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COMPARISON OF MOTION DEBLUR ALGORITHMSAND REAL WORLD DEPLOYMENTSebastian S
huon <s
huon�mytum.de>, Klaus Diepold <kldi�tum.de>Institute for Data Pro
essing, Te
hnis
he Universität Mün
henMuni
h, GermanyAbstra
tIf a 
amera moves fast while taking a pi
ture, motion blur is indu
ed. There exist te
hniques to preventthis e�e
t to o

ur, su
h as moving the lens system or the CCD 
hip ele
tro- me
hani
ally. Another approa
his to remove the motion blur after the images have been taken, using signal pro
essing algorithms as post-pro
essing te
hniques. For more than 30 years, numerous resear
hers have developed theories and algorithmsfor this purpose, whi
h work quite well when applied to arti�
ially blurred images. If one attempts to usethose te
hniques to real world s
enarios, they mostly fail miserably. In order to study why the knownalgorithms have problems to de-blur naturally blurred images we have built an experimental setup, whi
hprodu
es real blurred images with de�ned parameters in a 
ontrolled environment. For this arti
le we havestudied the most important algorithms used for de-blurring, we have analyzed their properties when appliedto arti�
ially blurred images and to real images. We propose solutions to make the algorithms �t for purpose.1 PurposeOften se
urity 
ameras are mounted on posts tooverview a parking lot or similar venues. If thewind blows those posts may start to shake and theatta
hed 
ameras often produ
e blurry images. Dueto this motion blur details in the 
aptured images,su
h as fa
es or li
ense plates are unre
ognizableor unintelligible. A similar problem is addressed in[22℄, where prere
orded images of a tru
k, movingat a speed of 60 mph, are de-blurred in order tore
ognize the tru
k's side printing.In [16℄ another version of the same problem is de-s
ribed, but in a total di�erent setting. The Hub-ble Spa
e Teles
ope (HST) has two di�erent 
ap-ture modes: �ne lo
k and gyro-hold. At times ob-servations are done in gyro-hold mode, whi
h doesnot o�er any position 
ontrol to keep the HST at a�xed lo
ation during 
apture. This mode is proneto motion during the 
apturing pro
ess, su
h thatsigni�
ant motion blur �nds its way into the �nal

image. To get images, whi
h are as sharp as possi-ble, advan
ed motion de-blur algorithms have beenapplied to the images, a
hieving good results.Apart from these examples motion blur is a phe-nomena 
ommon to all photographers. There areeither moving obje
ts in the s
ene or the 
amerais moving during the 
apture progress, both situa-tions leading to blurred images. In order to addressthis issue various te
hniques in hardware [4, 17℄ andsoftware [1, 2, 6, 5, 18℄ have already been developed.All of them have te
hni
al 
onstrains of some kindsu
h as requiring additional hardware or produ
ingsub-optimal results.The 
orresponding image restoration pro
ess, re-ferred to as motion de-blur, 
an be broken up intwo parts: motion estimating and de
onvolution.The �rst part deals with the 
hallenge to identifythe path the 
amera has followed during the image
apture pro
ess. The se
ond part uses this infor-mation to reverse the 
onvolution during the image1



formation pro
ess in order to restore the originalpi
ture. Lately mu
h e�ort has been put into the�rst part and some remarkable results have beenpublished [1, 2, 3, 19, 18℄. All the previously pro-posed de-blurring methods rely on a small numberof algorithms to perform the se
ond part, the de-
onvolution. Therefore we perform a quantitative
omparison of the algorithms already in use andsome whi
h have been re
ently proposed in the lit-erature. We point out promising 
andidates andgive 
lues for further improvement. Notably de-blur algorithms are demonstrated using syntheti-
ally blurred images, whi
h provide quite di�erent
hara
teristi
s from motion blur en
ountered in thereal world. We have build an experimental setupallowing us to generate real motion blur with prede-�ned parameters allowing us to measure and 
om-pare the performan
e of algorithms under real world
onditions.2 Modelling Motion BlurWe use a linear, non-re
ursive (FIR) model to rep-resent the degradation of digital (sampled) images
aused by motion blur. We 
onsider the original,blur-free M × N -image f to be 
onvolved witha 
onvolution kernel h, referred to as the PointSpread Fun
tion (PSF). Additionally, some noiseis introdu
ed during the 
apturing pro
ess, whi
his modeled with the additive noise term n. Hen
e,the blurred M ×N image b, as it is 
aptured by themoving 
amera, is modeled as
b = h ⋆ f + n, (1)where the symbol ⋆ represents the 
onvolution op-erator.De-blurring images a

ounts to the appli
ation ofthe de-blurring operator D, whi
h produ
es a de-blurred image f̂ when applied to the blurred image

b, that is D(b) = f̂ .2.1 Syntheti
 Motion BlurFor test purposes we 
reate images whi
h are syn-theti
ally blurred a

ording to the blur model. Thisyields the advantage that we have a

ess to the ref-eren
e image f , whi
h is not known in real environ-ments, for 
omparison against the restored image,whi
h we will denote by r̂.

Motion blur is des
ribed by means of a Point SpreadFun
tion (PSF), whi
h provides information of theunderlying motion during the 
apture pro
ess. Inthe most simple 
ase, that is, for a uniform linearmotion along the x-axis with a speed of k pixelsduring the 
apturing period the PSF is given by aone-dimensional ve
tor of the length k + 1:
hlin =

1

k + 1

[

1 1 1 ... 1
]

. (2)However, in a real environment with shaking 
am-eras, neither the path of the moving 
amera nor thepoint spread fun
tion are known a priori and needto be estimated from the measured data.In [2℄, Ben-Ezra and Nayar have proposed a methodto determine the motion paths during the 
aptur-ing pro
ess. Their analysis shows that the modelfor the PSF has to be extended to represent mo-tion in a two-dimensional plane. The PSF is a ma-trix h of size U × V , where ea
h entry hi,j, i =
1, 2, . . . , U, j = 1, 2, . . . V represents the per
entagethe 
amera has been displa
ed by i− U

2
, j− V

2
fromthe 
enter during the 
apture.
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, (3)where the parameter K is a normalizing 
onstantto a
hieve that the sum over the entries of h equals
1.

K =

U
∑

i=1

V
∑

j=1

h(i, j) (4)An example for su
h a PSF, whi
h represents a tri-angular motion path is given in Eq. 5. Figure 1shows the graphi
al representation of this PSF andits impa
t on a 
he
kerboard stru
ture test pi
ture.
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Figure 1:Complex PSF (left) and resulting image (right)2.2 Border AreaWhen generating syntheti
 blur as des
ribed aboveproblems o

ur in the border region where no in-formation of pixel values beyond the border of theimage is available, whi
h is ne
essary to 
omputethe 
onvolution properly. Several approa
hes existsto solve this issue:
• 
ir
ular : the image is 
onsidered to be peri-odi
, values are therefore taken from the oppo-site border
• repetetive: the very last pixel next to theboarder is repeated
• mirroring : the image is mirrored at the bor-der, therefore providing values for the regionbeyond the boarder
• 
onstant : the values beyond the boarder are
onsidered to be 
onstants (often bla
k orwhite)Another approa
h is to perform 
lipping aroundthe boarder area, therefore redu
ing the size of theoutput image but 
omputing more realisti
 results.The boarder issue has been addressed further in[23℄.2.3 Real Motion BlurIn the literature a number of examples are shownwhere syntheti
ally motion-blurred images are de-blurred using various algorithms and where the re-sults look quite promising. However, when applyingdeblurring algorithms to real-world pi
tures, whi
h
ontain motion blur, it is revealed that those al-gorithms perform quite unsatisfa
tory. This maybe due to poorly estimated PSFs or due to failures

Figure 2: Experimental setup

Figure 3: Estimating the PSF with real motion blurin the underlying motion blur model itself. To in-vestigate this issue in more detail and to lo
ate theroot of the problem, an experimental setup has beenbuilt, whi
h allows us to 
apture blurred images ina 
ontrolled setting whi
h fa
ilitates to have a

essto well-de�ned and parameterized PSFs.The unit shown in Figure 2 
omprises a 
ameraunit, a guiding rail and a stepper motor. The 
am-era 
arriage is a

elerated to a 
onstant speed andtakes a photo with a medium exposure time (around100ms) to allow signi�
ant motion blur appear inthe pi
ture. As a motif a 
he
kerboard stru
turehas been 
hosen, sin
e this allows an easy methodfor estimating the asso
iated PSF.An image 
aptured with our experimental setup isshown in Figure 3. From the way we have set upthe 
apturing pro
ess we assume the motion path3



Figure 4: Veri�
ation of linearity

Figure 5: Veri�
ation of horizontal motionof the 
amera to be linear and uniform in the hor-izontal dire
tion. The �rst assumption is veri�edby looking at the plot shown in Figure 4. The plotdepi
ts the luminan
e of the pi
ture, whi
h takena
ross the blurred zone (marked with (a) in Figure3). The luminan
e 
urve is very 
lose to linearlyde
reasing.The se
ond assumption that the motion is only inthe horizontal dire
tion is veri�ed with a se
ond lu-minan
e graph shown in region (b) of Figure 5. Thesharp de
ay of luminan
e at the border betweenthe two boxes proves that there is almost no mo-tion in the verti
al dire
tion (otherwise the graphmust look like shown in Figure 4, where the de
ayis linear and spread about a signi�
ant number ofpixels).

Measuring the blur area in Figure 4 allows us to di-re
tly infere the length of the PSF (the length hasbeen visualized in Figure 3). With the two assump-tions veri�ed above and the length given, the PSF
an now be determined a

ording to Eq. 2 as
hreal =

1

50

[

1 1 1 ... 1
]

∈ R
1×50 (6)3 Des
ription of Algorithms3.1 Dire
t Approa
h (lin)Starting from Eq. 1 we transform the equation intothe frequen
y domain, whi
h yields

F(b) = F(h) · F(f ) + F(n) (7)As the additive noise is unknown, we assume it to bezero (F(n) = 0). Rewriting Eq. 7 and performingthe re-transformation into the spatial domain, wearrive at the restoration �lter
f̂ = F−1

(

F(b)

F(h)

) (8)This gives us a dire
t �lter requiring only out-of-the-box mathemati
al methods. As zero noise hasbeen assumed it is expe
ted that problems will o
-
ur with noisy images.3.2 Wiener-Filter (wnr)The Wiener Filter seeks to minimize the followingerror fun
tion:
e2 = E

[

(

f − f̂
)2

] (9)where E denotes the expe
ted value operator, f isthe undegraded image and r̂ its estimate. The so-lution to the thereof arising optimization task 
anbe written as follows in the frequen
y domain (a
-
ording to [8℄):
F̂ =

[

1

H(u, v)

|H(u, v)|2

|H(u, v, )|2 + Sη(u, v)/Sι(u, v)

]

· B(10)with H(u, v)being the PSF in the frequen
y do-main, Sη(u, v) the power spe
trum of the noise and4



Sι(u, v) the power spe
trum of the undegraded im-age F . The ratio NSR = Sη(u, v)/Sι(u, v) is nor-mally referred to as the Noise to Signal Ratio. If nonoise is present (Sη(u, v) = 0) Eq. (10) redu
es to
F̂ (u, v) =

B(u, v)

H(u, v)
(11)Therefore we see the Wiener Filter is a generaliza-tion of the dire
t �lter.If the ratio NSR is unknown, it 
an be approxi-mated with the ratio r of average noise power andaverage image power (parametri
 Wiener �lter):

NSR ≈ r =
ηaverage

ιaverage

(12)Even better results 
an be a
hieved using the auto-
orrelation fun
tion of the noise and the unde-graded image [8℄. A derivation of the formulas men-tioned 
an be found in [7℄.3.3 Regularized Filer (reg)This algorithm [8℄ is based on �nding a dire
t �ltersolution using a 
riterion C, whi
h ensures optimalsmoothness of the image restored. Therefore the�lter 
onstru
tion task is to �nd the minimum of
C =

M
∑

u=1

N
∑

v=1

[∇2f(u, v)]2 (13)under the 
onstraint of the rewritten Eq. 1
∥

∥

∥
b − h ⋆ f̂

∥

∥

∥

2

= ‖n‖2 (14)In the frequen
y domain the solution to this prob-lem 
an be written as follows:
F̂ (u, v) = [

H∗(u, v)

|H(u, v)|2 + γ |P (u, v)|2
] · B(u, v) (15)where γ is the parameter whi
h has to be adjustedto ful�ll the 
onstraint C and P (u, v) is the Lapla-
ian operator in the frequen
y domain.3.4 Ri
hardson-Lu
y De
onvolution(lu
y)This algorithm was invented independently byRi
hardson [20℄ and Lu
y [13℄. Its usage (espe-
ially 
on
erning MATLAB) is further outlined in

[8℄. The Ri
hardson-Lu
y (RL) algorithm is an iter-ative restoration algorithm that maximizes a Pois-son statisti
s image model likelihood fun
tion. Assummed up in [11℄ the RL algorithms 
onsists outof one initial and three iterative steps:1. A �rst approximation of the restored image f̂0must be made, typi
ally the 
onstant averageof all pixel values in the blurred image b.2. The 
urrent approximation is 
onvolved withthe PSF
ϕn = h ⋆ f̂n (16)3. A 
orre
tion fa
tor is 
omputed based on theratio of the blurred image and the result of thelast step

φn =
←−

h ⋆
b

ϕn

(17)where←−h denotes the PSF in reverse order and
b

ϕn
a �pixel-by-pixel� division.4. A new approximate is 
omposed out of the 
ur-rent one and the 
orre
tion fa
tor

f̂n+1 = f̂n · φn (18)where · denotes a �pixel-by-pixel� multipli
a-tion. The algorithm 
ontinues with step 2.As with all iterative te
hniques the question ariseswhen to stop the 
omputation, but this will be ad-dressed later on.3.5 Maximum Likelihood Estimation(mem)A 
omplete des
ription of this algorithm would be-yond the s
ope of this paper, but good des
riptions
an be found in [10, 9℄.In brief, the algorithm has the ability to alter thePSF used for de
onvolution a

ording to some 
on-straints to an improved solution. The de
onvolu-tion itself is performed in a 
omparable fashion tothe Ri
hardson-Lu
y algorithm.3.6 TU Berlin (tub)Mery and Filbert proposed an algorithm in [15℄whi
h seeks to minimize the equation
∥

∥

∥
f̃ − b̃

∥

∥

∥
(19)5



under the 
onstraint of Eq. 1. f̃ is a ve
tor ofthe �rst N pixels of a line of the restored imageand b̃ respe
tively a ve
tor of N pixels of a lineof the blurred image. Using only N pixels insteadof the whole ve
tor allows the algorithm to be fast
ompared to other te
hniques.The optimization problem is solved using Lagrangemultipliers, resulting in a dire
t restoration algo-rithm. It should be noted that the algorithm in its
urrent form 
an handle only uniform motion blur.3.7 Sondhi (sondhi)Sondhi [21, 7℄ addressed the problem of motion de-blurring very early. He assumes the blur pro
essto integrate over 
ertain amount a of pixels duringthe 
apture pro
ess. A blurred image line (length
L) 
an therefore be written as

b(x) =

∫ a

x=0

f(τ)dτ (20)Cal
ulating the derivate on this equation, de�ning
φ(x) = f(x−a), K =

⌊

L
a

⌋ and rewriting it we arriveat
f̂(x) =

⌊x

a
⌋

∑

k=0

b′(x − ka) + φ(x −
⌊x

a

⌋

a) (21)Taking some assumptions about φ into a

ount andde�ning b̃(x) =

⌊x

a
⌋

∑

0

b′(x−ka) the restored image lineis given by
f̂(x) = b̃(x) −

1

K

K−1
∑

0

b̃(x + ka) + b̄ (22)where b̄ is the average value of a pixel line.It should be mentioned that the version mentionedhere does only apply to linear, uniform motion blur.3.8 Advan
ed Landweber (alm)This algorithm [12℄ is mentioned here for 
omplete-ness, but it has been ex
luded from the 
omparisonas our implementation was ten times slower thanthe rest of the �eld. Furthermore, it was originallyproposed for removal of blur indu
ed due to defo-
using.

4 Comparison4.1 Data Material

Figure 6: Test images referen
e(left: 
he
kerboard, right: natural)Two di�erent motifs have been sele
ted for the al-gorithms to work on (Figure 6). The 
he
kerboardstru
ture (Figure 7) as the �rst test pattern repre-sents a more syntheti
 motif, but the motion blur is
learly visible. Due to the regular and well knownpattern the results of the algorithms 
an easily beanalyzed. Furthermore, the sharp boarders of thesquares allow estimation of the parameters of thePSF (see se
tion 2.3).

Figure 7: Test images Che
kerboard(left: real, right: syntheti
)The se
ond motif (Figure 8), although still hav-ing the 
he
kerboard stru
ture as a ba
kground forreferen
e and PSF estimation purposes, 
omprisesitems whi
h are not only 2D (i.e. �at) but 3D (e.g.bottle) or have 
hara
ters on them, whi
h are nor-mally hard to restore.6



Figure 8: Test Image Natural S
ene (real blur)4.2 Computation SpeedOne 
riteria for the evaluation of the de-blurringalgorithms is the 
omputation speed required to re-store an image. Computation power may be lim-ited in some environments, for example in mobileappli
ations, or the sheer exe
ution time is far be-yond the expe
tation of users. For example theRi
hard-Lu
y algorithm needs more than one hourfor restoring a 
onsumer 
lass digital 
amera imageon a modern 
omputer hardware.The time required to perform the de
onvolution de-pends on a number of parameters. The most ob-vious one is the size of the input image. Figure 9shows the 
omputation time as a fun
tion of the im-age size. The time s
ale has been normalized to theresult of the fastest algorithm wnr at the smallestpixel value 
omputed (2500 pixel). It is 
learly vis-ible that the 
omputation time of most algorithmsrises linearly with in
reasing image size. A big dif-feren
e shows up in the total 
omputation time re-quired. The time required by iterative algorithms ismu
h greater, but 
an be in�uen
ed by the numberof iterations (dis
ussed further below), whereas thedire
t algorithms perform mu
h faster. The di�er-en
e among them is possible due to the implemen-tation. As for the wnr and reg existing, optimizedMATLAB implementation have been used whereastub, lin and sondhi were implemented with out spe-
ial optimization. Interestingly the tub algorithmdoes perform sligthly above linear.The se
ond fa
tor determining the algorithms per-forman
e in terms of 
omputation speed is thelength respe
tively size of the PSF. This depen-den
y is outlined in Figure 10. As before the 
om-putation is normalized to the 
al
ulation performedwith wnr. It 
an be seen that most algorithms areinvariant towards di�erent sizes of the PSF withthe ex
eption of sondhi whi
h seems to deliver low

Figure 9: Computation Speed vs. Image Size

Figure 10: Computation Speed vs. PSF lengthperforman
e with small sizes of PSFs.With iterative algorithms the number of iterationshas a strong in�uen
e on the 
omputation time andthe restoration performan
e. It 
an safely be as-sumed that the 
omputation time depends linearlyon the number of iterations. Therefore the depen-den
y of the PSNR is shown (Figure 11) at sele
tediteration numbers. It 
an 
learly be seen that withthe lu
y algorithm an in
rease of iterations leads toan improved PSNR for the restoration result. Butat a 
ertain point the in
remental improvement isnegligible 
ompared to the 
omputation time re-quired (in this 
ase this is at about 20 to 30 iter-ations). For the mem algorithm, the PSNR doesnot improve any more beyond a 
ertain number ofiterations. This is possibly due to the algorithmrea
hing its optimum for the newly estimated PSF7



Figure 11: Number of iterations a�e
ting PSNR(the mem algorithm does try to estimate the PSFeven more pre
isely). Computing more iterationsthan ne
essary 
an even have a negative e�e
t (lu
ybeyond 50 pixels).4.3 Restoration QualityIn order to evaluate the quality (similarity to theunavailable, perfe
tly 
aptured image) of the re-stored image two di�erent te
hniques have been ap-plied. For pi
tures, where no referen
e image wasavailable (real blurred images) a �no-referen
e per-
eptual blur metri
� as proposed in [14℄ has beentested. Unfortunately it failed, as the lines intro-du
ed due to the ringing 
onfused the algorithm.Therefore the results of this metri
 have been omit-ted. Furthermore the PSNR, de�ned as
20·log10
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between the syntheti
ally restored image f̂ and thereferen
e image f is 
omputed.4.3.1 Syntheti
 BlurIn the �rst test 
ase the algorithms were to restoresyntheti
ally blurred image. As the border areasare problemati
 for all algorithms (as dis
ussed in

se
tion 2.2), the image was assumed to be periodi
when adding the syntheti
 motion blur (�
ir
ular�).The restored images 
an be seen in Figure 13, whereall algorithms a
hieve nearly perfe
t restoration re-sults and the images 
ontain only minor ringing insome 
ases. Algorithm PSNR [dB℄wnr 30.6reg 30.6tub 31.7lu
y 42.4mem 39.0sondhi 22.2lin 35.4Table 1:Metri
 results for syntheti
 blur(
ir
ular wrap around)In the se
ond run de-blurring of syntheti
allyblurred images has been tested with pixel repeti-tion at the border (Figure 12). It 
an be seen thatobviously wrong pixels in the border region lead tomassive ringing in the restored pi
ture. Only thetub and the sondhi algorithm seem to be able tohandle this issue adequately and present quite a
-
eptable results.Algorithm PSNR [dB℄wnr 13.1reg 13.1tub 34.2lu
y 22.3mem 13.5sondhi 21.8lin 8.8Table 2:Metri
 results for syntheti
 blur(repetitive wrap around)MATLAB o�ers a fun
tion edgetaper whi
h is re
-ommended to be applied to images whi
h show a lotof ringing [8℄. The edgetaper fun
tion blurs the endsof the image with the PSF later used for de
onvolu-tion. To evaluate this fun
tion, it has been appliedto the images with repetitive pixel wrap around atthe border region as these images proved to be 
hal-lenging for the algorithms. Figure 14 presents the8



result of this 
ase, where it 
an be seen that edgeta-per does help to de
rease ringing, but is unable tosuppress it 
ompletely or assure equivalent resultsto the 
ir
ular blur situation.
Algorithm PSNR [dB℄wnr 24.6reg 24.6tub 34.9lu
y 33.6mem 19.3sondhi 22.1lin 14.6Table 3:Metri
 results for syntheti
 blur with prioredgetaper (repetitive wrap around)

All the test 
ases presented before did not 
omprisenoise. Therefore, they are just theoreti
al 
ases tostudy some e�e
ts of motion de-blurring. In orderto get a better understanding of the s
hemes un-der real-world 
onditions, zero-mean Gaussian noisewith varian
e 0.01 is added to the test image beforerestoration. The restored images for this 
ase 
anbe seen in Figure 15.The wnr result still looks blurry, whereas the regrestoration was able to restore the squares, but still
omprises noise and ringing. The tub algorithm de-livers the sharpest image without any ringing, butsome noise visible. Both, lu
y and mem restore theimage without any noise visible, but the edges arestill a little bit blurred. The noise in the restorationresults 
omputed by tub and sondhi show a verysimilar behavior, but the later one indu
es someringing and some blur at the edges of the boxes.The lin �lter is not able to remove the noise in theimage and introdu
es a lot of ringing.

Algorithm PSNR [dB℄wnr 19.8reg 21.0tub 21.9lu
y 23.5mem 23.3sondhi 19.3lin 13.4Table 4:Metri
 results for syntheti
 blur with Gaussiannoise (repetitive wrap around, prior edgetaper)For the lu
y and mem algorithms a modi�ed imple-mentation has been used, whi
h allows to spe
ify aweight for 
ertain pixels 
orresponding to the re-liability of the asso
iated values. On a

ount ofthis, the border pixels have re
eived a mu
h lowerweight, therefore suppressing the ringing indu
edby in
orre
t/missing pixel information in the bor-der area. Pixels on all four borders have redu
edweight, whi
h explains the bla
k borders.

9



Figure 12:Restored syntheti
 blur images(repetitive wrap around) Figure 13:Restored syntheti
 blur images(
ir
ular wrap around)
10



Figure 14:Restored syntheti
 blur images with prioredgetaper (repetitive wrap around) Figure 15:Restored syntheti
 blur images with Gaussiannoise (repetitive wrap around, prior edgetaper)
11



4.3.2 Real BlurFigure 16 shows the restored images of the 
he
ker-board motif, whi
h has been 
aptured by a real
amera. The most simple algorithm lin fails 
om-pletely, be
ause the noise is ampli�ed. The wnr andreg algorithm show both 
omparable results, whi
h
omprise a lot of low frequen
y ringing, but restorethe 
ontours more or less satisfa
tory. The problemwith both algorithms is that the noise power 
anonly be guessed (or determined by trial and error asit was here the 
ase). The tub algorithm produ
es alot of noise in the restored image, but the 
ontoursof the squares are the sharpest among the 
ompeti-tors. Furthermore, high frequen
y ringing is 
learlyvisible in the restored image. A similar result, butwith mu
h less noise is produ
ed by the sondhi algo-rithm. The lu
y and mem algorithm produ
e moreor less equivalent results, whi
h are very 
lose tothe original 
he
kerboard motif. Again, the pixelsat the borders have re
eived lower weight to inhibitringing.In a s
ene whi
h 
omprises more than just a
he
kerboard stru
ture the algorithms seem to havehuge problems 
on
erning ringing (Figure 17). The�rst 
hallenge in restoration is noise, whi
h is mas-tered properly only by lu
y and mem. The algo-rithms wnr and reg still show a

eptable results.The restored images of the tub, sondhi and lin al-gorithms are very noisy su
h that it is di�
ult tore
ognize anything. The remaining 
andidates haveall di�
ulties with ringing, but only lu
y and memdeliver a

eptable results as their ringing artifa
tsare more smooth and therefore more pleasant forthe human eye. The restored image of the mem al-gorithm is slightly better than the result produ
edby lu
y, due to the ability of the mem algorithmto adapt itself to the estimated PSF, therefore 
or-re
ting ina

ura
y in the PSF estimation.5 Con
lusionWe have seen that the de-blurring algorithms dis-
ussed perform di�erent on syntheti
 and real mo-tion blur. Two groups of algorithms performed bestunder both 
ir
umstan
es.The �rst group, 
omprising the lu
y and mem al-gorithm produ
e equivalent results for most 
ases.
Figure 16:Restored real blur (
he
kerboard stru
ture)
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Figure 17:Restored real blur images (natural s
ene)

The lu
y algorithm is preferable as it requires less
omputation time. In 
ases where the PSF 
ouldonly be estimated roughly, themem algorithm is su-perior as it 
an adapt itself to the PSF and therefore
orre
t ina

ura
ies in the estimated PSF. As bothalgorithms produ
e images quite pleasant to the hu-man eye, they should be employed when restoringphotographs (e.g. from a digital 
amera). The keyfor good results on real images with this two algo-rithms is the ability to weight the pixels and there-fore mask pixels at the borders to suppress ringing.Still, their problems remain the tremendous need of
omputation time and the question of the optimumnumber of iterations.The se
ond group, 
omprising the tub and sondhialgorithms, deliver sharp restored images, but theyalso introdu
e a lot of noise. Therefore, they 
an beused in appli
ations where sharpness is 
ru
ial, e.g.pattern or text re
ognition. An important advan-tage over the �rst group is, that they are remarkablyfaster and do not need an estimate for the numberof iterations (as they are dire
t algorithms). Fur-thermore their implementation is quite straight for-ward.One 
an 
onsider to implement the possibility to usethe weighting of pixels (as seen in the lu
y and memimplementation) for the se
ond group of algorithms,as this improved the results of the �rst group a lot.The wnr, reg and lin algorithms do not produ
ea

eptable results under real world 
onditions.Referen
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