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Abstract. The simple Bayesian classi�er (SBC), sometimes called

Naive-Bayes, is built based on a conditional independence model of each

attribute given the class. The model was previously shown to be sur-

prisingly robust to obvious violations of this independence assumption,

yielding accurate classi�cation models even when there are clear con-

ditional dependencies. We examine di�erent approaches for handling

unknowns and zero counts when estimating probabilities. Large scale

experiments on 37 datasets were conducted to determine the e�ects of

these approaches and several interesting insights are given, including a

new variant of the Laplace estimator that outperforms other methods for

dealing with zero counts. Using the bias-variance decomposition [15, 10],

we show that while the SBC has performed well on common benchmark

datasets, its accuracy will not scale up as the dataset sizes grow. Even

with these limitations in mind, the SBC can serve as an excellent tool

for initial exploratory data analysis, especially when coupled with a vi-

sualizer that makes its structure comprehensible.

1 Introduction to the Simple-Bayesian Classi�er

In supervised classi�cation learning, a labelled training set is presented to the

learning algorithm. The learner uses the training set to build a model that maps

unlabelled instances to class labels. The model serves two purposes: it can be

used to predict the labels of unlabelled instances, and it can provide valuable

insight for people trying to understand the domain. Simple models are especially

useful if the model is to be understood by non-experts in machine learning.

The simple Bayes classi�er (SBC), sometimes called Naive-Bayes, is built

based on a conditional independence model of each attribute given the class

[11, 7]. Formally, the probability of a class label value C
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The above probability is computed for each class and the prediction is made

for the class with the largest posterior probability. This model is very robust

and continues to perform well even in the face of obvious violations of this

independence assumption.

The probabilities in the above formulas must be estimated from the training

set. We address two separate issues related to the SBC: how to treat unknown

values and how to estimate the probabilities (especially when some of the counts

are zero). A large scale comparison of these variants on 37 datasets from the UCI

Repository [20] was done. We emphasize the extreme cases that led to interesting

insights.

Using the bias-variance decomposition, we show that while the SBC has

performed well on common benchmark datasets, its accuracy will not scale up

as the dataset sizes grow.

2 Improving the \Naive" Simple Bayesian Classi�er

We investigate the various options that one could choose when using the SBC.

For each of these options we conducted experiments to show the di�erences in

error. We also can explain in some cases why these di�erences arise and when

one option is preferable. Before describing the di�erent options, we describe the

methodology used throughout the paper.

2.1 Experimental Methodology

We chose all the datasets reported in Domingos and Pazzani [5], except lung-

cancer, labor-negotiations, and soybean (small), which had fewer than 100 in-

stances. We added more datasets, especially larger ones, such as segment, mush-

room, letter, and adult for a total of 37. The speci�c datasets are shown below

in Table 2.

Our main concern with estimating accuracy is that the estimate should be

precise. Therefore, we ran di�erent inducers on these datasets in two forms. If

the dataset was large or arti�cial, indicating that a single test set would yield

accurate estimates, we used a training-set/test-set as de�ned in the source for

the dataset (e.g., Statlog de�ned the splits for DNA, letter, satimage; CART

de�ned the training size for waveform and led24) or a 2/3, 1/3 split, and ran the

inducer once; otherwise, we performed 10-fold cross-validation to improve the

reliability of the estimate.

The extreme, and therefore interesting, results are shown graphically. We

show both the absolute di�erence in error as bars, and the relative error rates

(i.e., one error rate divided by another) as symbols (e.g.pluses). Relative error

rates are especially useful when the error itself is low. For example, reducing the

error rate by 0.5% may not seem signi�cant in terms of absolute errors, but if

the initial error rate was only 1%, the error would be halved! If each error costs

a signi�cant amount of money, then the error ratio is most important. Note that

both types of information are shown on the same graph, with the left y-axis



unknown-as-value minus ignore-unknown Ignore-unknown over unknown-as-value

ec
ho

-c
ar

d

au
to

au
di

ol
og

y

cl
ev

e

pr
im

-t
um

or

ho
rs

e-
co

lic

an
ne

al

hy
po

th
yr

oi
d

ad
ul

t

E
rr

or
 d

iff

-2.00

-1.00

0.00

1.00

2.00

3.00

E
rr

or
 r

at
io

0.60

0.80

1.00

1.20

1.40

1.60

Fig. 1. Comparison of ignoring unknown values and considering them a separate value.

The left axis shows the scale for the bars (absolute error di�erences); bars above zero

indicate that ignoring unknowns is better. The right axis shows the scale for the pluses

(relative error ratio); pluses above the one line show better performance for ignoring

unknowns.

showing the scale for the bars and the right y-axis showing the scale for the

relative errors.

2.2 The Basic Classi�er

We begin with a very simple SBC model. Continuous attributes are discretized

into 10 bins of uniform size and frequency counts are used to estimate the prob-

abilities. If there is a class label value with zero counts, that class is ignored

and will never be predicted. If there is a zero count for a class label C and an

attribute value A, the conditional probability, P (A j C), will be zero.

Ties are broken in favor of the class with more instances in the original

dataset. This is important especially for this simple version because all classes

can end up with zero posterior probability, in which case we predict the majority

class.

2.3 How Should Unknowns be Treated?

The �rst option we investigate is how to handle unknowns. One can either con-

sider unknowns to be a separate value, as was done by Domingos and Pazzani

[5], or they can be ignored for a given instance by not including the matching

term in the overall product.

The optimal treatment of unknowns depend on their meaning in the domain.

If the unknown has a special meaning (e.g., an unknown (blank) for the army

rank of a person), it is likely that treating it as a separate value will be better.

If, however, the unknowns represent truly missing information because the data

was corrupted or the entry was mistakenly left blank, the latter approach should

be better, as it matches the Bayesian de�nition of marginalizing the appropriate

attribute. Figure 1 shows the experimental results for the datasets that di�ered.



Over all the datasets, the average error rate for considering unknowns to be a

separate value was 20:30% and for ignoring them it was 20:20%. In most datasets

(not shown) the unknown treatment was not important. Those that di�ered were

generally better for ignoring unknowns, except for the anneal dataset, where a

signi�cant increase in error was observed. The encoding of the anneal dataset at

the UCI Repository appears to be 
awed

1

. For this dataset, we converted the

unknowns to dashes and called the �le anneal-U, which we will use in the rest

of this paper.

One reason to ignore unknowns in the algorithm is that users can always map

their unknowns to a separate values, while if unknowns are considered a separate

value, users cannot cause certain values to be ignored. We conclude that it is

better for algorithms to ignore unknowns, and in cases where unknowns represent

a special value, such as anneal, the unknowns should be converted to a separate

value. In the rest of the experiments, unknowns will be treated as true missing

values.

2.4 Estimating Probabilities

The class probabilities and the conditional probabilities in the above experiments

were based on pure frequency counts. An attribute value that does not occur

together with a given class label value will produce a zero estimate for P (A j C),

eliminating class C from consideration. To overcome this problem of a single

value controlling the outcome, we examine two general approaches from the

literature:

The no-match approaches Replace a zero count (no-match) for P (A and C)

with a factor that is inversely proportional to the number of instances,

m. The di�erent approaches use a di�erent numerator, but the idea is the

same. Clark and Niblett [4] and Domingos and Pazzani [5] used P (C)=m. In

MLC

++

[14], the default was 0:5=m.

Laplace approaches Given a prede�ned factor f , if there are N matches out

of n instances for a k value problem, estimate the probability as (N+f)=(n+

kf). For a two valued problems with f = 1, we get the well-known Laplace's

law of succession [11] (N + 1)=(N + 2).

Table 1 summarizes the average errors and the average error ratios relative to

No-matches-PC (the No-match approach with the numerator factor set to P (C))

for all the datasets. We can see that frequency counts is the worst performer,

and Laplace's law of succession as second worst. No-matches-PC is somewhere

in the middle. Very small settings for no-matches, such as 0:01=m and similar

1

The description �le says that \The '-' values are actually 'not-applicable' values

rather than 'missing-values' (and so can be treated as legal discrete values rather

than as showing the absence of a discrete value)" yet there are no dashes in the �le.

In addition, we tested C4.5 on the original and new encoding of the anneal dataset.

Under the original encoding, the 10-fold cross-validation error was 8.23% and under

the encoding with dashes, it decreased to 1.22%.



Approach Average error ratio Average error

relative to No-matches-PC

Laplace-m 0.96 18.58

No-matches-0:01 0.97 18.51

Laplace-0:01 0.98 18.70

No-matches-PC 1.00 18.62

No-matches-0:1 1.00 18.64

No-matches-0:5 1.02 18.76

Laplace-0:1 1.02 18.83

Laplace-1 (law of succession) 1.11 19.59

No-matches-0 (frequency counts) 1.17 20.16

Table 1. Comparison of di�erent methods for estimating probabilities. No-match-f

denotes replacing zeroes with the given factor f over the number of instances. Laplace-f

denotes adding f to the numerator and f times the number of possible values to the

denominator. Laplace-m denotes adding a factor 1=m for m instances.

corrections for Laplace seem to perform best. Laplace-m sets the adjustment to

be 1=m, making it smaller as the �le size grows.

Figure 2 shows the errors and error ratios for three of the variants and for

datasets that had signi�cant di�erences. We can see that frequency counts (No-

matches-0) performs generally worse than No-matches-PC, except on the cars

and mushroom datasets where it performs signi�cantly better. Laplace�m seems

to take the best of both worlds. It tracks No-matches-PC on most datasets, ex-

cept cars and mushroom where it tracks No-matches-0 well. The error di�erences

can be explained by two distinct and opposite e�ects. We begin with an expla-

nation of why frequency counts performs poorly sometimes.

When the conditional probability is set to zero based on frequency counts,

it is possible to rule out a class because of a single attribute value; moreover,

sometimes all classes are ruled out! An opposite e�ect happens when the prob-

abilities are biased too far away from zero as with Laplace's law of succession.

In those cases, a single strong predictor can be weakened too much. Correcting

zero counts hurt performance on the cars and mushroom datasets because these

datasets rely on a single strong predictor being able to override many weaker

predictors for other classes.

Both methods for correcting frequency counts seem to work best when very

small correction values are used, which to our knowledge has not been previously

reported.

If, in addition to unknown handling and zero counts, we also discretize the

data using entropy minimization [6], the average absolute error for all datasets

decreases from 18.58% to 18.13% with an average relative error ratio of 0.94.

2.5 Limitations of the SBC

While the SBC shows good performance on many of the datasets from UCI, it

is still a very limited classi�er. It is a \global" classi�er and cannot make lo-

cal predictions as nearest-neighbors or decision trees can. Therefore, the simple
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Fig. 2. Comparison of three probability estimation methods. The baseline chosen was

No-matches-PC. Absolute errors and relative error ratios are shown with respect to

this baseline. The left axis shows the scale for the bars (absolute error di�erences);

bars above zero show worse performance than No-matches-PC. The right axis shows

the scale for the pluses and asterisks (relative error ratios); symbols above one show

worse performance.

Bayesian inducer cannot be consistent in the statistical sense without additional

strong assumptions (an inducer is consistent if the classi�ers it produces ap-

proach the Bayes optimal error as the dataset size grows to in�nity). Proofs

have been given for decision tree inducers [12] and for nearest-neighbor inducers

[8] under mild assumptions.

In the bias-variance decomposition of error [15, 10], the error is the sum of

two terms: the squared bias and the variance. The bias measures how well the

induced classi�ers �t the data (low values are good), and the variance measures

the stability (low values indicate stability).

The SBC usually has low variance as perturbations of the training sets will

rarely cause large changes in its predictions, which are based on probabilities.

Contrast this with decision tree inducers that are unstable [2, 1] because if two

attributes are ranked very closely at the root of a subtree, their order might

change when the training set is perturbed, and cause the whole subtree to di�er.

However, the SBC usually has high bias because of its inability to locally �t the

data.

Figure 3 shows the bias-variance decomposition as described by Kohavi and

Wolpert for the large datasets and two inducers: simple-Bayesian and MC4 (a

decision tree inducer inMLC

++

).

2

The evaluation set sampling (used to compute

the bias and variance) was 30%. The internal sample process to generate training

sets was half of the remaining 70% (so training sets were 35% of the original

dataset); ten such samples were generated. For datasets with fewer than 3000

instances, the whole process was repeated ten times and averaged (for a total of

100 runs).

The �gure shows that the performance of SBC is generally inferior for all large

2

The bias-variance decomposition algorithm in MLC

++

requires support routines

that are unavailable in C4.5, which is why we used MC4 here.
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Fig. 3. Bias-variance decomposition for the larger datasets for SBC and MC4, the

MLC

++

decision tree inducer, which is similar to C4.5. The lower bar denotes bias,

the upper bar denotes variance, and the sum indicates the total error. The left axis

shows the error for the bars (lower is better). The right axis shows the ratio of MC4

to SBC (lower than one indicates MC4 is better).

datasets (except for DNA which is much better). Looking at the decomposed

terms, the variance of the the simple Bayesian inducer is always lower (except

for chess and hypothyroid). Since more data cannot change the bias of the simple

Bayesian model, we can conclude that error will not decrease much as the dataset

size grows.

3 Comparison with Other Classi�ers

In the previous sections we proposed solutions for some of the decisions required

for the SBC. We reduced the overall error from 20.30% for the basic SBC to

18.13%, which is a relative improvement of 10.7%. Table 2 shows the dataset

characteristics and absolute errors for C4.5, C4.5-rules [21], and our SBC.

The average error for C4.5 is 17.85%, for C4.5-rules it is 17.90%, and for

SBC it is 18.19%. If we ignore the big datasets (datasets DNA through adult in

the table), C4.5's error is 20.83%, C4.5-rules's error is 20.93%, and SBC's error

is 20.10%. The simple-Bayesian inducer and C4.5 are very fast inducers, never

taking more than a few minutes. C4.5-rules took over 4.5 hours to build a ruleset

for the adult dataset.

The SBC is a good fast algorithm. Its accuracy is very good on small datasets

but it may asymptote to a high error rate, making it less useful as a classi�er

for very large databases.

4 Related Work

The SBC model is very simple and its explanatory power was previously noted

by Kononenko [17], who wrote that \Physicians found such explanations [using

conditional probabilities] as natural and similar to their classi�cation. They also

summed up evidence for/against a diagnosis."



Dataset Train/ Data No of C4.5 C4.5-rules SBC

test set attr error error error

size size cont/

nom

zoo 91/10-CV 101 0/16 7.05� 0.71 7.55�0.74 2.91� 1.48

echocardiogram 118/10-CV 131 6/1 37.62� 1.29 37.93�1.21 38.85� 3.16

lymphography 133/10-CV 148 3/15 23.42� 1.05 22.71�0.99 16.10� 2.98

iris 135/10-CV 150 4/0 5.20� 0.49 4.53�0.50 7.33� 1.85

hepatitis 140/10-CV 155 6/13 20.75� 1.08 21.14�1.07 15.46� 2.84

glass2 147/10-CV 163 9/0 20.82� 0.96 19.42�0.95 19.67� 2.00

wine 160/10-CV 178 13/0 7.02� 0.61 6.41�0.58 1.14� 0.76

auto 184/10-CV 205 15/10 18.96� 1.03 22.95�1.00 25.31� 3.69

sonar 187/10-CV 208 60/0 27.42� 0.92 27.28�1.00 25.48� 2.46

glass 193/10-CV 214 9/0 33.17� 0.94 34.06�0.96 29.89� 2.29

led24 200/3000 3200 0/24 34.33� 0.87 35.43�0.87 35.90� 0.88

audiology 203/10-CV 226 0/69 22.35� 0.84 23.68�0.86 21.28� 2.23

breast (L) 257/10-CV 286 0/9 26.15� 0.73 29.29�0.77 26.59� 2.24

cleve 273/10-CV 303 6/7 24.02� 0.76 20.27�0.81 17.12� 2.32

solar 291/10-CV 323 3/9 29.44� 0.69 27.61�0.76 28.48� 1.51

waveform-21 300/4700 5000 21/0 29.74� 0.67 28.57�0.66 21.43� 0.60

primary-tumor 305/10-CV 339 0/17 57.99� 0.80 59.56�0.83 51.35� 2.84

liver-disorder 310/10-CV 345 6/0 34.67� 0.77 33.45�0.80 43.78� 2.35

ionosphere 316/10-CV 351 34/0 10.79� 0.57 10.22�0.55 10.28� 1.43

horse-colic 331/10-CV 368 7/15 14.76� 0.57 17.07�0.63 20.14� 2.55

cars 353/10-CV 392 7/1 2.40� 0.27 1.91�0.23 2.04� 0.63

vote 392/10-CV 435 0/16 4.97� 0.31 4.42�0.31 9.66� 0.68

soybean (L) 615/10-CV 683 0/35 8.20� 0.39 8.07�0.34 6.59� 0.85

crx 621/10-CV 690 6/9 14.55� 0.37 15.41�0.41 12.90� 0.79

breast 629/10-CV 699 10/0 5.25� 0.24 4.71�0.25 3.00� 0.50

pima 691/10-CV 768 8/0 25.31� 0.51 25.54�0.52 24.10� 1.75

vehicle 761/10-CV 846 18/0 27.22� 0.47 27.15�0.46 38.88� 1.55

anneal/U 808/10-CV 898 6/32 1.41� 0.12 1.47�0.13 1.45� 0.44

german 900/10-CV 1000 7/13 28.96� 0.42 29.08�0.47 25.90� 1.80

DNA 2000/1186 3186 0/180 7.34� 0.76 6.91�0.74 6.66� 0.72

segment 2079/10-CV 2310 19/0 3.30� 0.11 3.98�0.13 6.88� 0.52

chess 2130/1066 3196 0/36 0.47� 0.21 1.13�0.32 12.85� 1.03

hypothyroid 2847/10-CV 3163 7/18 0.73� 0.05 0.77�0.06 1.42� 0.29

satimage 4435/2000 6435 36/0 14.55� 0.79 14.80�0.79 18.20� 0.86

mushroom 5416/2708 8124 0/22 0.00� 0.00 0.26�0.10 0.78� 0.17

letter 15000/5000 20000 16/0 12.36� 0.47 13.44�0.48 25.02� 0.61

adult 32561/16281 48842 6/8 14.03� 0.27 15.82�0.29 15.82� 0.29

Table 2. Characteristics of datasets and a comparison of C4.5, C4.5-rules, and SBC.

The datasets are sorted by training set size. 10-CV indicates 10-fold cross-validation.

The numbers after the error indicate the standard deviation of the mean error. The SBC

model discretizes using entropy, estimates probabilities using Laplace-m, and ignores

unknown values during classi�cation.



Some versions of the SBC, most notably the version described by Cestnik

[3], have used an alternative formulation that is mathematically equivalent, but

requires estimating P (CjA) instead of P (AjC). Comparisons (not reported here)

showed insigni�cant di�erences in accuracy between the two methods.

Many researchers have noted the good performance of SBC, including

Clark and Niblett [4], Kononenko [17], Langley and Sage [19], and Domingos

and Pazzani [5]. Proposed extensions generally resulted in little improvements

[16, 18, 22], although some recent proposals seem promising [9, 13].

5 Summary

We studied di�erent options for handling unknowns, estimating probabilities,

and discretizing. Through a large scale comparison of 37 datasets, we were

able to pinpoint interesting datasets where error di�erences were signi�cant and

explained many of the reasons for di�erent error results. We proposed a new

method for estimating probabilities, Laplace-m, that outperformed the other

methods on the datasets we tested on.

Using the bias-variance decomposition, we showed that while the SBC per-

forms well on small datasets, it will not generally scale very well to larger datasets

because of its strong bias component. We compared the SBC with C4.5 and C4.5-

rules and showed that it is accurate and outperforms both inducers on many of

the smaller datasets from the UCI repository.
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