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Abstract. Meeting uncertain supply conditions with adequate demand-
side measures is becoming increasingly central to the day-to-day opera-
tions of energy utility companies, as variability is one of the main drivers
of cost in operating the grid. In this paper we provide the first character-
ization of demand variability and the factors influencing it. We propose
that heterogeneity in energy consumption is driven by users’ daily sched-
ules, and mine a large sample of smart meter data from 30,000 residential
users in CA („ 17M daily load profiles) to extract a small alphabet of
typical schedules that people follow throughout the day. We next re-
late variability in consumption to features pertaining to the individuals
and their neighborhoods using data on customer engagement with the
utility company and block-level U.S. Census demographics. Our analysis
shows that certain high-level attributes - such as income level or tenancy
situation - are robust predictors of schedule stability.

1 Introduction

In the large-scale infrastructure systems such as the power grid variability has a
determining impact on cost-of-operation and environmental externalities. Thus,
in designing practical interventions and efficiency programs at energy utility
companies it is of relevance to identify the types of users or neighborhoods that
contribute to variability on the grid, and to understand what changes in their
their behavior would be most desirable for the system.

Electricity accounts for „ 40% of total energy use and 34% of GHG emis-
sions in the U.S. [1]. As intermittent renewable sources achieve higher rates of
penetration, both demand and supply are becoming highly volatile. To better
understand energy demand, utility companies in the U.S. have deployed mil-
lions of sensors (smart meters) capable of recording data at sub-hourly time
resolutions. Profiling customer demand aids utilities in their market operations,
e.g., with capacity planning and day-ahead scheduling. Moreover, understand-
ing consumption decisions informs designing and implementing energy-efficiency
and demand-response programs, and marketing to the appropriate user groups.

Here we provide the first study of energy consumption variability using smart
meter data at two different levels of decision-making - the residential customer
and their neighborhood. We mine a large dataset (17M days, 15-minute reso-
lution) from 30,000 users in Northern CA to learn a small “alphabet” of daily



load profiles that encodes user lifestyle and schedules. Schedules represent the
observed cumulative sum of latent usage choices; as such we hypothesize that the
heterogeneity in schedule choice over time arises because of different attributes
of users and the neighborhoods that they live in. We thus define a classification
problem in which we use U.S. Census data on neighborhood demographics and
user interaction with the utility company to predict schedule stability.

The rest of the paper is structured as follows. Section 2 introduces the vari-
abiltiy analysis problem and the model of consumption used in this paper. Sec-
tion 3 discusses the literature on smart meter data analytics. Section 4 describes
our dataset. Section 5 discusses the algorithms that we use to extract such sched-
ules from data. Section 6 presents a discussion of the drivers of variability in
consumption schedules. We conclude in Section 7.

2 Problem statement

In Figure 1 we present a schematic of the methodology and analysis employed
in this paper. We detail each of the components below.

Fig. 1. Schematic of analysis methodology developed in this paper.

Daily schedule model. We observe (multivariate) series of consumption tXdun,
d “ 1, ..., D (days) for individuals n “ 1, ..., N . Following [2] and as described by
each panel in Figure 2, we posit that the daily consumption profile xdptq (also
denoted by xd in this paper) for a given user n and day d may be described by
two quantities: i) the total daily consumption Epdq and ii) the normalized daily
schedule sdptq, with t “ 1, ..., T , with T “ 4ˆ 24 “ 96 (one measurement every
15 minutes for 24 hours in a day):

xdptq “ Epdq ¨ sdptq, (1)

with
řT
t“1 sdptq “ 1. Since it is a measurement of physical energy, Xdptq ě 0,

and the above amounts to taking the L1 norm of xd, Epdq “ ||xd||1. Here we
assume that the magnitude of consumption (the daily total Epdq) is determined
primarily by factors exogenous to the user’s schedule, i.e., weather or appliances.
This paper focuses on studying the schedule component of consumption sdptq.



Fig. 2. Model of individual consumption composed of daily schedules chosen each day.

Alphabet of daily schedules. Using the set of all daily profiles recorded from
the N users, we extract “typical” schedules ŝptq using a clustering methodology.
This step achieves a significant reduction of the data - millions of daily shapes
may be described by using a common set of only a few tens of typical schedules.

Variability and stability benchmarks. One may use the alphabet of sched-
ules extracted in the previous step to concisely describe the temporal sequences
Spdq of days in a user’s consumption where each day assumes one value (“let-
ter”) from the alphabet. This situation is described in Figure 2, where a user’s
consumption schedules over three consecutive days d “ 1, 2, 3 are Sp1q “ 1,
Sp2q “ 2, and Sp3q “ 3. We quantify the variability (or conversely, stability) of
user schedules using several benchmarks under simple assumptions of shape se-
lection, both overall and by day-of-week. For a given user and model of schedule
choice we compute the entropy over the alphabet sequences

S “ ´
ÿ

α

ppαq log ppαq, (2)

and an upper bound Πmax on predictability (the maximum classification perfor-
mance that the best algorithm may achieve) by solving an implicit equation

S “ ´Πmaxlog2Π
max´p1´Πmaxqlog2p1´Π

maxq`p1´Πmaxqlog2pM´1q, (3)

as done in [3], where M is the number of schedules required to describe the given
user. The dependence of S with Πmax is illustrated in the left panel in Figure 4
for different sizes of the alphabet M . A given level of predictability (or stability)
may be achieved by sequences of schedules of increasing entropy whose alphabet
sizes are also increasing, albeit at different rates.

The models of schedule choice that we consider here are as follows:

1. Completely at random: the distribution over alphabet letters α is uniform,
ppαq “ 1

M . Here the entropy is computed as Srand “ log2M .
2. Independent and identically-distributed : the choice of schedules is not corre-

lated in time, but alphabet letters α are distributed i.i.d according to the

frequencies of schedules observed in the dataset, ppαq “ #tSpdq“αu
D . The en-

tropy in (2) may be computed as Suncorr “ ´
ř

α ppαq log2 ppαq.



3. Serially-correlated : the choice of schedules for the next day depends on past
choices. Here the distribution over α in (2) is defined over sequences of sched-
ules. We estimate the entropy in this case using the Lempel-Ziv algorithm [4]

Sfull “
`

1
D

ř

d Λd
˘´1

log2D, with Λd the length of the longest subsequence α
starting at day t which does not appear until time d´ 1.

Drivers of variability. We would like to understand whether certain informa-
tion about the users and their communities may predict consumption variability.
For each of the benchmarks computed above (either overall or by day-of-week)
we separate the users into two classes of stability (either “low” or “high”) based
on a given benchmark quantile Q. We then learn a logistic classification model

yn “ hpzTnθq ` εn, (4)

where yn P tLow,Highu, hp¨q is the logistic link function, zn is a vector of (stan-
dardized) characteristics for user n and their neighborhood, θ is a vector of
coefficients to be estimated, and εn is a normally-distributed error term.

3 Literature review

Existing literature on analysis of smart meter data focuses on forecasting and
load profiling applications. In [5] the authors use 15-minute resolution smart
meter data from „ 200 customers of an utility company in Germany to group
consumers according to their daily consumption profiles; they then develop dif-
ferent pricing schemes for each segment. Similar to our approach, in [6, 7] the
authors describe intra-day consumption through a small number of recurring
profiles. The K-means algorithm is by far the most popular statistical cluster-
ing approach. To populate a dictionary for representative shapes, the K-means
algorithm can be a good starting point as used in e.g., [8]. In [9] the authors
describe a two-stage pattern recognition of load curves based on various cluster-
ing methods including K-Means. [10] compares results obtained by using various
clustering algorithms (hierarchical clustering, K-means, fuzzy K-means) to seg-
ment customers with similar electrical behavior. As an alternative approach to
distance-based clustering, [11] introduces a class of mixture models, random ef-
fects mixture models, with a custom EM algorithm to fit the mixture models.
More recently, [2] develops a customer segmentation methodology that is based
on lifestyle patterns - typical load shapes identified using a K-Means algorithm.

4 Data description

The dataset that we use in this paper consists of an average of 48 months (Jan-
uary 2008 to December 2011) of consumption time series for 30,000 users in
Northern California, along with information about some of their characteristics
(such as education and general geographic location) and interactions with the
utility company. From this dataset we selected 22,963 customers for which we



Table 1. Selected user descriptors

Owners 15003
Renters 7960

High School/Vocational 15374
College 5118
Graduate School 2471

Central Valley 7987
Coast 4515
Inland Hills 10307

Table 2. Selected block characteristics

Min 1st Q Median 3rd Q Max

No. Days: 365 556 745 908 1397
Income($): 2499 46200 72650 92160 250000
Age: 14 31 37 43 81
Housing
Value($):

9999 310800 494400 646700 1000000

No.
Rooms:

2.0 4.4 5.2 6.0 9.0

Fig. 3. Left: Geographic distribution of users colored by median housing value ($);
Right: Distribution of data size (number of days available) across users.

had at least 1 year of energy usage data and who did not change residence during
the selected time window. We further incorporated demographic data from the
US 2006-2010 American Community Survey through its publicly accessible API.

Tables 1 and 2 provide a summary of selected categorical and numeric vari-
ables from user attributes and block-level demographics data used in our anal-
ysis. In addition, in Figure 3 (left panel) we present the geographic distribution
of users color-coded by median housing value. In the right panel in the figure we
present the distribution of data size (number of days available) across users.

5 Clustering daily load profiles

K-Means clustering. We would like to cluster the input multivariate time series
tXdun“1,...,N (after scaling by the daily total energy Epdq) to obtain an alpha-
bet S “ tŝkptqu, k P 1, ...,K of K typical schedules. By far the most popular
“general-purpose” clustering algorithm is K-Means [12], which typically uses an
Euclidean distance between elements in the cluster

dpx,yq “ ||x´ y||2, (5)



where x and y are daily profiles as in Figure 2, i.e., vectors in RT , with T “ 96.
The K-Means algorithm is an iterative procedure to find a local solution to the
optimization problem

min
ÿ

k

ÿ

xjPC‖

dpxj , ckq
2, (6)

where ck P R
T is the center profile of cluster k.

Drawbacks of K-Means. For smart grid applications such as forecasting and
control it is essential to understand the formation of peaks, as they contribute
to much of the environmental and financial costs of energy consumption. In this
context, both timing of peaks and pace of ramping up (or down) are key concepts
- consuming 1 kWh more during 5 minutes in the peak-time at 5 PM is much
more expensive (and polluting) than consuming the same 1kWh over one hour
during the night at 3AM, when aggregate demand is generally low. However the
L2 norm penalizes uniformly the mismatch across time-of-day, and is agnostic of
ramping. In particular, this measure applies a “double-penalty” to profiles that
are only slightly different in timing when peaks occur, such as in the situation
in Figure 4 (right panel). There, profiles S1 (red line) and S2 (green line) have
each a 30-minute peak that is separated by one hour, while profile S3 (blue
line) is flat. Computing the Euclidean distance between the three profiles we
have dpS1, S2q “ 0.006 and dpS1, S3q “ 0.003. Thus, in a clustering application,
K-Means using the L2 norm would rather assign the flat profile S3 in the same
cluster with S1, when in fact S1 and S2 are similar.

Fig. 4. Left: Benchmarks for variability (entropy) and stability (predictability bound
[3]) for different alphabet sizes N ; Right: Sample energy profiles that illustrate the
drawbacks of the Euclidean distance with K-Means.

Accounting for shifting and scaling. A partial solution to the issues raised
above is offered by the K-Spectral Centroids (KSC) algorithm [13]. The algorithm
defines a distance metric between two profiles x and y is defined as

d̂px,yq “ min
α,q

||x´ αyq||

||x||
, (7)



where α is a scaling parameter and yq is a shifted version of y by an amount

q that minimizes the distance d̂. In our implementation we allow for an hour
and 15 minute shift which means that q can be between -5 and 5. The distance
calculation first minimizes (7) with respect to q using a grid-search procedure;
once q is determined the optimal scaling α˚ can be found by setting the gradi-

ent to zero since d̂ is a convex function of yq, yielding α˚ “
xTyq

||yq ||2
. With this

new distance metric, a cluster center is now defined to be the centroid µk that
minimizes µ˚k “ arg min

ř

xiPCk
d̂pxi, µq

2. It is shown in [13] that the solution
to this optimization problem is given by

µ˚k “ arg min
µTMµ

||µ||2
, (8)

where M is a matrix where each row consists of a daily profile in cluster k. The
solution to this minimization problem is the eigenvector µ corresponding to the
smallest eigenvalue λM of matrix M.

Choosing alphabet size. Finding the appropriate value of the number of clus-
ters K in the algorithms above is generally considered an open problem in ma-
chine learning; many techniques have been proposed for that purpose such as the
Average Sihlouette, the Gap Statistic, or Hartigan’s Index [12], [13] that make
different assumptions about the clusters sought. Here we use a much simpler
criterion - we would like to obtain an alphabet of schedules that covers at least
50% of the variance in the data, defined as Coverage “ Between Sum of Squares

Total Sum of Squares . In
our experiments, a value K “ 50 achieves this goal. When comparing the sum of
squared distances between the cluster centers (a popular measure of cluster sep-
aration, the higher the better) for the results obtained with the two algorithms
we obtain 929.98 for KSC and only 56.14 for K-Means, which indicates that KSC

does indeed produce more diverse cluster centers.

6 Variability and its drivers

6.1 An alphabet of schedules

Figure 5 compares 50 shapes that are obtained after clustering the entire con-
sumption data using KSC as discussed above. We implemented KSC in Java on
Amazon’s Elastic MapReduce (EMR) service. The algorithm converged after 30
iterations for K “ 50, and the schedules obtained cover at least 50% of the vari-
ance in the data. The most frequent schedules (C6 and C3) display consumption
activity clustered in the evening. Double-peak schedules (such as C34, C49, C14,
or C17) - which is the default view of consumption at utility companies - cumu-
latively account for only 15% of all consumption. This finding is consistent with
literature values (on much smaller data) [8]. Interestingly, there are quite a few
schedules with pronounced activity mid-day (e.g., C33, C8, C32, C44), which
cumulatively account for about 11% of all consumption.



Fig. 5. 50 centers obtained using KSC (ordered by support in the data).

Fig. 6. Left: Population distribution of the number of typical schedules needed to
achieve a target coverage (50%, 75%, 95%, 100%) of individual daily consumption.

6.2 Benchmarks of stability

Using the schedules alphabet extracted above we investigated the size of the
individual subsets of the alphabet in Figure 5 needed to achieve certain values
of coverage of schedule sequences. We present the calculations in Figure 6. The
distribution plots in the left panel suggest that users will typically follow a re-
stricted subset of schedules most of the time - only „ 15 schedules are enough to
cover 75% of days for most people. Yet there is a difference of about „ 15 sched-
ules going from 95% to 100% coverage, which indicates that “unusual” schedules
are quite different among each other. In the left panel we present the dependence
of the average alphabet size required for given levels of coverage broken down by
weendays and weekends. We observe that weekends will consistently require a
larger number of schedules than weekdays for the same level of coverage, which



is again not surprising - presumably people engage in more diverse activities
during days off than during work days.

Fig. 7. Left: Entropy benchmarks for three models of schedule selection; Middle: pre-
dictability (stability) benchmarks; Right: Distribution of Πmax (under the serial cor-
relations model) by weekend/weekday.

We next computed entropy and stability (predictability) benchmarks as in
Section 2 for each of the 22,963 users in our final sample. In Figure 7 we present
the distribution of entropy S (left panel) and predictability bound Πmax (right
panel) over the entire sample for the three models of schedule choice outlined
in Section 2. In the left panel, from left to right, the density curves are Srand

(uniformly at random schedule selection model), Suncorr (i.i.d. schedule selection
model) and Sfull (the full entropy estimated from sequences of schedules as in
[3]). This is a clear indication that consumption at the individual level is not
purely random, since in general Suncorr ă Srand. Moreover, schedule decisions
in the present depend on decisions in the past (i.e., there is information in the
temporal sequences of schedules), since overwhelmingly Sfull ă Suncorr.

Computing Πmax (middle panel in the figure) we observe, as expected, that
predictability is highest when accounting for temporal correlations in daily sched-
ule selection across time. However for most individuals we have Πmax „ 55%,
i.e., we may hope to correctly predict the type of schedule followed by the typi-
cal person only around 55% of the time. This suggests that even if there are in
general only a small number of typical schedules in our alphabet S, consumption
is still volatile because of heterogeneity in how users select among these daily
schedules over time. In turn, this suggests that attempting to forecast daily
schedules for individuals may be inherently difficult, and motivates our future
work on understading how widely variable schedules aggregate to stable averages
for even small, geographically-homogenous groups. A surprising observation can
be made looking at the right panel in Figure 7: while consumption on weekends
follows a larger set of schedules as discussed above, it is on average at least
as predictable (or more) than that on weekends. This indicates that temporal
correlations do play a role in determining choice of weekend consumption.



6.3 Drivers of stability

We learned a logistic regression model (4) that classified users into low or high
classes on the predictability benchmark. Significant regression coefficients (at
least at the 0.05 level on the t-test) are presented in Figure 8 for user-level
attributes (left panel) and neighborhood-level characteristics (right panel) for a
tLow,Highu breakdown corresponding to Q “ 0.5 (median).

Among the most important drivers of schedule stability is the climate zone
- in particular the hot zone W (Central Coast). Users in this climate zone will
likely have a large AC (cooling) component in their consumption, which may
give rise to regular afternoon consumption. Perhaps unsurprisingly, when people
rent their consumption is less predictable - e.g., because owners will tend to be
more responsible with their consumption when they pay for their own utility
bills. Engagement with the utility (as indicated by the number of interactions
or complaints - “tickets” generated) does correlate with users being more pre-
dictable. Education plays a small role, too - the less educated users (having only
a high-school degree) will tend to consume less predictably. Whether the user
has applied for efficiency-motivated rebates (“Appliances”, “HVAC”, “Lighting”
etc. in Figure 8) - which again may be interpreted as indication of interest in
energy use - does have a moderate, but significant effect on schedule predictabil-
ity. Yet we note that frequent interaction with the utility (number of “tickets”)
is a much stronger indicator of stability.

The most important neighborhood-level driver of stability is the median
house value - the richer the neighborhood, the more predictable schedules its
inhabitants follow. This enforces the observation before about the effect of ed-
ucation - in the Bay Area (as in may other regions in the U.S.) typically more
educated people will tend to live in richer neighborhoods that have higher prop-
erty values. The next important predictor is house size - houses with 5 bedrooms
and more will have more predictable consumption. This is surprising - rules of
thumb used in practice suggest that more occupants will yield a more volatile
aggregate consumption. Similarly, the more likely the house is to use natural gas
as heating source, the more predictable its energy use will be. Understandably,
the more people pay for rent (either in absolute terms or as fraction of income),
the more stable their consumption will be - presumably because they use fewer
appliances that contribute to volatility.

An illustration of the robustness of the regression results is summarized in
Figure 9. The left panel illustrates the Receiver Operating Characteristic (ROC)
curve for the logistic regression used as classifier (the tuning parameter is the
probability threshold separating the two classes). We show curves for the overall
stability estimates, as well as for Tuesdays and Saturdays. All classifiers achieve
better than random performance since the curves are above the diagonal line in
the ROC space. Interestingly, the classifier performs better (larger area under
curve) on full sequences (as opposed to on a by-day basis), which indicates that
the rather general characteristics we employed do not hold enough discriminative
power to resolve finer distinctions such as weekday/weekend stability.



Fig. 8. Regression results: user (left) and neighborhood features (right).

Fig. 9. Classification robustness. Left: ROC curves for full series, Tuesdays, and Satur-
days; Right: Robustness of coefficient estimates for different thresholds Q of stability.

In the right panel we show the behavior of coefficient estimates for several
selected variables (with high contributions at Q “ 0.5) as the definition of the
tLow,Highu stability classes is changed by varying Q from 0.25 to 0.75 (the
inter-quartile range of Πmax). Note that most variables maintain their relative
magnitude relationship, which indicates that strong effects are generally well re-
solved. House Value gains in importance as the high predictability class contains
more of the more stable users.

7 Conclusions

We have developed a methodology for analyzing variability in energy consump-
tion based on identifying recurring patterns in users’ daily schedules. We learned
an alphabet of shapes from a large sample of 22,963 CA users comprised of
„ 17M daily load profiles and used it to characterize choice of schedules. Using
demographic data, we have identified key neighborhood and individual charac-



teristics that determine consumers’ predictability. We are currently developing
a more natural clustering algorithm for consumption profiles, as well as a para-
metric model of schedule selection that incorporates temporal correlations.
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