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eAbstra
t. Distributed-password publi
-key 
ryptography (DPwPKC)allows the members of a group of people, ea
h one holding a small se
retpassword only, to help a leader to perform the private operation, asso-
iated to a publi
-key 
ryptosystem. Abdalla et al. re
ently de�ned thistool [1℄, with a pra
ti
al 
onstru
tion. Unfortunately, the latter appliedto the ElGamal de
ryption only, and relied on the DDH assumption, ex-
luding any re
ent pairing-based 
ryptosystems. In this paper, we extendtheir te
hniques to support, and exploit, pairing-based properties: wetake advantage of pairing-friendly groups to obtain e�
ient (simulation-sound) zero-knowledge proofs, whose se
urity relies on the De
isionalLinear assumption. As a 
onsequen
e, we provide e�
ient proto
ols, se-
ure in the standard model, for ElGamal de
ryption as in [1℄, but also forLinear de
ryption, as well as extra
tion of several identity-based 
ryp-tosystems [6, 4℄. Furthermore, we strenghten their se
urity model by sup-pressing the useless testPwd queries in the fun
tionality.1 Introdu
tionRe
ently, Abdalla et al. [1℄ proposed the notion of distributed-password publi
-key 
ryptography (DPwPKC), whi
h allows the members of a group of people,ea
h one holding a small independent se
ret password, to a
t 
olle
tively (forthe bene�t of one of them, who �owns� the group) as the 
ustodian of a privatekey in some ordinary publi
-key 
ryptosystem � without relying on any se
ure(se
ret and/or authenti
) storage � as long as ea
h member remembers his orher password. Pre
isely, in DPwPKC, the members initially 
reate a �virtual�key pair (sk, pk), by engaging in some distributed proto
ol over adversarial 
han-nels, where only pk is revealed, while sk is impli
itly determined by the 
olle
tionof passwords. Third parties 
an perform the publi
-key operation(s) of the un-derlying system using pk. Members 
an help the leader of the group performprivate-key operation(s) in a distributed manner, by engaging in some proto
olusing only their knowledge of their respe
tive passwords.Password-based publi
-key 
ryptography is generally 
onsidered infeasiblebe
ause password-based se
ret-key spa
es are easy to enumerate, and the knowl-edge of the publi
 key makes it possible to test the 
orre
t key from that spa
e,without intera
ting with anyone (o�ine di
tionary atta
k). In DPwPKC, there



are as many passwords as parti
ipants, and (unlike in virtually all appli
ations ofpasswords) the passwords are not meant to be shared: they are 
hosen indepen-dently by ea
h player. Sin
e the passwords need not be related, they will likelybe diverse, and the min-entropy of their 
ombination ought to grow linearly withthe number of parti
ipants, even if every single password is itself minus
ule. Forinstan
e, with ten players ea
h holding a random 20-bit password, the virtualse
ret key will be a random 200-bit string, whi
h is more than enough to builda se
ure publi
-key system for usual values of the se
urity parameter. This iswhat makes sk in DPwPKC resistant to brute-for
e o�-line di
tionary atta
ks,even though the 
orresponding pk is publi
.The main 
ontribution of [1℄ was to de�ne general fun
tionalities for dis-tributed password-based key generation and private 
omputation in the UCmodel, and to give a 
onstru
tion for ElGamal de
ryption as a proof of 
on-
ept. However, the 
onstru
tion proposed in [1℄ was merely illustrative be
auseit required generi
 simulation-sound non-intera
tive zero-knowledge (SSNIZK)proofs for NP languages, whi
h 
an only be performed e�
iently in the randomora
le model [3℄. Furthermore, their distributed private 
omputation proto
ol
ould only perform the task of 
omputing csk from the impli
it se
ret key sk,and the se
urity of their proto
ol relied on the DDH assumption. Together, theserestri
tions limited its appli
ability to ElGamal de
ryption.In this work, we �rst improve and strengthen the ideal fun
tionalities de�nedin [1℄, by further restri
ting the information that the adversary 
an gain from anatta
k. This will make any proto
ol that we 
an prove to realize those fun
tion-alities stronger, sin
e the simulation will have to work without this information.(Re
all that in the UC model, the fun
tionalities are supposed to 
apture every-thing that we allow the adversary (and thus the simulator) to learn.)Then, we extend the te
hniques from [1℄ to support a mu
h broader 
lass ofprivate-key operations in dis
rete-log-hard groups, in
luding operations involv-ing random ephemerals and/or operations in bilinear groups. More pre
isely, our
onstru
tion still targets the distributed 
omputation of csk, but under the De-
ision Linear assumption, whi
h makes the proof more intri
ate sin
e the DDHis now veri�able: we had to 
hange the workings of the proto
ol to introdu
ese
ret values. Furthermore, the 
onstru
tion works for several values of c aton
e, and now allows to share random ephemerals in the exponent. It thus al-lows a mu
h greater variety of publi
-key 
ryptosystems to be 
onverted to dis-tributed password-based 
ryptosystems, in
luding extra
tion of identity-basedprivate keys � thus giving us the new interesting notion of �password-baseddistributed identity-based en
ryption� (DPwIBE). Contrarily to regular IBE,the �
entral� key extra
tion authority is now distributed among a group of peo-ple (su�
iently many of them trusted), with the �master key� being impli
itly
ontained in the 
olle
tions of short independent passwords held by those users.In the pro
ess of strengthening and generalizing the proto
ols, we also makethem mu
h more e�
ient. To do so, we develop spe
ial-purpose simulation-soundnon-intera
tive zero-knowledge proofs (SSNIZK) for our languages of interest,in the standard model, and show how to use them instead of the ine�
ient2



general SSNIZK 
onsidered in [1℄. We do this using bilinear maps, in the CRSmodel, relying on a 
lassi
 de
isional hardness assumption for bilinear groups.The SSNIZK proofs we 
onstru
t revisit the te
hniques of [12℄ and use e�
ientproofs inspired by the re
ent Groth-(Ostrovsky)-Sahai sequen
e of e�
ient NIZK
onstru
tion in bilinear groups [14℄, but do not trivially follow from them.A number of new te
hni
al 
hallenges had to be solved. We spe
i�
ally men-tion the following: 1) the use of pairings not only helps us make e�
ient zero-knowledge proofs for various languages, it would also help the adversary verifythe result of the private 
omputation csk in the basi
 DPwPKC proto
ol from[1℄. Sin
e the UC model requires that the simulation be 
arried out until the endon both 
orre
t and in
orre
t inputs, this will make our new se
urity redu
tionsomewhat more intri
ate sin
e the result sent at the end of the simulation is ran-dom and we do not want the adversary to be
ome aware of it. 2) In 
onne
tionwith the stronger and simpler fun
tionality de�nitions we propose, the adversaryis no longer allowed to 
ondu
t expli
it password 
ompatibility tests prior to theprivate-key operation. This should intuitively further 
ompli
ate the simulation,though we remarkably note that these queries were indeed useless in the proofsand thus getting rid of them has no negative impa
t. 3) Generally speaking, wea
hieved mu
h of our se
urity and e�
ien
y gains over [1℄, by su

eeding to makeour proto
ols being fully robust by the use of publi
 veri�
ations (
omputationsof pairings) rather than intermediate validity tests (SSNIZK proofs, relying onthe random ora
le model in [1℄). This is generally both more e�
ient (no moreSSNIZK proofs) and more se
ure than testing, but it 
an lead to signi�
antlymore 
omplex simulations owing to the ideal fun
tionality being less �helpful�.2 Se
urity ModelSplit Fun
tionalities. Throughout this paper, we assume basi
 familiaritywith the universal 
omposability framework [9℄. Without any strong authenti-
ation me
hanisms, the adversary 
an always partition the players into disjointsubgroups and exe
ute independent sessions of the proto
ol with ea
h subgroup,playing the role of the other players. Su
h an atta
k is unavoidable sin
e players
annot distinguish the 
ase in whi
h they intera
t with ea
h other from the 
asewhere they intera
t with the adversary. The authors of [2℄ addressed this issueby proposing a new model based on split fun
tionalities whi
h guarantees thatthis atta
k is the only one available to the adversary.The split fun
tionality is a generi
 
onstru
tion based upon an ideal fun
-tionality. In the initialization stage, the adversary A adaptively 
hooses disjointsubsets of the honest parties (with a unique session identi�er that is �xed for theduration of the proto
ol). During the 
omputation, ea
h subset H a
tivates aseparate instan
e of the fun
tionality F . All these fun
tionality instan
es are in-dependent: The exe
utions of the proto
ol for ea
h subset H 
an only be relatedin the way A 
hooses the inputs of the players it 
ontrols. The parties Pi ∈ Hprovide their own inputs and re
eive their own outputs, whereas A plays therole of all the parties Pj /∈ H . 3



Note that the use of these split fun
tionalities already allows the adversaryto try some passwords for users by 
hoosing subgroups of size 1 and trying apassword for ea
h of them while impersonating the other players. They are thusenough to model on-line di
tionary atta
ks. In [1℄, additional TestPwd querieswere available to the adversary, thus allowing additional password trials. In thispaper, we limit the adversary against the ideal fun
tionality (i.e. the simulator),to the unavoidable on-line di
tionary atta
k but in the stri
t sense, and thuswithout any additional TestPwd queries. This means that we give less power tothe simulator. Both the 
onstru
tions in [1℄ and ours do not need them in these
urity proofs, whi
h means that a stronger se
urity level is rea
hed.In the sequel, as we des
ribe our two general fun
tionalities FpwDistPublicKeyGenand FpwDistPrivateComp (the 
omplete des
riptions 
an be found in the full ver-sion [8℄), one has to keep in mind that an atta
ker 
ontrolling the 
ommu-ni
ation 
hannels 
an always 
hoose to view them as the split fun
tionalities
sFpwDistPublicKeyGen and sFpwDistPrivateComp, whi
h impli
itly 
onsist of multiple in-stan
es of FpwDistPublicKeyGen and FpwDistPrivateComp for non-overlapping subsets ofthe original players. Furthermore, one 
annot preventA from keeping some �ows,whi
h will never arrive. This is modelled in our fun
tionalities by a bit b, whi
hspe
i�es whether the �ow is really sent or not.The Players and the Group Leader. We denote by n the number of usersinvolved in a given exe
ution of the proto
ol. All the 
omputation is done for thebene�t of only one of them, denoted as the group leader. The role of all the otherones, the players, is to help it in its use of the group's virtual key. A group is thusformed arbitrarily and is de�ned by its 
omposition, whi
h 
annot be 
hanged:a leader, whi
h is the only one to re
eive the result of a private 
omputation inthe end, and a (ordered or not, a

ording to the se
ret key 
omputation fromthe passwords) set of players to assist it.The Aim of the Fun
tionalities. The fun
tionalities are intended to 
ap-ture distributed-password proto
ols for (the key-generation and private-key op-eration of) an arbitrary publi
-key primitive, but taking into 
onsideration theunavoidable on-line di
tionary atta
ks. More pre
isely, the aim of the distributedkey generation fun
tionality FpwDistPublicKeyGen is to provide a publi
 key tothe users, 
omputed a

ording to their passwords with respe
t to a fun
tionPubli
KeyGen given as parameter. Moreover, it ensures that the group leadernever re
eives an in
orre
t key in the end, whatever the adversary does.In the distributed private 
omputation fun
tionality FpwDistPrivateComp, theaim is to perform a private 
omputation for the sole bene�t of the group leader,whi
h is responsible for the 
orre
tness of the 
omputation; in addition, it isthe only user to re
eive the end result. This fun
tionality will thus 
ompute afun
tion of some supplied input in , depending on a set of passwords that mustde�ne a se
ret key 
orresponding to a given publi
 key. More pre
isely, it willbe able to 
he
k the 
ompatibility of the passwords with the publi
 key thanksto a veri�
ation fun
tion Publi
KeyVer, and if it is 
orre
t it will then 
omputethe se
ret key sk from the passwords with the help of a fun
tion Se
retKeyGen,and from there evaluate PrivateComp(sk, in) and give the result to the leader.4



The fun
tion PrivateComp 
ould be the de
ryption fun
tion De
 of a publi
-keyen
ryption s
heme, or the signing fun
tion Sign in a signature s
heme, or theidentity-based key extra
tion fun
tion Extra
t in an IBE system.Note that Se
retKeyGen and Publi
KeyVer are naturally related to the fun
-tion Publi
KeyGen 
alled by the former fun
tionality. In all generality, unlessSe
retKeyGen and Publi
KeyGen are both assumed to be deterministi
, we needthe predi
ate Publi
KeyVer in order to verify that a publi
 key is �
orre
t� with-out ne
essarily being �equal� (to some 
anoni
al publi
 key). Also note that thefun
tion Se
retKeyGen is not assumed to be inje
tive, lest it unduly restri
t thenumber of users and the total size of their passwords. The distributed 
ompu-tations should not reveal more information than the non-distributed ones, andthus the ideal fun
tionalities 
an make use of these fun
tions as bla
k-boxes.The Fun
tionalities. We only re
all here the main points of the fun
tionali-ties, referring the interested reader to [1℄ for details. But, importantly, as in [10℄,the fun
tionalities are not in 
harge of providing the passwords to the parti
i-pants. The passwords are 
hosen by the environment whi
h then hands them tothe parties as inputs. This guarantees se
urity even in the 
ase where an honestuser exe
utes the proto
ol with an in
orre
t password: This models, for instan
e,the 
ase where a user mistypes its password. It also implies that the se
urity ispreserved for all password distributions (not ne
essarily the uniform one) and inall situations where related passwords are used in di�erent proto
ols.The private-
omputation fun
tionality fails dire
tly at the end of the initial-ization phase if the users do not share the same (publi
) inputs. In prin
iple,after the initialization stage (the NewSession queries) is over, the eligible usersare ready to re
eive the result. However the fun
tionality waits for the adver-sary S to send a 
ompute message before pro
eeding. This allows S to de
idethe exa
t moment when the result should be sent to the users and, in parti
u-lar, it allows S to 
hoose the exa
t moment when 
orruptions should o

ur (forinstan
e S may de
ide to 
orrupt some party Pi before the result is sent butafter Pi de
ided to parti
ipate to a given session of the proto
ol; see [15℄). Also,although in the key generation fun
tionality all users are normally eligible tore
eive the publi
 key, in the private 
omputation fun
tionality it is importantthat only the group leader re
eives the output (though he may 
hoose to revealit afterwards to others, outside of the proto
ol, depending on the appli
ation). Inboth 
ases, after the result is 
omputed, S 
an 
hoose whether the group leaderindeed re
eives it. If delivery is denied (b = 0), then nobody gets it, and it is asif it was never 
omputed. Otherwise, in the �rst fun
tionality, the other playersmay be allowed to re
eive it too, a

ording to a s
hedule 
hosen by S.Note that given the publi
 key, if the adversary knows/
ontrols su�
ientlymany passwords so that the 
ombined entropy of the remaining passwords islow enough, he will be able to re
over these remaining passwords by brute for
eatta
k. This is unavoidable and has nothing to do with the fa
t that the system isdistributed: o�-line atta
ks are always possible in prin
iple in publi
-key systems,and be
ome feasible as soon as a su�
ient portion of the private key is known.5



3 Notations and Building Blo
ksThe authors of [1℄ propose a proto
ol that deals with a parti
ular 
ase of unau-thenti
ated distributed private 
omputation [2℄, as 
aptured by their fun
tion-alities re
alled in the former se
tion. Informally, assuming s to be a se
ret key,the aim of the proto
ol is to 
ompute a value cs given an element c of the group.They 
laim that this 
omputation 
an be used to perform distributed BLS sig-natures [7℄, ElGamal de
ryptions [11℄, linear de
ryptions [5℄, and BF or BB1identity-based key extra
tion [6, 4℄ but they only fo
us on ElGamal de
ryptions,relying on the DDH assumption.Here, we show how to really a
hieve su
h results, by 
onstru
ting a proto
olrelying on the De
ision Linear assumption [5℄ for 
ompatibility with bilineargroups. This proto
ol will easily enable �password-based� Boneh-Franklin IBEs
heme [6℄. In the following se
tion, we show how to modify the proto
ol to obtain�password-based� Boneh-Boyen (BB1) IBE s
heme [4℄ and linear de
ryptions [5℄.Notations. Let G be a multipli
ative 
y
li
 group of prime order p and g3a generator of G. The linear en
ryption works as follows: The private key is apair of s
alars, sklin = (x1, x2), and the publi
 key, pklin = (g1, g2, g3), where
g1 = g3

1/x1 , g2 = g3
1/x2 . In order to en
rypt M ∈ G, one 
hooses r1, r2 $

← Zp,and the 
iphertext 
onsists of C = Epklin(M ; r1, r2) = (C1, C2, C3) = (g1
r1 , g2

r2 ,
Mg3

r1+r2). The de
ryption pro
ess 
onsists ofM = Dpklin(C) = C3/(C1
x1C2

x2).This en
ryption s
heme is se
ure under the De
isional Linear (DLin) as-sumption, �rst presented in [5℄ and stated here for 
ompleteness: For random
x, y, r, s ∈ Z∗

p and (g, f = gx, h = gy, f r, hs) ∈ G5, it is 
omputationally in-tra
table given gd to distinguish between the 
ase where d = r + s or d israndom. More pre
isely, a triple (f r, hs, gd) is named a linear triple in basis
(f, h, g) if d = r+ s. We also 
onsider a one-time signature s
heme 
onsisting ofthe three algorithms (SKG, Sign,Ver).Passwords, Publi
 Key and Private Key. Ea
h user Pi owns a privatelysele
ted password pwi, to a
t as the i-th share of the se
ret key sk (see below).For 
onvenien
e, we write pwi = pwi,1 . . . pwi,ℓ ∈ {0, . . . , 2

ℓ − 1}, i.e., we furtherdivide ea
h password pwi into ℓ bits pwi,j , where p < 2ℓ (p is the order of thegroup G). Noti
e that although we allow full-size passwords of up to ℓ bits (thesize of p), users are of 
ourse permitted to 
hoose shorter passwords.The authors of [1℄ dis
ussed the use of su
h passwords to 
ombine properlyinto a private key sk: the 
ombination should be reprodu
ible, it should allowto re
over either of the passwords from the key and the other passwords, andit should preserve the joint entropy of the set of paswords. They also dis
ussedpossible 
an
ellation or aliasing e�e
ts of the passwords. The preferable solutionis to do standard pre-pro
essing using hashing, i.e. that ea
h user independentlytransforms his or her true password pw∗
i into an e�e
tive password pwi by ap-plying a suitable extra
tor pwi = H(i, pw∗

i , Zi) where Zi is any relevant publi
information. We 
an then safely take sk =
∑

i pwi and be assured that the en-tropy of sk will 
losely mat
h the joint entropy of the ve
tor (pw∗
1, . . . , pw∗

n).6



The dis
rete-log-based key pair (sk, pk = gsk) is then de�ned as follows:sk = Se
retKeyGen(pw1, . . . , pwn)
def
=

∑n
i=1 pwipk = Publi
KeyGen(pw1, . . . , pwn)

def
= g

P pwiThe password/publi
-key veri�
ation fun
tion is thenPubli
KeyVer(pw1, . . . , pwn, pk) def
=

(pk ?
= g

P pwi

).In the following, we fo
us on a spe
i�
 format for the PrivateComp fun
tion,de�ned by (sk, c) 7→ m = csk. We show how to perform it in a distributed way,and how to use if for de
ryption pro
esses, and private key extra
tion in IBE.Building Blo
ks.Extra
table Homomorphi
 Commitments. As in [1℄, the �rst step ofour distributed de
ryption proto
ol is for ea
h user to 
ommit to his password(the details are given in the following se
tion). The 
ommitment needs to beextra
table, homomorphi
, and 
ompatible with the shape of the publi
 key.Generally speaking, one needs a 
ommitment Commit(pw, R) that is additivelyhomomorphi
 on pw and with 
ertain properties on R. Instead of ElGamal'ss
heme [11℄ used in [1℄, we fo
us here on linear 
ommitments Commitg(pw, r, s) =
(U1

pwg1r, U2
pwg2s, gpwg3r+s), where (U1, U2, U3 = g) is not a linear triple in basis

(g1, g2, g3) in order to provide extra
tability, or en
ryptions Encryptg(pw, r, s) =
(g1

r, g2
s, gpwg3r+s) (here, g1, g2 and g3 are de�ned as before and g is a generatorof G). In both 
ases, the hiding property or the semanti
 se
urity rely on theDLin assumption. Extra
tability is possible granted the private/de
ryption key

(x1, x2), su
h that g3 = g1
x1 = g2

x2 , and re
alling that the users 
ommit tobits. Denoting by (c1, c2, c3) the 
ommitment, it is thus enough to 
he
k that
c3/(c1

x1c2
x2) = 1 or (c3/g)/((c1/U1)

x1(c2/U2)
x2) = 1.Proofs of Membership. For the robustness and soundness of the proto
ols,we need some proofs of honest 
omputations. We use witness-indistinguishableand SSNIZK proofs/arguments. The di�
ulty 
onsists in designing su
h simula-tion-sound proofs without random ora
les: they are des
ribed in Se
tion 6. Alongthese lines, we use the following kinds of non-intera
tive proofs:� CDH(g,G, h,H), to prove that (g,G, h,H) lies in the CDH language: thereexists a 
ommon exponent x su
h that G = gx and H = hx. Granted pairing-friendly groups, this 
an be easily done by simple pairing 
omputations;� WIProofBit(C), to prove that the 
ommitment or the 
iphertext C 
ontainsa bit. We will use a WI proof from [13℄, whi
h basi
ally proves that either Cor C divided by the basis is a linear 3-tuple;� SSNIZKEqg,c(C1, C2), to prove that the 
iphertexts/
ommitments C1 and C2
ontain the same value, possibly in the di�erent bases g and c, that is,

C1 en
rypts/
ommits to ga and C2 en
rypts/
ommits to ca, with the same a.We use a SSNIZK argument, following the overall approa
h by Groth [12℄ toobtain simulation soundness, but using the Groth-Sahai proof system [14℄for e�
ien
y (see Se
tion 6 � the proof is omitted, but very similar to [12℄).7



4 Des
ription of the Proto
olsThe Distributed Key Generation Proto
ol. This proto
ol is des
ribedin Figure 1 and realizes the fun
tionality FpwDistPublicKeyGen. All the users areprovided with a password pwi and want to obtain a publi
 key pk. One of themis the leader of the group, denoted by P1, and the others are P2, . . . , Pn.The proto
ol starts with a round of 
ommitments of these passwords. Ea
huser sends a 
ommitment Ci of pwi (divided into ℓ blo
ks pw1,1, . . . , pwi,ℓ oflength L � here, L = 1): it 
omputes Ci,j = (C
(1)
i,j , C

(2)
i,j , C

(3)
i,j ) = (U1

pwi,jg1
ri,j ,

U2
pwi,jg2

si,j , gpwi,jg3
ri,j+si,j ) for j = 1, . . . , ℓ and random values ri,j and si,j ,and publishes Ci = (Ci,1, . . . , Ci,ℓ), with a set of proofs WIProofBit(Ci,j) thatea
h 
ommitment indeed 
ommits to an L-bit blo
k. As we see in the proof (seethe full version), this 
ommitment needs to be extra
table so that the simulatoris able to re
over the passwords used by the adversary, whi
h is the reasonwhy we segmented all the passwords and make 
ommitments of bits, along witha WIProofBit that the 
ommitted value is a
tually a bit. Ea
h user also runsthe signature key generation algorithm to obtain a signature key SKi and averi�
ation key VKi. The users will be split a

ording to the values re
eived inthis �rst �ow (i.e. the 
ommitments, the proofs and the veri�
ation keys), as wesee in the se
ond �ow where they send a signature of all they have re
eived upto this point. Thus, the proto
ol 
annot 
ontinue past this point if some playersdo not share the same values as the others (i.e. one of the signatures σi will bereje
ted later on and at least a user will abort).On
e this �rst step is done, the users 
ommit again to their passwords (byen
rypting them, for e�
ien
y reasons), but this time in a single blo
k: C′

i =

(C′
i
(1), C′

i
(2), C′

i
(3)) = (g1

ti , g2
ui , gpwig3

ti+ui) (with random values ti and ui) andpublish it along with a SSNIZK proof that the passwords 
ommitted are the samein the two 
ommitments: SSNIZKEqg,g(Ci, C
′
i), Ci roughly being the produ
t ofthe Ci,j , i.e. a 
ommitment of pwi. The new en
ryptions C′

i will be the ones usedin the rest of the proto
ol. They need not be segmented (sin
e we will not extra
tanything from them, but just make 
omputations on en
rypted values), but weask the users to prove that they are 
ompatible with the former 
ommitments.Ea
h user Pi 
omputes H = H(C1, . . . ,Cn), and sends a signature of thevalues that identi�es this exe
ution, under an ephemeral one-time signature key,to avoid malleability and replay from previous sessions: σi = Sign(H ; SKi). Thisallows the proto
ol to realize the split fun
tionality by ensuring that everybodyhas re
eived the same values in the �rst round (more pre
isely, the players havebeen split a

ording to what they re
eived in the �rst round, so that we 
anassume that they have all re
eived the same values). Note that the proto
ol willfail if the adversary drops or modi�es a �ow re
eived by a user, even if everythingwas 
orre
t. This situation is modeled by the bit b of the key delivery queries inthe fun
tionality, for when everything goes well but some of the players do notobtain the result.The need for an additional extra
table 
ommitment Ci of gpwi (and a proofthat the password used is the same, and that everybody re
eived the same value)8



is a requirement of the UC model, as in [10℄. Indeed, we show later on that
S needs to be able to simulate everything without knowing any passwords: Thus,he re
overs the passwords by extra
ting them from the 
ommitments Ci madeby the adversary in the �rst round, enabling him to adjust his own values beforethe subsequent en
ryptions C′

i, so that all the passwords are 
ompatible withthe publi
 key (if they should be in the situation at hand).After these rounds of 
ommitments/en
ryptions, the players 
he
k the signa-tures and abort if one of them is not valid. A 
omputation step then allows themto 
ompute the publi
 key. Note that everything has be
ome publi
ly veri�able.Computation starts from the 
iphertexts C′
i, and involves two �blinding rings�to raise sequentially the values ∏

iC
′
i
(3)

= g
P

i
pwig3

P

i
(ti+ui), g1, g2 and g3to some distributed random exponent α =

∑
i αi. The players then broad
ast

g3
α(ti+ui) (the values g1 and g2 are only here to 
he
k the 
onsisten
y of the val-ues ti and ui and avoid 
heating), leaving every player able to 
ompute gα

P

i
pwi .A �nal �unblinding� allows for the re
overy of gP

i
pwi = pk. We stress that everyuser is able to 
he
k the validity of this 
omputation (at ea
h step, it 
he
ks theCDH values to ensure that the same exponent was used ea
h time): A dishonestexe
ution 
annot 
ontinue without an honest user be
oming aware of it (andaborting). Note however that an honest exe
ution 
an also be stopped by a userif the adversary modi�es a �ow, as re�e
ted by the bit b in the fun
tionality.The Distributed Private Computation Proto
ol. This proto
ol is pre-sented in Figure 2 and realizes FpwDistPrivateComp. Here, in addition to their pass-words, the users are also provided a publi
 key pk and a group element c ∈ G.For this given c ∈ G, the leader wants to obtain m = csk. A big di�eren
e withthe previous proto
ol is that this result will be private to the leader. But before
omputing it, everybody wants to be sure that all the users are honest, or atleast that the 
ombination of the passwords is 
ompatible with the publi
 key.This veri�
ation step is exa
tly the same as the 
omputation step in theprevious proto
ol. The proto
ol starts by verifying that they will be able toperform this 
omputation, and thus that they indeed know a representation ofthe se
ret key into shares. Ea
h user sends a 
ommitment Ci = {Ci,j}j of itspassword as before, and the asso
iated set of WIProofBit(Ci,j).As in the former proto
ol, on
e this �rst step (whi
h enables the users to besplit into subgroups a

ording to what values they have re
eived) is done, theusers 
ommit again to their passwords in the value C′

i, whi
h will be the onesused in the rest of the proto
ol, and also send a signature whi
h enables them to
he
k that they share the same publi
 key pk, the same group element c, and havere
eived the same values in the �rst round. It thus avoids situations in whi
h agroup leader with an in
orre
t key obtains a 
orre
t private 
omputation result,
ontrary to the ideal fun
tionality. The proto
ol will thus fail if all these valuesare not the same to everyone, whi
h is the result required by the fun
tionality.Next, the users make yet another en
ryption Ai of their passwords, but thistime they do a linear en
ryption of pwi in base c instead of in base g (in theabove C′
i 
iphertext): Ai = Encryptc(pwi, vi, wi) = (g1

vi , g2
wi , cpwig3

vi+wi). The
iphertexts C′
i will be used to 
he
k the possibility of the private 
omputation9



Commitment FirstStep
z

}
|

{

(1a) ri,j , si,j
R
← Z

∗
p

Ci,j =Commitg(pwi,j , ri,j , si,j)=(U1
pwi,j g1

ri,j , U2
pwi,j g2

si,j , gpwi,j g3
ri,j+si,j )

Π0
i,j = WIProofBit(Ci,j)

(SKi, VKi)← SKG
Ci={Ci,j}j ,{Π0

i,j}j ,VKi

−−−−−−−−−−−−−−−−→

Commitment Se
ondStep
z

}
|

{

(1b) H = H(C1, . . . , Cn, VK1, . . . , VKn) ti, ui
R
← Z

∗
p

C′
i = Encryptg(pwi, ti, ui) = (g1

ti , g2
ui , gpwig3

ti+ui)

Ci =

„

Q

“

Ci,j
(1)

”2j

,
Q

“

Ci,j
(2)

”2j

,
Q

“

Ci,j
(3)

”2j
«

Π1
i = SSNIZKEqg,g(Ci, C

′
i) σi = Sign(H ;SKi)

C′

i,Π1
i ,σi

−−−−−−→

BlindingRing

z
}
|

{ (1c) abort if one of the signatures σi is invalid
γ

(0)
0 =

Q

i C′
i
(3)

= g
P

i pwig3

P

i ti+
P

i ui γ
(1)
0 = g1 γ

(2)
0 = g2 γ

(3)
0 = g3This round is done sequentially, for i=1,. . . ,n.Upon re
eiving (γ

(0)
j , γ

(1)
j , γ

(2)
j , γ

(3)
j ) for j = 1, . . . , i− 1,
he
k CDH(γ

(0)
j−1, γ

(0)
j , γ

(1)
j−1, γ

(1)
j ), CDH(γ

(0)
j−1, γ

(0)
j , γ

(2)
j−1, γ

(2)
j )and CDH(γ

(0)
j−1, γ

(0)
j , γ

(3)
j−1, γ

(3)
j ); abort if one of them is invalid

αi
R
← Z

∗
p γ

(0)
i = (γ

(0)
i−1)

αi γ
(1)
i = (γ

(1)
i−1)

αi γ
(2)
i = (γ

(2)
i−1)

αi

γ
(3)
i = (γ

(3)
i−1)

αi
γ
(0)
i

,γ
(1)
i

,γ
(2)
i

,γ
(3)
i

−−−−−−−−−−−−→

(1d) given γ
(0)
n = gα

P

i pwig3
α(

P

i ti+
P

i ui) γ
(1)
n = g1

α γ
(2)
n = g2

α γ
(3)
n = g3

α
he
k CDH(γ
(0)
n−1, γ

(0)
n , γ

(1)
n−1, γ

(1)
n ), CDH(γ

(0)
n−1, γ

(0)
n , γ

(2)
n−1, γ

(2)
n )and CDH(γ

(0)
n−1, γ

(0)
n , γ

(3)
n−1, γ

(3)
n )for all i, Pi 
omputes G1,i = (γ

(1)
n )ti , G2,i = (γ

(2)
n )ui ,

G3,i = (γ
(3)
n )ti , G4,i = (γ

(3)
n )ui

G1,i,G2,i,G3,i,G4,i
−−−−−−−−−−−−−→

UnblindingRing

z
}
|

{ (1e) given, for j = 1, . . . , n G1,j , G2,j , G3,j , G4,j
he
k CDH(g1, C
′
j
(1)

, γ
(1)
n , G1,j), CDH(g2, C

′
j
(2)

, γ
(2)
n , G2,j),

CDH(γ
(1)
n , G1,j , γ

(3)
n , G3,j) and CDH(γ

(2)
n , G2,j , γ

(3)
n , G4,j)

ζn+1 = γ
(0)
n /

“

Q

j G3,jG4,j

”

= gα
P

j pwjThis round is done sequentially, for i from n down to 1.given, for j from n down to i + 1, ζj , 
he
k CDH(γ
(1)
j−1, γ

(1)
j , ζj , ζj+1)

ζi = (ζi+1)
1/αi

ζi
−→

(1f) given, for j from i− 1 down to 1, ζj , 
he
k CDH(γ
(1)
j−1, γ

(1)
j , ζj , ζj+1)pk = ζ1Fig. 1. Individual steps of the distributed key generation proto
ol(i.e. that the passwords are 
onsistent with the publi
 key pk = gsk), whereas the
iphertexts Ai will be used to a
tually 
ompute the expe
ted result csk, hen
ethe two di�erent bases g and c in C′

i and Ai, respe
tively. All the users sendthese last two 
iphertexts to everybody, along with a SSNIZK argument that thesame password was used ea
h time: Π2
i = SSNIZKEqg,c(C

′
i, Ai).10



After these rounds of 
ommitments/en
ryptions, a veri�
ation step allows forall the players to 
he
k whether the publi
 key and the passwords are 
ompatible.Note that at this point, everything has be
ome publi
ly veri�able so that thegroup leader will not be able to 
heat and make the other players believe thateverything is 
orre
t when it is not. Veri�
ation starts from the 
iphertexts C′
i,and involves a blinding and an unblinding ring as des
ribed above. This endswith a de
ision by the group leader on whether to abort the proto
ol (when thepasswords are in
ompatible) or go on to the 
omputation step. Every user is ableto 
he
k the validity of the group leader's de
ision, as in the former proto
ol.If the group leader de
ides to go on, the players assist it in the 
omputationof csk, again with the help of a blinding and an unblinding rings, starting from the
iphertexts Ai. However, note that this time, the group leader does not reveal thevalues G′

1,1 = (δ
(1)
n )v1 , G′

2,1 = (δ
(2)
n )w1 , G′

3,1 = (δ
(3)
n )v1 and G′

4,1 = (δ
(3)
n )w1 at theend of the blinding ring, but it is the only one able to 
ompute cβ P

j
pwj . Insteadof revealing it to the others, it 
hooses at random an exponent x R
← Z∗

q andbroad
asts the value cβx
P

j
pwj . The unblinding ring then takes pla
e as before,leading to a publi
 value cβ1x

P

j pwj that the environment 
annot distinguishfrom random thanks to the random exponent x. Furthermore, the whole pro
essis robust, whi
h means that nobody 
an make the de
ryption result be
omein
orre
t. Ex
ept of 
ourse the group leader itself who broad
asts any value itwants as ζ′n+1, without having to prove anything. But this does not help it toobtain a 
omputation whi
h it 
ould not do alone, ex
ept the result csk.Note that if at some point a user fails to send its value (denial of servi
e at-ta
k) or if the adversary modi�es a �ow (man-in-the-middle atta
k), the proto
olwill fail. In the ideal world this means that the simulator makes a 
omputationdelivery query to the fun
tionality with a bit b set to zero. Be
ause of the publi
veri�
ations of the CDH values, in these blinding/unblinding rounds exa
tly thesame sequen
e of passwords as in the �rst rounds has to be used by the players.This ne
essarily implies 
ompatibility with the publi
 key, but may be an evenstronger 
ondition.As a side note, observe that all the blinding rings in the veri�
ation and 
om-putation steps 
ould be made 
on
urrent instead of sequential, to simplify theproto
ol. Noti
e however that the �nal unblinding ring of csk in the 
omputationstep should only be 
arried out after the publi
 key and the 
ommitted pass-words are known to be 
ompatible, and the passwords to be the same in bothsequen
es of 
ommitments/en
ryptions, i.e. after the veri�
ation step su

eeded.All the witness-indistinguishable and SSNIZK proofs and arguments will bedes
ribed in Se
tion 6. We show in the full version [8℄ that we 
an e�
ientlysimulate these 
omputations without the knowledge of the pwi's, so that theydo not reveal anything more about the pwi's than pk already does. More pre-
isely, we show that su
h 
omputations are indistinguishable to A under theDLin assumption.
11



Commitment Steps
z

}
|

{

(2a) = (1a)
{Ci,j ,Π0

i,j}j

−−−−−−−−→

(2b) = (1b) ex
ept vi, wi
R
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∗
p
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k CDH(δ
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(1)
j−1, δ

(1)
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′
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(3d) given, for j from i− 1 down to 2 ζ′
j
he
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(1)
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(1)
j , ζ′

j , ζ
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2)
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P pwi = cxsk and �nally cskFig. 2. Individual steps of the distributed de
ryption proto
ol12



Se
urity Theorems. Assuming that the proofs of membership WIProof-Bit and SSNIZKEq are instantiated as des
ribed in Se
tion 6 (relying on theCDH), we have the following results, provided that DLin is infeasible in G and
H is 
ollision-resistant. The proofs of these theorems 
an be found in the fullversion [8℄.Theorem 1 Let F̂pwDistPublicKeyGen be the 
on
urrent multi-session extension of
FpwDistPublicKeyGen. The distributed key generation proto
ol in Figure 1 se
urelyrealizes F̂pwDistPublicKeyGen for ElGamal key generation, in the CRS model, in thepresen
e of stati
 adversaries.Theorem 2 Let F̂pwDistPrivateComp be the 
on
urrent multi-session extension of
FpwDistPrivateComp. The distributed de
ryption proto
ol in Figure 2 se
urely realizes
F̂pwDistPrivateComp for ElGamal de
ryption, in the CRS model, in the presen
e ofstati
 adversaries.As stated above, our proto
ols are only proven se
ure against stati
 adver-saries. Unlike adaptive ones, stati
 adversaries are only allowed to 
orrupt pro-to
ol parti
ipants prior to the beginning of the proto
ol exe
ution.5 Extensions of the Proto
olsBoneh-Franklin IBE S
heme [6℄. We need to 
ompute did = H(id)sk where
H(id) is a publi
 hash of a user's identity. This is analogous to csk, and thus ourproto
ol works as is.Boneh-Boyen (BB1) IBE S
heme [4℄. Here, did is randomized and ofthe form (h0

sk(hid1 h2)
r, h3

r). Sin
e (h0
sk) is a private value, the proto
ol 
an beadapted as follows: 1) In the 
ommitment steps, the user also 
ommits (on
e)in (2a) to a value ri, whi
h will be its share of r. 2) Up to (2f), everything worksas before in order to 
he
k pk (there is no need to 
he
k r, 
onstru
ted on the �y).3) The blinding rings are made in parallel, one for (h0

sk)β , one for ((hid1 h2)
r)β ,and one for (h3

r)β , the CDH being 
he
ked to ensure that the same r and βi areused ea
h time. 4) The players obtain (h0
sk(hid1 h2)

r)β and the unblinding ringis made globally for this value. An unblinding ring is also done for (h3
r)β , withthe same veri�
ation for the exponents βi.Linear De
ryptions [5℄. Let (f = g1/x, g, h = g1/y) be the publi
 key of alinear en
ryption s
heme, (x, y) being the private key. Assuming z = y/x, thesekeys 
an be seen as pk = (hz , hy, h) and sk = (y, z). Using these notations,

c = Epk(m; r) = (c1, c2, c3) = (f r, hs,mgr+s)
m = Dsk(c) = c3(c1

xc2
y)−1 = mgr+sg−rg−sIn the �rst proto
ol, the players need to use two passwords zi and yi to
reate the publi
 key pk. In the se
ond one, the 
ommitment steps are doubledto 
ommit to both zi and yi. As soon as pk is 
he
ked, the blinding rings aremade separately, one for (c1

x)β and one for (c2
y)β . The players obtain (c1

xc2
y)βand the unblinding ring 
an be made globally for this value. In both rings, theCDH is 
he
ked to ensure that the same βi is used ea
h time.13



6 Employed Proof Systems6.1 GOS WI Proof of Commitments Being to BitsLet (g1, g2, g3) ∈ G3 be a �basis� and let (U1, U2, g) ∈ G3 be a 
ommitmentkey (whi
h is in general non-linear w.r.t. (g1, g2, g3), but for simulation purposesit will be linear). Let C = (Ux
1 g

r
1, U

x
2 g

s
2, g

xgr+s
3 ) be a 
ommitment to x usingrandomness (r, s). Groth et al. [13℄ 
onstru
t a WI proof system to show that oneof two triples is linear. Applying it to (C1, C2, C3) and (C1U

−1
1 , C2U

−1
2 , C3g

−1)yields a proof that x ∈ {0, 1}, thus implements WIProofBit, in an e�
ient wayand without random ora
les.6.2 Simulation-Sound NIZK Arguments for Relations ofCiphertexts and CommitmentsWe 
onstru
t two simulation-sound NIZK argument systems implementing theproof SSNIZKEq. Given two 
iphertexts, the �rst proves that the en
rypted mes-sages m1 and m2 are in CDH w.r.t. some �xed basis (c, d), i.e., m1 = cµ and
m2 = dµ for some µ. The se
ond SSNIZK proves that for a given linear 
om-mitment to x and a linear en
ryption of gy it holds that x = y. We follow theoverall approa
h by Groth [12℄ to obtain simulation soundness, but using theGroth-Sahai proof system [14℄ we get an e�
ient result: the proofs themselvesare e�
ient, and we need not en
rypt some of the witnesses in order to guaranteeextra
tability, as the employed Groth-Sahai proofs are witness extra
table.Overview. We start with some intuition on how [12℄ 
onstru
ts simulation-sound proofs for satis�abilityofaset of pairing produ
t equations (PPEs) {Ek}

KE

k=1(and later show how to express the statements we want to prove this way). Let
Σot be a strong one-time signature s
heme4 and let Σ
ma be a signature s
hemethat is existentially unforgeable under 
hosen message atta
k (EUF-CMA), andwhose signatures σ on a message M are veri�ed by 
he
king a set of PPEs overa veri�
ation key vk and M , denoted {Vk(vk,M, σ)}KV

k=1.The 
ommon referen
e string (CRS) of our argument system will 
ontain averi�
ation key vk for Σ
ma (whose 
orresponding signing key serves as sim-ulation trapdoor). When making an argument, one �rst 
hooses a key pair
(vkot, skot) for Σot, proves a statement and, at the end, adds a signature un-der vkot on the instan
e and the proof. The statement one a
tually proves isthe following: to either know a witness satisfying Equations {Ek} or to knowa signature on vkot valid under vk. Groth [12℄ shows how to 
onstru
t a newset of equations whi
h is satis�able i� {Ek} or {Vk(vk, vkot, ·)} are satis�able.Moreover, knowing witnesses for either of them, one 
an 
ompute witnesses ofthe new set of equations. Using the te
hniques of [14℄, one then 
ommits tothe witnesses and proves that the 
ommitted values satisfy the new PPEs in awitness-indistinguishable (WI) way.To simulate an argument, after 
hoosing a pair (vkot, skot), one uses thetrapdoor to produ
e a signature σ on vkot valid under vk and uses σ as a witness4 A signature s
heme is strong one-time if no adversary, after getting a signature σ onone message m of his 
hoi
e, 
an produ
e a valid pair (m∗, σ∗) 6= (m, σ).14



for {Vk(vk, vkot, ·)}. (It follows from WI of the Groth-Sahai proof that this isindistinguishable from using a witness for {Ek}.) Even after seeing many proofsof this kind, no adversary is able to produ
e one for a new false statement:Sin
e it has to sign the instan
e and the argument at the end, it must 
hoosea new pair (vk∗ot, sk∗ot) (by one-time se
urity of Σot). Soundness of Groth-Sahaiproofs imposes that to prove a false statement (meaning that the �rst 
lause ofthe disjun
tion is not satis�able), it must use a witness for the se
ond 
lause,thus know a signature on vkot. This however is infeasible by EUF-CMA of Σ
ma(sin
e we 
an extra
t the witnesses and thus a forged signature). We start byinstantiating the mentioned building blo
ks.Building Blo
ks. The main motivation for our 
hoi
es of instantiations ofthese blo
ks is that their se
urity is implied by DLin only. We insist that byadmitting more exoti
 assumptions, the e�
ien
y of our proof system 
ouldbe improved.The Strong One-Time Signature S
heme Σot. We pi
k the s
heme de-s
ribed in [12℄ (but any other would equally do), sin
e its se
urity follows fromthe dis
rete-log assumption whi
h is implied by DLin.The Waters Signature S
heme. The signature s
heme from [16℄ suits ourpurposes, it requires no additional assumption and�more importantly�signa-tures are veri�ed by 
he
king PPEs.Setup. In a bilinear group (p,G,GT , e, g), de�ne parameters f ← G∗ and h :=
(h0, h1, . . . , hℓ)← G

ℓ+1. A se
ret key x← Zp de�nes a publi
 key X := gx.For ease of notation, de�ne W(M) := h0

∏ℓ
i=1 h

Mi

i .Signing. To sign a message M ∈ {0, 1}ℓ, 
hoose r ← Zp and de�ne a signatureas σ := (fxW(M)r, g−r).Veri�
ation. A signature σ = (σ1, σ2) is a

epted for message M i�
e(σ1, g) e(W(M), σ2) = e(f,X) (1)Se
urity. EUF-CMA follows from the 
omputational Di�e-Hellman assumptionwhi
h is implied by DLin.The Groth-Sahai Proof System. Consider a set of pairing produ
t equations

{Ek}
KE

k=1 on variables {Xi}
n
i=1 in G of the form

n∏

i=1

e(Ak,i, Xi)

n∏

i=1

n∏

j=1

e(Xi, Xj)
γk,i,j = Tk (Ek)for given Ak,i ∈ G, γk,i,j ∈ Zp, and Tk ∈ GT . Groth and Sahai [14℄ builda non-intera
tive witness-indistinguishable proof of satis�ability of {Ek} fromwhi
h�given a trapdoor�
an be extra
ted the witnesses Xi (we will use theirinstantiation with DLin): the CRS is a (binding) key for linear 
ommitments togroup elements. The proof 
onsists of 
ommitments to ea
h Xi and 9 elementsof G per equation proving that it is satis�ed by the 
ommitted values. By DLin,repla
ing the CRS by a hiding 
ommitment key is indistinguishable. In thissetting now every witness {Xi}

n
i=1 satisfying the equations generates the samedistribution of proofs, whi
h implies witness-indistinguishability of the proofs.15



Moreover, we assume a 
ollision-resistant hash fun
tion H that maps stringsof elements of G to elements in Zp whi
h we identify with their bit-representationin {0, 1}⌈log p⌉. Thus, when we say we sign a ve
tor of group elements, we a
tuallymean that we sign their hash values.Equations for Proof of Plaintexts Being in CDH. Let c, d ∈ G be�xed and let (g1, g2, g3) be a linear en
ryption key. Given two 
iphertexts C =
(gr

1 , g
s
2,m1g

r+s
3 ) and D = (gt

1, g
u
2 ,m2g

t+u
3 ), we give a set of PPEs that are satis-�able by a witness a if and only if there exists µ ∈ Zp su
h that m1 = cµ and

m2 = dµ.
e(C1, g3) = e(g1, a1) e(C2, g3) = e(g2, a2) (2)
e(D1, g3) = e(g1, a3) e(D2, g3) = e(g2, a4) e(C3a

−1
1 a−1

2 , d) = e(c,D3a
−1
3 a−1

4 )The witness satisfying them is a := (gr
3 , g

s
3, g

t
3, g

u
3 ). The �rst four equationsprove that the logarithms of the ai's are those of C1, C2, D1, D2 w.r.t. theirrespe
tive bases. Thus, C3a

−1
1 a−1

2 = m1 and D3a
−1
3 a−1

4 = m2 and the lastequation shows that (m1,m2) is in CDH w.r.t. (c, d).Disjun
tion of Equations. Following [12℄ (and optimizing sin
e the pairingshave variables in 
ommon), we de�ne a set of equations whi
h we 
an provesatis�able if we have witnesses for either (2) or (1), i.e., if we either know asatisfying (2) or σ satisfying (1). We �rst introdu
e the following new variables:
χ1, χ2 φ1, φ2, φ3, φ4, φ5 ψ1, ψ2, ψ3We de�ne the following 15 equations expressing a disjun
tion of (2) and (1),therefore termed �(2 ∨ 1)�.Equation for Disjun
tion: e(g−1χ1χ2, g) = 1From (1): e(χ2, ψ

−1
1 σ1) = 1 e(χ2, ψ

−1
2 W(M)) = 1 e(χ2, ψ

−1
3 f) = 1

e(ψ1, g) e(ψ2, σ2) e(ψ3, X)−1 = 1From (2): e(χ1, φ
−1
1 g1) = 1 e(χ1, φ

−1
2 g2) = 1

e(χ1, φ
−1
3 g3) = 1 e(χ1, φ

−1
4 c) = 1 e(χ1, φ

−1
5 d) = 1

e(C1, φ3) e(φ1, a1)
−1 = 1 e(C2, φ3) e(φ2, a2) = 1

e(D1, φ3) e(φ1, a3)
−1 = 1 e(D2, φ3) e(φ2, a4) = 1

e(C3a
−1
1 a−1

2 , φ5) e(φ4, D3a
−1
3 a−1

4 ) = 1Completeness. To produ
e a proof we pro
eed as follows: If we have an as-signment a for (2), we 
hoose χ1 := g, χ2 := 1, satisfying thus the �rst equation.Moreover, set φ1 := g1, φ2 := g2, φ3 := g3, φ4 := c, φ5 := d. Thus the equationsof the blo
k for (2) are satis�ed, be
ause a is a witness for (2). Sin
e χ2 = 1,we 
an set ψi := 1 (for all i) as well, whi
h satis�es the blo
k for (1), no matterwhat value we set σ.On the other hand, if we know a signature σ satisfying (1), we 
hoose χ1 :=
φi := 1 (for all i) and χ2 := g, ψ1 := σ1, ψ2 := W(M), ψ3 := f and get asatisfying assignment for any 
hoi
e of a.Soundness. We show that if (2 ∨ 1) is satis�ed then either a satis�es (2) or σsatis�es (1): From the �rst equation we have that either χ1 or χ2 must be non-trivial, whi
h either 
on�nes the values of the φi's to (g1, g2, g3, c, d) or those of16



the ψi's to (σ1,W(M), f). Now this imposes that either a satis�es (2) (by thelast �ve equations of the blo
k for (2)) or σ satis�es (1) (by the last equation ofthe blo
k for (1)).Equations for Proof of Commitment and Ciphertext Containing theSame Value. Let (g1, g2, g3) be a key for linear en
ryption, and let (U1, U2, g)be an asso
iated 
ommitment key. Let C = (Ux
1 g

r
1, U

x
2 g

s
2, g

xgr+s
3 ) be a 
ommit-ment to x and D = (gv

1 , g
w
2 , g

ygv+w
3 ) be an en
ryption of gy. We prove that

x = y: the witness is (a1 = Ux
1 , a2 = Ux

2 , a3 = gx, a4 = gr
3, a5 = gv

3) satisfying
e(a1, U2) = e(U1, a2) e(C1a

−1
1 , g3) = e(g1, a4) e(D1, g3) = e(g1, a5)

e(a1, g) = e(U1, a3) e(C2a
−1
2 , g3) = e(g2, C3a

−1
3 a−1

4 ) e(D2, g3) = e(g2, D3a
−1
3 a−1

5 ) (3)The equations in the �rst 
olumn show that a1 = Uz
1 , a2 = Uz

2 , a3 = gz forsome z, the se
ond 
olumn proves that (C1a
−1
1 , C2a

−1
2 , C3a

−1
2 ) is linear (i.e., C
ommits to z) and the third that D is an en
ryption of a3 = gz.Transformation. Transforming Equations (3) and (1) to a set (3 ∨ 1) analo-gously to the 
onstru
tion of (2 ∨ 1), we get a set of 16 equations we 
an provesatis�able adding 10 new witnesses if either we have a witness for C being a
ommitment to some x and D an en
ryption of gx, or we know a signature.(Asso
iate the φi's to U1, a1, g1, g2 and g3.)Assembling the Pie
es. We des
ribe the SSNIZK proof system for �plaintextsin CDH�. The one for �
ommitment and 
iphertext 
ontain the same value� isobtained by repla
ing (2 ∨ 1) by (3 ∨ 1).Common Referen
e String. Generate a key pair (vk, sk) for Waters' sig-nature s
heme, and a CRS 
rsGS for the Groth-Sahai proof system. Let
rs := (vk, 
rsGS) and let the simulation trapdoor be sk.Proof. Let (C,D) ∈ G6 be an instan
e and a a witness satisfying (2). Generatea key pair (vkot, skot) for Σot; using witness a, make a Groth-Sahai proof πGSw.r.t. 
rsGS of satis�ability of (2 ∨ 1) with M := vkot; produ
e a signature

σot on (C,D, vkot, πGS) using skot. The proof is π := (vkot, πGS, σot)Verifi
ation. Given π, verify σot on (C,D, vkot, πGS) under vkot, and πGS onthe respe
tive equations.Simulation. Pro
eed as in Proof, but using sk produ
e σ on vkot and usethat as a witness for (2 ∨ 1).Theorem 3 Under the DLin assumption, the above is a simulation-sound NIZKargument for the en
ryptions of two linear 
iphertexts forming a CDH-pair.Using the ideas given in the overview, the proof is analogous to that in [12℄ex
ept that we do not require perfe
t soundness and that we use the extra
tionkey for 
rsGS to extra
t a forged signature on vkot dire
tly rather than addingen
ryptions to the proof.A
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