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COMPARISON OF MOTION DEBLUR ALGORITHMSAND REAL WORLD DEPLOYMENTSebastian Shuon <shuon�mytum.de>, Klaus Diepold <kldi�tum.de>Institute for Data Proessing, Tehnishe Universität MünhenMunih, GermanyAbstratIf a amera moves fast while taking a piture, motion blur is indued. There exist tehniques to preventthis e�et to our, suh as moving the lens system or the CCD hip eletro- mehanially. Another approahis to remove the motion blur after the images have been taken, using signal proessing algorithms as post-proessing tehniques. For more than 30 years, numerous researhers have developed theories and algorithmsfor this purpose, whih work quite well when applied to arti�ially blurred images. If one attempts to usethose tehniques to real world senarios, they mostly fail miserably. In order to study why the knownalgorithms have problems to de-blur naturally blurred images we have built an experimental setup, whihprodues real blurred images with de�ned parameters in a ontrolled environment. For this artile we havestudied the most important algorithms used for de-blurring, we have analyzed their properties when appliedto arti�ially blurred images and to real images. We propose solutions to make the algorithms �t for purpose.1 PurposeOften seurity ameras are mounted on posts tooverview a parking lot or similar venues. If thewind blows those posts may start to shake and theattahed ameras often produe blurry images. Dueto this motion blur details in the aptured images,suh as faes or liense plates are unreognizableor unintelligible. A similar problem is addressed in[22℄, where prereorded images of a truk, movingat a speed of 60 mph, are de-blurred in order toreognize the truk's side printing.In [16℄ another version of the same problem is de-sribed, but in a total di�erent setting. The Hub-ble Spae Telesope (HST) has two di�erent ap-ture modes: �ne lok and gyro-hold. At times ob-servations are done in gyro-hold mode, whih doesnot o�er any position ontrol to keep the HST at a�xed loation during apture. This mode is proneto motion during the apturing proess, suh thatsigni�ant motion blur �nds its way into the �nal

image. To get images, whih are as sharp as possi-ble, advaned motion de-blur algorithms have beenapplied to the images, ahieving good results.Apart from these examples motion blur is a phe-nomena ommon to all photographers. There areeither moving objets in the sene or the amerais moving during the apture progress, both situa-tions leading to blurred images. In order to addressthis issue various tehniques in hardware [4, 17℄ andsoftware [1, 2, 6, 5, 18℄ have already been developed.All of them have tehnial onstrains of some kindsuh as requiring additional hardware or produingsub-optimal results.The orresponding image restoration proess, re-ferred to as motion de-blur, an be broken up intwo parts: motion estimating and deonvolution.The �rst part deals with the hallenge to identifythe path the amera has followed during the imageapture proess. The seond part uses this infor-mation to reverse the onvolution during the image1



formation proess in order to restore the originalpiture. Lately muh e�ort has been put into the�rst part and some remarkable results have beenpublished [1, 2, 3, 19, 18℄. All the previously pro-posed de-blurring methods rely on a small numberof algorithms to perform the seond part, the de-onvolution. Therefore we perform a quantitativeomparison of the algorithms already in use andsome whih have been reently proposed in the lit-erature. We point out promising andidates andgive lues for further improvement. Notably de-blur algorithms are demonstrated using syntheti-ally blurred images, whih provide quite di�erentharateristis from motion blur enountered in thereal world. We have build an experimental setupallowing us to generate real motion blur with prede-�ned parameters allowing us to measure and om-pare the performane of algorithms under real worldonditions.2 Modelling Motion BlurWe use a linear, non-reursive (FIR) model to rep-resent the degradation of digital (sampled) imagesaused by motion blur. We onsider the original,blur-free M × N -image f to be onvolved witha onvolution kernel h, referred to as the PointSpread Funtion (PSF). Additionally, some noiseis introdued during the apturing proess, whihis modeled with the additive noise term n. Hene,the blurred M ×N image b, as it is aptured by themoving amera, is modeled as
b = h ⋆ f + n, (1)where the symbol ⋆ represents the onvolution op-erator.De-blurring images aounts to the appliation ofthe de-blurring operator D, whih produes a de-blurred image f̂ when applied to the blurred image

b, that is D(b) = f̂ .2.1 Syntheti Motion BlurFor test purposes we reate images whih are syn-thetially blurred aording to the blur model. Thisyields the advantage that we have aess to the ref-erene image f , whih is not known in real environ-ments, for omparison against the restored image,whih we will denote by r̂.

Motion blur is desribed by means of a Point SpreadFuntion (PSF), whih provides information of theunderlying motion during the apture proess. Inthe most simple ase, that is, for a uniform linearmotion along the x-axis with a speed of k pixelsduring the apturing period the PSF is given by aone-dimensional vetor of the length k + 1:
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. (2)However, in a real environment with shaking am-eras, neither the path of the moving amera nor thepoint spread funtion are known a priori and needto be estimated from the measured data.In [2℄, Ben-Ezra and Nayar have proposed a methodto determine the motion paths during the aptur-ing proess. Their analysis shows that the modelfor the PSF has to be extended to represent mo-tion in a two-dimensional plane. The PSF is a ma-trix h of size U × V , where eah entry hi,j, i =
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, (3)where the parameter K is a normalizing onstantto ahieve that the sum over the entries of h equals
1.
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h(i, j) (4)An example for suh a PSF, whih represents a tri-angular motion path is given in Eq. 5. Figure 1shows the graphial representation of this PSF andits impat on a hekerboard struture test piture.
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Figure 1:Complex PSF (left) and resulting image (right)2.2 Border AreaWhen generating syntheti blur as desribed aboveproblems our in the border region where no in-formation of pixel values beyond the border of theimage is available, whih is neessary to omputethe onvolution properly. Several approahes existsto solve this issue:
• irular : the image is onsidered to be peri-odi, values are therefore taken from the oppo-site border
• repetetive: the very last pixel next to theboarder is repeated
• mirroring : the image is mirrored at the bor-der, therefore providing values for the regionbeyond the boarder
• onstant : the values beyond the boarder areonsidered to be onstants (often blak orwhite)Another approah is to perform lipping aroundthe boarder area, therefore reduing the size of theoutput image but omputing more realisti results.The boarder issue has been addressed further in[23℄.2.3 Real Motion BlurIn the literature a number of examples are shownwhere synthetially motion-blurred images are de-blurred using various algorithms and where the re-sults look quite promising. However, when applyingdeblurring algorithms to real-world pitures, whihontain motion blur, it is revealed that those al-gorithms perform quite unsatisfatory. This maybe due to poorly estimated PSFs or due to failures

Figure 2: Experimental setup

Figure 3: Estimating the PSF with real motion blurin the underlying motion blur model itself. To in-vestigate this issue in more detail and to loate theroot of the problem, an experimental setup has beenbuilt, whih allows us to apture blurred images ina ontrolled setting whih failitates to have aessto well-de�ned and parameterized PSFs.The unit shown in Figure 2 omprises a ameraunit, a guiding rail and a stepper motor. The am-era arriage is aelerated to a onstant speed andtakes a photo with a medium exposure time (around100ms) to allow signi�ant motion blur appear inthe piture. As a motif a hekerboard struturehas been hosen, sine this allows an easy methodfor estimating the assoiated PSF.An image aptured with our experimental setup isshown in Figure 3. From the way we have set upthe apturing proess we assume the motion path3



Figure 4: Veri�ation of linearity

Figure 5: Veri�ation of horizontal motionof the amera to be linear and uniform in the hor-izontal diretion. The �rst assumption is veri�edby looking at the plot shown in Figure 4. The plotdepits the luminane of the piture, whih takenaross the blurred zone (marked with (a) in Figure3). The luminane urve is very lose to linearlydereasing.The seond assumption that the motion is only inthe horizontal diretion is veri�ed with a seond lu-minane graph shown in region (b) of Figure 5. Thesharp deay of luminane at the border betweenthe two boxes proves that there is almost no mo-tion in the vertial diretion (otherwise the graphmust look like shown in Figure 4, where the deayis linear and spread about a signi�ant number ofpixels).

Measuring the blur area in Figure 4 allows us to di-retly infere the length of the PSF (the length hasbeen visualized in Figure 3). With the two assump-tions veri�ed above and the length given, the PSFan now be determined aording to Eq. 2 as
hreal =
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∈ R
1×50 (6)3 Desription of Algorithms3.1 Diret Approah (lin)Starting from Eq. 1 we transform the equation intothe frequeny domain, whih yields

F(b) = F(h) · F(f ) + F(n) (7)As the additive noise is unknown, we assume it to bezero (F(n) = 0). Rewriting Eq. 7 and performingthe re-transformation into the spatial domain, wearrive at the restoration �lter
f̂ = F−1

(

F(b)

F(h)

) (8)This gives us a diret �lter requiring only out-of-the-box mathematial methods. As zero noise hasbeen assumed it is expeted that problems will o-ur with noisy images.3.2 Wiener-Filter (wnr)The Wiener Filter seeks to minimize the followingerror funtion:
e2 = E
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] (9)where E denotes the expeted value operator, f isthe undegraded image and r̂ its estimate. The so-lution to the thereof arising optimization task anbe written as follows in the frequeny domain (a-ording to [8℄):
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· B(10)with H(u, v)being the PSF in the frequeny do-main, Sη(u, v) the power spetrum of the noise and4



Sι(u, v) the power spetrum of the undegraded im-age F . The ratio NSR = Sη(u, v)/Sι(u, v) is nor-mally referred to as the Noise to Signal Ratio. If nonoise is present (Sη(u, v) = 0) Eq. (10) redues to
F̂ (u, v) =

B(u, v)

H(u, v)
(11)Therefore we see the Wiener Filter is a generaliza-tion of the diret �lter.If the ratio NSR is unknown, it an be approxi-mated with the ratio r of average noise power andaverage image power (parametri Wiener �lter):

NSR ≈ r =
ηaverage

ιaverage

(12)Even better results an be ahieved using the auto-orrelation funtion of the noise and the unde-graded image [8℄. A derivation of the formulas men-tioned an be found in [7℄.3.3 Regularized Filer (reg)This algorithm [8℄ is based on �nding a diret �ltersolution using a riterion C, whih ensures optimalsmoothness of the image restored. Therefore the�lter onstrution task is to �nd the minimum of
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[∇2f(u, v)]2 (13)under the onstraint of the rewritten Eq. 1
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= ‖n‖2 (14)In the frequeny domain the solution to this prob-lem an be written as follows:
F̂ (u, v) = [

H∗(u, v)

|H(u, v)|2 + γ |P (u, v)|2
] · B(u, v) (15)where γ is the parameter whih has to be adjustedto ful�ll the onstraint C and P (u, v) is the Lapla-ian operator in the frequeny domain.3.4 Rihardson-Luy Deonvolution(luy)This algorithm was invented independently byRihardson [20℄ and Luy [13℄. Its usage (espe-ially onerning MATLAB) is further outlined in

[8℄. The Rihardson-Luy (RL) algorithm is an iter-ative restoration algorithm that maximizes a Pois-son statistis image model likelihood funtion. Assummed up in [11℄ the RL algorithms onsists outof one initial and three iterative steps:1. A �rst approximation of the restored image f̂0must be made, typially the onstant averageof all pixel values in the blurred image b.2. The urrent approximation is onvolved withthe PSF
ϕn = h ⋆ f̂n (16)3. A orretion fator is omputed based on theratio of the blurred image and the result of thelast step

φn =
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(17)where←−h denotes the PSF in reverse order and
b

ϕn
a �pixel-by-pixel� division.4. A new approximate is omposed out of the ur-rent one and the orretion fator

f̂n+1 = f̂n · φn (18)where · denotes a �pixel-by-pixel� multiplia-tion. The algorithm ontinues with step 2.As with all iterative tehniques the question ariseswhen to stop the omputation, but this will be ad-dressed later on.3.5 Maximum Likelihood Estimation(mem)A omplete desription of this algorithm would be-yond the sope of this paper, but good desriptionsan be found in [10, 9℄.In brief, the algorithm has the ability to alter thePSF used for deonvolution aording to some on-straints to an improved solution. The deonvolu-tion itself is performed in a omparable fashion tothe Rihardson-Luy algorithm.3.6 TU Berlin (tub)Mery and Filbert proposed an algorithm in [15℄whih seeks to minimize the equation
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under the onstraint of Eq. 1. f̃ is a vetor ofthe �rst N pixels of a line of the restored imageand b̃ respetively a vetor of N pixels of a lineof the blurred image. Using only N pixels insteadof the whole vetor allows the algorithm to be fastompared to other tehniques.The optimization problem is solved using Lagrangemultipliers, resulting in a diret restoration algo-rithm. It should be noted that the algorithm in itsurrent form an handle only uniform motion blur.3.7 Sondhi (sondhi)Sondhi [21, 7℄ addressed the problem of motion de-blurring very early. He assumes the blur proessto integrate over ertain amount a of pixels duringthe apture proess. A blurred image line (length
L) an therefore be written as
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f(τ)dτ (20)Calulating the derivate on this equation, de�ning
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b′(x−ka) the restored image lineis given by
f̂(x) = b̃(x) −

1
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b̃(x + ka) + b̄ (22)where b̄ is the average value of a pixel line.It should be mentioned that the version mentionedhere does only apply to linear, uniform motion blur.3.8 Advaned Landweber (alm)This algorithm [12℄ is mentioned here for omplete-ness, but it has been exluded from the omparisonas our implementation was ten times slower thanthe rest of the �eld. Furthermore, it was originallyproposed for removal of blur indued due to defo-using.

4 Comparison4.1 Data Material

Figure 6: Test images referene(left: hekerboard, right: natural)Two di�erent motifs have been seleted for the al-gorithms to work on (Figure 6). The hekerboardstruture (Figure 7) as the �rst test pattern repre-sents a more syntheti motif, but the motion blur islearly visible. Due to the regular and well knownpattern the results of the algorithms an easily beanalyzed. Furthermore, the sharp boarders of thesquares allow estimation of the parameters of thePSF (see setion 2.3).

Figure 7: Test images Chekerboard(left: real, right: syntheti)The seond motif (Figure 8), although still hav-ing the hekerboard struture as a bakground forreferene and PSF estimation purposes, omprisesitems whih are not only 2D (i.e. �at) but 3D (e.g.bottle) or have haraters on them, whih are nor-mally hard to restore.6



Figure 8: Test Image Natural Sene (real blur)4.2 Computation SpeedOne riteria for the evaluation of the de-blurringalgorithms is the omputation speed required to re-store an image. Computation power may be lim-ited in some environments, for example in mobileappliations, or the sheer exeution time is far be-yond the expetation of users. For example theRihard-Luy algorithm needs more than one hourfor restoring a onsumer lass digital amera imageon a modern omputer hardware.The time required to perform the deonvolution de-pends on a number of parameters. The most ob-vious one is the size of the input image. Figure 9shows the omputation time as a funtion of the im-age size. The time sale has been normalized to theresult of the fastest algorithm wnr at the smallestpixel value omputed (2500 pixel). It is learly vis-ible that the omputation time of most algorithmsrises linearly with inreasing image size. A big dif-ferene shows up in the total omputation time re-quired. The time required by iterative algorithms ismuh greater, but an be in�uened by the numberof iterations (disussed further below), whereas thediret algorithms perform muh faster. The di�er-ene among them is possible due to the implemen-tation. As for the wnr and reg existing, optimizedMATLAB implementation have been used whereastub, lin and sondhi were implemented with out spe-ial optimization. Interestingly the tub algorithmdoes perform sligthly above linear.The seond fator determining the algorithms per-formane in terms of omputation speed is thelength respetively size of the PSF. This depen-deny is outlined in Figure 10. As before the om-putation is normalized to the alulation performedwith wnr. It an be seen that most algorithms areinvariant towards di�erent sizes of the PSF withthe exeption of sondhi whih seems to deliver low

Figure 9: Computation Speed vs. Image Size

Figure 10: Computation Speed vs. PSF lengthperformane with small sizes of PSFs.With iterative algorithms the number of iterationshas a strong in�uene on the omputation time andthe restoration performane. It an safely be as-sumed that the omputation time depends linearlyon the number of iterations. Therefore the depen-deny of the PSNR is shown (Figure 11) at seletediteration numbers. It an learly be seen that withthe luy algorithm an inrease of iterations leads toan improved PSNR for the restoration result. Butat a ertain point the inremental improvement isnegligible ompared to the omputation time re-quired (in this ase this is at about 20 to 30 iter-ations). For the mem algorithm, the PSNR doesnot improve any more beyond a ertain number ofiterations. This is possibly due to the algorithmreahing its optimum for the newly estimated PSF7



Figure 11: Number of iterations a�eting PSNR(the mem algorithm does try to estimate the PSFeven more preisely). Computing more iterationsthan neessary an even have a negative e�et (luybeyond 50 pixels).4.3 Restoration QualityIn order to evaluate the quality (similarity to theunavailable, perfetly aptured image) of the re-stored image two di�erent tehniques have been ap-plied. For pitures, where no referene image wasavailable (real blurred images) a �no-referene per-eptual blur metri� as proposed in [14℄ has beentested. Unfortunately it failed, as the lines intro-dued due to the ringing onfused the algorithm.Therefore the results of this metri have been omit-ted. Furthermore the PSNR, de�ned as
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(23)
between the synthetially restored image f̂ and thereferene image f is omputed.4.3.1 Syntheti BlurIn the �rst test ase the algorithms were to restoresynthetially blurred image. As the border areasare problemati for all algorithms (as disussed in

setion 2.2), the image was assumed to be periodiwhen adding the syntheti motion blur (�irular�).The restored images an be seen in Figure 13, whereall algorithms ahieve nearly perfet restoration re-sults and the images ontain only minor ringing insome ases. Algorithm PSNR [dB℄wnr 30.6reg 30.6tub 31.7luy 42.4mem 39.0sondhi 22.2lin 35.4Table 1:Metri results for syntheti blur(irular wrap around)In the seond run de-blurring of synthetiallyblurred images has been tested with pixel repeti-tion at the border (Figure 12). It an be seen thatobviously wrong pixels in the border region lead tomassive ringing in the restored piture. Only thetub and the sondhi algorithm seem to be able tohandle this issue adequately and present quite a-eptable results.Algorithm PSNR [dB℄wnr 13.1reg 13.1tub 34.2luy 22.3mem 13.5sondhi 21.8lin 8.8Table 2:Metri results for syntheti blur(repetitive wrap around)MATLAB o�ers a funtion edgetaper whih is re-ommended to be applied to images whih show a lotof ringing [8℄. The edgetaper funtion blurs the endsof the image with the PSF later used for deonvolu-tion. To evaluate this funtion, it has been appliedto the images with repetitive pixel wrap around atthe border region as these images proved to be hal-lenging for the algorithms. Figure 14 presents the8



result of this ase, where it an be seen that edgeta-per does help to derease ringing, but is unable tosuppress it ompletely or assure equivalent resultsto the irular blur situation.
Algorithm PSNR [dB℄wnr 24.6reg 24.6tub 34.9luy 33.6mem 19.3sondhi 22.1lin 14.6Table 3:Metri results for syntheti blur with prioredgetaper (repetitive wrap around)

All the test ases presented before did not omprisenoise. Therefore, they are just theoretial ases tostudy some e�ets of motion de-blurring. In orderto get a better understanding of the shemes un-der real-world onditions, zero-mean Gaussian noisewith variane 0.01 is added to the test image beforerestoration. The restored images for this ase anbe seen in Figure 15.The wnr result still looks blurry, whereas the regrestoration was able to restore the squares, but stillomprises noise and ringing. The tub algorithm de-livers the sharpest image without any ringing, butsome noise visible. Both, luy and mem restore theimage without any noise visible, but the edges arestill a little bit blurred. The noise in the restorationresults omputed by tub and sondhi show a verysimilar behavior, but the later one indues someringing and some blur at the edges of the boxes.The lin �lter is not able to remove the noise in theimage and introdues a lot of ringing.

Algorithm PSNR [dB℄wnr 19.8reg 21.0tub 21.9luy 23.5mem 23.3sondhi 19.3lin 13.4Table 4:Metri results for syntheti blur with Gaussiannoise (repetitive wrap around, prior edgetaper)For the luy and mem algorithms a modi�ed imple-mentation has been used, whih allows to speify aweight for ertain pixels orresponding to the re-liability of the assoiated values. On aount ofthis, the border pixels have reeived a muh lowerweight, therefore suppressing the ringing induedby inorret/missing pixel information in the bor-der area. Pixels on all four borders have reduedweight, whih explains the blak borders.
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Figure 12:Restored syntheti blur images(repetitive wrap around) Figure 13:Restored syntheti blur images(irular wrap around)
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Figure 14:Restored syntheti blur images with prioredgetaper (repetitive wrap around) Figure 15:Restored syntheti blur images with Gaussiannoise (repetitive wrap around, prior edgetaper)
11



4.3.2 Real BlurFigure 16 shows the restored images of the heker-board motif, whih has been aptured by a realamera. The most simple algorithm lin fails om-pletely, beause the noise is ampli�ed. The wnr andreg algorithm show both omparable results, whihomprise a lot of low frequeny ringing, but restorethe ontours more or less satisfatory. The problemwith both algorithms is that the noise power anonly be guessed (or determined by trial and error asit was here the ase). The tub algorithm produes alot of noise in the restored image, but the ontoursof the squares are the sharpest among the ompeti-tors. Furthermore, high frequeny ringing is learlyvisible in the restored image. A similar result, butwith muh less noise is produed by the sondhi algo-rithm. The luy and mem algorithm produe moreor less equivalent results, whih are very lose tothe original hekerboard motif. Again, the pixelsat the borders have reeived lower weight to inhibitringing.In a sene whih omprises more than just ahekerboard struture the algorithms seem to havehuge problems onerning ringing (Figure 17). The�rst hallenge in restoration is noise, whih is mas-tered properly only by luy and mem. The algo-rithms wnr and reg still show aeptable results.The restored images of the tub, sondhi and lin al-gorithms are very noisy suh that it is di�ult toreognize anything. The remaining andidates haveall di�ulties with ringing, but only luy and memdeliver aeptable results as their ringing artifatsare more smooth and therefore more pleasant forthe human eye. The restored image of the mem al-gorithm is slightly better than the result produedby luy, due to the ability of the mem algorithmto adapt itself to the estimated PSF, therefore or-reting inauray in the PSF estimation.5 ConlusionWe have seen that the de-blurring algorithms dis-ussed perform di�erent on syntheti and real mo-tion blur. Two groups of algorithms performed bestunder both irumstanes.The �rst group, omprising the luy and mem al-gorithm produe equivalent results for most ases.
Figure 16:Restored real blur (hekerboard struture)
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Figure 17:Restored real blur images (natural sene)

The luy algorithm is preferable as it requires lessomputation time. In ases where the PSF ouldonly be estimated roughly, themem algorithm is su-perior as it an adapt itself to the PSF and thereforeorret inauraies in the estimated PSF. As bothalgorithms produe images quite pleasant to the hu-man eye, they should be employed when restoringphotographs (e.g. from a digital amera). The keyfor good results on real images with this two algo-rithms is the ability to weight the pixels and there-fore mask pixels at the borders to suppress ringing.Still, their problems remain the tremendous need ofomputation time and the question of the optimumnumber of iterations.The seond group, omprising the tub and sondhialgorithms, deliver sharp restored images, but theyalso introdue a lot of noise. Therefore, they an beused in appliations where sharpness is ruial, e.g.pattern or text reognition. An important advan-tage over the �rst group is, that they are remarkablyfaster and do not need an estimate for the numberof iterations (as they are diret algorithms). Fur-thermore their implementation is quite straight for-ward.One an onsider to implement the possibility to usethe weighting of pixels (as seen in the luy and memimplementation) for the seond group of algorithms,as this improved the results of the �rst group a lot.The wnr, reg and lin algorithms do not produeaeptable results under real world onditions.Referenes[1℄ M. Ben-Ezra and SK Nayar. Motion deblur-ring using hybrid imaging. Computer Visionand Pattern Reognition, 2003. Proeedings.2003 IEEE Computer Soiety Conferene on,1, 2003.[2℄ M. Ben-Ezra and S.K. Nayar. Motion-BasedMotion Deblurring. IEEE Transations onPattern Analysis and Mahine Intelligene,26(6):689�699, 2004.[3℄ D. Capel and A. Zisserman. Super-resolutionenhanement of text image sequenes. Proeed-ings International Conferene Pattern Reog-nition, pages 600�605, 2000.13
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