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Reasoning under uncertainty

• In many settings, we must try to understand what is going on in a system

when we have imperfect or incomplete information.

• Two reasons why we might reason under uncertainty:

1. laziness (modeling every detail of a complex system is costly)

2. ignorance (we may not completely understand the system)

• Example: deploy a network of smoke sensors to detect fires in a building.

Our model will reflect both laziness and ignorance:

– We are too lazy to model what, besides fire, can trigger the sensors;

– We are too ignorant to model how fire creates smoke, what density of

smoke is required to trigger the sensors, etc.
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Using Probability Theory
to reason under uncertainty

• Probabilities quantify uncertainty regarding the occurrence of events.

• Are there alternatives? Yes, e.g., Dempster-Shafer Theory, disjunctive

uncertainty, etc. (Fuzzy Logic is about imprecision, not uncertainty.)

• Why is Probability Theory better? de Finetti: Because if you do not

reason according to Probability Theory, you can be made to act irrationally.

• Probability Theory is key to the study of action and communication:

– Decision Theory combines Probability Theory with Utility Theory.

– Information Theory is “the logarithm of Probability Theory”.

• Probability Theory gives rise to many interesting and important

philosophical questions (which we will not cover).
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The only prerequisite: Set Theory

A B

A∩B

A B

A\BA∪B

A B

For simplicity, we will work (mostly) with finite sets. The extension to

countably infinite sets is not difficult. The extension to uncountably infinite sets

requires Measure Theory.
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Probability spaces

• A probability space represents our uncertainty regarding an experiment.

• It has two parts:

1. the sample space Ω, which is a set of outcomes; and

2. the probability measure P , which is a real function of the subsets of Ω.

Ω P

ℜ
A

P(A)

• A set of outcomes A ⊆ Ω is called an event. P (A) represents how likely it is

that the experiment’s actual outcome will be a member of A.
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An example probability space

• If our experiment is to deploy a smoke detector and see if it works, then

there could be four outcomes:

Ω = {(fire, smoke), (no fire, smoke), (fire,no smoke), (no fire,no smoke)}

Note that these outcomes are mutually exclusive.

• And we may choose:

– P ({(fire, smoke), (no fire, smoke)}) = 0.005

– P ({(fire, smoke), (fire,no smoke)}) = 0.003

– . . .

• Our choice of P has to obey three simple rules. . .
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The three axioms of Probability Theory

1. P (A) ≥ 0 for all events A

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) for disjoint events A and B

Ω
A

P(A) + P(B) = P(A∪B)0 1

B
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Some simple consequences of the axioms

• P (A) = 1 − P (Ω\A)

• P (∅) = 0

• If A ⊆ B then P (A) ≤ P (B)

• P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

• P (A ∪ B) ≤ P (A) + P (B)

• . . .
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Example

• One easy way to define our probability measure P is to assign a probability

to each outcome ω ∈ Ω:

fire no fire

smoke 0.002 0.003

no smoke 0.001 0.994

These probabilities must be non-negative and they must sum to one.

• Then the probabilities of all other events are determined by the axioms:

P ({(fire, smoke), (no fire, smoke)})

= P ({(fire, smoke)}) + P ({(no fire, smoke)})

= 0.002 + 0.003

= 0.005
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Conditional probability

• Conditional probability allows us to reason with partial information.

• When P (B) > 0, the conditional probability of A given B is defined as

P (A |B)
4
=

P (A ∩ B)

P (B)

This is the probability that A occurs, given we have observed B, i.e., that

we know the experiment’s actual outcome will be in B. It is the fraction of

probability mass in B that also belongs to A.

• P (A) is called the a priori (or prior) probability of A and P (A |B) is called

the a posteriori probability of A given B.

Ω
ℜ

P(A∩B) / P(B) = P(A|B)

A B
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Example of conditional probability

If P is defined by

fire no fire

smoke 0.002 0.003

no smoke 0.001 0.994

then

P ({(fire, smoke)} | {(fire, smoke), (no fire, smoke)})

=
P ({(fire, smoke)} ∩ {(fire, smoke), (no fire, smoke)})

P ({(fire, smoke), (no fire, smoke)})

=
P ({(fire, smoke)})

P ({(fire, smoke), (no fire, smoke)})

=
0.002

0.005
= 0.4
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The product rule

Start with the definition of conditional probability and multiply by P (A):

P (A ∩ B) = P (A)P (B |A)

The probability that A and B both happen is the probability that A happens

times the probability that B happens, given A has occurred.
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The chain rule

Apply the product rule repeatedly:

P
(

∩k
i=1Ai

)

= P (A1)P (A2 |A1)P (A3 |A1 ∩ A2) · · ·P
(

Ak | ∩
k−1

i=1
Ai

)

The chain rule will become important later when we discuss conditional

independence in Bayesian networks.
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Bayes’ rule

Use the product rule both ways with P (A ∩ B) and divide by P (B):

P (A |B) =
P (B |A)P (A)

P (B)

Bayes’ rule translates causal knowledge into diagnostic knowledge.

For example, if A is the event that a patient has a disease, and B is the event

that she displays a symptom, then P (B |A) describes a causal relationship, and

P (A |B) describes a diagnostic one (that is usually hard to assess). If P (B |A),

P (A) and P (B) can be assessed easily, then we get P (A |B) for free.
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Random variables

• It is often useful to “pick out” aspects of the experiment’s outcomes.

• A random variable X is a function from the sample space Ω.

Ω Ξ
ω

X

X(ω)

• Random variables can define events, e.g., {ω ∈ Ω : X(ω) = true}.

• One will often see expressions like P{X = 1, Y = 2} or P (X = 1, Y = 2).

These both mean P ({ω ∈ Ω : X(ω) = 1, Y (ω) = 2}).
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Examples of random variables

Let’s say our experiment is to draw a card from a deck:

Ω = {A♥, 2♥, . . . , K♥, A♦, 2♦, . . . , K♦, A♣, 2♣, . . . , K♣, A♠, 2♠, . . . , K♠}

random variable example event

H(ω) =







true if ω is a ♥

false otherwise
H = true

N(ω) =







n if ω is the number n

0 otherwise
2 < N < 6

F (ω) =







1 if ω is a face card

0 otherwise
F = 1
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Densities

• Let X : Ω → Ξ be a finite random variable. The function pX : Ξ → < is the

density of X if for all x ∈ Ξ:

pX(x) = P ({ω : X(ω) = x})

• When Ξ is infinite, pX : Ξ → < is the density of X if for all ξ ⊆ Ξ:

P ({ω : X(ω) ∈ ξ}) =

∫

ξ

pX(x) dx

• Note that
∫

Ξ
pX(x) dx = 1 for a valid density.

Ω Ξ
ω

X

X(ω) = x

pX

ℜpX (x)
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Joint densities

• If X : Ω → Ξ and Y : Ω → Υ are two finite random variables, then

pXY : Ξ × Υ → < is their joint density if for all x ∈ Ξ and y ∈ Υ:

pXY (x, y) = P ({ω : X(ω) = x, Y (ω) = y})

• When Ξ or Υ are infinite, pXY : Ξ×Υ → < is the joint density of X and Y

if for all ξ ⊆ Ξ and υ ⊆ Υ:
∫

ξ

∫

υ

pXY (x, y) dy dx = P ({ω : X(ω) ∈ ξ, Y (ω) ∈ υ})

Ω

Υ
ω

X

Y

Y(ω) = y

Ξ
X(ω) = x

pXY

ℜ
pXY (x,y)
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Random variables and densities
are a layer of abstraction

We usually work with a set of random variables and a joint density; the

probability space is implicit.
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Marginal densities

• Given the joint density pXY (x, y) for X : Ω → Ξ and Y : Ω → Υ, we can

compute the marginal density of X by

pX(x) =
∑

y∈Υ

pXY (x, y)

when Υ is finite, or by

pX(x) =

∫

Υ

pXY (x, y) dy

when Υ is infinite.

• This process of summing over the unwanted variables is called

marginalization.
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Conditional densities

• pX|Y (x, y) : Ξ × Υ → < is the conditional density of X given Y = y if

pX|Y (x, y) = P ({ω : X(ω) = x} | {ω : Y (ω) = y})

for all x ∈ Ξ if Ξ is finite, or if
∫

ξ

pX|Y (x, y) dx = P ({ω : X(ω) ∈ ξ} | {ω : Y (ω) = y})

for all ξ ⊆ Ξ if Ξ is infinite.

• Given the joint density pXY (x, y), we can compute pX|Y as follows:

pX|Y (x, y) =
pXY (x, y)

∑

x′∈Ξ
pXY (x′, y)

or pX|Y (x, y) =
pXY (x, y)

∫

Ξ
pXY (x′, y) dx′
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Rules in density form

• Product rule:

pXY (x, y) = pX(x) × pY |X(y, x)

• Chain rule:

pX1···Xk
(x1, . . . , xk)

= pX1
(x1) × pX2|X1

(x2, x1) × · · · × pXk|X1···Xk−1
(xk, x1, . . . , xk−1)

• Bayes’ rule:

pY |X(y, x) =
pX|Y (x, y) × pY (y)

pX(x)
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Inference

• The central problem of computational Probability Theory is the inference

problem:

Given a set of random variables X1, . . . , Xk and their joint density,

compute one or more conditional densities given observations.

• Many problems can be formulated in these terms. Examples:

– In our example, the probability that there is a fire given smoke has been

detected is pF |S(true, true).

– We can compute the expected position of a target we are tracking given

some measurements we have made of it, or the variance of the position,

which are the parameters of a Gaussian posterior.

• Inference requires manipulating densities; how will we represent them?
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Table densities

• The density of a set of finite-valued random variables can be represented as

a table of real numbers.

• In our fire alarm example, the density of S is given by

pS(s) =







0.995 s = false

0.005 s = true

• If F is the Boolean random variable indicating a fire, then the joint density

pSF is represented by

pSF (s, f) f = true f = false

s = true 0.002 0.003

s = false 0.001 0.994

• Note that the size of the table is exponential in the number of variables.
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The Gaussian density

• One of the simplest densities for a real random variable.

• It can be represented by two real numbers: the mean µ and variance σ2.
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The multivariate Gaussian density

• A generalization of the Gaussian density to d real random variables.

• It can be represented by a d × 1 mean vector µ and a symmetric d × d

covariance matrix Σ.
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Importance of the Gaussian

• The Gaussian density is the only density for real random variables that is

“closed” under marginalization and multiplication.

• Also: a linear (or affine) function of a Gaussian random variable is

Gaussian; and, a sum of Gaussian variables is Gaussian.

• For these reasons, the algorithms we will discuss will be tractable only for

finite random variables or Gaussian random variables.

• When we encounter non-Gaussian variables or non-linear functions in

practice, we will approximate them using our discrete and Gaussian tools.

(This often works quite well.)
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Looking ahead. . .

• Inference by enumeration: compute the conditional densities using the

definitions. In the tabular case, this requires summing over exponentially

many table cells. In the Gaussian case, this requires inverting large

matrices.

• For large systems of finite random variables, representing the joint density

is impossible, let alone inference by enumeration.

• Next time:

– sparse representations of joint densities

– Variable Elimination, our first efficient inference algorithm.
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Summary

• A probability space describes our uncertainty regarding an experiment; it

consists of a sample space of possible outcomes, and a probability measure

that quantifies how likely each outcome is.

• An event is a set of outcomes of the experiment.

• A probability measure must obey three axioms: non-negativity,

normalization, and additivity of disjoint events.

• Conditional probability allows us to reason with partial information.

• Three important rules follow easily from the definitions: the product rule,

the chain rule, and Bayes’ rule.
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Summary (II)

• A random variable picks out some aspect of the experiment’s outcome.

• A density describes how likely a random variable is to take on a value.

• We usually work with a set of random variables and their joint density; the

probability space is implicit.

• The two types of densities suitable for computation are table densities (for

finite-valued variables) and the (multivariate) Gaussian (for real-valued

variables).

• Using a joint density, we can compute marginal and conditional densities

over subsets of variables.

• Inference is the problem of computing one or more conditional densities

given observations.
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