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Chapter 1

Introduction

Traditionally, machine learning has been concerned with univariate, unstructured problems.
Whether it is predictions in a discrete output space (classification) or the continuous domain
(regression), most machine learning techniques ignore the structure present in many real-
world problems.

In this thesis we consider settings in which the output space has structure. Specifically,
we assume that we know what constraints need to be satisfied in our predictions, and seek to
learn the parameters of an objective function, which will produce a desired output. To do that
we view the prediction task as an optimization problem, with a convex objective and convex
constraints. That gives rise to an efficient convex optimization formulation of the learning
problem. We consider both discrete and continuous outputs, and show experimentally that
our Inverse Convex Optimization (ICO) method is able to exploit structure and perform
better than traditional approaches.

Many important real-world problems, in a variety of domains, can be viewed as convex
optimization problems. Tasks such as resource allocation, portfolio optimization, graphical
model inference, scheduling, matching problems, and many others have natural formulations
convex optimization problems. Non-convex problems, or even NP-hard problems, such as the
travelling salesman, clustering, maximum-cut, and others have convex optimization relax-
ations which are useful in finding near-optimal solutions. Furthermore, recent developments
in convex optimization [5] have led to numerical optimization algorithms which are not only
applicable to a wider range of problems than was previously possible, but are efficient, reli-
able and enjoy strong theoretic guarantees. Such algorithms have made convex optimization
problems even more attractive.

In many cases, however, the formulation of a particular task as an optimization problem
is far from obvious. While one can usually narrow down their formulation to a parametric
family, such as a linear or quadratic function, the quality of the solution depends critically
on the choice of weights which define the optimization objective. Constructing and tuning
the weights for a problem is a difficult and time-consuming process. This process is often
done manually, with people tuning the objective weights until their optimal solution satisfies
some goodness criteria.

In such settings one often has prototypical examples of a “goal” solution: an input x

and output y, such that the convex optimization formulation should produce the output y,
or something close to it when its input is x. In those cases the general-purpose algorithm
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proposed here, Inverse Convex Optimization, can be used to learn a set of parameters that
would make the output y optimal. When the input x captures important properties of the
setting in which the optimization problem is applied, the parameters our method learns can
generalize to similar settings, where the output should exhibit similar dependence on the
input.

We take a discriminative maximum-margin approach to the task of Inverse Convex Op-
timization, and end up with efficient formulations for both combinatorial and continuous
problems. The maximum-margin framework is a natural extension and generalization of
many of the ideas in [24], [23], [25]. The optimization problems we define are convex and
thus solvable efficiently and reliably using a variety of methods. Furthermore, we gain sig-
nificant advantage by directly representing the prediction problem as a convex optimization
problem, and modeling the constraints that must be present in its output space. For com-
binatorial problems we show a concrete application of our framework in associative Markov
networks, and for continuous problems we provide experimental results on the task of in-
verse portfolio optimization. In both cases we show that our structured learning approach
outperforms traditional techniques which ignore structure.
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Chapter 2

Inverse Convex Optimization

2.1 Introduction

A variety of practical computational problems can be viewed as combinatorial optimization
problems, including weighted bipartite matching, data clustering, and travelling salesman
problems.For example, consider the task of clustering data points into coherent subsets.
Given a set of weights denoting the similarity of different pairs of data points, we can
formulate the clustering task as an optimization problem involving these weights. As another
example, the task of assigning reviewers to papers can be formulated as a bipartite matching
problem, given a set of weights denoting the “expertise” of each reviewer for each paper.

Often, however, the formulation of a particular task as an optimization problem is dif-
ficult. In both of the examples above, the quality of the solution found depends critically
on the choice of weights. Constructing and tuning the weights for a problem is a difficult
and time-consuming process. This process is typically done manually, where people tune the
weights to try and make their algorithm return some desired “goal” solution. In this paper,
we propose a general-purpose algorithm, inverse convex optimization (ICO), that precisely
substitutes for the manual process, by automatically training the weights of an optimization
algorithm to fit a desired target output. The input to our algorithm is a set of problem
instances {I}, each with its target solution ŷ[I]. The algorithm then learns a set of parame-
ters such that, when optimizing each instance I, the optimal solution is ŷ[I], with maximum
confidence.

The general framework we propose can be applied to learn the parameters of a wide range
of convex optimization problems in polynomial time, including bipartite matching, max flow,
and finding the most probable assignment for any graphical model of bounded tree width, or
for any probabilistic context-free grammar. In addition, many NP-hard problems, including
many relaxed integer programming formulations for combinatorial optimization problems,
such as clustering and travelling salesman, can be solved approximately in polynomial time
by convex optimization. In such cases, our framework approximately learns the parameters of
these approximation algorithms. In general, our framework effectively optimizes the weights
for the algorithm that is used ultimately to perform the task. Thus, it has the effect of
guiding the algorithm actually used towards the desired behavior.

5



2.2 Convex optimization problems

Many important problems can be solved by maximizing a concave function over a convex
set. Consider for example the problem of assigning reviewers to papers at a conference,
as described in Sec. 2.1. More specifically, suppose we would like to have m reviewers per
paper, and that each reviewer be assigned at most k papers. For each paper and reviewer,
we have an affinity metric cij indicating the qualification level of reviewer i for evaluating
paper j. Our objective is to find an assignment for reviewers to papers that maximizes the
total affinity.

This task is an instance of the general bipartite matching problem, which is most naturally
formulated as an integer program (IP), where the variables, yij ∈ {0, 1}, take value 1 if
reviewer i is assigned to paper j, and 0 otherwise. Unfortunately, IP problems are, in
general, NP-hard. In our setting, we can relax the integrality constraint by restricting each
yij to the interval [0, 1]. This relaxation leads to a linear programming (LP) formulation:

max
∑

i,j

cijyij

s.t.
∑

i

yij = m,
∑

j

yij ≤ k, yij ∈ [0, 1]. (2.1)

Importantly, despite the relaxation, this LP always leads to integral assignments[19] to
the variables yij, allowing us to solve the matching problem optimally, in polynomial time.

Bipartite matching is an example of a combinatorial optimization problem whose linear
relaxation leads to an exact convex optimization formulation that can be solved efficiently.
There is also a multitude of practical problems that are most naturally formulated as con-
tinuous convex optimization formulations. For example, consider the classical problem of
Markowitz portfolio optimization [16]. Assume we have a set of N assets, whose returns (the
relative increases in asset value) are uknown random quantities. We can estimate the mean
return ri of each stock, as well as the overall covariance of all returns Q (where Qi,j is the
covariance of the rerturns of assets i and j.) Intuitively, an investor would like to find an
allocation of their wealth to these assets, which maximizes the expected return while keeping
risk low. For an investor with a utility function of the form u(x) = 1 − exp(−κx), where
κ is a risk-aversion constant, it can be shown (Sec. 4.3) that the optimal expected utility
portfolio can be found by solving the following quadratic program with linear constraints:

max
∑

i

riyi −
κ

2

∑

i,j

yiyjQi,j

s.t.
∑

i

yi = 1, yi ≥ 0

(2.2)

Above, yi are the fractions of the portfolio allocated to each stock, and the positivity
constraint represents the assumption that no short-selling is allowed (i.e., we cannot sell
assets we do not own).
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More generally, we consider optimization problems over a vector of variables y that
maximize a concave function f(y) over a convex set Y. This convex set is often best described
by inequality constraints g(y) � 0, where � generalizes the inequality constraints used in
LPs to the more general matrix inequalities, used, for example, in semi-definite programming
(SDP). We can now present the general convex optimization problem:

max f(y)

s.t. g(y) � 0, (2.3)

where we assume that this problem is convex, strictly feasible and bounded [5]. This for-
mulation represents a very general class of problems that can be solved in polynomial time,
including bipartite matching, min-cut, shortest path, and max-flow. In addition, such convex
formulations allow us to obtain approximate solutions for many NP-hard problems, including
many relaxed integer programming formulations for combinatorial optimization problems,
such as clustering and travelling salesman. (See [19, 5, 1] for more details on optimization.)

2.3 ICO Learning

In the reviewer assignment problem described in the previous section, we assumed a known
compatibility function cij between reviewers and papers. In general, this function is not
known a priori. In such cases, the user typically picks a parametric form for this function.
In the assignment problem, for example, we can pick features that depend on the words on
the paper and on those on the reviewer’s home page. The set of weights of this paramet-
ric function are then “tuned” until the desired output is obtained. Similarly, in portfolio
optimization, we could parameterize the means and covariances of asset returns by a set of
features. For example the features could include the observed means and covariances based
on information in different past periods. If we are then presented with examples of portfolio
allocations to a set of stocks, we can learn the weights associated with the features, such the
solutions of the portfolio optimization problem (Eq. (2.2)) will produce the sample portfolio
allocations.

In this section, we present an algorithm that automatically learns the weights of such
objective function from examples of successfully optimized problems, e.g., the reviewer as-
signment in previous conferences, or previous portfolio allocations of an investor.

2.3.1 Definition

More formally, we consider optimization tasks that take a problem instance I, associated
with some set of features X[I], and need to produce an output ŷ. The objective function
for this problem f(y) is defined in terms of the features X[I], and parameterized by a set
of weights w. Specifically, we define our parameterized objective function fw as a linear
combination of subfunctions weighted by the parameters w:

fw(X,y) =
∑

i

wifi(X,y).
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In order for fw to be concave, we need, for each i, either that fi is concave in y and wi ≥ 0, or
that fi is linear in y (in which case wi can be unconstrained). Often, the objective is simply
a linear function in y and w: fw(X,y) = w>Xy. In our matching example, fw decomposes
linearly in yij, and the cij is defined by a linear combination of features of the papers and
reviewers. In the portfolio optimization example, the covariance matrix of asset returns can
be represented as a positive linear combination of a set of feature matrices, whereas the
means of the returns will be a linear combination of a set of feature vectors.

Using this formalism, we define the inverse convex optimization (ICO) problem that
seeks to learn weights w such that ŷ optimizes fw(X,y). Specifically, the input to our
learning algorithm is a set of pairs (X[I], ŷ[I]), where I is an instance of our optimization
task associated with a set of features X[I], and ŷ[I] is the target output (solution) for this
instance over the convex set g(X,y) � 0. (For simplicity of notation, we omit the instance
I, when it is clear from the context.) Our goal is to find a setting w∗ to the parameters such
that maximizing fw∗(X,y) over the convex set will produce the desired target output ŷ[I]:

ŷ ∈ argmax
y: g(X,y)�0

fw∗(X,y).

The above requirement can be seen as a set of strict inequalities:

fw∗(X, ŷ) > fw∗(X,y), ∀y : y 6= ŷ, g(X,y) � 0

In other words, we require that the value of the convex optimization problem objective
at ŷ is strictly greater than the value of all other feasible y. Unfortunately, dealing with a
potentially infinite set of strict inequalities is not easy. We define a loss function `(y, ŷ),
which is strictly positive, except when y = ŷ in which case it equals 0.

`(y, ŷ) =

{

0 if y = ŷ

> 0 otherwise.

We can then transform the strict inequalities to a more manageable form:

fw∗(X, ŷ) ≥ fw∗(X,y) + `(y, ŷ), ∀y : g(X,y) � 0

In their current form, the above set of constraints relies on the loss function to achieve
the strict inequality of all y which are different from the desired output ŷ. Thus, a set of
weights w∗ which satisfies the potentially infinite set of inequalities will be guaranteed to
produce the output ŷ. Note that the above set of constraints is equivalent to:

fw∗(X, ŷ) ≥ max
y: g(X,y)

fw∗(X,y) + `(y, ŷ)

In order to formulate a concrete learning problem, we adopt a maximum margin frame-
work, where we maximize the “confidence margin” in the target output relative to other
possible outputs. Furthermore, we might often want to ensure that an output y′ that is
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very different for ŷ leads to an objective value fw∗(X,y′) that is significantly lower than
fw∗(X, ŷ). We can achieve this by requiring that the loss function `(y, ŷ) correspond to the
“distance” between y and ŷ. The margin of confidence γ should then grow as y becomes
more distant from ŷ, which we formulate as γ`(y, ŷ). In the maximum margin Markov
networks framework of Taskar et al. [24], for example, `(y, ŷ) corresponds to the Hamming
distance between y and ŷ, and the margin must grow with the number of entries y assigns
differently from ŷ. As will be discussed later, we require that the loss function is concave in
y, to ensure the convexity of the formulation.

We can now define our complete ICO formulation:

max
γ,w: ‖w‖≤1,w≥0

γ

s.t. fw(X, ŷ) ≥ max
y: g(X,y)�0

fw(X,y) + γ `(y, ŷ). (2.4)

Note that the non-negativity constraint on w may sometimes not be present or only present
for a subset of the weights.

2.3.2 Duality

By solving the ICO, we obtain weights w∗ that guarantee that ŷ is the optimal solution to
the objective function with maximum confidence γ∗. This ICO formulation is convex, and
can be solved by existing interior point methods [5]. However, the maximization term in
the constraints of the ICO formulation is usually not differentiable, which hinders the use
of standard convex optimization packages to solve this problem. Efficient optimization is
sometimes possible, especially using cutting-plane methods ( [4], [1], Sec. 4.3.4), but the
efficiency depends largely on particular features of the maximization problem which are not
generally present. In order to derive a general formulation, we use techniques from duality
theory, to convert the ICO problem in a standard form.

First, consider the Lagrangian of the convex maximization problem present in the con-
straints of the above formulation:

Lw,γ(X,y, z) = fw(X,y) + γ`(y, ŷ) − z g(X,y), s.t. z � 0. (2.5)

We can now define the dual problem in terms of the solution to the primal problem:

hw,γ(X, z) = max
y

fw(X,y) + γ`(y, ŷ) − z g(X,y), s.t. z � 0. (2.6)

As the primal problem is convex, feasible, and bounded, there is no duality gap [5], and
thus:

min
z:z�0

hw,γ(X, z) = max
y: g(X,y)�0

fw(X,y) + γ `(y, ŷ).

Furthermore, from weak duality we know that any feasible dual variables z will produce
a dual objective value hw,γ which upper bounds the primal constraint objective fw(X,y) +
γ`(y, ŷ). Therefore we can use the dual formulation in place of the primal one in the
constraints for the ICO in Eq. (2.4). In other words, we can replace the maximization
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problem in the constraint with simply the value of its dual objective, along with feasibility
constraints for the dual variables.

max
γ,w: ‖w‖≤1,w≥0

γ

s.t. fw(X, ŷ) ≥ hw,γ(X, z), z � 0. (2.7)

This new formulation is equivalent to the original one since we established that hw,γ(X, z) ≥
maxy: g(X,y)�0 fw(X,y)+γ `(y, ŷ). Because the only constraints on the dual variables is their
feasibility, the optimization of Eq. (2.7) can modify their values until they produce the op-
timal dual value, which is possible because there is no duality gap. If at the optimum of
Eq. (2.7) the dual variables of the constraint are not optimal for hw,γ(X, z), then note that
the solution is still feasible in Eq. (2.4), and hence optimal. This is formalized below:

Theorem 2.3.1 The optimization problem Eq. (2.7) is jointly convex in γ, w and z. Fur-
thermore, let (γ∗,w∗, z∗) be an optimal solution to this problem, then (γ∗,w∗) is an optimal
solution to the ICO formulation in Eq. (2.4).

Proof Showing convexity is straightforward. The non-negativity and norm constraints on
w are convex. fw(X, ŷ) is linear in w by assumption, and from the convexity of fw(X,y),
it follows that hw,γ(X, z) is concave in z. Also the objective is linear in γ.

We want to show that if (γ∗,w∗, z∗) is an optimal solution to the problem, then (γ∗,w∗)
is an optimal solution to Eq. (2.4). Since fw and ` are concave, and g is convex, from weak
duality we know that:

∀z � 0 : hw,γ(X, z) ≥ max
y: g(X,y)�0

fw(X,y) + γ `(y, ŷ).

In other words, for any feasible z, the dual objective of the maximization problem in the
constraint, hw,γ, will be an upper bound on the primal constraint objective . z∗ is feasible for
hw,γ (z � 0 is one of the constraints in Eq. (2.7), therefore (γ∗,w∗) is feasible for Eq. (2.4),
and hence optimal.

It is important to note that the dualization trick above leads to a closed-form analytic
constraint, which does not involve maximization, only when the maximization w.r.t. y in
Eq. (2.6) can be carried out in closed form. If that is not the case, then hw,γ involves a
maximization term, and the formulation Eq. (2.7) has no obvious computational advantages
to the one in Eq. (2.4). Also note that even in the cases when we are able to carry out
the maximization in Eq. (2.6) in closed form, there may be an additional set of constraints
that are produced as a result. For example typically the maximization is done by explicitly
setting a gradient to 0, which naturally leads to additional constraints on the primal variables.
Examples of that can be seen in AMNs, and the Markowitz portfolio optimization application
of ICO (Chapter 3, Chapter 4).
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2.3.3 Separability

Often, it is not possible to guarantee that every training instance I can be optimized suc-
cessfully by the chosen convex optimization problem. In such settings, we can add slack
variables ξI for each instance I that allow some problems to be optimized with lower con-
fidence margin. The optimization problem then balances maximizing the margin against
minimizing these slacks, using a penalty constant C. Our final formulation, in addition to
including slack variables, uses standard manipulations, such as the ones used in SVMs ([10]),
to transform maximizing the margin to minimizing the norm of the weights:

min
w,z: w≥0

1

2
‖w‖2 + Cξ

s.t. fw(X, ŷ) ≥ hw(X, z) − ξ, z � 0, ξ ≥ 0. (2.8)

2.3.4 Multiple Training Examples

Typically, one has a set of training examples {(Xi, ŷi)}. To extend the above formulation,
we simply reuse the dualization trick for each training instance and add a separate slack
variable with non-negativity constraints.

min
w,z: w≥0

1

2
‖w‖2 + C

∑

i

ξi

s.t. fw(Xi, ŷi) ≥ hw(Xi, zi) − ξi, zi � 0, ξi ≥ 0 ∀i. (2.9)

2.4 Conclusion

We now have a complete framework for Inverse Convex Optimization: We first defined
the objective function of our task in terms of features of the training instances. We then
formed the optimization problem for the ICO task, which featured a margin scaled by the
loss function, as well as maximization constraints. Finally, we dualized this optimization
problem, to formulate the ICO problem in Eq. (2.8). The benefit of the dualization is that
it is possible to use standard solvers to learn the parameters of our optimization problem.
Once we have learned the parameters, we use the features of a new instance to define the
objective function of a solution algorithm for this new instance.

The framework relies only on the convexity of the optimization problem, for which we
would like to learn the weights, as well as our ability to define a concave loss function which
distinguishes between correct and incorrect outputs y. Thus it has the potential of being
applicable to a very wide range of convex optimization problems.

A number of existing maximum-margin algorithms can be seen as instances of the ICO
framework. For example maximum-margin learning in structured output spaces, such as con-
text free grammars [25], tree structured Markov networks [24], arbitrary topology associative
Markov networks [23] follow the same framework of maximizing the margin of confidence and
using duality and problem structure to efficiently formulate a convex optimization problem
for the learning task.
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In the next chapters we will see how this technique can be applied to both combinatorial
optimization problems like MAP inference in a subclass of graphical models called associative
Markov networks, and to continuous problems like Markowitz portfolio optimization.
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Chapter 3

Combinatorial Inverse Convex

Optimization

In this chapter we will focus on an important subclass of convex optimization problems:
combinatorial optimization problems, where the output space can be represented as a set of
binary assignments, usually under some constraints Y.

y ∈ {0, 1}n, y ∈ Y (3.1)

Typically Y is a set of linear or semi-definite constraints, but the methods we develop
will not explicitly depend on that. We will only require that the combinatorial problem can
be solved exactly or approximately via a convex optimization formulation, which is true for
a number of interesting problems such as mincut, matching, clustering, and others. We show
a concrete example of an ICO formulation with Associative Markov Networks [23].

3.1 Loss Function

Recall the ICO formulation for convex optimization problems:

min
w,z: w≥0

1

2
‖w‖2 + Cξ

s.t. fw(X, ŷ) ≥ max
y: g(X,y)�0

fw(X,y) + `(y, ŷ) − ξ

In this chapter, we have already restricted our attention to convex relaxations of com-
binatorial problems, but to ensure the convexity of the final ICO problem, we still need to
define a concave loss function `(y, ŷ). Specifically, the loss function must have the value 0
when y = ŷ, and be strictly positive when y 6= ŷ. Since we assumed that combinatorial
problems have outputs y ∈ {0, 1}, a natural choice for a loss function is Hamming distance,
or the number of different “bits” between y and ŷ. Such a loss function will have the addi-
tional desirable property that its value will grow as y moves further away from ŷ. The effect
of that will be that the weights we learn will have the property that the convex optimization
objective they define, fw(X,y), will tend to be much more “confident” in the true output ŷ

as compared to a distant output y, since it value will be proportionally higher.
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Let e denote a vector of ones. We show that it can be expressed as a linear function.
Consider:

`(y, ŷ) = (e − ŷ)>y + (e − y)>ŷ (3.2)

= (e − 2ŷ)>y + e>ŷ

First, notice that `(y, ŷ) is linear, and hence concave in y, which was required by ICO.
Assuming y and ŷ are both bit vectors, the first term counts the number of entries which
are equal to 0 in ŷ and equal to 1 in y and the second term counts the number of entries
which are equal to 1 in ŷ and equal to 0 in y. With the concave Hamming loss in place, the
ICO formulation for combinatorial problems is complete. We have:

min
w,z: w≥0

1

2
‖w‖2 + Cξ

s.t. fw(X, ŷ) − e>ŷ + ξ ≥ max
y: g(X,y)�0

fw(X,y) + (e − 2ŷ)>y

In some applications it may be desirable to define the Hamming loss only on a subset of
the output y. Also, if the constraints on the output space are such that one bit determines
a set of other bits (for example due to a summation constraint), that should be taken into
account. We will see such an example in Associative Markov Networks (see Sec. 3.4.3)

The use of Hamming distance as the loss function seems like a natural choice when
working in bit-space, but it also has advantageous theoretical properties. In [24] Taskar et
al.show that in learning Markov Networks of fixed tree-width the use of Hamming distance
to scale the margin leads to a novel bound on sample complexity.

3.2 Integer Programming and Linear Relaxations

While our framework applies to general convex relaxations of combinatorial problems, most
often combinatorial problems are solved via linear relaxations. In this section we will char-
acterize such relaxations precisely, and give conditions under which they are exact.

Many combinatorial problems can be solved via integer programming (IP), which is in
general NP-hard [19], but can be solved exactly or approximated closely in certain cases.
Because integer programming is not convex, it does not fit in the ICO framework, but as
we will see its relaxation to a linear program can sometimes be used instead, leading to a
convex formulation. In this section we will discuss conditions, under which an integer linear
program can be solved exactly via a linear program.

As a running example consider a classic combinatorial optimization problem: bipartite
matching. As a concrete application consider the task of assigning reviewers to papers at a
conference (Chapter 2). The problem can be formulated as an integer linear program:

max
∑

i,j

cijyij (3.3)

s.t.
∑

i

yij = m,
∑

j

yij ≤ k, yij ∈ {0, 1}.
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Clearly the formulation in Eq. (3.3) is not convex due to the integer restriction of vari-
ables, but its linear relaxation is guaranteed to produce integral solutions [19].

max
∑

i,j

cijyij (3.4)

s.t.
∑

i

yij = m,
∑

j

yij ≤ k, yij ≥ 0, yij ≤ 1.

More generally consider a linear program of the form:

max c>y (3.5)

s.t. Ay ≤ b, y ≥ 0

It is useful to be able to characterize when the LP in Eq. (3.5) will produce integral
solutions. In general there is no complete condition for that, but there is an important
subclass of LPs, for which we can show integrality. In order to do that we need to define the
concept of a totally unimodular matrix.

Definition 3.2.1 A matrix A is totally unimodular if the determinant of each square sub-
matrix of A is either 0, −1, or +1.

Theorem 3.2.2 Let A be an integer m × n matrix, and let F = {y | Ay ≤ b, y ≥ 0} be
nonempty. Then A is totally unimodular if and only if for each integer vector b the region
F has integer vertices.

Proof See [19].

Since the solution of an LP lies at the vertices of the polyhedron, Theorem 3.2.2 implies
that Eq. (3.5) will always produce integer solutions if A is totally unimodular, and b is
integer.

Unfortunately, determining whether a matrix is totally unimodular is not always an easy
task. Sometimes it is straightforward to verify (for example in network flow problems), but
generally the only complete way of determining total unimodularity is to actually evaluate
the determinant of all square submatrices, which is clearly intractable when the matrix is
large. In fact, determining total unimodularity is known to be NP-hard [19].

In many cases, however, it is possible to show that a linear program will yield integer so-
lutions. Going back to our example of bipartite matching, the constraint matrix in Eq. (3.4)
can be shown to be totally unimodular since it is an instance of a network node-arc inci-
dence matrix, which is known to be totally unimodular [19]). Thus, the solutions of the
LP will always be the same as the solutions of the integer program in Eq. (3.3). Other
important problems which yield integral linear relaxation include various flavors of network
flow problems.
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Sometimes a linear relaxation of an integer linear program will not produce integer so-
lutions. In those cases the linear relaxation will have an optimal objective which is greater
than that of the corresponding integer program, since its feasible set is a superset of the
feasible set of the integer program. Still, we may be able to prove that the solution of the LP
will be within a certain relative error from the optimal IP solution, which can give us some
degree of confidence that it is a good approximation. In those cases the linear relaxation
can still be used to formulate a combinatorial ICO problem, and even though it will lack
guarantees, it may perform well in practice.

3.3 ICO for Combinatorial LP Problems

We can now define the complete ICO formulation for (exact or approximate) linear relax-
ations of combinatorial problems. Let X be a matrix of features (for a concrete example
of what features may look like see Sec. 3.4), so that the combinatorial problem, given the
weights w can be solved as:

max w>Xy (3.6)

s.t. Ay ≤ b, y ≥ 0

The complete ICO QP is then:

min
w,z: w≥0

1

2
‖w‖2 + Cξ

s.t. w>Xŷ − e>ŷ + ξ ≥ max
y: Ay≤b, y≥0

w>Xy + (e − 2ŷ)>y

From LP Duality ([3]) we know that the dual of the LP in the constraint is:

min b>z

s.t. A>z ≥ X>w + (e − 2ŷ), z ≥ 0

We can now plug in the value of the dual to obtain the final form:

min
w,z: w≥0

1

2
‖w‖2 + Cξ

s.t. w>Xŷ − e>ŷ + ξ ≥ b>z

A>z ≥ X>w + (e − 2ŷ), z ≥ 0

Assuming a polynomial sized matrix A the above formulation has a polynomial number
of constraints, and therefore can be solved in polynomial time using standard methods ([3]).

In the cases when the LP in Eq. (3.6) produces integral solutions, the formulation is
exact. In cases where it isn’t the optimal value of Eq. (3.6) may be greater than the optimal
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Figure 3.1: Exact and approximate constraints on the max-margin ICO formulation. The
solid red line represents the constraints imposed by integer y’s, whereas the dashed blue line
represents the stronger constraints imposed by the larger set of fractional y’s. The fractional
constraints may coincide with the integer constraints in some cases, and be more stringent
in others. The parabolic contours represent the value of the objective function 1

2
‖w‖ + ξ.

value of the integer program it relaxes (since its feasible set is a superset of the feasible set
of the IP), and thus the constraints in Eq. (3.7) and Eq. (3.7) are potentially tighter than
necessary (see Fig. 3.1). In other words, every setting of the weights w which produces
fractionaly solutions will have tighter constraints, and the optimal solution of the LP will
be better than all integer solutions, including the true one: ŷ, which will inevitably result
in a higher slack ξ. Because the objective of Eq. (3.7) includes a slack penalty, minimizing
it should also be expected to produce w which tend to lead to optimal integer solutions.

3.4 Associative Markov Networks

MAP inference in associative Markov networks [23] is an example of a combinatorial problem,
whose linear relaxation yields integer solutions and is thus amenable to the ICO technique.
In this section we will describe the inference problem and the corresponding ICO formulation
in detail. First, we briefly review Markov networks, and then we define associative Markov
networks and prove important properties of the linear relaxation to the MAP inference
problem.

3.4.1 Markov Networks

We restrict attention to networks over discrete variables Y = {Y1, . . . , YN}, where each vari-
able corresponds to an object we wish to classify and has K possible labels: Yi ∈ {1, . . . , K}.
An assignment of values to Y is denoted by y. A Markov network for Y defines a joint
distribution over {1, . . . , K}N .

A Markov network is defined by an undirected graph over the nodes Y = {Y1, . . . , YN}.
In general, a Markov network is a set of cliques C, where each clique c ∈ C is associated
with a subset Yc of Y. The nodes Yi in a clique c form a fully connected subgraph (a clique)
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in the Markov network graph. Each clique is accompanied by a potential φc(Yc), which
associates a non-negative value with each assignment yc to Yc. The Markov network defines
the probability distribution:

Pφ(y) =
1

Z

∏

c∈C

φc(yc)

where Z is the partition function given by Z =
∑

y′

∏

c∈C φc(yc
′).

For simplicity of exposition, we focus most of our discussion on pairwise Markov networks.
We extend our results to higher-order interactions in Sec. 3.4.2. A pairwise Markov network
is simply a Markov network where all of the cliques involve either a single node or a pair of
nodes. Thus, in a pairwise Markov network with edges E = {(ij)} (i < j), only nodes and
edges are associated with potentials φi(Yi) and φij(Yi, Yj). A pairwise Markov net defines
the distribution

Pφ(y) =
1

Z

N
∏

i=1

φi(yi)
∏

(ij)∈E

φij(yi, yj),

where Z is the partition function given by Z =
∑

y′

∏N
i=1 φi(y

′
i)
∏

(ij)∈E φij(y
′
i, y

′
j).

The node and edge potentials are functions of the features of the objects xi ∈ <dn and
features of the relationships between them xij ∈ <de . In hypertext classification, xi might
be the counts of the words of the document i, while xij might be the words surrounding the
hyperlink(s) between documents i and j. The simplest model of dependence of the potentials
on the features is a log-linear combination: log φi(k) = wk

n · xi and log φij(k, l) = wk,l
e · xij,

where wk
n and wk,l

e are label-specific row vectors of node and edge parameters, of size dn and
de, respectively. Note that this formulation assumes that all of the nodes in the network
share the same set of weights, and similarly all of the edges share the same weights.

We represent an assignment y as a set of K · N indicators {yk
i }, where yk

i = I(yi = k).
With these definitions, the log of conditional probability log Pw(y | x) is given by:

N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

(ij)∈E

K
∑

k,l=1

(wk,l
e · xij)y

k
i y

l
j − log Zw(x).

Note that the partition function Zw(x) above depends on the parameters w and input
features x, but not on the labels yi’s.

For compactness of notation, we define the node and edge weight vectors wn = (w1
n, . . . ,w

K
n )

and we = (w1,1
e , . . . ,wK,K

e ), and let w = (wn,we) be a vector of all the weights, of size
d = Kdn+K2de. Also, we define the node and edge labels vectors, yn = (. . . , y1

i , . . . , y
K
i , . . .)>

and ye = (. . . , y1,1
ij , . . . , y

K,K
ij , . . .)>, where y

k,l
ij = yk

i y
l
j, and the vector of all labels y = (yn,ye)

of size L = KN + K2|E|. Finally, we define an appropriate d × L matrix X such that

log Pw(y | x) = w>Xy − log Zw(x).

The matrix X contains the node feature vectors xi and edge feature vectors xij repeated
multiple times (for each label k or label pair k, l respectively), and padded with zeros ap-
propriately.
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3.4.2 MAP Inference and Associative Markov Networks

A key task in Markov networks is computing the MAP (maximum a posteriori) assignment
— the assignment y that maximizes log Pw(y | x). It is straightforward to formulate the
MAP inference task as an integer linear program: The variables are the assignments to the
nodes yk

i and edges y
k,l
ij which must be in the set {0, 1}, and satisfy linear normalization

and agreement constraints. The optimization criterion is simply the linear function w>Xy,
which acorresponds to the log of the unnormalized probability of the assignment y.

In certain cases, we can take this integer program, and approximate it as a linear program
by relaxing the integrality constraints on yk

i , with appropriate constraints. For example,
Wainwright et al.[29] provides a natural formulation of this form that is guaranteed to
produce integral solutions for triangulated graphs.

We now describe one important subclass of problems for which the above relaxation is
particularly useful. These networks, which we call associative Markov networks (AMNs),
encode situations where related variables tend to have the same value.

Associative interactions arise naturally in the context of image processing, where nearby
pixels are likely to have the same label [2, 7]. In this setting, a common approach is to use
a generalized Potts model [22], which penalizes assignments that do not have the same label
across the edge: φij(k, l) = λij, ∀k 6= l and φij(k, k) = 1, where λij ≤ 1.

For binary-valued Potts models, Greig et al. [13] show that the MAP problem can be
formulated as a min-cut in an appropriately constructed graph. Thus, the MAP problem
can be solved exactly for this class of models in polynomial time. For K > 2, the MAP
problem is NP-hard, but a procedure based on a relaxed linear program guarantees a factor
2 approximation of the optimal solution [7, 14]. Kleinberg and Tardos [14] extend the multi-
class Potts model to have more general edge potentials, under the constraints that negative
log potentials − log φij(k, l) form a metric on the set of labels. They also provide a solution
based on a relaxed LP that has certain approximation guarantees.

More recently, Kolmogorov and Zabih [15] showed how to optimize energy functions con-
taining binary and ternary interactions using graph cuts, as long as the parameters satisfy
a certain regularity condition. Our definition of associative potentials below also satisfies
the Kolmogorov and Zabih regularity condition for K = 2. However, the structure of our
potentials is simpler to describe and extend for the multi-class case. We use a linear pro-
gramming formulation (instead of min-cut) for the MAP inference, which allows us to use
the maximum margin estimation framework, as described below. Note however, that we can
also use min-cut to perform exact inference on the learned models for K = 2 and also in
approximate inference for K > 2 as in Boykov et al. [8]. Appendix A discusses the issue in
detail.

Our associative potentials extend the Potts model in several ways. Importantly, AMNs
allow different labels to have different attraction strength: φij(k, k) = λk

ij, where λk
ij ≥ 1, and

φij(k, l) = 1, ∀k 6= l. This additional flexibility is important in many domains, as different
labels can have very diverse affinities. For example, foreground pixels tend to have locally
coherent values while background is much more varied.

The linear programming relaxation of the MAP problem for these networks can be written
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as:

max
N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

(ij)∈E

K
∑

k=1

(wk,k
e · xij)y

k
ij (3.7)

s.t. yk
i ≥ 0, ∀i, k;

∑

k

yk
i = 1, ∀i;

yk
ij ≤ yk

i , yk
ij ≤ yk

j , ∀(ij) ∈ E, k.

Note that we substitute the constraint yk
ij = yk

i ∧ yk
j by two linear constraints yk

ij ≤ yk
i and

yk
ij ≤ yk

j . This works because the coefficient wk,k
e ·xij is non-negative and we are maximizing

the objective function. Hence,at the optimum yk
ij = min(yk

i , y
k
j ) , which is equivalent to

yk
ij = yk

i ∧ yk
j .

In a second important extension, AMNs admit non-pairwise interactions between vari-
ables, with potentials over cliques involving m variables φ(yi1, . . . , yim). In this case, the
clique potentials are constrained to have the same type of structure as the edge potentials:
There are K parameters φ(k, . . . , k) = λk

ij and the rest of the entries are set to 1. In par-
ticular, using this additional expressive power, AMNs allow us to encode the pattern of
(soft) transitivity present in many domains. For example, consider the problem of predict-
ing whether two proteins interact [27]; this probability may increase if they both interact
with another protein. This type of transitivity could be modeled by a ternary clique that
has high λ for the assignment with all interactions present.

We can write a linear program for the MAP problem similar to Eq. (3.7), where we have
a variable yk

c for each clique c and for each label k, which represents the event that all nodes
in the clique c have label k:

max

N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

c∈C

K
∑

k=1

(wk
c · xc)y

k
c (3.8)

s.t. yk
i ≥ 0, ∀i, k;

∑

k

yk
i = 1, ∀i;

yk
c ≤ yk

i , ∀c ∈ C, i ∈ c, k.

We will now prove important properties of the LP in Eq. (3.8).

Integrality of Binary AMN

It can be shown that in the binary case, the relaxed linear programs Eq. (3.7) and Eq. (3.8)
are guaranteed to produce an integer solution when a unique solution exists.

In the subsequent discussion define, θk
c = wk

c · xc, and θk
i = wk

i · xi.

Theorem 3.4.1 If K = 2, for any objective w>X, the linear programs in Eq. (3.7) and Eq. (3.8)
have an integral optimal solution.

Proof First define, θk
c = wk

c · xc, and θk
i = wk

i · xi. Consider any fractional, feasible y. We
show that we can construct a new feasible assignment z which increases the objective (or
leaves it unchanged) and furthermore has fewer fractional entries.
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Since θk
c ≥ 0 (because wk

c ≥ 0,xk
c ≥ 0), we can assume that yk

c = mini∈c yk
i ; otherwise

we could increase the objective by increasing yk
c . We construct an assignment z from y by

leaving integral values unchanged and uniformly shifting fractional values by λ:

z1
i = y1

i − λI(0 < y1
i < 1), z2

i = y2
i + λI(0 < y2

i < 1),

z1
c = y1

c − λI(0 < y1
c < 1), z2

c = y2
c + λI(0 < y2

c < 1),

where I(·) is an indicator function.
Now consider λk = mini:yk

i >0 yk
i . Note that if λ = λ1 or λ = −λ2, z will have at least

one more integral zk
i than y. Thus if we can show that the update results in a feasible and

better scoring assignment, we can apply it repeatedly to get an optimal integer solution. To
show that z is feasible, we need z1

i + z2
i = 1, zk

i ≥ 0 and zk
c = mini∈c zk

i .
First, we show that z1

i + z2
i = 1.

z1
i + z2

i = y1
i − λI(0 < y1

i < 1) + y2
i + λI(0 < y2

i < 1)

= y1
i + y2

i = 1.

Above we used the fact that if y1
i is fractional, so is y2

i , since y1
i + y2

i = 1.
To show that zk

i ≥ 0, we prove mini z
k
i = 0.

min
i

zk
i = min

i

[

yk
i − ( min

i:yk
i >0

yk
i )I(0 < yk

i < 1)

]

= min

(

min
i

yk
i , min

i:yk
i >0

[

yk
i − min

i:yk
i >0

yk
i

])

= 0.

Lastly, we show zk
c = mini∈c zk

i .

z1
c = y1

c − λI(0 < y1
c < 1)

= (min
i∈c

y1
i ) − λI(0 < min

i∈c
y1

i < 1) = min
i∈c

z1
i ;

z2
c = y2

c + λI(0 < y1
c < 1)

= (min
i∈c

y2
i ) + λI(0 < min

i∈c
y2

i < 1) = min
i∈c

z2
i .

We have established that the new z are feasible, and it remains to show that we can
improve the objective. We can show that the change in the objective is always λD for some
constant D that depends only on y and θ. This implies that one of the two cases, λ = λ1 or
λ = −λ2, will necessarily increase the objective (or leave it unchanged). The change in the
objective is:

N
∑

i=1

∑

k=1,2

θk
i (z

k
i − yk

i ) +
∑

c∈C

∑

k=1,2

θk
c (z

k
c − yk

c )

= λ

[

N
∑

i=1

(D1
i − D2

i ) +
∑

c∈C

(D1
c − D2

c)

]

= λD

Dk
i = θk

i I(0 < yk
i < 1), Dk

c = θk
c I(0 < yk

c < 1).
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Hence the new assignment z is feasible, does not decrease the objective function, and has
strictly fewer fractional entries.

This result states that the MAP problem in binary AMNs is tractable, regardless of
network topology or clique size.

Multi-class AMNs

In the non-binary case (K > 2), these LPs can produce fractional solutions. We would like
to formally characterize how far the fractional solutions are from a set of legal integer ones
in terms of the value of the objective function.

For K > 2, we use the randomized rounding procedure of Kleinberg and Tardos [14]
to produce an integer solution for the linear relaxation, losing at most a factor of m =
maxc∈C |c| in the objective function. The basic idea of the rounding procedure is to treat yk

i

as probabilities and assign labels according to these probabilities in phases. In each phase,
we pick a label k, uniformly at random, and a threshold α ∈ [0, 1] uniformly at random. For
each node i which has not yet been assigned a label, we assign the label k if yk

i ≥ α. The
procedure terminates when all nodes have been assigned a label. Our analysis closely follows
that of Kleinberg and Tardos [14].

Lemma 3.4.2 The probability that a node i is assigned label k by the randomized procedure
is yk

i .

Proof The probability that an unassigned node is assigned label k during one phase is 1
K

yk
i ,

which is proportional to yk
i . By symmetry, the probability that a node is assigned label k

over all phases is exactly yk
i .

Lemma 3.4.3 The probability that all nodes in a clique c are assigned label k by the proce-
dure is at least 1

|c|
yk

c .

Proof For a single phase, the probability that all nodes in a clique c are assigned label
k if none of the nodes were previously assigned is 1

K
mini∈c yk

i = 1
K

yk
c . The probability

that at least one of the nodes will be assigned label k in a phase is 1
K

(maxi∈c yk
i ). The

probability that none of the nodes in the clique will be assigned any label in one phase is
1 − 1

K

∑K
k=1 maxi∈c yk

i .
Nodes in the clique c will be assigned label k by the procedure if they are assigned label

k in one phase. (They can also be assigned label k as a result of several phases, but we can
ignore this possibility for the purposes of the lower bound.) The probability that all the
nodes in c will be assigned label k by the procedure in a single phase is:

∞
∑

j=1

1

K
yk

c

(

1 − 1

K

K
∑

k=1

max
i∈c

yk
i

)j−1

=
yk

c
∑K

k=1 maxi∈c yk
i

≥ yk
c

∑K
k=1

∑

i∈c yk
i

=
yk

c
∑

i∈c

∑K
k=1 yk

i

=
yk

c

|c| .
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Above, we first used the fact that for d < 1,
∑∞

i=0 di = 1
1−d

, and then upper-bounded the

max of the set of positive yk
i ’s by their sum.

Theorem 3.4.4 The expected cost of the assignment found by the randomized procedure
given a solution y to the linear relaxation of the integer program in Eq. (A.1) is at least
∑N

i=1

∑K
k=1 θk

i y
k
i +

∑

c∈C
1
|c|

∑K
k=1 θk

c y
k
c .

Proof This is immediate from the previous two lemmas.
The only difference between the expected cost of the rounded solution and the (non-

integer) optimal solution is the 1
|c|

factor in the second term. By picking m = maxc∈C |c|, we
have that the rounded solution is at most m times worse than the optimal solution produced
by the LP-relaxation of Eq. (A.1).

Note that the approximation factor of m applies, in fact, only to the clique potentials.
Thus, if we compare the log-probability of the optimal MAP solution and the log-probability
of the assignment produced by this randomized rounding procedure, the terms corresponding
to the log-partition-function and the node potentials are identical. We obtain an additive
error (in log-probability space) only for the clique potentials. As node potentials are often
larger in magnitude than clique potentials, the fact that we incur no loss proportional to
node potentials is likely to lead to smaller errors in practice. Along similar lines, we note
that the constant factor approximation is smaller for smaller cliques; again, we observe, the
potentials associated with large cliques are typically smaller in magnitude, reducing further
the actual error in practice.

Deterministic Algorithm

We can also derandomize the randomized procedure presented in the previous section to get
a deterministic algorithm with the same approximation guarantees. We use the method of
conditional probabilities, similar in spirit to the approach of Kleinberg and Tardos [14].

Consider a phase of the randomized procedure. Let a denote the selected random label,
and Na denote the set of nodes assigned to the label. We define the following quantities:

• V0 =
∑

i∈Na
θa

i y
a
i : The contribution to the objective function of the assigned nodes in

the phase.

• E0 =
∑

c∈C:i∈c⇒i∈Na
θa

c y
a
c : The contribution to the objective function of all cliques for

which each node was assigned.

• V̄LP =
∑

i/∈Na

∑K
k=1 θk

i y
k
i : The contribution of all unassigned nodes to the objective

function. This is the same as the solution to the linear relaxation of Eq. (A.1) restricted
to the set of unassigned nodes after the current phase.

• ĒLP =
∑

c∈C:i∈c⇒i/∈Na

∑K
k=1 θk

c y
k
c : The contribution to the objective function of all

cliques containing only unassigned nodes. Again, this is the same as the solution to
the linear relaxation of Eq. (A.1) restricted to those cliques.
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We now construct a deterministic rounding algorithm. At each step of the deterministic
algorithm we select a label a and a threshold α ∈ [0, 1] which lead to a non-empty set of
assigned nodes Na (where assignment is performed like in the randomized algorithm), and
also maximize the quantity: V0 + E0 + V̄LP + 1

m
ĒLP , where m = maxc∈C |c|. We repeat

until all nodes are assigned. Note that re-solving the linear relaxation of Eq. (A.1) is not
required, and we simply re-use the original solution at each step. As Kleinberg and Tardos
[14] note, re-solving the linear program at each step could lead to a better solution, but that
is not required to get the approximation bound we are interested in.

Now let VLP =
∑N

i=1

∑K
k=1 θk

i y
k
i and ELP =

∑

c∈C

∑K
k=1 θk

c y
k
c . Thus VLP + ELP is the

objective value of the linear relaxation of Eq. (A.1) for the solution y. We first show that a
phase of the above deterministic algorithm produces V0 + E0 + V̄LP + 1

m
ĒLP at least equal

to VLP + 1
m

ELP in expectation.

Lemma 3.4.5 E
[

V0 + E0 + V̄LP + 1
m

ĒLP

]

≥ VLP + 1
m

ELP

Proof We consider each of the above quantities in turn.
In proving Lemma 3.4.2 we saw that the probability that node i is assigned label a in

on ephase is
ya

i

K
. Therefore:

E [V0] =
N
∑

i=1

K
∑

k=1

θk
i

yk
i

K
=

1

K
VLP .

Also, in proving Lemma 3.4.3 we saw that the probability that all nodes in a clique are
assigned to the same label is 1

K
yk

c . Therefore:

E [E0] =
∑

c∈C

K
∑

k=1

θk
c

yk
c

K
=

1

K
ELP .

The probability that a node is not assigned by a single phase is K−1
K

since the probabilitity

that it is assigned label a is
ya

i

K
, and the probability that it is assigned any label is

∑K
i=1

ya
i

K
=

1
K

. Then we have:

E
[

V̄LP

]

=
K − 1

K

N
∑

i=1

K
∑

k=1

θk
i y

k
i =

K − 1

K
VLP .

The probability that all nodes in a clique c are unassigned in a phase is 1 − 1
K

maxi∈c yk
i

and is thus at least 1− |c|
K

(by the same argument as the one in the proof of Lemma 3.4.3),
which is in turn at least 1 − m

K
, since m = maxc∈C |c|. It follows that:

E
[

ĒLP

]

≥
(

1 − m

K

)

∑

c∈C

K
∑

k=1

θk
c

yk
c

K
=
(

1 − m

K

)

ELP .
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Now if we sum the above expectations we get E [V0] + E [E0] + E
[

V̄LP

]

+ 1
m

E
[

ĒLP

]

≥
VLP + 1

m
ELP .

Theorem 3.4.6 Let y be a solution of the linear relaxation of Eq. (A.1), with objective
value VLP +ELP . The deterministic rounding algorithm finds a labeling whose corresponding
objective value is at least VLP + 1

m
ELP .

Proof We first show that a phase of the deterministic algorithm can always select a label
a and threshold α such that V0 + E0 + V̄LP + 1

m
ĒLP ≥ VLP + 1

m
ELP . By Lemma 3.4.5

the expectation is at least VLP + 1
m

ELP , but since choices of a and α that assign no nodes
contribute exactly VLP + 1

m
ELP to the expectation, it follows that there must exist a and α

for which V0 + E0 + V̄LP + 1
m

ĒLP ≥ VLP + 1
m

ELP .
We can now prove by induction on the number of phases that the labeling produced by

the deterministic rounding algorithm has objective value of at least VLP + 1
m

ELP . By the
inductive hypothesis the objective value for the solution obtained for the unassigned nodes
remaining after a phase is at least V̄LP + 1

m
ĒLP . Then the objective value of the solution is

at least V0 +E0 + V̄LP + 1
m

ĒLP , which is in turn at least VLP + 1
m

ELP , as we showed above.

Taking y = ŷ (the optimal solution) in Theorem 3.4.6 it follows that the deterministic
rounding algorithm loses at most a factor m of the optimal objective value.

3.4.3 ICO Learning

With the development of the LP for MAP inference in AMNs, learning the max-margin
weights is straightforward using our established ICO framework.

Loss Function

Since we would like the margin to scale with the number of mistakes in the node predictions
between y and ŷ, we will use Hamming distance on the entries in y corresponding to node
labels: yk

i . Furthermore, the constraint
∑

k yk
i = 1 requires us to scale the Hamming distance

by 1
K

because each bit difference between y and ŷ will automatically result in K errors due
to the summation constraint. Therefore, we define our loss as:

`(y, ŷ) = N − y>
n ŷn

Notice that the above simply counts the number of mistakes by subtracting from the
number of nodes N all the nodes for which the two labelings agree (i.e. yk

i = ŷk
i .)

ICO Formulation

Let Y ′ denote the feasible space of the AMN MAP inference LP Eq. (3.7):

Y ′ = {y : yk
i ≥ 0;

∑

k

yk
i = 1; yk

ij ≤ yk
i ; yk

ij ≤ yk
j }
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Using the ICO formalism and the above loss function the max-margin QP for estimating
the weights that produce the sample labeling ŷ is:

min
1

2
||w||2 + Cξ (3.9)

s.t. w>Xŷ − N + ξ ≥ max
y∈Y ′

w>Xy − ŷn · yn;

we ≥ 0.

Recall that AMNs require that wk,k
e

>
xij ≥ 0, which we enforce by requiring that xij ≥ 0

and we ≥ 0.
We now need to find the dual of the inference LP used to represent the interior max.

Specifically, maxy∈Y ′ w>Xy − ŷn · yn is a feasible and bounded linear program in y, with a
dual given by:

min
N
∑

i=1

zi (3.10)

s.t. zi −
∑

(ij),(ji)∈E

zk
ij ≥ wk

n · xi − ŷk
i , ∀i, k;

zk
ij + zk

ji ≥ wk,k
e · xij, zk

ij, z
k
ji ≥ 0, ∀(ij) ∈ E, k.

In the dual, we have a variable zi for each normalization constraint in Eq. (3.7) and variables
zk

ij, z
k
ji for each of the inequality constraints.

Substituting this dual into Eq. (3.9), we obtain:

min
1

2
||w||2 + Cξ (3.11)

s.t. w>Xŷ − N + ξ ≥
N
∑

i=1

zi; we ≥ 0;

zi −
∑

(ij),(ji)∈E

zk
ij ≥ wk

n · xi − ŷk
i , ∀i, k;

zk
ij + zk

ji ≥ wk,k
e · xij, zk

ij, z
k
ji ≥ 0, ∀(ij) ∈ E, k.

For K = 2, the LP relaxation is exact, so that Eq. (3.11) learns exact max-margin
weights for Markov networks of arbitrary topology. For K > 2, the linear relaxation leads to
a strengthening of the constraints on w by potentially adding constraints corresponding to
fractional assignments y. Thus, the optimal choice w, ξ for the original QP may no longer
be feasible, leading to a different choice of weights. However, as our experiments show, these
weights tend to do well in practice.

Also note that by taking the dual of the QP in Eq. (3.11) we can show that the node
features are kernelizable. Unfortunately the positivity constraint on the edge parameters we

makes it impossible to kernelize the edge features. For more details see [23].
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Figure 3.2: Comparison of test error of SVMs and AMNs on four categories of Reuters
articles, averaged over 7-folds;

3.4.4 Experimental Results

We evaluated our approach on two tasks: newswire text classification and 3D terrain recog-
nition.

Reuters

We ran our method on the ModApte set of the Reuters-21578 corpus. We selected four
categories containing a substantial number of documents: crude, grain, trade, and money-

fx. We eliminated documents labeled with more than one category, and represented each
document as a bag of words. The resulting dataset contained around 2200 news articles,
which were split into seven folds where the articles in each fold occur in the same time period.
The reported results were obtained using seven-fold cross-validation with a training set size
of ∼ 200 documents and a test set size of ∼ 2000 documents.

The baseline model is a linear kernel SVM using a bag of words as features. Since we
train and test on articles in different time periods, there is an inherent distribution drift
between our training and test sets, which hurts the SVM’s performance. For example, there
may be words which, in the test set, are highly indicative of a certain label, but are not
present in the training set at all since they were very specific to a particular time period
(see [26]).

Our AMN model uses the text similarity of two articles as an indicator of how likely they
are to have the same label. The intuition is that two documents that have similar text are
likely to share the same label in any time period, so that adding associative edges between
them would result in better classification. Such positive correlations are exactly what AMNs
represent. In our model, we linked each document to its two closest documents as measured
by TF-IDF weighted cosine distance. The TF-IDF score of a term was computed as: (1 +
log tf) log N

df
where tf is the term frequency, N is the number of total documents, and df is the

document frequency. The node features were simply the words in the article corresponding
to the node. Edge features included the actual TF-IDF weighted cosine distance, as well as
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Figure 3.3: Overhead view of the Stanford Quad laser range data collected by the Segbot

the bag of words consisting of union of the words in the linked documents.
We trained both models (SVM and AMN) to predict one category vs. all remaining cat-

egories. Fig. 3.2(a) shows that the AMN model achieves a 13.5% average error reduction
over the baseline SVM, with improvement in every category. Applying a paired t-test com-
paring the AMN and SVM over the 7 folds in each category, crude, trade, grain, money-fx,
we obtained p-values of 0.004897, 0.017026, 0.012836, 0.000291 respectively. These results
indicate that the positive interactions learned by the AMN allow us to correct for some of
the distribution drift between the training and test sets.

Terrain Classification

Terrain classification is very useful for autonomous mobile robots in real-world environments.
It can be useful to aid path planning, target detection, and as a pre-processing step for other
perceptual tasks.

The Stanford Segbot Project provided us with a laser range maps of the Stanford campus
collected by a Segway scooter-based moving robot equipped with SICK2 laser sensors. The
data consists of around 35 million points, represented as 3D coordinates in an absolute frame
of reference. Thus, the only available information is the location of points. Fig. 3.3 shows
snapshot of an overhead view of the Stanford Quad.

Our goal is to classify the laser range points into four classes: ground, building, tree, and
shrubbery. Since classifying ground points is trivial given their absolute z-coordinate, we
classify ground points deterministically by thresholding the z coordinate at a value close to
0. After we do that, we are left with approximately 20 million non-ground points.

Features
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Recall that each point is represented simply as a location in an absolute 3D coordinate
system. That’s why the features we use require pre-processing to infer properties of the local
neighborhood of a point, such as how planar it is, or how much of the neighbors are close to
the ground. The features described below are used in both flat and joint classification.

The features we use should be invariant to rotation in the x-y plane, as well as the density
of the range scan, since scans tend to be sparser in regions farther from the robot.

1. PCA-based features: For each point we sample 100 points in a ball of radius 0.5
m. We then run PCA, to get the plane of maximum variance (spanned by the first
two principal components.) We then form a 3x3x3 cube around the neighborhood of
the point oriented with respect to the principal plan, and compute the percentage of
points lying in the various sub-cubes. We use a number of features derived from the
cube such as the percentage of points in the central column, the outside corners, the
central plane, etc. These features capture the local distribution well and are especially
useful in finding planes.

2. Vertical features: For each point we also take a cylinder of radius 0.2 m, which
extends vertically to include all the points in a “column” of the range scan. We then
compute what percentage of the points lie in various segments of this vertical column:
e.g., between 2m and 2.5m, etc.

3. Threshold feature We also use an indicator feature of whether or not a point lies
within 2m of the ground. This feature is especially useful in classifying shrubbery.

We use a quadratic kernel over all the features in both flat and joint classification.

Flat Model

The flat model is a multi-class SVM with a quadratic kernel over the above features.
Fig. 3.4 shows a sample result:

We can see that the flat model achieves reasonable performance in a lot of places, but
fails to enforce local consistency of the classification predictions. For example arches on
buildings and other less planar regions are consistently confused for trees, even though they
are surrounded entirely by buildings.

Voted Model

A possible improvement to the flat model is to take its predictions and smooth them
using voting. For each point we look at its local neighborhood (we varied the radius to get
the best possible results) and assign to the point the label of the majority of its neighbors.
Fig. 3.5 shows a a sample result.

We can see that the voted model performs slightly better than flat: for example, it
smoothes out trees and some areas of the buildings. Still it fails in areas like arches of build-
ings where the flat classifier has a locally consistent wrong prediction.

AMN Model
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Figure 3.4: Typical results of flat multi-class SVM classifier. Note the overall lack of smooth-
ness.

As we saw above there is room for improvement in increasing the local coherence of
predictions. To do that we use a pairwise AMN over laser scan points, with associative
potentials to ensure smoothness. Each point is connected to 6 of its neighbors: 3 of them are
sampled randomly from the local neighborhood in a sphere of radius 0.5m, and the other 3
are sampled at random from the vertical cylinder column of radius 0.2m. It is important to
ensure vertical consistency since frequently, the flat classifier is wrong in areas that are higher
of the ground (due to the decrease in point density) or because objects tend to look different
as we vary their z-coordinate (for example tree trunks and tree crowns look different). While
we experimented with a variety of edge features including various distances between points,
we found that even using a single “bias” feature which is always equal to 1 performed well.

For training we use CPLEX as the ICO QP solver. We select roughly 30,000 points that
represent the classes well: a segment of a wall, a tree, some bushes. The pieces don’t form
a coherent segment of a scene.

Fig. 3.6 shows sample results achieved with the AMN model. We can see that the
predictions are much smoother: for example building arches and tree trunks are predicted
correctly.

A VRML fly-through animation of the same results is available at
http://ai.stanford.edu/~vasco/3d_results/.

3.5 Conclusion

In this chapter we described how ICO can be applied to combinatorial problems and their
convex optimization relaxations. We exploited the combinatorial nature of the output space
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Figure 3.5: Typical results of the vote-smoother flat predictions. While the labels are some-
what smoother, there are still errors in areas where the flat classfier was consistently wrong.

to define a loss function based on Hamming distance, and examined a concrete application
of ICO in associative Markov networks [23]. The efficiency of our formulation depended
explicitly on our ability to compactly define Hamming distance as a linear function, and on
the ability to formulate a convex relaxation to a combinatorial problem. While in associative
Markov networks we observed that even relaxations which are not exact tend to produce good
solutions in practice, it will be interesting to attempt to formally relate the quality of the
learned weights to the quality of the approximation yielded by the combinatorial problem
relaxation.
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Figure 3.6: Results of the AMN model. We can see that predictions are consistently smoother
across the board.
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Chapter 4

Continuous Inverse Convex

Optimization

In this chapter we turn to the problem of learning to optimize an objective over a continuous
space. Thus in this case, for each instance I, the target solution ŷ[I] ∈ IRN , for some
N . We will see that the continuous nature of the target labels makes it harder to define a
concave loss function `(y, ŷ) efficiently. We will also present experimental results in inverse
Markowitz portfolio optimization showing the feasibility of the proposed algorithm, and its
advantages over a simpler model which ignores the constraints of the target space.

4.1 Loss Function

Recall that in the combinatorial case, it was possible to define a loss function `(y, ŷ) based
on Hamming Distance. At first glance, a natural extension of that to the continuous case
would be to simply use `(y, ŷ) = ‖y − ŷ‖1 as the loss function, since it is a good measure
of how far apart two different labelings are. However, that formulation will not work, since
the ICO framework required a concave loss function, and L1 norm is clearly not concave.
Therefore, we need to select a different loss function.

4.1.1 Max-Norm

Consider `(y, ŷ) = ‖y − ŷ‖∞. For this loss function, we can provide a linear formulation,
albeit one which is computationally more complex, by expressing the constraint fw(X, ŷ) ≥
maxy∈Y fw(X,y) + ∆(ŷ,y) − ξ by a set of constraints, whose size is linear in the size of ŷ.
We add the following constraints:

fw(X, ŷ) ≥ max
y∈Y

fw(X,y) + di(ŷi − yi) − ξ, ∀i, di ∈ {1,−1}

This set of 2N constraints is equivalent to a single constraint written in terms of ‖ŷ−y‖∞.
By letting di be either +1 or −1 we ensure that in one of the two cases the margin di(ŷi− ŷi)
is equal to |yi − ŷi| (the other one is strictly less than that). The combined effect of the 2N
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constraints is to ensure that the optimal y under w is at least `(y, ŷ) = maxi |yi − ŷi| better
than any other one.

The resulting ICO QP is:

min
w: w≥0

1

2
‖w‖2 + Cξ

s.t. fw(X, ŷ) ≥ max
y∈Y

fw(X,y) + di(ŷi − yi) − ξ, ∀i, di ∈ {1,−1} (4.1)

It can now be solved by using the technique discussed in Sec. 2.3.2: i.e., taking the
dual of each of these 2N constraints, and using the dual objective in place of the primal
maximization one.

4.1.2 Generalization

At first sight it seems counterintuitive that we can use L∞ norm as the loss function, but
not L1 norm. In fact, the above construction could be adapted to work for an L1 norm loss
function also, but the computational cost would be prohibitive, since we would need to add
an exponential number of constraints. We can view the L1 norm as:

‖y − ŷ‖1 =
∑

i

|yi − ŷi| = max
d:di∈{1,−1}

∑

i

di(yi − ŷi) (4.2)

As before, in Eq. (4.2) we essentially allow di to control whether each term in the sum
is positive or negative, and it is easy that the maximizing di would result in the expression
di(yi − ŷi) taking on its absolute value. If we enumerate all d ∈ {−1, 1}N , we can add the
following constraints to the ICO problem:

fw(X, ŷ) ≥ max
y∈Y

fw(X,y) + d>(ŷ − y) − ξ ∀i, d ∈ {1,−1}N

Clearly the above construction is not computationally feasible since it would involve
having 2N constraints, but the ideas behind it are a generalization of the constraints we used
to formulate the max-norm loss. In the max-norm construction, rather than enumerating
each d ∈ {−1, 1}N , we simply restrict our attention to the set of vectors in which only one
di is present, and other entries are 0: d = [0, . . . , {1,−1}, . . . , 0] : 1 ≤ i ≤ N . The size of
this set is linear, as opposed to exponential in the L1 norm case.

4.1.3 ε-Window Loss

As an alternative to the max-norm loss function we can use an unstructured loss, analogous
to the “hinge” loss ([10]) used in SVMs. Whereas before the L∞ norm loss resulted in a
margin which scaled with the difference between ŷ and y, now we will penalize all y that
are “different” from ŷ equally. Because we are working in continuous space, the “difference”
will only be ensured up to some component-wise precision ε, which will only guarantee (in
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the separable case) that the weights we learn generate the true labeling ŷ up to the same
precision ε. In order to accomplish that we need to add the following constraints:

fw(X, ŷ) ≥ max
y∈Y , di(yi−ŷi)≥ε

fw(X,y) + 1 − ξ ∀i, di ∈ {−1, 1}

The maximization constraint di(yi − ŷi) ≥ ε reduces to either yi ≥ ŷi + ε or yi ≤ ŷi − ε,
depending on di, and effectively ensures that we only deal with y which are ε or more away
from ŷ in at least one component. Thus, the full set of constraints above have the effect
of ensuring that outside a window of ε around each component of the true labeling ŷi, the
true label is better than all else by a margin of 1. By adding a constraint for each i, the
ε-window holds for each yi. By setting ε to be sufficiently small we can make sure that up
to ε precision the learned weights will generate the true labeling ŷ. The final ICO QP using
the ε-window formulation has the form:

min
w,z: w≥0

1

2
‖w‖2 + Cξ (4.3)

s.t. fw(X, ŷ) ≥ max
y∈Y , di(yi−ŷi)≥ε

fw(X,y) + 1 − ξ ∀i, di ∈ {−1, 1}

4.2 ICO for QPs

In this section we will give a complete ICO formulation for a general class of optimization
problems: linearly constrained quadratic programs (QP). Such problems are often encoun-
tered in practice and are the next most widespread class of optimization problems, after
linear programs (which are technically a type of QP). While we will work with the ε-window
formulation for simplicity it is straightforward to derive the same formulation for the case of
a max-norm.

4.2.1 QP Form

The specific problems we consider have a quadratic objective, and linear constraints.
As usual, we that the objective is linear in w. We let R denote the features corre-

sponding to the linear part of the objective, and Qi denote one of the Mq feature matrices
corresponding to the quadratic part of the objective. For a concrete example of such features
see Sec. 4.3.2.

We will split up our weights vector as w = [ẇ, ẅ], where ẇ are the weights corresponding
to the linear part of the objective, and ẅ are the weights corresponding to the quadratic
part. ẅi is the ith entry of the ẅ vector.

The QP problem in general form allows both equality and inequality linear constraints
via the matrices A and B:
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max ẇ>Ry − 1

2
y>

[

Mq
∑

i=1

ẅiQi

]

y (4.4)

s.t. Ay ≥ b

By = c

From here on let Q(ẅ) =
[

∑Mq

i=1 ẅiQi

]

. Note that for the above problem to be convex,

we require that Q(ẅ) � 0. To ensure that, we assume: Qi � 0 and ẅ ≥ 0.

4.2.2 ICO Formulation

We will now develop the ICO formulation for the case of the ε-window margin.
Let Ydi

= {Ay ≤ b, By = c, di(yi − ŷi) ≥ ε}. Here is the ICO problem for the QP in
Eq. (4.4):

min
w,ξ: ẅ≥0

1

2
‖w‖2 + Cξ (4.5)

s.t. ẇ>Rŷ − 1

2
ŷ>Q(ẅ)ŷ ≥ max

y∈Ydi

ẇ>Ry − 1

2
y>Q(ẅ)y + 1 − ξ ∀i, di ∈ {−1, 1}

While the above problem is convex, and thus solvable general algorithms ([5]), we would
like to dualize the maximization in the constraint explicitly and convert the problem to a
more standard form.

Dual

The primal problem in the maximization of each constraint is similar to the one in Eq. (4.4)
except that we also have a restriction on yi from the ε constraint. Let δdi

denote a vector of
zeros with a di in the ith entry. The primal problem of each constraint is then:

max ẇ>Ry − 1

2
y>Q(ẅ)y (4.6)

s.t. Ay ≥ b

δdi
y ≥ δdi

ŷ + ε

By = c

We now form the Lagrangian. We introduce the vector of non-negative dual variables
λdi

for the first set of constraints, the non-negative scalar σdi
for the second constraint, and

the vector of free variables µdi
. We will subscript the dual variables by di to highlight the

fact that the primal problem for the constraint depends explicitly on the exact value of
di ∈ {−1, 1}.
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Ldi(y, λdi
, µdi

, σdi
) = ẇ>Ry − 1

2
y>Q(ẅ)y + λdi

> (Ay − b) + (4.7)

µdi

> (By − c) + σdi
(δdi

y − δdi
ŷ − ε)

The dual function can be found by maximizing Ldi(y, λdi
, µdi

, σdi
) with respect to the

primal variables y.

∇yLdi(y, λdi
, µdi

, σdi
) = R>ẇ − Q(ẅ)y + λdi

A + µdi
B + σdi

δdi
= 0 (4.8)

y =
(

R>ẇ + λdi
A + µdi

B + σdi
δdi

)

Q(ẅ)−1 (4.9)

Let ȳw(λdi
, µdi

, σdi
) =

(

R>ẇ + λdi
A + µdi

B + σdi
δdi

)

. Note that ȳw(λdi
, µdi

, σdi
) is lin-

ear in both the dual variables and the weights w.
Plugging in ȳw(λdi

, µdi
, σdi

) in the Lagrangian Ldi(y, λdi
, µdi

, σdi
), we can derive the dual

function:

hdi

w(λdi
, µdi

, σdi
) =

1

2
ȳw(λdi

, µdi
, σdi

)>Q(ẅ)−1ȳw(λdi
, µdi

, σdi
) − λ>

di
b − µdi

c − σdi
(δdi

ŷ + ε)

Eq. (4.10) is a quadratic form in ȳw(λdi
, µdi

, σdi
), but we still face a problem. Recall

that Q(ẅ) =
[

∑Mq

i=1 ẅiQi

]

. Unfortunately, we have no way of explicitly taking the inverse

and thus exposing its dependence on the weights ẅ. Furthermore it is still not clear that
the formulation of the dual function is convex in both the dual variables σdi

, λdi
, µdi

, and
the weights ẇ, ẅ. To establish convexity we first need to review the definition of Schur
complement.

Schur Complement

In this section we give a brief review of Schur complement. For more details see [5].

Definition 4.2.1 Consider a matrix X, partitioned as:

X =

[

A B

B> C

]

.

If det A 6= 0, the matrix
S = C − B>A−1B

is called the Schur complement of A in X.

Theorem 4.2.2 If A � 0, then X � 0 if and only if S � 0.

Proof See [5]
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Convexity of Dual

We can use Definition 4.2.1 and Theorem 4.2.2 to establish the convexity of Eq. (4.10), by
considering the dual in epigraph form. The epigraph of a function f : IRn → IR is defined
as:

epif = {(x, t)| x ∈ domf, f(x) ≤ t}
where domf is the domain of the function f . A function is convex if and only if its

epigraph is convex. We will directly show the convexity of the epigraph, by defining it via a
set of convex inequalities.

Let ĥdi
w(λdi

, µdi
, σdi

) be the quadratic part of hdi
w(λdi

, µdi
, σdi

).

ĥdi

w(λdi
, µdi

, σdi
) =

1

2
ȳw(λdi

, µdi
, σdi

)>Q(ẅ)−1ȳw(λdi
, µdi

, σdi
)

Now, consider its epigraph:

epi ĥdi

w(λdi
, µdi

, σdi
) =

{

(

λdi
, µdi

, σdi
, ẇ, ẅ, tdi

)

| ĥdi

w(λdi
, µdi

, σdi
) ≤ tdi

}

(4.10)

The condition ĥdi
w(λdi

, µdi
, σdi

) ≤ tdi can be rewritten as:

{

[

Q(ẅ) ȳw(λdi
, µdi

, σdi
)

ȳw(λdi
, µdi

, σdi
)> tdi

]

� 0,

Mq
∑

j=1

ẅjQj � 0

}

(4.11)

The Schur complement of the composite matrix in Eq. (4.11), is simply tdi−ĥdi
w(λdi

, µdi
, σdi

).
The requirement that the matrix is positive semi-definite is equivalent to its Schur com-
plement being positive semi-definite (by Theorem 4.2.2), which in turn implies that tdi −
ĥdi

w(λdi
, µdi

, σdi
) ≥ 0. We are not guaranteed that the matrix Q(ẅ) will be positive definite

because the weights ẅ could all be 0, but we can ensure positive definiteness by including a
very small multiple of the indentity matrix in the sum (since we already have ẅ ≥ 0.).

What is interesting is that the semi-definite inequality in Eq. (4.11) is simply a linear
matrix inequality in all the variables we care about: (λdi

, µdi
, σdi

, ẇ, ẅ, ti), and therefore

epi ĥdi
w(λdi

, µdi
, σdi

) is convex, and hence so is ĥdi
w(λdi

, µdi
, σdi

) ([5]).

Furthermore recall that hdi
w(λdi

, µdi
, σdi

) = ĥdi
w(λdi

, µdi
, σdi

)− λ>
di
b− µdi

c− σdi
(δdi

ŷ + ε),
so it is also convex.

Final Formulation

We have established that the dual function hdi
w(λdi

, µdi
, σdi

) of the maximization in each
constraint is convex. We now show the final ICO formulation. Define:

gdi
w(λdi

, µdi
, σdi

) = tdi − λ>
di
b − µdi

c − σdi
(δdi

ŷ + ε) ≥ hdi
w(λdi

, µdi
, σdi

) (4.12)
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The inequality follows from the fact that when the constraints in Eq. (4.11) hold tdi as a
tight upper bound on the quadratic part of hdi

w(λdi
, µdi

, σdi
) (tightness is achieved when the

semi-definite constraint is active).
From Theorem 2.3.1 we know that for a feasible (λdi

, σdi
, µdi

), we have

hdi

w(λdi
, µdi

, σdi
) ≥ max

y∈Ydi

ẇ>Ry − 1

2
y>Q(ẅ)y

Putting that together with Eq. (4.12) we get:

gdi

w(λdi
, µdi

, σdi
) ≥ max

y∈Ydi

ẇ>Ry − 1

2
y>Q(ẅ)y

We are going to use gdi
w(λdi

, µdi
, σdi

) in place of hdi
w(λdi

, µdi
, σdi

) to get the final ICO
formulation, since gdi

w(λdi
, µdi

, σdi
) is an upper bound on hdi

w(λdi
, µdi

, σdi
) which is in turn an

upper bound on the maximum of the primal objective in the constraint.
Here is the resulting ICO problem:

min
1

2
‖w‖2 + Cξ (4.13)

s.t.

ẅ ≥ 0
ẇ>Rŷ − 1

2
ŷ>Q(ẅ)ŷ − 1 + ξ ≥ tdi − λ>

di
b − µdi

c − σdi
(δdi

ŷ + ε)
[

Q(ẅ) ȳw(λdi
, µdi

, σdi
)

ȳw(λdi
, µdi

, σdi
)> tdi

]

� 0

λdi
≥ 0, σdi

≥ 0























∀i, di ∈ {1,−1}

There is a total of 2 × N constraints, which give rise to O(N 2) variables because the
dualization of each constraint in Eq. (4.5) led to a linear number of dual variables. The
optimization problem involves minimizing a quadratic function over linear and semi-definite
constraints, and can be transformed into a general conic program, which can be solved using
standard methods ([5, 1]).

4.3 Markowitz Portfolio Optimization

In this section we present experimental results on the problem of inverse Markowitz portfolio
optimization which demonstrate that our formulation is able to learn weights whose resulting
objective performs similarly to the convex objective which generated the training examples,
even in the presence of noise.

4.3.1 Background

First we review the problem of portfolio selection. When one is faced with investing in assets
there is always a risk-return tradeoff. For example, in order to obtain greater returns on an
investment, one must often be willing to take on additional risk. While there are certain risk-
free investments, in practice one cannot expect to achieve a useful return without taking on
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risk. Portfolio theory assumes that for a given level of risk, investors prefer higher expected
returns to lower returns. Similarly, for a fixed level of expected return, investors should
prefer less risk to more. For more details see [16].

Assume we have N assets available for consideration. We can measure returns as relative
price changes over a certain period, and since they are random quantities we will need to
estimate their means and covariances. Let ri denote the mean return of asset i ( r denotes
the vector of mean returns), and let the matrix Q encode the covariance of the returns: i.e.,
Qi,j is the covariance of the returns of the assets i and j. Also, let yi be the fraction of the
portfolio wealth we allocate to asset i, and e be the vector of ones. If we fix a desired expected
level of return α, the classical portfolio optimization problem, introduced by Markowitz ([18],
[17]) becomes:

min
1

2
y>Qy (4.14)

s.t. r>y ≥ α, e>y = 1, y ≥ 0 (4.15)

Eq. (4.14) finds the portfolio that minimizes risk, subject to the constraint that it achieves
some minimum rate of return α. The positivity constraint on y requires that we not hold
short positions (i.e., the obligation to buy the asset at the end of the period, resulting from
our belief that its price will go down). The summation constraint corresponds to the fact
that we allocate our entire portfolio to the assets, and is reasonable when we have a risk-free
asset with positive return.

Similarly to Eq. (4.14) one can fix a maximum desired level of risk σ, and maximize
expected return subject to that quadratic constraint. However, we would like to maximize
return and minimize risk at the same time. In order to do that, it will be useful to assume
that an investor has a certain utility for money, which determines exactly how much risk
he is willing to take in order to obtain a certain return in expectation. We will assume an
utilitity function of the form u(x) = 1− exp(−κx), where κ > 0 is a risk-aversion coefficient.
We further assume that returns follow a normal distribution with mean r and covariance Q.
The return on the portfolio z is therefore also normal with mean r>y and covariance y>Qy.

We can now find the expected utility of the portfolio. Let f(x) denote the probability
density function.

E [u] =

∫ ∞

−∞

(1 − exp(−κx))f(x)dx

= 1 − 1

y>Qy
√

2π

∫ ∞

−∞

exp

(

−κx − 1

2

(

x − r>y

y>Qy

)2
)

dx

= 1 − exp

(

−κr>y +
1

2
κ2
(

y>Qy
)2
)

If we maximize the log of the expected utility with respect to the optimal portfolio y we
get:
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max r>y − κ

2
y>Qy (4.16)

s.t. e>y = 1, y ≥ 0

Thus the portfolio that maximizes the expected utility for an investor with a risk aversion
coefficient κ can be found by solving the QP in Eq. (4.16) [21].

4.3.2 Feature-based Parameterization

In this section we will describe how to parameterize the portfolio selection problem based on
a linear combination of features, so that we can later apply the ICO technique for learning
the feature weights.

Mean Returns Features

We assume asset mean returns can be parameterized by a set of Ml features, such that the
mean return of an asset is a linear combination of them. Let Rj,i be the value of the jth
feature for the ith asset. We will also let ẇ denote the vector of weights associated with
the return means features, with ẇj being its jth entry. The mean return for the ith asset is
then:

ri =

Ml
∑

j=1

ẇjRj,i (4.17)

For example a feature could be the average return of an asset over the last T time periods,
and we could have different features for different time windows T . Another feature could
take on a value 1 if an asset is of a certain type (for example a stock in the finance industry)
and a value 0 otherwise. It is possible to come up with many interesting features, whose
linear combination can yield one’s belief about the mean return of an asset. A reasonable
way an investor might approach estimating return means could be to look at past returns,
and combine it with an estimate of how assets of different types might move in the future.
For example, if one believes that returns averaged over the last 10 time periods are a good
prediction of future returns, and also that stocks in the finance industry are likely to suffer
in the future, one can have a high weight for the feature corresponding to the average of
returns over the last 10 time periods, and a negative weight for the feature which denotes
whether or not an asset is a stock in the finance industry.

Letting R denote a matrix whose rows correspond to the feature values for each asset,
and whose columns correspond to the different features, we can see that r> = ẇ>R.

Return Covariance Features

We also assume that the covariance matrix of returns Q can be parameterized via a positive
linear combination of Mq positive semi-definite feature matrices:
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Q =

Mq
∑

j=1

ẅjQj, ẅj ≥ 0, Qj � 0

We require that the weights be non-negative in order to ensure that the final covariance
matrix Q is positive semi-definite. Examples of covariance matrices include covariance esti-
mated from past returns of different time windows T , or outer product of indicators denoting
which industry a stock is in. As an example of the latter feature consider whether or not an
asset represents a stock in the finance industry. If we have N assets, we can denote that by
an N × 1 vector a, where ai ∈ {0, 1}. We can then let one of our covariance matrix features
be Qj = aa>, which can be easily shown to be a positive semi-definite matrix.

Feature-based Portfolio Optimization

With the above definitions we can rewrite Eq. (4.16) as follows (we have dropped the risk-
aversion coefficient since its effect can be absorbed in all the features):

max ẇ>Ry − 1

2
y>

[

Mq
∑

j

ẅjQj

]

y (4.18)

s.t. e>y = 1, y ≥ 0

Notice that the above objective is linear in ẇ and ẅ, which is what we required for
fw(X,y) in the ICO formulation.

4.3.3 ICO Formulation

We can apply the results of Sec. 4.2 by letting A = I, B = e, b = 0, c = 1. We end up
with an optimization problem involving O(N 2) variables and O(N) semi-definite and linear
constraints.

4.3.4 Algorithm

In the experimental section we employ a cutting plane algorithm rather than the SDP for-
mulation due to the limitations of current standard SDP packages in dealing with a large
number of semi-definite constraints and a large number of variables.

The algorithm is an instance of a cutting plane method, and it relies on the existence of
a separation oracle ( [4], [1], [5]). A separation oracle is an abstract entity, which can be
used to localize a point x in a convex set X . When queried, it either asserts that x ∈ X or
returns a separating hyperplane, i.e., b and d, so that b>z ≤ d, z ∈ X ) and b>x ≥ d.

The algorithm applies to a general ICO program of the following form:
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1. Initialize A = {} , w = 0, ξ = 0.

2. Set w, ξ := arg minw,ξ∈A, w≥0
1
2
‖w‖ + Cξ

3. Set violate := 0

4. For each j ∈ C,

4.1. if fw(X, ŷj) < maxy∈Yj
fw(X,y) + `j(ŷi,yi) − ξ,

add w>cj + ξ ≥ bj to A, and set violate := 1

5. if violate := 1 goto 2.

5. Return w, ξ.

Figure 4.1: The cutting plane algorithm for ICO programs. cj and bj result from the
linearization of the jth constraint: i.e., keeping the violating ȳj as a constant, and retaining
only the weights w and slack variable as variables.

min
w: w≥0

1

2
‖w‖2 + Cξ (4.19)

s.t. fw(X, ŷj) ≥ max
y∈Yj

fw(X,y) + `j(ŷi,yi) − ξ ∀j ∈ C

In Eq. (4.19) we use C to denote the set of all constraints, and index the specific loss
function, and feasible set Yj by j. This formulation is simply a more convenient way to
capture both the max-norm, and ε-window margin, as well as problems with multiple training
instances, which result in multiple margin constraints (which is why we also index ŷj by j.)

The algorithm is described in Fig. 4.1. It works by repeatedly adding linear constraints to
a working set of constraints A, and re-solving the linearly constrainted quadratic program:
w, ξ := arg minw,ξ∈A, w≥0

1
2
‖w‖ + Cξ. At every iteration, it then checks whether each

constraint j ∈ C is satisfied with the current w and ξ, and adds a linearized version of the
constraint to the set A if the constraint is violated. Checking whether a constraint holds
involves carrying out the maximization over y, yielding a ȳj, which causes the violation
if there is one. The terms cj and bj in Fig. 4.1 result from the linearization of the jth
constraint. The linearization of the constraint simply uses the violating ȳj as a constant,
making the constraint linear in w and ξ (recall that by assumption fw is linear in w). The
algorithm stops when the current w and ξ satisfy all constraints.

The convergence of the algorithm follows from the fact that the constraints in Eq. (4.19)
are convex (since Yj is convex, and fw and `j are concave in y by assumption). The separation
oracle in this case is the maximization we carry out for each constraint. See [4] for a more
in-depth discussion of cutting plane methods.

From a computational perspective, the algorithm is especially useful when checking
whether a constraint is satisfied can be done efficiently. Since our constraints involve max-
imization, that might be problematic: for example in the case of portfolio optimization we
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Train Set CVX, HPQ, HAL, GM, F, MSFT, C, AAPL, BUD
Test Set AMD, AMR, BAC, DB, ING, MC, NET, RTN, SNE

Table 4.1: Stock ticker symbols used in the train and test sets.

need to solve a linearly constrained QP at each constraint. That’s why it is important to
design the constraint checking part carefully, and reuse as much existing information as pos-
sible. For example in our experiments with inverse portfolio optimization, in each iteration
we keep track of all violating ȳj along with the violating constraint maximization objective
values. Then before rerunning the constraint checking QP for constraint j, we check if there
is an existing ȳj which is feasible for the particular maximization problem in the constraint
(i.e., ȳj ∈ Yj), and has a corresponding objective value which will cause a violation. If
so, we declare the constraint is violated and add the corresponding separating hyperplane
(which is not necessarily the same as some previously added one if the loss terms `(y, ŷ)j

are different for different constraints. In cases when we need to run the constraint checking
QP, we initialize the QP solver with the optimal y given the current weights w (ignoring the
additional constraints that may be present for the different Yj.) It is also straightforward to
parallelize the constraint checking part, which may be especially useful when dealing with
large problems. It is possible to only go through the constraints until a violation is found, as
opposed to adding the hyperplanes corresponding to all violations, but we found that such
an approach has slower performance.

4.3.5 Results

We performed experiments using real stock return data, comparing the ICO approach to
a linear regression approach which ignores the constraints on the output space and only
projects its prediction onto the feasible set of portfolios (which is a probability simplex)
after a prediction has been made.

We downloaded real stock return data of a set of 18 stocks from the Dow Jones Industrial
Index. The ticker symbols we used are shown in Table 4.1. We converted weekly closing
stock prices into relative returns, so in the following discussion a time period is a week.
The stock data was split evenly into a train and test set with the data for half the stocks
belonging to the train set and the data for the other half belonging to the test set.

For return means features we used several different features: the average observed return
based over the last {2, 5, 10, 15} time periods, the value of the Dow Jones Index, the values
of the NASDAQ Index, as well as indicators of whether a stock is in one of the following
general sectors: oil-related, computer-related, finance.

For covariance features we also used the covariance of stocks estimated based over the last
{2, 5, 10, 15} time periods, the identity matrix, as well as the outer products of the industry
sector indicators: i.e., for each of the industry sectors above, we formed a matrix whose
(i, j)-th entry represented whether the i-th and j-th stock are both in that industry sector.

We then randomly sampled weights 18 times, which we used to generate training exam-
ple portfolios. The weights corresponding to the return means features were sampled from a
normal distribution with mean 1, and standard deviation 0.5, and the weights corresponding
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to the covariance matrix features were sampled from a normal distribution with mean 3,
and standard deviation 3 (we clipped negative covariance feature weights). The sampling
distributions were selected so that they generate portfolios that cover more than one stock.
For each weight sample, we generated a number of portfolios by solving the portfolio op-
timization problem using the weights and features derived from data from different time
periods in the training set (spread out, so as to make the portfolios more independent.) We
then ran ICO using a max-norm margin and constraint generation to learn a set of weights,
which was then tested on data from the test set 7 different times (the choice of that number
was motivated by limited data.) In order to make the learning problem more challenging,
we added random Gaussian noise of mean 0 and varying standard deviation to each port-
folio entry, and then projected the portfolio back to the feasible set, since addition of noise
violates the summation and non-negativity constraints.

We compared the ICO approach against a linear regression model which ignores the
constraints on the output, and simply projects its predictions after they are made to the set
of feasible portfolios. Because the ICO model uses one set of weights to predict all stocks,
we used the same regression model for predicting the fraction of the portfolio allocated to
each stock. Thus the regression model’s training examples consisted of a portfolio fraction,
and features for each stock in a portfolio, for each example in the training set. The features
included all the returns means features from above for the given stock, and the sum of
the returns means features for the other stocks. In order to give the regression model
some information about the covariance features, for each ICO covariance feature matrix, we
included the diagonal entry corresponding to the given stock, as well as the sum of the other
entries in the row.

Fig. 4.3.5 shows the results for different training set sizes and different noise levels. As
we can see ICO outperforms the linear regression model significantly at all training set sizes.
We can see that the regression model performs very poorly with just one portfolio example,
whereas the ICO model benefits from directly modeling the constraints on the output space.

4.3.6 Conclusion

In this chapter we presented inverse convex optimization for continuous problems. Con-
tinuous problems present a challenge because it is more difficult to efficiently define a loss
function for the margin. We presented two formulations of a margin: a max-norm based
one, and one with a constant margin. We also showed experimental results in the domain
of portfolio optimization which present the advantages of our approach over traditional un-
structured approaches. Currently our approach yields quadratic-sized convex optimization
problems, but it is an interesting area of future research to come up with more efficient
formulations in which the number of constraints is linear in the problem size.
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Figure 4.2: Results for different noise levels. Noise sampled from a normal distribution
with the given standard deviation was added to each of the portfolios in the training set.
The vertical axis shows the max-norm error: i.e., the maximum difference across all stocks
between the predicted portfolio and the portfolio generated using the weights that also
generated the training set.
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Chapter 5

Conclusion

In this thesis we looked at the problem of Inverse Convex Optimization. We took a maximum-
margin discriminative approach, and developed convex optimization formulation for the
problem of learning the objective function of both continuous and combinatorial convex
optimization problems. Our formulation relied on two major requirements: convexity of the
optimization problem whose objective is learned, and the ability to define a concave loss
function which serves as a measure of “distance” in the output space of the optimization
problem. The generality of our framework makes it very attractive since a variety of practical
problems are either naturally formulated as convex optimization problems or have convex
relaxations. Furthermore our Inverse Convex Optimization framework yields a learning op-
timization problem which is convex, and thus solvable efficiently and reliably.

For combinatorial problems, our learning formulation exploited the binary nature of the
output space by defining a Hamming distance loss function, which can be expressed as a linear
function. Specifically we considered the associative Markov networks as an instance of Inverse
Convex Optimization and showed that even when the combinatorial problem whose objective
we are learning does not have an exact convex relaxation, our framework produces good
results in practice. We also demonstrated an efficient graph-cut based inference algorithm
based on past work in the vision community. The algorithm performs approximate inference
by iterative graph cuts, and its most attractive properties are its near-linear performance
and provable convergence to a near-optimal solution. The most important future research
direction in ICO for combinatorial problems is relating the approximation guarantees of
the convex relaxation of the combinatorial problem, to guarantees about the performance
of the learning algorithm. It will also be beneficial to design special-purpose optimization
algorithms which exploit the structure of specific ICO learning problems, such as associative
Markov Networks.

For continuous optimization problems, the ICO framework used two different loss func-
tions: a max-norm based one, and an absolute 0-1 loss within a certain precision ε. We
presented experimental results on the task of inverse portfolio optimization in which our al-
gorithm performed better than traditional approaches, which ignore problem structure. The
main current limitation of the approach is that the number of constraints in the learning
problem grows quadratically with the problem size. Thus it will be a very useful research
direction to find more efficient formulations.
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Appendix A

Fast AMN Inference

A.1 Overview

While in principle linear programming can be used for the MAP inference task in AMN, in
this chapter we will describe a much more efficient graph-based inference algorithm for the
case of pairwise AMNs. We use an existing algorithm, first analyzed in the vision community
by Zabih et al.[8], and show experimentally that we are able to perform fast inference on
very large models.

A.2 Background

A.2.1 Graphical Models Inference

Recall that a major task in probabilistic graphical models is the task of inference. When the
model defines a probability distribution, there are a number of queries one can be interested
in. For example we might need to find the (unconditional) marginal probability of a random
variable, or a conditional probability given a set of evidence [20]. In the max-margin setting
the most interesting inference query is the Maximum-A-Posteriori (MAP) inference: i.e.
what is the most likely value of a random variable (perhaps conditional on some evidence),
and that’s what the rest of this chapter will focus on.

Both MAP and posterior probability inference can be shown to be NP-hard in a general
graphical model [20]. The proof is omitted and relies on a reduction to the 3-SAT problem,
by forming a suitable graph.

Still, as we have seen already, in AMNs MAP inference is tractable. We have already
seen that MAP inference can be formulated as a linear program, and is hence efficiently
solvable in polynomial time ([3]). In this chapter we will develop a different perspective
on the problem, and use existing results to present an efficient graph-based algorithm for
pairwise AMNs.

A.2.2 Mincut

Since our algorithm will use mincut as the main optimization tool, we will briefly review it.
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Let G = (V, E) be an undirected graph with non-negative weights c(u, v) associated with
each edge (u, v). We add to the graph two special vertices (often referred to as terminal
nodes): the source s and the sink t. An s-t cut is a partition of the set of vertices V into two
disjoint sets S and T , such that s ∈ S and t ∈ T . The cost of the cut is the sum of costs of
all edges connecting nodes in S and T .

c(S, T ) =
∑

u∈S,v∈T,(u,v)∈E

c(u, v)

The problem of finding the minimum-cost s-t-cut is commonly refferred to as simply
mincut, and is solvable in polynomial time. The standard algorithm is due to Ford and
Fulkerson [12], and relies on the duality the maximum flow between the source s and the
sink t, and the cost of the minimum cut. Multiple other algorithms have also been proposed,
each having its advantages in specific domains. For a more complete overview see [9].

There are a generalizations of the s-t mincut problem that handle multiple terminals
(and thus produce a cut that splits the graph vertices into more than two subsets) but they
are NP-hard [11].

The intuition used in the rest of the chapter is that if we restrict our attention to binary
AMNs, we can treat the two terminals s and t as the 0 and 1 class, and thus interpret the
cut as a binary labeling.

A.3 Efficient AMN Inference

A.3.1 Binary Case

We first consider the case of binary AMNs, and later show how to use the local search
algorithm developed by Zabih et al.[8] to perform (approximate) inference in the general
multi-class case. The fact that we will not be able to perform exact inference in the multi-
class case should not come as a surprise since that problem is known to be NP-hard.

Formulation

Recall the integer programming formulation of MAP inference in AMNs:

max

N
∑

i=1

K
∑

k=1

θk
i y

k
i +

∑

(ij)∈E

K
∑

k=1

θ
k,k
ij yk

ij (A.1)

s.t. yk
i ∈ {0, 1}, ∀i, k;

∑

k

yk
i = 1, ∀i;

yk
ij ≤ yk

i , yk
ij ≤ yk

j , ∀(ij) ∈ E, k.

We have already multiplied features and weights so that θk
i = wk

n ·xi and θ
k,k
ij = wk,k

e ·xij.

Since we assumed that wk,k
e ≥ 0 and xij ≥ 0, we now know that θ

k,k
ij ≥ 0,which will be

important later in constructing the mincut graph.

50



Consider the binary case, i.e., K = 2. The objective of the above integer program
becomes:

max
N
∑

i=1

(θ0
i y

0
i + θ1

i y
1
i ) +

∑

(ij)∈E

(θ00
ij y0

ij + θ11
ij y1

ij)

Graph Construction

We will now show how to construct a graph for the above binary objective, whose mincut will
correspond to the optimal MAP labeling. Our objective satisfies certain conditions proposed
by Kolmogorov and Zabih ([15]) and thus the approach we use leverages existing techniques
to construct the appropriate graph.

First, let’s recast the object as minimization by simply reversing the signs on the value
of each θ.

min
N
∑

i=1

(θ0
i y

0
i + θ1

i y
1
i ) −

∑

(ij)∈E

(θ00
ij y0

ij + θ11
ij y1

ij)

Since there was no restriction on the sign of θk
i , we simply hid the change of sign in the

node terms, by negating the value of each θk
i . However, because we required that θk

ij ≥ 0,
we will now subtract the edge terms, rather than adding it. The minimization formulation
is made explicit because mincut performs minimization, and it will be easier to interpret the
construction with it.

We now present the graph construction. The graph will consist of a vertex for each
node in the AMN, along with the s and t terminals. In the final (S, T ) cut, the S set will
correspond to label 0, and the T set will correspond to label 1. We will show how to deal
with the node terms (those depending only on a single variable) and the edge terms (those
depending on a pair of variables), and then how to combine the two.

Node Terms

Consider a node term of the form θ0
i y

0
i + θ1

i y
1
i . Such a term corresponds to the node

potential contribution to our objective function for node i. Recall that θi as used here is
the negative of the original θi since we cast the maximization as a minimization. For each
node term corresponding to node i we add a vertex to the mincut graph vi. We then look
at ∆i = θ0

i − θ1
i , and create an edge of weight |∆| from vi to either s or t, depending on the

sign of ∆. The reason for that is that the final mincut graph must consist of only positive
weights. An example is presented in Fig. A.3.1.

It is easy to see from Fig. A.3.1 that if the AMN consisted of only node potentials (which
would correspond to flat classification), the graph construction above would add an edge
from each node to its less likely label. Thus if we run mincut, we would simply get a cut
with cost 0, since for each introduced vertex we have only one edge of positive weight to
either source or sink, and we would always choose not to cut any edges.
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Figure A.1: Graph construction of node terms. Notice that if θ
0

i
≥ θ

1

i
we connect to the t node with

weight |∆|.

Edge Terms

Now consider an edge term of the form −θ00
ij y0

ij − θ11
ij y1

ij. Recall that the negative signs
came about in recasting the original objective as minimization, and that θij ≥ 0 by assump-
tion. To construct a mincut graph for the edge term we will introduce two vertices vi and
vj. We will connect vertex vi to s with an edge of weight θ00

ij and connect vj to t with an
edge of weight θ11

ij . Fig. A.3.1 shows an example.
Observe what happens when both nodes are on the T side of the cut: the value of the

mincut is θ00
ij , which must be less than θ11

ij or the mincut would have placed them both on
the S side. Since the T side corresponds to label 1, this is exactly what we should expect.
When looking at edge terms in isolation, a cut that places both nodes in different sets will
not occur since θ00

ij + θ11
ij ≥ θ11

ij and θ00
ij + θ11

ij ≥ θ00
ij , but when we combine the graphs for

node terms and edge terms, such cuts will be possible.

Combining Terms

Interestingly we can take the individual graphs we created for node and edge terms and
merge them by adding edge weights together (and treating missing edges as edges with
weight 0). It can be shown that the resulting graph will represent the same objective (in
the sense that running mincut on it will optimize the same objective) as the sum of the
objectives of each graph. Since our MAP-inference objective is simply a sum of node and
edge terms, merging the node and edge term graphs will result in a graph, whose mincut
will correspond to the MAP labeling. The proof is omitted, but can be found in [15] as the
Additivity Theorem.

Thus, by following the above procedure and then merging subgraphs, we can form a
graph whose mincut will correspond to the optimal MAP labeling. The construction works
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Figure A.2: Graph construction of edge terms. Observe what happens in the different possible cuts.

for the binary, pairwise case. While in the next section we will see how to handle multiple
classes, it is still an open question how to do this efficiently for any clique size.

A.3.2 Multi-class Case

The graph construction above finds the best MAP labeling for the binary case, but in practice
we would often like to handle multiple classes in AMNs. For example in automatic e-mail
foldering we would like to assign an e-mail to one of several folders, or in laser range terrain
classification we might be interested in classifying laser scan points as belonging to different
objects such as trees, buildings or shrubbery.

One of the most effective algorithms for minimizing energy functions, which form a
“metric” on a set of labels, is the α-expansion algorithm proposed by Boykov, Veksler and
Zabih ([8]). The algorithm performs a series of “expansion” moves each of which involves
optimization over two labels, and it can be shown that it converges to within a constant
factor of the global minimum.

Expansion Algorithm

As we have shown the MAP objective we are minimizing is a metric on the set of labels,
and thus we can apply the α-expansion algorithm proposed by Boykov, Veksler, Zabih (for
a more detailed treatment see [8] or [28]). Note that the original paper required that the
function being minimized is a metric over the set of labels, but that requirement was only
necessary in constructing the mincut graph. As we saw in the previous section, using the
more recent results of [15] we can construct a mincut graph, even though our objective is
not a metric over the set of labels, so we will ignore that requirement.

Consider a current labeling y and a particular label α ∈ 1, . . .K. Another labeling y ′ is
called an “α-expansion” move from y if y′

i 6= α implies y′
i = yi (where yi is the label of the

ith node in the AMN.) In other words, an α-expansion from a current labeling allows each
label to either stay the same, or change to α.

The α-expansion algorithm cycles through all labels α in either a fixed or random order,
and finds the new labeling whose objective has the lowest value. It terminates when there
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1. Begin with arbitrary labeling y

2. Set success := 0

3. For each label α ∈ {1, . . .K}

3.1 Compute ŷ = arg min E(y′) among y′ withing one α-expansion of y.

3.2 If E(ŷ) < E(y), set y := ŷ and success := 1

4. If success = 1 goto 2.

5. Return y

Figure A.3: Boykov, Veksler’s and Zabih’s α-expansion algorithm. E(y) denotes the value
of the AMN MAP objective in its minimization form for a particular labeling y.

is no α-expansion move for any label α that has a lower objective than the current labeling
(Fig. A.3).

The key part of the algorithm for us becomes computing the best α-expansion labeling
for a fixed α and a fixed current labeling . Fortunately for us, the mincut construction from
earlier can allow us to do exactly that since an α-expansion move essentially minimizes a
MAP-objective over two labels: it either allows a node to retain its current label, or switch to
the label α. In this new binary problem we will let label 0 represent a node keeping its current
label and label 1 will denote a node taking on the new label α. In order to construct the
right coefficients for the new binary objective we need to consider several factors. Below, let
θ′ki and θ

′k,k
ij denote the node and edge coefficients associated with the new binary objective:

1. Node Potentials For each node i in the current labeling whose current label is not
α, we let θ′0i = θ

yi

i , and θ′1i = θα
i , where yi denotes the current label of node i, and

θyi denotes the coefficient in the multiclass AMN MAP objective. Note that we ignore
nodes with label α altogether since an α-expansion move cannot change their label.

2. Edge Potentials For each edge (i, j) ∈ E whose nodes have labels different from α,
we add a new edge potential, with weights θ′1ij = θ

α,α
ij . If the two nodes of the edge

currently have the same label, we set θ′0ij = θ
yi,yj

ij , and if the two nodes currently have
different labels we let θ′0ij = 0.

For each edge (i, j) ∈ E in which exactly one of the nodes has label α in the current
labeling, we add θ

α,α
ij , to the node potential θ′1i of the node whose label is different from

alpha.

After we have constructed the new binary MAP objective as above, we can apply the
mincut construction from before (after flipping signs of potentials to transform the problem
to a minimization) to get the optimal labeling within one α-expansion from the current one,
by using the fact that nodes with label 0 (i.e., the ones assosiated with the S side of the cut)
retain their current label, and the other nodes change their label to α.
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Figure A.4: The running time (in seconds) of the mincut-based inference algorithm for different problem
sizes. The problem size is the sum of the number of nodes and the number of edges. Note the near linear
performance of the algorithm and its efficiency even for large models.

Veksler ([28]) shows that the α-expansion algorithm converges in O(N) iterations where
N is the number of nodes. As noted in [8] and as we have observed in our experiments, the
algorithm terminates only after a few iterations with most of the improvement occurring in
the first couple of expansion moves.

It can also be shown that the minimum the algorithm converges to lies within a factor
of 2 of the global minimum. The original proof presented in [8] and [28] shows that the
local minimum is within a multiplicative factor which also depends on the function being
minimized, but the proof can be adapted quite easily for the AMN MAP problem, and
provide a constant factor approximation. This result is similar to the result of Kleinberg
and Tardos [14], and the proof in Sec. 3.4.2.

A.4 Experiments

In this section we illustrate the scalability of the mincut-based inference algorithm, which
was used in the task of 3D terrain recognition. The experimental setup is described in
Sec. 3.4.4. We split up the dataset into 16 square (in the xy-plane) regions, the largest of
which contains around 3.5 million points. The inference over each segment is performed
using mincut with α-expansion moves as described above. The implementation is largely
dominated by I/O time, with the actual mincut taking less than two minutes even for the
largest segment. The performance is summarized in Fig. A.4, and as we can see, it is roughly
linear in the size of the problem (number of nodes and number of edges). As a result we are
able to handle very large networks, and it is an interesting challenge to apply the algorithm
to even larger models, and come up with efficient distributed versions of it.

We used Kolmogorov’s implementation of a modified mincut algorithm, which uses bidi-
rectional search trees for augmenting paths (see [6]).
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A.5 Summary

In this appendix we presented an graph cut based inference algorithm for pairwise AMNs,
which is an alternative to linear programming. The algorithm is based on past results
developed in the vision community, and its running time is practically linear for the task
of 3D terrain recognition making it very attractive for very large models. We are able to
perform inference on models with 3 million nodes and 18 million edges in under 4 minutes,
which makes associative Markov networks suitable for large datasets. It is still an open
question how to perform inference efficiently for larger clique sizes.
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