IAC-06-B1.P.1.11

COMPARISON OF MOTION DEBLUR ALGORITHMS
AND REAL WORLD DEPLOYMENT

Sebastian Schuon <schuon@mytum.de>, Klaus Diepold <kldiQtum.de>
Institute for Data Processing, Technische Universitdat Miinchen
Munich, Germany

Abstract

If a camera moves fast while taking a picture, motion blur is induced. There exist techniques to prevent
this effect to occur, such as moving the lens system or the CCD chip electro- mechanically. Another approach
is to remove the motion blur after the images have been taken, using signal processing algorithms as post-
processing techniques. For more than 30 years, numerous researchers have developed theories and algorithms
for this purpose, which work quite well when applied to artificially blurred images. If one attempts to use
those techniques to real world scenarios, they mostly fail miserably. In order to study why the known
algorithms have problems to de-blur naturally blurred images we have built an experimental setup, which
produces real blurred images with defined parameters in a controlled environment. For this article we have
studied the most important algorithms used for de-blurring, we have analyzed their properties when applied
to artificially blurred images and to real images. We propose solutions to make the algorithms fit for purpose.

1 Purpose

Often security cameras are mounted on posts to
overview a parking lot or similar venues. If the
wind blows those posts may start to shake and the
attached cameras often produce blurry images. Due
to this motion blur details in the captured images,
such as faces or license plates are unrecognizable
or unintelligible. A similar problem is addressed in
[22], where prerecorded images of a truck, moving
at a speed of 60 mph, are de-blurred in order to
recognize the truck’s side printing.

In [16] another version of the same problem is de-
scribed, but in a total different setting. The Hub-
ble Space Telescope (HST) has two different cap-
ture modes: fine lock and gyro-hold. At times ob-
servations are done in gyro-hold mode, which does
not offer any position control to keep the HST at a
fixed location during capture. This mode is prone
to motion during the capturing process, such that
significant motion blur finds its way into the final

image. To get images, which are as sharp as possi-
ble, advanced motion de-blur algorithms have been
applied to the images, achieving good results.

Apart from these examples motion blur is a phe-
nomena common to all photographers. There are
either moving objects in the scene or the camera
is moving during the capture progress, both situa-
tions leading to blurred images. In order to address
this issue various techniques in hardware [4, 17| and
software [1, 2, 6, 5, 18] have already been developed.
All of them have technical constrains of some kind
such as requiring additional hardware or producing
sub-optimal results.

The corresponding image restoration process, re-
ferred to as motion de-blur, can be broken up in
two parts: motion estimating and deconvolution.
The first part deals with the challenge to identify
the path the camera has followed during the image
capture process. The second part uses this infor-
mation to reverse the convolution during the image

formation process in order to restore the original
picture. Lately much effort has been put into the
first part and some remarkable results have been
published [1, 2, 3, 19, 18]. All the previously pro-
posed de-blurring methods rely on a small number
of algorithms to perform the second part, the de-
convolution. Therefore we perform a quantitative
comparison of the algorithms already in use and
some which have been recently proposed in the lit-
erature. We point out promising candidates and
give clues for further improvement. Notably de-
blur algorithms are demonstrated using syntheti-
cally blurred images, which provide quite different
characteristics from motion blur encountered in the
real world. We have build an experimental setup
allowing us to generate real motion blur with prede-
fined parameters allowing us to measure and com-
pare the performance of algorithms under real world
conditions.

2 Modelling Motion Blur

We use a linear, non-recursive (FIR) model to rep-
resent the degradation of digital (sampled) images
caused by motion blur. We consider the original,
blur-free M x N-image f to be convolved with
a convolution kernel h, referred to as the Point
Spread Function (PSF). Additionally, some noise
is introduced during the capturing process, which
is modeled with the additive noise term m. Hence,
the blurred M x N image b, as it is captured by the
moving camera, is modeled as

b=hxf+n, (1)

where the symbol x represents the convolution op-
erator.

De-blurring images accounts to the application of
the de-blurring operator D, which produces a de-
blurred image }' when applied to the blurred image
b, that is D(b) = f.

2.1 Synthetic Motion Blur

For test purposes we create images which are syn-
thetically blurred according to the blur model. This
yields the advantage that we have access to the ref-
erence image f, which is not known in real environ-
ments, for comparison against the restored image,
which we will denote by #.

Motion blur is described by means of a Point Spread
Function (PSF), which provides information of the
underlying motion during the capture process. In
the most simple case, that is, for a uniform linear
motion along the x-axis with a speed of k pixels
during the capturing period the PSF is given by a
one-dimensional vector of the length k + 1:

1
hiin = 1= 111 .. 1] (2)

However, in a real environment with shaking cam-
eras, neither the path of the moving camera nor the
point spread function are known a priori and need
to be estimated from the measured data.

In [2], Ben-Ezra and Nayar have proposed a method
to determine the motion paths during the captur-
ing process. Their analysis shows that the model
for the PSF has to be extended to represent mo-
tion in a two-dimensional plane. The PSF is a ma-
trix h of size U x V , where each entry h;;, 1=
1,2,...,U,5 =1,2,...V represents the percentage

the camera has been displaced by i — %, j— % from
the center during the capture.
hii hex -+ hiy
h=— ’ 3
=" NG
hua hu,v

where the parameter K is a normalizing constant
to achieve that the sum over the entries of h equals
1.

K = Z Zh(m) (4)

i=1 j=1

An example for such a PSF, which represents a tri-
angular motion path is given in Eq. 5. Figure 1
shows the graphical representation of this PSF and
its impact on a checkerboard structure test picture.

1 1 2
hcomp = 2_0 9

Figure 1:
Complex PSF (left) and resulting image (right)

2.2 Border Area

When generating synthetic blur as described above
problems occur in the border region where no in-
formation of pixel values beyond the border of the
image is available, which is necessary to compute
the convolution properly. Several approaches exists
to solve this issue:

e circular: the image is considered to be peri-
odic, values are therefore taken from the oppo-
site border

o repetetive: the very last pixel next to the
boarder is repeated

e mirroring: the image is mirrored at the bor-
der, therefore providing values for the region
beyond the boarder

e constant: the values beyond the boarder are
considered to be constants (often black or
white)

Another approach is to perform clipping around
the boarder area, therefore reducing the size of the
output image but computing more realistic results.
The boarder issue has been addressed further in
[23].

2.3 Real Motion Blur

In the literature a number of examples are shown
where synthetically motion-blurred images are de-
blurred using various algorithms and where the re-
sults look quite promising. However, when applying
deblurring algorithms to real-world pictures, which
contain motion blur, it is revealed that those al-
gorithms perform quite unsatisfactory. This may
be due to poorly estimated PSFs or due to failures

Figure 3: Estimating the PSF with real motion blur

in the underlying motion blur model itself. To in-
vestigate this issue in more detail and to locate the
root of the problem, an experimental setup has been
built, which allows us to capture blurred images in
a controlled setting which facilitates to have access
to well-defined and parameterized PSFs.

The unit shown in Figure 2 comprises a camera
unit, a guiding rail and a stepper motor. The cam-
era carriage is accelerated to a constant speed and
takes a photo with a medium exposure time (around
100ms) to allow significant motion blur appear in
the picture. As a motif a checkerboard structure
has been chosen, since this allows an easy method
for estimating the associated PSF.

An image captured with our experimental setup is
shown in Figure 3. From the way we have set up
the capturing process we assume the motion path

Luminance along blur zone
07 T T T

061

05

041

Luminance

03F

02F

01F

. 1
0 10 20 30 40 50 60 70 80
Pixel (vertical)

Figure 4: Verification of linearity

Luminance along box edges
07 T T

061

05

041

Luminance

03F

02F

01F

.
0 10 20 30 40 50 60 70
Pixel (vertical)

Figure 5: Verification of horizontal motion

of the camera to be linear and uniform in the hor-
izontal direction. The first assumption is verified
by looking at the plot shown in Figure 4. The plot
depicts the luminance of the picture, which taken
across the blurred zone (marked with (a) in Figure
3). The luminance curve is very close to linearly
decreasing.

The second assumption that the motion is only in
the horizontal direction is verified with a second lu-
minance graph shown in region (b) of Figure 5. The
sharp decay of luminance at the border between
the two boxes proves that there is almost no mo-
tion in the vertical direction (otherwise the graph
must look like shown in Figure 4, where the decay
is linear and spread about a significant number of
pixels).

Measuring the blur area in Figure 4 allows us to di-
rectly infere the length of the PSF (the length has
been visualized in Figure 3). With the two assump-
tions verified above and the length given, the PSF
can now be determined according to Eq. 2 as

1

hreal:_[l 11

1 c R1X50 6

3 Description of Algorithms

3.1 Direct Approach (lin)

Starting from Eq. 1 we transform the equation into
the frequency domain, which yields

F(b) = F(h) - F(f) + F(n) (7)

As the additive noise is unknown, we assume it to be
zero (F(n) = 0). Rewriting Eq. 7 and performing
the re-transformation into the spatial domain, we
arrive at the restoration filter

This gives us a direct filter requiring only out-of-
the-box mathematical methods. As zero noise has
been assumed it is expected that problems will oc-
cur with noisy images.

3.2 Wiener-Filter (wnr)

The Wiener Filter seeks to minimize the following
error function:

e2=E[(f—f)2] (9)

where E denotes the expected value operator, f is
the undegraded image and 7 its estimate. The so-
lution to the thereof arising optimization task can
be written as follows in the frequency domain (ac-
cording to [8]):

- 1

b [H (u,v)

H(u,v) |H(u,v,)]* + Sy(u,v)/S,(u,v)
(10)
with H(u,v)being the PSF in the frequency do-
main, Sy(u,v) the power spectrum of the noise and

B

S, (u,v) the power spectrum of the undegraded im-
age F. The ratio NSR = S, (u,v)/S,(u,v) is nor-
mally referred to as the Noise to Signal Ratio. If no
noise is present (Sy(u,v) = 0) Eq. (10) reduces to

Flu,v) = giz Z; (11)

Therefore we see the Wiener Filter is a generaliza-
tion of the direct filter.

If the ratio NSR is unknown, it can be approxi-
mated with the ratio r of average noise power and
average image power (parametric Wiener filter):

NSR = r = laverage (12)

laverage

Even better results can be achieved using the auto-
correlation function of the noise and the unde-
graded image [8]. A derivation of the formulas men-
tioned can be found in |7].

3.3 Regularized Filer (reg)

This algorithm [8] is based on finding a direct filter
solution using a criterion C, which ensures optimal
smoothness of the image restored. Therefore the
filter construction task is to find the minimum of

M N
C=> > [V2f(u,0)? (13)
u=1v=1

under the constraint of the rewritten Eq. 1
~[12 9
[o—nxf|| =In (14)

In the frequency domain the solution to this prob-
lem can be written as follows:

H*(u,v)

H) = P+ P)

5] - B(u,v) (15)

where « is the parameter which has to be adjusted
to fulfill the constraint C' and P(u,v) is the Lapla-
cian operator in the frequency domain.

3.4 Richardson-Lucy Deconvolution
(lucy)

This algorithm was invented independently by
Richardson |20] and Lucy [13]. Its usage (espe-
cially concerning MATLAB) is further outlined in

[8]. The Richardson-Lucy (RL) algorithm is an iter-
ative restoration algorithm that maximizes a Pois-
son statistics image model likelihood function. As
summed up in [11]| the RL algorithms consists out
of one initial and three iterative steps:

1. A first approximation of the restored image fo
must be made, typically the constant average
of all pixel values in the blurred image b.

2. The current approximation is convolved with
the PSF

Qon:h*fn (16)

3. A correction factor is computed based on the
ratio of the blurred image and the result of the

last step
— b
¢On=h x— (17)
$n
H -
where h denotes the PSF in reverse order and

q% a “pixel-by-pixel” division.
4. A new approximate is composed out of the cur-
rent one and the correction factor

.f'n,—i—l :fn'¢n (18)

where - denotes a “pixel-by-pixel” multiplica-
tion. The algorithm continues with step 2.

As with all iterative techniques the question arises
when to stop the computation, but this will be ad-
dressed later on.

3.5 Maximum Likelihood Estimation
(mem)

A complete description of this algorithm would be-
yond the scope of this paper, but good descriptions
can be found in [10, 9].

In brief, the algorithm has the ability to alter the
PSF used for deconvolution according to some con-
straints to an improved solution. The deconvolu-
tion itself is performed in a comparable fashion to
the Richardson-Lucy algorithm.

3.6 TU Berlin (tub)

Mery and Filbert proposed an algorithm in [15]
which seeks to minimize the equation

F-9 (19)

under the constraint of Eq. 1. f is a vector of
the first N pixels of a line of the restored image
and b respectively a vector of N pixels of a line
of the blurred image. Using only N pixels instead
of the whole vector allows the algorithm to be fast
compared to other techniques.

The optimization problem is solved using Lagrange
multipliers, resulting in a direct restoration algo-
rithm. It should be noted that the algorithm in its
current form can handle only uniform motion blur.

3.7 Sondhi (sondht)

Sondhi |21, 7] addressed the problem of motion de-
blurring very early. He assumes the blur process
to integrate over certain amount a of pixels during
the capture process. A blurred image line (length
L) can therefore be written as

- / " p(nyr (20)
=0

Calculating the derivate on this equation, defining
¢(z) = f(z—a), K = | £| and rewriting it we arrive
at

W (z — ka) + d(z — EJ a) (21)
k=0

Taking some assumptions about ¢ into account and

k3

defining b(b Zb’ x—ka) the restored image line
0
is given by
K) K-
f(x) = bz Z x4 ka) + (22)
0

where b is the average value of a pixel line.

It should be mentioned that the version mentioned
here does only apply to linear, uniform motion blur.

3.8 Advanced Landweber (alm)

This algorithm [12] is mentioned here for complete-
ness, but it has been excluded from the comparison
as our implementation was ten times slower than
the rest of the field. Furthermore, it was originally
proposed for removal of blur induced due to defo-
cusing.

4 Comparison

4.1 Data Material

Figure 6: Test images reference
(left: checkerboard, right: natural)

Two different motifs have been selected for the al-
gorithms to work on (Figure 6). The checkerboard
structure (Figure 7) as the first test pattern repre-
sents a more synthetic motif, but the motion blur is
clearly visible. Due to the regular and well known
pattern the results of the algorithms can easily be
analyzed. Furthermore, the sharp boarders of the
squares allow estimation of the parameters of the
PSF (see section 2.3).

Figure 7: Test images Checkerboard
(left: real, right: synthetic)

The second motif (Figure 8), although still hav-
ing the checkerboard structure as a background for
reference and PSF estimation purposes, comprises
items which are not only 2D (i.e. flat) but 3D (e.g.
bottle) or have characters on them, which are nor-
mally hard to restore.

Figure 8: Test Image Natural Scene (real blur)

4.2 Computation Speed

One criteria for the evaluation of the de-blurring
algorithms is the computation speed required to re-
store an image. Computation power may be lim-
ited in some environments, for example in mobile
applications, or the sheer execution time is far be-
yond the expectation of users. For example the
Richard-Lucy algorithm needs more than one hour
for restoring a consumer class digital camera image
on a modern computer hardware.

The time required to perform the deconvolution de-
pends on a number of parameters. The most ob-
vious one is the size of the input image. Figure 9
shows the computation time as a function of the im-
age size. The time scale has been normalized to the
result of the fastest algorithm wnr at the smallest
pixel value computed (2500 pixel). It is clearly vis-
ible that the computation time of most algorithms
rises linearly with increasing image size. A big dif-
ference shows up in the total computation time re-
quired. The time required by iterative algorithms is
much greater, but can be influenced by the number
of iterations (discussed further below), whereas the
direct algorithms perform much faster. The differ-
ence among them is possible due to the implemen-
tation. As for the wnr and reg existing, optimized
MATLAB implementation have been used whereas
tub, lin and sondhi were implemented with out spe-
cial optimization. Interestingly the fub algorithm
does perform sligthly above linear.

The second factor determining the algorithms per-
formance in terms of computation speed is the
length respectively size of the PSF. This depen-
dency is outlined in Figure 10. As before the com-
putation is normalized to the calculation performed
with wnr. It can be seen that most algorithms are
invariant towards different sizes of the PSF with
the exception of sondhi which seems to deliver low

Complexity Analysis
150 T T T T T T T T T

=1
[
T

Computation Time

m
[

i 1 2 3 4 5 6 7 8 9 10
Processed Pixels w10t

Figure 9: Computation Speed vs. Image Size

Complexity Analysis

T
—&— wnr

—E—reg
—*— tuh
107 ooy |

=+ mem

g sondhi

i= 1 —6—lin

— .

5

= 10 - E

5

o

g B = = =)

S 9 = 5 ?—W

5 10 15 20 25 30 35 40
PSF length

Figure 10: Computation Speed vs. PSF length

performance with small sizes of PSFs.

With iterative algorithms the number of iterations
has a strong influence on the computation time and
the restoration performance. It can safely be as-
sumed that the computation time depends linearly
on the number of iterations. Therefore the depen-
dency of the PSNR is shown (Figure 11) at selected
iteration numbers. It can clearly be seen that with
the lucy algorithm an increase of iterations leads to
an improved PSNR for the restoration result. But
at a certain point the incremental improvement is
negligible compared to the computation time re-
quired (in this case this is at about 20 to 30 iter-
ations). For the mem algorithm, the PSNR does
not improve any more beyond a certain number of
iterations. This is possibly due to the algorithm
reaching its optimum for the newly estimated PSF

N +,,+--+‘-+--+--+--+--+w+---+--+.._-
gt

L

—lucy | 4

ot mem

15 I I ! I I I ! I I
0 10 20 30 40 a0 60 70 a0 90 100

[terations

Figure 11: Number of iterations affecting PSNR

(the mem algorithm does try to estimate the PSF
even more precisely). Computing more iterations
than necessary can even have a negative effect (lucy
beyond 50 pixels).

4.3 Restoration Quality

In order to evaluate the quality (similarity to the
unavailable, perfectly captured image) of the re-
stored image two different techniques have been ap-
plied. For pictures, where no reference image was
available (real blurred images) a “no-reference per-
ceptual blur metric” as proposed in |14] has been
tested. Unfortunately it failed, as the lines intro-
duced due to the ringing confused the algorithm.
Therefore the results of this metric have been omit-
ted. Furthermore the PSNR, defined as

1
20'10910 (23)

M N .
DD (fli.g) — fi,5))?
i=1 j=1

between the synthetically restored image f and the
reference image f is computed.

4.3.1 Synthetic Blur

In the first test case the algorithms were to restore
synthetically blurred image. As the border areas
are problematic for all algorithms (as discussed in

section 2.2), the image was assumed to be periodic
when adding the synthetic motion blur (“circular”).

The restored images can be seen in Figure 13, where
all algorithms achieve nearly perfect restoration re-
sults and the images contain only minor ringing in
some cases.

| Algorithm | PSNR [dB] |

wnr 30.6
reg 30.6
tub 31.7
lucy 424
mem 39.0
sondhi 22.2
lin 35.4
Table 1:

Metric results for synthetic blur
(circular wrap around)

In the second run de-blurring of synthetically
blurred images has been tested with pixel repeti-
tion at the border (Figure 12). It can be seen that
obviously wrong pixels in the border region lead to
massive ringing in the restored picture. Ounly the
tub and the sondhi algorithm seem to be able to
handle this issue adequately and present quite ac-
ceptable results.

| Algorithm | PSNR [dB] |

wnr 13.1
reg 13.1
tub 34.2
lucy 22.3
mem 13.5
sondhi 21.8
lin 8.8
Table 2:

Metric results for synthetic blur
(repetitive wrap around)

MATLAB offers a function edgetaper which is rec-
ommended to be applied to images which show a lot
of ringing [8]. The edgetaper function blurs the ends
of the image with the PSF later used for deconvolu-
tion. To evaluate this function, it has been applied
to the images with repetitive pixel wrap around at
the border region as these images proved to be chal-
lenging for the algorithms. Figure 14 presents the

result of this case, where it can be seen that edgeta-
per does help to decrease ringing, but is unable to
suppress it completely or assure equivalent results
to the circular blur situation.

| Algorithm | PSNR [dB] |

wnr 24.6
reg 24.6
tub 34.9
lucy 33.6
mem 19.3
sondhi 22.1
lin 14.6
Table 3:

Metric results for synthetic blur with prior
edgetaper (repetitive wrap around)

All the test cases presented before did not comprise
noise. Therefore, they are just theoretical cases to
study some effects of motion de-blurring. In order
to get a better understanding of the schemes un-
der real-world conditions, zero-mean Gaussian noise
with variance 0.01 is added to the test image before
restoration. The restored images for this case can
be seen in Figure 15.

The wnr result still looks blurry, whereas the reg
restoration was able to restore the squares, but still
comprises noise and ringing. The tub algorithm de-
livers the sharpest image without any ringing, but
some noise visible. Both, lucy and mem restore the
image without any noise visible, but the edges are
still a little bit blurred. The noise in the restoration
results computed by tub and sondhi show a very
similar behavior, but the later one induces some
ringing and some blur at the edges of the boxes.
The lin filter is not able to remove the noise in the
image and introduces a lot of ringing.

| Algorithm | PSNR [dB] |

wnr 19.8
reg 21.0
tub 21.9
lucy 23.5
mem 23.3
sondhi 19.3
lin 13.4
Table 4:

Metric results for synthetic blur with Gaussian
noise (repetitive wrap around, prior edgetaper)

For the lucy and mem algorithms a modified imple-
mentation has been used, which allows to specify a
weight for certain pixels corresponding to the re-
liability of the associated values. On account of
this, the border pixels have received a much lower
weight, therefore suppressing the ringing induced
by incorrect/missing pixel information in the bor-
der area. Pixels on all four borders have reduced
weight, which explains the black borders.

"

wnr reg wnr reg

Figure 12: Figure 13:
Restored synthetic blur images Restored synthetic blur images
(repetitive wrap around) (circular wrap around)

10

Figure 14: Figure 15:
Restored synthetic blur images with prior Restored synthetic blur images with Gaussian
edgetaper (repetitive wrap around) noise (repetitive wrap around, prior edgetaper)

11

4.3.2 Real Blur

Figure 16 shows the restored images of the checker-
board motif, which has been captured by a real
camera. The most simple algorithm lin fails com-
pletely, because the noise is amplified. The wnr and
reg algorithm show both comparable results, which
comprise a lot of low frequency ringing, but restore
the contours more or less satisfactory. The problem
with both algorithms is that the noise power can
only be guessed (or determined by trial and error as
it was here the case). The tub algorithm produces a
lot of noise in the restored image, but the contours
of the squares are the sharpest among the competi-
tors. Furthermore, high frequency ringing is clearly
visible in the restored image. A similar result, but
with much less noise is produced by the sondhi algo-
rithm. The lucy and mem algorithm produce more
or less equivalent results, which are very close to
the original checkerboard motif. Again, the pixels
at the borders have received lower weight to inhibit
ringing.

In a scene which comprises more than just a
checkerboard structure the algorithms seem to have
huge problems concerning ringing (Figure 17). The
first challenge in restoration is noise, which is mas-
tered properly only by lucy and mem. The algo-
rithms wnr and reg still show acceptable results.
The restored images of the tub, sondhi and lin al-
gorithms are very noisy such that it is difficult to
recognize anything. The remaining candidates have
all difficulties with ringing, but only lucy and mem
deliver acceptable results as their ringing artifacts
are more smooth and therefore more pleasant for
the human eye. The restored image of the mem al-
gorithm is slightly better than the result produced
by lucy, due to the ability of the mem algorithm
to adapt itself to the estimated PSF, therefore cor-
recting inaccuracy in the PSF estimation.

5 Conclusion

We have seen that the de-blurring algorithms dis-
cussed perform different on synthetic and real mo-
tion blur. Two groups of algorithms performed best
under both circumstances.

The first group, comprising the lucy and mem al-
gorithm produce equivalent results for most cases.

12

wnr reg

sondhi -

lin

Figure 16:
Restored real blur (checkerboard structure)

wnr reg

tub

mem sondhi

Figure 17:
Restored real blur images (natural scene)

13

The lucy algorithm is preferable as it requires less
computation time. In cases where the PSF could
only be estimated roughly, the mem algorithm is su-
perior as it can adapt itself to the PSF and therefore
correct inaccuracies in the estimated PSF. As both
algorithms produce images quite pleasant to the hu-
man eye, they should be employed when restoring
photographs (e.g. from a digital camera). The key
for good results on real images with this two algo-
rithms is the ability to weight the pixels and there-
fore mask pixels at the borders to suppress ringing.
Still, their problems remain the tremendous need of
computation time and the question of the optimum
number of iterations.

The second group, comprising the tub and sondhi
algorithms, deliver sharp restored images, but they
also introduce a lot of noise. Therefore, they can be
used in applications where sharpness is crucial, e.g.
pattern or text recognition. An important advan-
tage over the first group is, that they are remarkably
faster and do not need an estimate for the number
of iterations (as they are direct algorithms). Fur-
thermore their implementation is quite straight for-
ward.

One can consider to implement the possibility to use
the weighting of pixels (as seen in the lucy and mem
implementation) for the second group of algorithms,
as this improved the results of the first group a lot.

The wnr, reg and lin algorithms do not produce
acceptable results under real world conditions.

References

[1] M. Ben-Ezra and SK Nayar. Motion deblur-
ring using hybrid imaging. Computer Vision
and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on,
1, 2003.

[2] M. Ben-Ezra and S.K. Nayar. Motion-Based
Motion Deblurring. IEEE Transactions on

Pattern Analysis and Machine Intelligence,
26(6):689-699, 2004.

[3] D. Capel and A. Zisserman. Super-resolution
enhancement of text image sequences. Proceed-
wngs International Conference Pattern Recog-
nition, pages 600-605, 2000.

4]

[5]
[6]

[10]

[11]

[12]

[13]

[14]

[15]

Nikon Corporation. Shake Reduction Technol-
ogy.

DynaPel. DYNAPEL STEADYHAND 2.2.

R. Fergus, B. Singh, A. Hertzmann, S.T.
Roweis, and W.T. Freeman. Removing cam-
era shake from a single photograph. ACM
Transactions on Graphics (TOG), 25(3):787—
794, 2006.

R.C. Gonzalez and R.E. Woods. Digital image
processing. Addison-Wesley Reading, Mass,
1987.

R.C. Gonzalez, R.E. Woods, and S.L. Ed-
dins. Digital image processing using MATLAB.
Pearson Prentice Hall Upper Saddle River, NJ,
2004.

RJ Hanisch, RL White, and RL Gilliland. De-
convolution of Images and Spectra. Academic
Press, CA, 1997.

T.J. Holmes, S. Bhattacharyya, JA Cooper,
D. Hanzel, V. Krishnamurthi, W. Lin,
B. Roysam, DH Szarowski, and JN Turner.
Light microscopic images reconstructed by
maximum likelihood deconvolution. Handbook
of Biological Confocal Microscopy, pages 389—
402, 1995.

X. Jiang, D.C. Cheng, S. Wachenfeld, and
K. Rothaus. Motion Deblurring.

L. Liang and Y. Xu. Adaptive Landweber
Method to Deblur Images. [EEE SIGNAL
PROCESSING LETTERS, 10(5):129, 2003.

LB Lucy. An iterative technique for the recti-
fication of observed distributions. The Astro-
nomical Journal, 79(6):745-754, 1974.

P. Marziliano, F. Dufaux, S. Winkler,
T. Ebrahimi, SA Genimedia, and S. Lausanne.
A no-reference perceptual blur metric. Image
Processing. 2002. Proceedings. 2002 Interna-
tional Conference on, 3, 2002.

D. Mery and D. Filbert. A Fast Non-iterative
Algorithm for the Removal of Blur Caused by
Uniform Linear Motion in X-ray Images. 15th
World Conference on Non-Destructive Testing,
8:15-21, 2000.

14

[16]

[17]
[18]

[19]

[20]

[21]

22]

23]

J. Mo and RJ Hanisch. Restoration of HST
WEFPC2 Images in Gyro-Hold Mode. Astro-

nomical Data Analysis Software and Systems
IV, 77, 1995.

Pentax. Shake Reduction Technology.

R. Raskar, A. Agrawal, and J. Tumblin. Coded
exposure photography: motion deblurring us-

ing fluttered shutter. ACM Transactions on
Graphics (TOG), 25(3):795-804, 2006.

A. Rav-Acha and S. Peleg. Restoration of mul-
tiple images with motion blur in differentdirec-

tions. Applications of Computer Vision, 2000,
Fifth IEEE Workshop on., pages 22-28, 2000.

W.H. Richardson et al. Bayesian-based itera-
tive method of image restoration. J. Opt. Soc.
Am, 62(1):55-9, 1972.

MM Sondhi. Image restoration: The removal
of spatially invariant degradations. Proceedings
of the IEEE, 60(7):842-853, 1972.

C. Williams. It’s Degrading; Its Not Delovely.
Security, 42(5):50-52, 2005.

J.V. Woods. BOUNDARY VALUE PROB-
LEM IN IMAGE RESTORATION.

