, the uniformed expert will be satisfied with
the contract Π in expectation over the outcomes sampled according to p∗ (and not for every ω), this
only strengthens our results for the cases where we provide a contract that screens uninformed experts.

Given the above definitions for the perceived payments of Bob, we now define the contracts that
Bob accepts (or rejects). An informed expert accepts the contract if for every signal that he may
receive he has a randomized action that will guarantee a sufficiently large perceived payment.

Definition 1. Fix any δ ∈ R and ϵ ≥ 0. We say that an ϵ-informed expert Bob δ-accepts the contract
Π if for any p∗ ∈ P and any q ∈ P ∩ Bϵ(p

∗) there exists a randomized action ξ(q) such that Bob’s
perceived payment (given the contract Π, signal q, randomized action ξ(q) and ϵ) is greater than δ.

We say that an uninformed expert Bob (with or without prior) δ-accepts the contract Π if there
exists a strategy ξ for Bob for which his perceived payment (given the contract Π) is greater than δ.
Otherwise (for any strategy ξ for Bob, his perceived payment is at most δ), we say that he δ-rejects
the contract.

Observe that if an ϵ-informed expert Bob δ-accepts the contract Π then so does an ϵ1-informed
expert, for any non-negative ϵ1 < ϵ.

Notation: Throughout the paper when δ is clear from the context we might just say that the
expert accepts the contract instead of saying that he δ-accepts the contract, and rejects the contract
instead of saying that he δ-rejects the contract.

Scoring rules We would like the contract we design not only to screen the uninformed experts but
also motivate any informed expert to reveal the relevant information he possesses. In the terminology
of scoring rules we would like to design a “strictly proper” contract. To define that we first recall the
terminology for scoring rules.

A scoring rule s : P × Ω 7→ R specifies a payment s(q, ω) when the forecast is q and outcome ω is
observed. If the distribution is p the expected payment is s(q, p). The scoring rule is proper if for all
p, q, s(p, p) ≥ s(q, p), and it is strictly proper if for all p, q such that q ̸= p, s(p, p) > s(q, p), that is, p
is the unique maximizer of s.

Let d(q, p) be the Euclidian distance between q and p. We say that a scoring rule s is distance
rewarding if for any q1, q2 and p such that d(q1, p) > d(q2, p) it holds that s(q1, p) < s(q1, p) (the reward
decreases as the distance increases). Note that any distance rewarding scoring rule is strictly proper.

An example of a continuous in q, distance-rewarding, strictly-proper scoring rule is the negation
of Brier score. Brier score Br(q, ω) is defined to be Br(q, ω) =

∑
ω′∈Ω(1ω′=ω − q(ω′))2, where 1ω′=ω

is an indicator, it is 1 if ω′ = ω, and 0 otherwise. Clearly, s(q, ω) = −Br(q, ω) is continuous in q, and
it can be shown that s is also distance rewarding (as we prove for completeness in Appendix A).

ϵ-proper contracts Any contract Π can be viewed as a scoring rule s(q, ω) = Π(q, ω), and thus we
define a contract to be distance rewarding if when viewed as a scoring rule it is distance rewarding.
Similarly, we define a contract to be proper and strictly proper in exactly the same way. These
definitions have the properties that a distance-rewarding contract is also strictly proper and a strictly-
proper contract is also proper. More interestingly, for a proper contract, a perfectly-informed expert
that reports his signal q maximizes his perceived payment. For a strictly-proper contract, this is the
unique strategy that maximizes the perceived payment of the perfectly-informed experts.
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It would have been desirable to define strictly-proper contracts such that the unique strategy
that maximizes the perceived payment of an ϵ-informed expert would also be to reveal his signal.
Nevertheless, in the general case such contracts do not exist. For example, if the diameter of P is at
most ϵ then being ϵ-informed is meaningless, as for every signal q ∈ P we have that every p∗ ∈ P
could be the true distribution. Therefore, if for an ϵ-informed expert that receives the signal q it is the
unique strategy to report q then reporting q is also the unique maximizing strategy for an ϵ-informed
expert that receives any other signal q′. For specific contracts, and even distance-rewarding contracts
(such as the one based on the Brier scoring rule), it is possible to come up with examples where to
maximize his perceived payment, an ϵ-informed expert with signal q may choose to report some q′

that its distance from q is larger than ϵ.
Exploring to what extent and under which conditions ϵ-informed experts can be incentivized to

report their signal, is an interesting question. We note though that this question is to a large extent
orthogonal to the main goal of our paper. The reason is that the question of strictly-proper contracts is
interesting even if Alice does not try to screen uninformed experts (namely, even if Alice is assured by
some other means that Bob is informed), and all she wants to do is to elicit his signal. Still, Lemma 2
(below) makes some progress in this direction.

As we discussed, even distance-rewarding contracts may not elicit the exact signal of an ϵ-informed
expert and may in fact elicit reports that are more than ϵ away from q. Nevertheless, it is not hard to
show that for such contracts the report that maximizes the perceived payment of an ϵ-informed expert
is contained in B2ϵ(q), thus cannot be very far from the signal q. Interestingly, a similar property does
not follow from the weaker notion of accuracy rewarding contract previously studied in the literature
[14]. More formally, we say that a contract Π is ϵ′-proper with respect to ϵ-informed experts if for an
ϵ-informed expert Bob, for every signal q and for every randomized action ξ(q) which maximizes Bob’s
perceived payment for q, it holds that with probability 1, the reports made by ξ(q) are contained in
Bϵ′(q).

Lemma 2. Any distance-rewarding contract Π is 2ϵ-proper with respect to ϵ-informed experts.

Proof. For any possible signal q and any possible report q′ ̸∈ B2ϵ(q) and every possible true distribution
p∗ ∈ Bϵ(q) the Euclidean distance of the signal q to p∗ is strictly smaller than the distance of q′ to p∗.
Therefore Π(q, p∗) < Π(q′, p∗). The lemma easily follows.

Remark 3. Note that even if Bob truthfully reveals his signal, Alice learns the true distribution only
up to his accuracy ϵ. With a 2ϵ-proper contract, Alice will learn the true distribution up to error 3ϵ.
As we think of ϵ as being very small, the two scenarios are arguably not that distinct.

3 Characterization with a Prior

In this section, we show that the ability to design contracts that screen experts depends on the shape
of the class of possible distributions P. If P does not contain the average distribution (which is
the distribution that Alice has with no experts around), then it is possible to tell whether Bob is
an imposter or not. This can be interpreted as follows: Alice can screen the experts with contracts
whenever informed experts always can disclose information that Alice doesn’t already have, that is,
when experts are always valuable. We first observe that screening is impossible when p̄ ∈ P:

Observation 4. Assume that a prior P over P is given and suppose that the prior P is such that
p̄ ∈ P.

Fix any δA ∈ R and ϵ ≥ 0. For any contract Π, if an ϵ-informed expert δA-accepts Π, then an
uninformed expert also δA-accepts Π.
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Proof. We have observed that if an ϵ-informed expert δA-accepts the contract Π then so does a perfectly
informed expert. Now consider the case that a perfectly informed expert Bob δA-accepts the contract
Π. Assume that the true distribution is p̄ (as p̄ ∈ P it is possible). In this case the signal q of Bob
is p̄, as he is perfectly informed. Since Bob δA-accepts Π, there must exist a report q′(p̄) such that
Π(q′(p̄), p̄) > δA when he gets the signal p̄.

By always announcing q′(p̄), an uninformed expert has a perceived payment of Π(q′(p̄), p̄) > δA
and so he always δA-accepts the contract as well.

Observe that when the true distribution is p̄ ∈ P the distribution of outcomes is exactly the same
as the distribution of outcomes given the prior P. As the distribution of outcomes is the only thing
that Alice cares about, in that case the knowledge of the expert is completely unhelpful. As such
an unhelpful expert was supposed to accept the contract, an uninformed expert (which in that case
knows exactly the same as the informed expert about the distribution of the outcomes) also accepts
the contract.

We next move to prove the converse of the above observation.

Theorem 5. Assume that a prior P over P is given and suppose that P is closed and that p̄ ̸∈ P.
Then there exists a continuous (in q), distance-rewarding contract Π such that for some ϵ > 0 an

ϵ-informed expert δA-accepts the contract, while an uninformed expert δR-rejects the contract.
Furthermore, fix any µ > 0 such that an open ball of radius µ around p̄ does not intersect P (such

µ > 0 exists by the closeness of P), for any non-negative ϵ ≤ µ0 an ϵ-informed expert δA-accepts Π.

Proof. Without loss of generality we can assume that δA > δR, as otherwise we can redefine δA to
be say δR + 1 (observe that if an expert δ-accept the contract then he δ+-accept the contract for any
δ+ > δ). Denote by B the open ball of radius µ around p̄. This ball, by the conditions of the theorem,
does not intersect P: formally, B ∩ P = ∅. Let s(q, ω) be any continuous (in q), distance-rewarding
(thus strictly-proper) scoring rule on the full probability space.

Consider the set S = {(p, q) | p ∈ ∆(Ω)\B, q ∈ Bµ0(p) ∩ ∆(Ω)} (recall that Bµ0(p) is the closed
ball of radius µ0 around p). It is easy to argue that the set S is closed: consider a sequence of
elements (pi, qi) ∈ S which converges to (p∞, q∞). As ∆(Ω) is closed and so is ∆(Ω)\B we have that
p∞ ∈ ∆(Ω)\B and q∞ ∈ ∆(Ω) it remains to show that the Euclidian distance d(p∞, q∞) between p∞
and q∞ is bounded by µ0 which would imply that (p∞, q∞) ∈ S. But this easily follows from the fact
that d(pi, qi) ≤ µ0 for all i. Define

α = inf
(p,q)∈S

s(q, p)− s(p̄, p) .

Recall that s is distance rewarding, and that the distance between p̄ and p is at least µ which is larger
than µ0. Therefore, for every q ∈ Bµ0(p) ∩ ∆(Ω) we have that s(q, p) − s(p̄, p) > 0. As S is closed
and bounded, it is compact. Since the function s(q, p) − s(p̄, p) is continuous in q and its domain is
compact the infimum is obtained and it holds that α > 0.

Define the contract

Π(q, ω) = 2
δA − δR

α
(s(q, ω)− s(p̄, ω)) + δR .

As the scoring rule s is continuous in q and is distance rewarding, the contract Π is also continuous
in q and is distance rewarding.

For all p ∈ P, we in particular have that p ∈ ∆(Ω)\B. Therefore, as ϵ ≤ µ0, for every q ∈
Bϵ(p) ∩∆(Ω) we have by the definition of α that s(q, p) − s(p̄, p) ≥ α. Consider now an ϵ-informed
expert which receives a signal q ∈ P and reports this signal truthfully. This may not be the strategy
that maximizes the expert’s perceived reward but it certainly gives us a lower bound on the perceived
reward. Given the expert’s signal q, for every possible value of the true distribution p∗ ∈ Bϵ(p)∩P, we
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have that Π(q, p∗) ≥ 2δA−2δR
α α+ δR = δA + (δA − δR) > δA. Therefore, the expert’s perceived reward

is at least δA and the expert will thus δA-accept the contract.
On the other hand, as s is strictly proper, for all q ∈ P,

Π(q, p̄) ≤ 2
δA − δR

α
(s(p̄, p̄)− s(p̄, p̄)) + δR = δR ,

so for any strategy of the uninformed expert, his expected fee is at most δR and he always rejects the
contract.

As the contract Π in Theorem 5 is distance-rewarding, then by Lemma 2 it is 2ϵ-proper with
respect to ϵ-informed experts. Thus the contract Π not only screen experts, but also motivates any
informed expert to report a distribution that is close to the true distribution p∗. In particular, it
motivates a perfectly-informed expert to truthfully report his signal.

Remark 6. The only way that the proof uses the condition that P is closed is in showing that for
some µ > 0 there exists a ball of radius µ around p̄ that does not intersect P.

An alternative interpretation of Theorem 5 We argue that the contract in the proof of The-
orem 5 is meaningful even when p̄ ∈ P. Indeed, the assumption that p̄ ̸∈ P was not used for the
following claims: (1) The contract is distance rewarding, and (2) The uninformed expert δR-rejects
the contract. The assumption was used to prove that the ϵ-informed expert δA accepts the contract.
However, what the proof shows is that as long as p∗ is far enough from p̄ and ϵ is small enough then
the informed expert will accept. To formalize this statement we need the following definition:

Definition 7. Fix any δ ∈ R and ϵ ≥ 0 and q ∈ P. We say that an ϵ-informed expert Bob (q, δ)-
accepts the contract Π if there exist a randomized action ξ(q) such that Bob’s perceived payment (given
the contract Π, signal q, randomized action ξ(q) and ϵ) is greater than δ.

We can now state the theorem:

Theorem 8. Let P be any subset of ∆(Ω) and assume that a prior P over P is given.
Fix any two reals δA and δR. Fix any µ0 and µ such that µ0 < µ. Then there exists a continuous (in

q), distance-rewarding contract Π such that for any non-negative ϵ ≤ µ0 and for every q of distance at
least µ+ ϵ from p̄, we have that an ϵ-informed expert (q, δA)-accepts the contract, while an uninformed
expert δR-rejects the contract.

Remark 9. Note that for an ϵ-informed expert to accept, q has to be of distance at least µ + ϵ from
p̄. This is assured as long as p∗ is of distance greater than µ+ 2ϵ from p̄. Note that µ+ 2ϵ can be set
to be as close to 3ϵ as we want (by setting ϵ = µ0 and µ0 almost as large as µ). As we think of ϵ as
small, if p∗ is closer to p̄ than 3ϵ then even a perfectly informed expert is not that useful.

The proof of Theorem 8 is almost identical to that of Theorem 5, and we omit it from this version.
As discussed in the introduction, we interpret Theorem 8 as a way to screen “valuable” experts from
uninformed experts. A weakness of this interpretation is that when an expert rejects a contract it is
not clear if it is because it is uninformed or because it is not valuable. Another possible weakness is
that we do not have a tight definition of usefulness such that informed experts accept if and only if
they are useful (instead, we know that if an expert is useful he will accept, but otherwise informed
experts may either accept or reject).6 Even with its weaknesses, we argue that Theorem 8 may still
be both meaningful and useful.

6We note that the theorem can be strengthened such that informed-experts would reject the contract as long as q is
too close to p̄.
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3.1 When screening is possible for every prior

In this section we consider conditions on the the set P that will ensure that for every prior screening
will be possible, or will be impossible.

Corollary 10. Assume that P is closed and convex. For every prior P and every contract Π, the
following holds: For any δA ∈ R and ϵ ≥ 0, if an ϵ-informed expert δA-accepts Π, then an uninformed
expert also δA-accepts Π.

Proof. The corollary is a direct result of Lemma 11 and Observation 4.

Lemma 11. [cf., [5]] If P is closed and convex, then for every prior P over P it holds that p̄ =
∫
p pdP

is in P.

Corollary 12. Assume that P is closed and does not contain any of its non-trivial convex combina-
tions.

Fix any non-trivial prior P. Fix any µ > 0 such that an open ball of radius µ around p̄ does not
intersect P (such µ > 0 exists by Lemma 13). For any two reals δA and δR and any µ0 < µ, there
exists a distance-rewarding contract Π such that for any non-negative ϵ ≤ µ0 an ϵ-informed expert
δA-accepts the contract, while an uninformed expert δR-rejects the contract.

Proof. The corollary is a direct result of Lemma 13 and Theorem 5.

Lemma 13. [cf., [5]] If P is closed and does not contain any of its non-trivial convex combinations,
then, for every non-trivial prior P over P it holds that p̄ =

∫
p pdP is not in P.

4 Characterization without Priors

The paper of Olszewski and Sandroni [16] studies the case when there is no prior and shows that when
the event is binary and P = [0, 1] it is impossible to screen the uninformed experts.

Based on a min-max theorem by Fan [7], Olszewski and Sandroni [16] prove the following theorem
(adopted to our terminology and the non-binary case with non-specific set P, and emphasizing the
convexity of P). We use this result in the proof of theorem 16 below.

Theorem 14 (Essentially due to [16]). Suppose that P is closed and convex, and no prior is given
over P.

Fix any δA > δ ≥ 0 and ϵ ≥ 0. For every contract Π, if an ϵ-informed expert δA-accepts Π, then
an uninformed expert δ-accepts Π.

From our previous results we can prove the converse of the above theorem.

Theorem 15. Suppose that P is closed but not convex, and no prior is given over P.
Fix any two reals δA and δR. Then, there exists µ0 > 0 and a continuous (in q), distance-rewarding

contract Π such that for any non-negative ϵ ≤ µ0 an ϵ-informed expert δA-accepts the contract, while
an uninformed expert δR-rejects the contract.

Proof. Consider a point p in the convex hull of P that does not belong to P. If P is of Euclidian
dimension d there exists a distribution P over d+ 1 points in P with expectation p. We think of P as
a prior over P and prove the claim using Theorem 5. Let r be the distance of P from P, r > 0 as P
is compact and P /∈ P. Fix any µ, µ0 such that 0 < µ0 < µ < r. The open ball of radius µ around
P does not intersect P. Theorem 5 states that there exists a continuous (in q), distance-rewarding
contract Π such that for any non-negative ϵ ≤ µ0 an ϵ-informed expert accepts the contract, while an
uninformed expert rejects the contract.

12



Note that in Theorem 5 the notions of acceptance and rejection of the contract are with a prior,
while we need to prove the claim when there is no prior. The sense in which the informed expert accepts
the contract is the same in the case with or without a prior, thus that contract will be accepted by
an informed expert also in the case without a prior. The sense in which an uninformed expert rejects
the contract is different in the case with no prior than in the case with prior, yet it is easy to see that
if an uninformed expert rejects the contract in the sense with prior then he also rejects it in the sense
without prior (as the expectation is always at least the infimum).

When some informed experts are not useful How should we interpret these results? Recall
that in the case with prior, the reason that screening was not possible was that we required an informed
expert with no new information about the distribution of outcomes to accept the contract. Clearly
in the case where there is no prior we can not expect an informed expert to ever be unhelpful in the
sense that he brings no information about the distribution of outcomes. Yet we would like to provide a
sense in which when P is closed and convex an informed expert might not be helpful, this will provide
a reason why screening is not possible. To do that we next focus on the actions that Alice takes given
the information from the expert, and show that when P is closed and convex for at least one true
distribution the information that an informed expert brings is not valuable to Alice as it does not
improve Alice’s utility.

To formally show this, we will need to define notations for Alice’s utility function and action
space. Let Γ be a finite set of actions Alice can take and that U(γ, ω) is the utility of Alice taking
the action γ ∈ Γ when the outcome is realized to ω ∈ Ω. For an action γ ∈ Γ we use U(γ, p∗) to
denote the expectation of U(γ, ω) when ω is sampled from the true distribution p∗, that is U(γ, p∗) =∫
w U(γ, ω)dp∗. Alice’s actions has no (direct) effect on Bob’s utility. For a distribution p∗ and a
randomized action γ′ ∈ ∆(Γ), we use U(γ′, p∗) to denote the expectation of U(γ, p∗) when the action
is sampled according to γ′, that is U(γ′, p∗) =

∫
γ U(γ, p∗)dγ′.

Alice first interacts with the expert Bob, then she picks an action and then her utility is realized.
An action function A for Alice is a mapping from the expert’s input to a distribution over Γ, her set
of actions. Formally the action function is A : {P ∪ {⊥}} 7→ ∆(Γ), where the input from the expert
is either ⊥ when Bob does not accept the contract, or a distribution in P if he does, and the output
is a distribution over actions, that is, an element of ∆(Γ). The expected utility of Alice when the
distribution over outcomes is p∗ and she picks a random action γ′ ∈ ∆(Γ) is denoted by U(γ′, p∗).

Assuming that Alice is rational and seeks to maximize her utility, she will pick a utility-maximizing
action function as defined next. An action function is called a utility-maximizing action function
if it satisfies the following conditions. (1) for any p∗ ∈ P the randomized action A(p∗) satisfies
U(A(p∗), p∗) ≥ U(γ′, p∗) for any randomized action γ′ ∈ ∆(Γ). (2) There does not exist a randomized
action γ∗ such that U(γ∗, p∗) > U(A(⊥), p∗) for all p∗ ∈ P.

The first condition says that if Alice knows that the distribution is p∗ she picks a randomized
action that maximizes her utility with respect to that distribution. The second says that if she gets
no information she never picks a dominated randomized action.

The following theorem shows that even without a prior, if P is closed and convex then some experts
may not be valuable to Alice.

Theorem 16. Suppose that P is closed and convex, and no prior is given over P. For any utility
function U of Alice, and any utility-maximizing action function A that Alice uses, there exists a true
distribution p∗ ∈ P such that U(A(p∗), p∗) = U(A(⊥), p∗).

Proof. Fix a utility function U and a utility-maximizing action functionA, and assume in contradiction
that for every true distribution p∗ ∈ P it holds that U(A(p∗), p∗) ̸= U(A(⊥), p∗). Since A is a
utility-maximizing action function, for every true distribution p∗ ∈ P it holds that U(A(p∗), p∗) ≥
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U(A(⊥), p∗). Therefore, our assumption (for the sake of contradiction) implies that for every true
distribution p∗ ∈ P, it holds that U(A(p∗), p∗) > U(A(⊥), p∗).

Define the function t : P 7→ R as follows: t(p∗) = U(A(p∗), p∗) − U(A(⊥), p∗). For every true
distribution p∗ ∈ P it holds that t(p∗) > 0. Lemma 19 shows that t is continuous. As t is a continuous
function on a compact domain it holds that its infimum is obtained. Thus there exists µ > 0 such
that for every distribution p∗ ∈ P it holds that t(p∗) > µ > 0. Namely, for every distribution p∗ ∈ P
it holds that U(A(p∗), p∗) > U(A(⊥), p∗) + µ.

Now, recall that by Theorem 14 if P is closed and convex then for any δA > δ ≥ 0, for every
contract Π, if a perfectly informed expert δA-accepts Π, then an uninformed expert δ-accepts Π.

To derive a contradiction we want to show that if for every distribution p∗ ∈ P it holds that
U(A(p∗), p∗) > U(A(⊥), p∗) + µ, then there exist a contract Π such that a perfectly informed expert
µ-accepts Π while an uninformed expert 0-rejects Π.

Consider the contract Π(q, ω) = U(A(q), ω)−U(A(⊥), ω). When ω is sampled from the distribution
p∗, it holds that when Bob reports q his expected reward is Π(q, p∗) = U(A(q), p∗)− U(A(⊥), p∗). A
perfectly informed expert µ-accepts Π as U(A(p∗), p∗) > U(A(⊥), p∗) + µ for every p∗ ∈ P implies
that Π(p∗, p∗) > µ for every p∗ ∈ P.

To show that an uninformed expert 0-rejects Π we need to show that for some p∗ ∈ P, for any
randomized action ξ ∈ ∆({⊥} ∪ P) it holds that Π(ξ, p∗) = U(A(ξ), p∗) − U(A(⊥), p∗) ≤ 0, where
Π(ξ, p∗) denotes the expected reward when the distribution is p∗ and the uninformed expert picks the
randomized action ξ. Assume in contradiction that for all p∗ ∈ P it holds that Π(ξ, p∗) = U(A(ξ), p∗)−
U(A(⊥), p∗) > 0. Then A is not undominated as for γ∗ = A(ξ) it holds that U(γ∗, p∗) > U(A(⊥), p∗)
for all p∗ ∈ P, a contradiction.

Remark 17. The first condition in the definition of a utility-maximizing action function can be
dropped at the price of weakening Theorem 16 just a bit. This would leave us with a very moderate
assumption on the rationality of Alice (i.e., only Condition (2)). The weaker theorem, under the
weaker assumption on A, would imply that for every µ there exists a true distribution p∗µ ∈ P such
that U(A(p∗µ), p

∗
µ) < U(A(⊥), p∗µ) + µ. In other words, the usefulness of informed experts may be

arbitrarily small.
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A Additional Lemmas and Proofs

Fact 18. Define the scoring rule s by s(q, ω) = −Br(q, ω), then s is distance rewarding.

Proof. First we note that by definition, Br(q, ω) = 1− 2q(ω) +
∑

ω′∈Ω(q(ω
′))2. Now,

Br(q, p)

=
∑
ω∈Ω

p(ω)

(
1− 2q(ω) +

∑
ω′∈Ω

(q(ω′))2

)
= 1−

∑
ω∈Ω

2p(ω)q(ω) +
∑
ω′∈Ω

(q(ω′))2

= 1 + ∥p− q∥22 − ∥p∥22,

where ∥ · ∥22 denotes the ℓ2 norm squared. The lemma easily follows.

Lemma 19. Fix any A(⊥) ∈ ∆(Γ). If the function t : P 7→ R is defined to be t(p∗) = U(A(p∗), p∗)−
U(A(⊥), p∗), then t is continuous.

Proof. For any fixedA(⊥) the function U(A(⊥), p∗) is continuous in p∗ as it is linear in the probabilities
of the outcomes.

Define r : P × P 7→ R as follows: r(q, p) = U(A(q), p). We thus need to show that r(p, p) =
U(A(p), p) is continuous in p. For any fixed q the function r(q, p) is linear in p and thus continuous
in p. As A is a utility-maximizing action function, r(p, p) ≥ r(q, p) and r(q, q) ≥ r(q, p) hold that for
every p, q.

Fix ϵ > 0 and consider p and p′ of distance at most ϵ. As r(q, p) is continuous in p it holds that there
exists δ > 0 such that r(p′, p′) ≥ r(p, p′) ≥ r(p, p)− δ. Symmetrically, r(p, p) ≥ r(p′, p) ≥ r(p′, p′)− δ.
Thus |r(p, p)− r(p′p′)| < 2δ and the claim follows.
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