
Continuous Time Group Discovery
in Dynamic Graphs

Kurt T. Miller1,2

tadayuki@cs.berkeley.edu

1EECS
University of California

Berkeley, CA 94720

Tina Eliassi-Rad2

eliassi@llnl.gov

2Lawrence Livermore National Laboratory
Livermore, CA 94551

Abstract

With the rise in availability and importance of graphs and networks, it has become
increasingly important to have good models to describe their behavior. While
much work has focused on modeling static graphs, we focus on group discovery
in dynamic graphs. We adapt a dynamic extension of Latent Dirichlet Allocation
to this task and demonstrate good performance on two datasets.

1 Introduction

Modeling relational data has become increasingly important in recent years. Much work has focused
on static graphs – that is fixed graphs at a single point in time. Here we focus on the problem of
modeling dynamic (i.e. time-evolving) graphs.

We propose a scalable Bayesian approach for community discovery in dynamic graphs. Our ap-
proach is based on extensions of Latent Dirichlet Allocation (LDA) [1]. LDA is a latent variable
model for topic modeling in text corpora. It was extended to deal with topic changes in discrete time
[2] and later in continuous time [3]. These models were referred to as the discrete Dynamic Topic
Model (dDTM) and the continuous Dynamic Topic Model (cDTM), respectively.

When adapting these models to graphs, we take our inspiration from LDA-G [4] and SSN-LDA
[5], applications of LDA to static graphs that have been shown to effectively factor out community
structure to explain link patterns in graphs. In this paper, we demonstrate how to adapt and apply the
cDTM to the task of finding communities in dynamic networks. We use link prediction to measure
the quality of the discovered community structure and apply it to two different relational datasets –
DBLP author-keyword and CAIDA autonomous systems relationships. We also discuss a parallel
implementation of this approach using Hadoop [6].

In Section 2, we review LDA and LDA-G. In Section 3, we review the cDTM and introduce cDTM-
G, its adaptation to modeling dynamic graphs. We discuss inference for the cDTM-G and details of
our parallel implementation in Section 4 and present its performance on two datasets in Section 5
before concluding in Section 6.

2 Latent Dirichlet Allocation for Static Graphs

Latent Dirichlet Allocation (LDA) is a Bayesian topic model that was originally developed for mod-
eling text documents in a single corpus. In this section, we review LDA as well as LDA for Graphs
(LDA-G), one of the applications of LDA to graphs.

1

2.1 Latent Dirichlet Allocation

LDA is a Bayesian approach to topic modeling for text documents [1]. In LDA, it is assumed that
a set of D documents can be described by K topics, where K can either be fixed or inferred as
part of a nonparametric Bayesian approach. Each topic corresponds to a multinomial distribution
over all words that describes which words are most associated with that topic and which ones are
not. Documents are then summarized by a distribution over the topics that correspond to them.
Given each document-specific distribution over topics, the words in each document are generated
independently.

Concretely, the generative model for LDA has parameters α and η. We generate our D documents
as follows:

1. For each topic k ∈ {1, . . . ,K}, draw πk ∼ Dirichlet(η) independently.

2. Given {πk}K
k=1, generate each of the D documents independently as follows:

(a) Draw the document specific topic distribution θ ∼ Dirichlet(α).
(b) Given θ and πk, draw each word independently. For the nth word,

i. Draw the word’s topic indicator zn ∼ Multinomial(θ).
ii. Draw the word wn ∼ Multinomial(πzn

).

The graphical model for LDA can be seen in Figure 1(a).

α

θ

z

w

Nd

D
K

η π

(a) LDA and LDA-G

βt+1

K

θ

z

w

α

βt−1 βt

st+1st−1 st

DtDt−1 Dt+1

Nd,tNd,t−1 Nd,t+1

θ

z

w

α

θ

z

w

α

(b) cDTM

βt+1

K

z

w

βt−1 βt

st+1st−1 st

DtDt−1 Dt+1

Nd,tNd,t−1 Nd,t+1

z

w

θ

z

w

α

D

(c) cDTM-G

Figure 1: Graphical models for LDA and LDA-G (Sections 2.1 and 2.2), cDTM (Section 3.1), and
cDTM-G (Section 3.2).

2.2 LDA for Static Graphs

LDA-G [4] is an application of LDA to graphs rather than text corpora. In LDA-G, each document
d is now associated with a node d and the words in the document are all the nodes that have a link
from node d. In other words, each document is associated with a row of the sparse adjacency matrix
describing the graph. Similar to the K topics in LDA, there is a set of K groups/communities
in LDA-G that captures patterns in the link connectivity in the graph. Associated with each of
these groups is a multinomial distribution over the nodes that describes the likelihood of each group
linking to each of the nodes. Finally, as in LDA, each source node is described by a multinomial
distribution over the K groups describing its mixed group membership. Given that distribution, the
links from that node are assumed to be generated independently. To simplify inference, it is assumed
that the roles of a node as a source-node and as a target-node are probabilistically independent.
Though often an incorrect assumption, this allows the algorithm to scale well and in [4], it is shown
that it still performs both qualitatively and quantitatively well compared to other algorithms.

LDA-G uses the same graphical model as LDA (Figure 1(a)) and therefore the full generative model
of LDA-G is:

2

1. For each group k ∈ {1, . . . ,K}, draw πk ∼ Dirichlet(η) independently.

2. Given {πk}K
k=1, generate the links from each of the D source nodes as follows:

(a) Draw the source-node specific group distribution θ ∼ Dirichlet(α).

(b) Given θ and πk, draw each link independently. For the nth link,

i. Draw the link’s group indicator zn ∼ Multinomial(θ).
ii. Draw the link wn ∼ Multinomial(πzn

).

Inference in this model involves finding the posterior distribution of π, θ and z. Unfortunately,
exact inference is intractable, but approximate inference algorithms have been developed. These
algorithms are generally either variational based such as in the original paper [1] or sample based
such as in [7].

Unlike most approaches to community discovery in graphs, LDA-G only requires present links (i.e.,
non-zero entries in the adjacency matrix). This property helps its runtime and space complexities. If
N is the number of nodes in the graph, K is the number of communities, and M is the average vertex
degree in the graph, its runtime complexity is O(NKM) and its space complexity is O(N(K+M)).
Since in many graphs, K � N and M ∼ log(N), LDA-G runs in O(N · log(N)) ≈ O(|E|).
There are only a handful of other scalable Bayesian approaches to community discovery in graphs
[5, 8, 9, 10], most of which extend or adapt LDA. LDA-G [4] and SSN-LDA [5] are the simplest
applications of LDA to community discovery in graphs. GWN-LDA [5] introduces a Gaussian
distribution with inverse-Wishart prior on a LDA-based model to find communities in social net-
works with weighted links. LDA-based models have also been used to find communities in textual
attributes and relations [10, 11].

3 cDTM for Dynamic Graphs

LDA was developed for modeling a single collection of documents assumed to share a common set
of topics. However, if we observed sets of documents at various points in time, we might believe
that the topics captured by those documents evolve over time. Time evolving versions of LDA have
been introduced to the topic modeling community under the name of “dynamic topic models.” We
introduce these models in this section and discuss their adaptation to modeling group behavior in
time evolving graphs.

3.1 The Continuous Time Dynamic Topic Model

A discrete time dynamic version of LDA was first introduced as the “discrete Dynamic Topic Model”
(dDTM) in [2]. A generalization of this for continuous time was introduced as the “continuous
Dynamic Topic Model” (cDTM) in [3]. Since the cDTM is a generalization of the dDTM, we focus
on the cDTM.

The dynamics in the cDTM describe how topics evolve through time. Instead of there being a fixed
set of topics that are constant throughout time (which would be equivalent to treating all documents
as if they belonged to a single corpus and running LDA on it), we wish for the topics to evolve.

In LDA, πk ∼ Dirichlet(η) is the W -multinomial word distribution for the kth topic over the W
words. In cDTM, the multinomial word distribution πt,k is the distribution over words for the kth

topic at time st (following the notation in [3], t ∈ N+ is the index of observations which take
place at observed times st ∈ R where st−1 < st). Word distributions for different topics will be
independent. However, word distributions for the same topic across time will be slowly evolving.
This is done by introducing parameters m, v0, v, s and by letting βt,k be a real valued W−vector
that evolves as Brownian motion:

β0,k ∼ N (m, v0I),
βt,k|βt−1,k, st, st−1 ∼ N (βt−1,k, v(st − st−1)I).

3

A softmax is then used to map the parameters βt,k back into the probability simplex where the
probability of word w at the tth time step in the kth topic is

πt,k,w = π(βt,k)w

≡ exp(βt,k,w)∑W
v=1 exp(βt,k,v)

.

This defines a generative model for the topics πt,k for all times st and topics k ∈ {1, . . . ,K}. Now
to complete the generative model of the cDTM, we describe how to generate a document at time st

given the topic parameters. Each document is generated independently as in LDA:

1. Draw the document specific topic distribution θ ∼ Dirichlet(α).

2. Given θ and πt,k, draw each word independently. For the nth word,

(a) Draw the word’s topic indicator zn ∼ Multinomial(θ).
(b) Draw the word wn ∼ Multinomial(π(βt,zn

)).

If there are Dt documents at time t and each document d has Nd,t words at time t, then the graphical
model for cDTM for three time slices can be seen in Figure 1(b). The dDTM is a special case of the
cDTM in which st − st−1 = 1 for all t.

3.2 cDTM for Dynamic Graphs

We adapt cDTM to the task of modeling a dynamic graph in a manner similar to the way we applied
LDA to the task of modeling a static graph. Observations of the time evolving graph at different
points in time correspond to corpora at different points in time. Each source-node at each time step
corresponds to a document at each time step and the links from the node at that time correspond to
the document’s words. We again ignore the fact that these “words” themselves might be other nodes
and assume the roles of a node as a source-node and target-node are probabilistically independent.
The time evolving groups/communities of the graph will now correspond to time evolving topics.

The main issue in our adaptation of cDTM to this task is that when modeling documents, a single
document is assumed to come from a single point in time. Ignoring revisions (which is a completely
different subject), it generally does not make sense to say a document is generated at different points
in time. However, in graphs, we are interested in the links from source-nodes that repeatedly appear
throughout time. Therefore, we wish to utilize this knowledge in our model.

Similar to [4], we refer to our application of cDTM to graphs as cDTM-G, or the “continuous time
Dynamic Topic Model for Graphs.” Our main decision will be how to deal with source-nodes that
appear at multiple points in time. We could directly apply cDTM where we ignore the fact that
the same source-nodes appear at multiple points in time and model their behaviors as if they were
new nodes at each time point, but that does not capture our intuition that a node’s behavior/group
distribution will often be similar over time. Therefore, our two choices are:

1. We can say that θd for the dth document is generated once and is constant over time. The
graphical model for three time slices with this model is shown in Figure 1(c).

2. We can allow θt,d to evolve over time in a manner similar to the way πt,k evolves in the
cDTM. In this case, we would introduce a real valued K−vector that evolves as Brownian
motion and uses a softmax to transform this into θd.

4 Inference and Implementation Details

Exact posterior inference in both LDA and the cDTM are intractable. However, both are amenable
to approximate inference algorithms. In [4], a Gibbs sampler was used for LDA-G. However, for
cDTM-G, we will use the variational approximation derived in [3].

4

In the structured mean field variational approximation of [3], the true posterior distribution of our
parameters is approximated by the variational distribution

q(β1:T,1:K , z1:T,1:Dt,1:Nt,d
, θ1:T,1:Dt

|β̂, φ, γ)

=

(
K∏

k=1

q(β1,k, . . . , βT,k|β̂1,k, . . . , β̂T,k)

)
×

T∏
t=1

Dt∏
d=1

q(θt,d|γt,d)
Nt,d∏
n=1

q(zt,d,n|φt,d,n)

 ,

where β̂, γ, and φ are variational parameters for a variational Kalman filter, Dirichlet distribution,
and multinomial distribution, respectively. See [3] for details. Depending on how we treat θd in the
cDTM-G described in Section 3.2, this approximation will change.

Inference involves optimizing the variational parameters to make the variational distribution as close
to the true posterior as possible. This is performed using a coordinate ascent in (β̂, γ, φ) with a
particular objective – that is, we repeatedly iterate through β̂, γ, and φ, optimizing each one while
holding the others fixed. See [3] for more details.

In [3], the two test corpora for cDTM had 1,000-1,350 documents with 1-10 topics. We are interested
in applying cDTM-G to larger graphs, having more than 27,000 nodes and 20 topics and found that
even after optimizing our implementation, inference was slow. This lead us to explore a parallel
implementation.

One of the nice facts about the variational approximation is that many of the computations are easily
parallelizable. Our approach is:

1. Given γ and φ, optimize β̂. This parallelizes across topics. If there are K topics, each topic
can be optimized independently.

2. Given β̂, optimize γ and φ. Each document/node can be optimized independently, so this
parallelizes much more than the optimization for β̂. In addition, each of these updates is
relatively cheap, so we perform a nested optimization. That is, we do not update γ once and
then φ once for each document before returning to step 1. We optimize γ and φ repeatedly
until they jointly stabilize for a fixed β̂. We found that this results in faster convergence.

We implemented the variational inference algorithm for the cDTM-G in Java and parallelized the
code using Hadoop [6], an open-source implementation of MapReduce.

5 Results

In this section, we analyze the performance of cDTM-G on two different datasets. The first dataset
is a subset of the CAIDA AS1 relationships dataset [12], a dataset with approximately 17,000 nodes
and 197,000 observations over three time steps from January-March 2004. The second dataset is a
1974-2005 author-keyword dataset scraped from DBLP [13], a dataset with approximately 27,000
nodes and 189,000 observations over 32 years. In each dataset, we ran a 5-fold cross-validation,
repeatedly holding out 20% of the data while training, and testing on link prediction on the held out
data. Our metric is the average AUC, the Area Under the ROC (Receiver Operating Characteristic)
Curve, on the test data. All tests were performed on 2.6 GHz quad-core machines with 32 Gb
RAM. The Hadoop cluster consisted of 8 of these machines. All algorithms utilized parallel Hadoop
implementations. However, the difference between running times for LDA-G with and without
Hadoop was not that great due to the overhead inherent in using Hadoop. On the other hand, since
inference in cDTM-G is more computationally intensive, cDTM-G benefited much more from the
parallel implementation.

We compare cDTM-G against two versions of LDA-G. In the first version, which we simply refer
to as LDA-G, we run LDA-G independently on the graph at each observed time step. In the second
version, we sequentially run LDA-G on each time step, but we initialize the topics for the current
time step using the topics learned the previous time step. This version we refer to as “LDA-G
seeded.”

1AS is short for autonomous systems.

5

The 5-fold cross-validation performance of these algorithms on the subset of the CAIDA AS rela-
tionships dataset can be seen in Table 1 and the performance on the DBLP author-key dataset can
be seen in Table 2. We used K = 20 topics for both datasets for all algorithms.

Table 1: Results on the CAIDA AS relationships dataset.

Method Time (minutes) AUC
LDA-G 37.5 0.725

LDA-G seeded 23.1 0.735
cDTM-G 62.9 0.8837

Table 2: Results on the DBLP Author-Keyword dataset.

Method Time (minutes) AUC
LDA-G 26.6 0.9420

LDA-G seeded 26.5 0.9449
cDTM-G 109.2 0.9727

On both datasets, cDTM-G gives a significant improvement over the LDA-G seeded, which nar-
rowly beats out LDA-G. On the CAIDA AS dataset, cDTM-G decreases (1−AUC), which roughly
corresponds to error, by 43.9% and on the DBLP dataset, it decreases (1−AUC) by 49.5%. However,
it is 2.7X and 4.1X slower on these two datasets.

In [3], a sparse variational approximation to cDTM is proposed that saves on space and time. In the
dense version of cDTM, β̂t,k is a full W−vector for every time for which there is an observation. In
the sparse version, we only store β̂t,k,w for word w at the times t in which it occurs. This requires
less memory to store if the dataset if sparse (DBLP is, the subset of CAIDA is not) and results in a
faster optimization because there are fewer parameters to optimize. However, the results above were
achieved without using this sparse approximation. We did implement the sparse version and ran it on
both datasets and were surprised to find that the sparse version of cDTM-G did not perform as well
as LDA-G seeded either in terms of time or AUC. It was faster than the dense version of cDTM-G,
but had a lower AUC. We have only tested the fully dense and fully sparse implementations and
believe that there is a tradeoff between accuracy and space/time savings in the sparse approximation
that deserves further study.

6 Conclusion

We have introduced cDTM-G, an adaptation of cDTM for modeling dynamic graphs. While the
application of LDA to LDA-G was relatively straightforward, there were choices that had to be made
in adapting the cDTM to cDTM-G. In addition, we found that inference was more computationally
intensive than in LDA, so a parallel implementation was needed to scale up to graphs of interest.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liv-
ermore National Laboratory under contract DE-AC52-07NA27344. We thank Keith Henderson for
providing us with his LDA-G code.

References

[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

[2] David M. Blei and John D. Lafferty. Dynamic topic models. In Proceedings of the International
Conference on Machine Learning, 2006.

6

[3] Chong Wang, David M. Blei, and David Heckerman. Continuous time dynamic topic models.
In Proceedings of Uncertainty in Artificial Intelligence (UAI), 2008.

[4] Keith Henderson and Tina Eliassi-Rad. Applying latent Dirichlet allocation to group discovery
in large graphs. In Proceedings of the ACM Symposium on Applied Computing (ACM-SAC),
2009.

[5] Haizheng Zhang, Baojun Qiu, C. Lee Giles, Henry C. Foley, and John Yen. An LDA-based
community structure discovery approach for large-scale social networks. In Proceedings of
Intelligence and Security Informatics (ISI), 2007.

[6] Hadoop. http://hadoop.apache.org/.
[7] Tom Griffiths. Gibbs sampling in the generative model of latent Dirichlet allocation. Technical

report, Stanford University, 2002.
[8] Haizheng Zhang, Wei Li, Xuerui Wang, C. Lee Giles, Henry C. Foley, and John Yen. HSN-

PAM: Finding hierarchical probabilistic groups from large-scale networks. In Proceedings of
IEEE International Conference on Data Mining (ICDM) Workshop on Data Mining in Web 2.0
Environments, 2007.

[9] Haizheng Zhang, C. Lee Giles, Henry C. Foley, and John Yen. Probabilistic community dis-
covery using hierarchical latent gaussian mixture model. In Proceedings of the American
Association for Artificial Intelligence Conference (AAAI), 2007.

[10] Huajing Li, Zaiqing Nie, Wang-Chien Lee, C. Lee Giles, and Ji-Rong Wen. Scalable com-
munity discovery on textual data with relations. In Proceeding of the ACM Conference on
Information and Knowledge Management (CIKM), 2008.

[11] Ding Zhou, Eren Manavoglu, Jia Li, C. Lee Giles, and Hongyuan Zha. Probabilistic models for
discovering e-communities. In Proceedings of the International World Wide Web Conference
(WWW), 2006.

[12] CAIDA. AS relationships dataset (January 2004 to March 2004). http://www.caida.
org/data/active/as-relationships/, 2004.

[13] Michael Ley. DBLP: Some lessons learned. PVLDB, 2(2):1493–1500, 2009.

7

