
Miniature CCA2 PK Encryption :

Tight Security Without Redundancy

Xavier Boyen
Voltage Inc. — xb@boyen.org

November 12, 2007

Longer version of an extended abstract to be published in Advances in Cryptology—ASIACRYPT 2007,
Springer-Verlag, 2007. Available online from: http://www.cs.stanford.edu/∼xb/asiacrypt07/

Abstract

We present a minimalist public-key cryptosystem, as compact as ElGamal, but with adap-
tive chosen-ciphertext security under the gap Diffie-Hellman assumption in the random oracle
model. The novelty is a dual-hash device that provides tight redundancy-free implicit validation.
Compared to previous constructions, ours features a tight security reduction, both in efficacy
and efficiency, to a classic and essentially non-interactive complexity assumption, and without
resorting to asymmetric/symmetric-key hybrid constructions. The system is very compact: on
elliptic curves with 80-bit security, a 160-bit plaintext becomes a 320-bit ciphertext. It is also
very simple and has a number of practical advantages, and we hope to see it adopted widely.

1 Introduction and Motivation

One of the major pursuits in cryptographic research has been to devise faster, nimbler, shorter, and
stronger encryption systems that can be used in practice. In the realm of public-key cryptosystems,
the lure of simplicity and efficiency has produced many a breakthrough and many more successive
refinements, over the last three decades.

We propose one more such technical refinement, in the form of a CCA2-secure PK cryptosystem
with the shortest ciphertext among Discrete-Log-based systems at any given exact security level.
Our construction is simple and purely algebraic, and relies on a standard assumption in the random-
oracle model of [2]. To obtain short ciphertexts, we eliminate all sources of redundancy, and limit
the unavoidable randomness to a single element of the computational group. Furthermore, we
ensure that no space is wasted in the encoding of that element, by shrinking the computational
group itself to the smallest size that the birthday paradox will allow. The latter requirement is
only possible with a tight reduction to the underlying security assumption, as we shall discuss
momentarily. These properties taken together account for the scheme’s compactness.

All comparable schemes that have been suggested over the years either have a non-tight security
reduction, or are hybrid constructions with both an algebraic and a symmetric-key component, each
bringing forth its own complexity assumption. (We note that all known redundancy-free systems
depend either on some non-standard oracle assumption, or at least on the random-oracle model;
indeed, it remains an open problem to withstand active attacks without redundancy and without
relying on random oracles or some sort of interactive assumption.)

By contrast, the scheme we propose can be proven tightly secure, in the random-oracle model,
solely under the Gap Diffie-Hellman (Gap-DH) assumption [25], or even under the usual Computa-
tional Diffie-Hellman (CDH) assumption if the algebraic group admits an efficient bilinear pairing:
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This is because with a pairing one can instantiate the DDH oracle posited by the Gap-DH assump-
tion, which then reduces to plain CDH. Pairing-friendly groups are easy to construct on certain
types of elliptic curves; we refer the reader to the abundant literature on pairing-based cryptogra-
phy. We emphasize that our scheme will be secure under CDH as soon as a pairing exists in the
selected group, even though we never actually use it. In groups where no efficient pairing is known
to exist, security still follows from the Gap-DH assumption.

1.1 On the Tightness of Reductions

The importance of a tight security reduction to a simple and well-studied assumption is crucial
to the determination of the exact security of any cryptosystem. A security proof can be loose in
two different ways: the final reduction may cause a loss of success probability, or the simulator
can be slow and steal most of the computational time that should go to the attacker. The latter
factor is too often ignored when a security proof is advertised as tight: it is often the case that a
proof with tight efficacy probability-wise, would use an inefficient simulator whose running time is
quadratic or worse, which can significantly hurt the security of the scheme in a real-world attack:
the true security guarantee would not be tight if one accounted for all parameters, as one should.
Accordingly, it is only by taking into account all intervening factors that a scheme’s true security
can be determined for a chosen apparent security parameter. Larger apparent security parameters
will have to be selected to compensate for loose reductions (or strong assumptions), resulting in
larger ciphertexts for the desired target security level.

In the random oracle model in particular, it is very important to pay close attention to the extent
that a scheme’s exact security deteriorates with the number of random oracle queries made by the
adversary, because in reality the random oracle is instantiated as an algorithmic hash function
that can be queried offline, limited only by the adversary’s computational powers. Interactive
assumptions that assume the existence of “fancy oracles” that have no actual instantiations (even
imperfect ones) are even more troublesome, because there is no telling how a scheme that depends
on such an oracle will fare in the real world: it might be completely insecure and it is not hard
to find examples of such. Sensitivity to the number of decryption queries is less critical because
in practice decryption queries are implemented as active attacks with naturally slower query rates,
but it remains an issue nevertheless.

1.2 Our Contribution

For all of the reasons above, it is our purpose here to devise a compact encryption scheme based on
plausible assumptions, and establish exact security bounds in function of the number of random-
oracle and decryption queries made by the opponent. We seek to obtain a tight security bound
that is quasi-independent of the number of those queries (as long as their number remains sub-
exponential in the security parameter, which is an unavoidable requirement). Surely, eliminating
the random oracle itself would be even more desirable, but it is an open problem whether that is
even feasible at all if no redundancy whatsoever is tolerated.

Our main technical tool stems from the observation that a pair of sequential one-time pads,
can, in the random-oracle model, give us an almost tight reduction from a mild assumption such as
CDH or Gap-DH, without appealing to explicit ciphertext redundancy or a hybrid scheme. Whereas
redundancy-free public-key schemes with a tight reduction have been proposed in the past, we view
the dual-hash device and the simpler structure that it enables as our main contributions. As an
added bonus, our system will support very efficient non-interactive threshold decryption.
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2 Toward Active Security Without Redundancy

The most common threat to CCA2 security is that of a query on a malformed ciphertext causing
the decryption oracle to leak damaging information, either about the private key, or about the
plaintext (when the malformed ciphertext is a deformation of a legitimate one). For this reason,
the most common way to construct a CCA-secure system from a CPA-secure one is to add some
redundancy, thanks to which malformed or mauled ciphertexts can be safely rejected. Redundancy
has also an utilitarian purpose in the security proofs: simulators use it to extract private knowledge
about the ciphertext creation, which gives them a backdoor thanks to which decryption queries
can be answered without knowledge of the decryption key. The two main ways that this backdoor
is implemented are the NIZK and IBE approaches, briefly described below.

Redundancy can nevertheless be avoided provided that the decryption of malformed ciphertexts
is made harmless, e.g., as will be the case if the decryption of bogus ciphertexts appears uniformly
random to the adversary. Thus, as has been observed several times before, redundancy is not truly
necessary in order to achieve chosen-ciphertext security (though randomness is always needed for
semantic security). Technically, one must also ensure that the simulator is still able to answer the
decryption queries in the absence of a redundancy backdoor: this is where idealized models such
as the random oracle heuristic [2] must come into play, at least in our current state of knowledge.

Subject to the above limitations, there exists a rather extensive body of work on public-key
encryption systems secure against active attacks. We now review the main proposals, concentrating
on systems that are usable in practice. In order to depict a more complete landscape, we also
discuss a number of redundant constructions, since they far outnumber the redundancy-free ones.
Once again, if we insist on the lack of redundancy, no CCA2-secure public-key systems, not even
conjectured ones, are known to exist in the standard model.

2.1 In the Standard Model

In the standard model, all known chosen-ciphertext-secure systems require some redundancy.

First of all, we mention the early theoretical work of Dolev, Dwork, and Naor [17], which
achieves CCA-security using a bitwise construction which is too inefficient to be used in practice.
More efficient constructions were to follow, based either on the so-called two-key paradigm, or,
more recently, on identity-based encryption and related techniques.

The two-key (or double-encryption) framework for chosen-ciphertext security was first proposed
by Naor and Yung [35], and perfected by Cramer and Shoup [14] who gave the first efficient CCA2-
secure public-key scheme in the standard model. There were many subsequent improvements to
the Cramer-Shoup system, and the current state of the art is due to Kurosawa and Desmedt [30].
The two-key paradigm consists in providing two independent encryptions of the same plaintext,
along with a Non-Interactive Zero-Knowledge (NIZK) proof that the two plaintexts are the same.
This provides the needed redundancy that allows the simulator to answer decryption queries. A
drawback of this approach is that the redundancy cannot be checked until the complete ciphertext
has been decrypted, which makes threshold decryption a complicated proposition [11, 22, 38].

The Identity-Based Encryption (IBE) approach was recently proposed by Canetti, Halevi, and
Katz [12], and subsequently improved [8, 10]. Here, the general idea is to encrypt a plaintext to
an identity equal to a signature verification key, or some function of the ciphertext itself, that the
recipient can use to authenticate the ciphertext. This is a different kind of redundancy that leads
to a completely different type of simulation proof than in the two-key approach. Both methods
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are comparable in terms of efficiency. One advantage of the identity-based approach is that the
integrity check can be done before decryption, which makes non-interactive threshold decryption
easy [6]. The main disadvantage of the IBE approach is that it uses bilinear pairings, although it
is possible to eliminate them entirely by making stronger assumptions [27, 28].

Although reasonably efficient, all these constructions require at least two group elements’ worth
of ciphertext overhead. It is an open problem to achieve chosen-ciphertext security without redun-
dancy in the standard model.

2.2 Using Random Oracles

In parallel to the above developments, researchers have sought to construct CCA2-secure systems
with efficiency as the primary goal, even if that meant using the random oracle heuristic. One of
the most significant works in this area is the RSA-OAEP padding scheme [3] and its subsequent
improvements [4, 37], which are widely deployed as a standard. However, the development of OAEP
was tormented: the original redundancy-free design had to be scrapped in order to achieve provable
chosen-ciphertext security, and it took several years until an RSA system with both properties was
finally invented (see below).

In parallel, a powerful result by Fujisaki and Okamoto [19], subsequently improved by the same
authors [20], shows that any CPA-secure encryption scheme can be generically transformed into
a CCA2-secure one, in the random oracle model, simply by adding some judicious redundancy.
One can thus assemble a very efficient CCA2-secure system simply by taking an elliptic-curve
implementation of the ElGamal cryptosytem and applying the Fujisaki-Okamoto transformation.
This does however introduce some redundancy.

2.3 From Interactive Hash Assumptions

Since random oracles alone did not seem sufficient to obtain redundancy-free chosen-ciphertext
security, one had to appeal to more exotic and stronger assumptions. In general, these assumptions
are interactive and involve at least a random function, very much like the random oracle model.

The first system to achieve redundancy-free chosen-ciphertext security, is that of Phan and
Pointcheval [36]. The Phan-Pointcheval scheme can be thought of as an extension of RSA-OAEP
that achieves adaptive security using the theoretical minimum amount of randomness and no re-
dundancy, but under a strong non-standard interactive assumption. Roughly speaking, it combines
a trapdoor permutation with an idealized random permutation; the CCA2 security proof then holds
in the random permutation model. In practice, the system is instantiated using RSA and a Feistel
network, which only requires a random oracle rather than a random permutation.

The second system in this category is DHIES [1], all of whose variants are based on a strong
interactive assumption known as Oracle Diffie-Hellman. The DHIES system is a hybrid of ElGamal,
a symmetric cipher, and a MAC, and is provably secure under the ODH assumption. Because of
the MAC, the original DHIES system is not redundancy-free.

Kurosawa and Matsuo [31] subsequently gave an improvement to DHIES that eliminated the
MAC from the ciphertext and thus the redundancy. This was done by means of a special “all-or-
nothing” mode of operation for the symmetric cipher, such as CMC [23] and EME [24], which can
be viewed as an analog to the pseudo-random permutation in the Phan-Pointcheval system. With
this modification, DHIES no longer incurs any expansion, and thus the Kurosawa-Matsuo system is
indeed free of redundancy. Since furthermore DHIES can be implemented on elliptic curves, unlike
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Phan-Pointcheval which uses integer arithmetic modulo a large RSA composite, Kurosawa-Matsuo
can be made very compact. Indeed, their system currently holds the record for the most compact
CCA2 public-key system for short messages.

Libert and Quisquater [32] later transposed the ideas of Kurosawa and Matsuo to the identity-
based encryption setting, and in particular to the IBE system of Boneh and Franklin [7]. They
show that CCA2 security can be obtained by using an expansion-less chosen-ciphertext-secure
symmetric mode of operation (instead of the Fujisaki-Okamoto transformation as originally used
in [7]). The Libert-Quisquater IBE system is in fact simpler than the Kurosawa-Matsuo PKE, but
unfortunately, the security of the former rests (in the RO model) upon a very strong interactive
assumption called Gap Bilinear Diffie-Hellman, which is not even falsifiable in our current state of
knowledge since nobody knows how to construct a Gap-BDH challenger.

To conclude this tour, we now briefly review the main features of the Phan-Pointcheval and
the Kurosawa-Matsuo systems, as these are the two schemes against our construction ought to be
compared.

2.3.1 The Phan-Pointcheval System

Phan and Pointcheval [36] gave the first construction of a CCA2-secure public-key encryption
system without redundancy. It is based on the RSA trapdoor permutation which is made non-
malleable using a idealized random permutation instantiated as a Feistel network. The Phan-
Pointcheval system incurs very little ciphertext expansion: for an apparent security parameter κ,
the ciphertext is only κ bits longer than the message it encrypts. Without taking the security
reduction efficiency into account, this is the smallest possible ciphertext expansion that can be
achieved by any public-key encryption scheme at the 2−κ security level.

In reality, Phan-Pointcheval is not quite as compact as we would like, for a couple of reasons:
(1) its security reduction has tight efficacy but only quadratic efficiency in the Feistel network
instantiation, which means that in practice its exact security could degrade significantly with the
number of queries made by the adversary, which ought to be compensated by growing the modulus;
(2) because the scheme is built around an RSA permutation, ciphertexts cannot be made smaller
than 1024 bits at the 2−80 security level, or 15360 bits at the 2−256 security level, to guard against
sub-exponential factorization attacks of complexity L(1/3) using the number field sieve.

2.3.2 The Kurosawa-Matsuo System

To avoid the minimum size limitation associated with RSA groups, Kurosawa and Matsuo [31]
have proposed a different construction of a CCA2-secure public-key cryptosystem, based not on
RSA but on ElGamal. Since ElGamal can be implemented on elliptic curves, much fewer bits are
in principle needed in order to achieve the same security. The Kurosawa-Matsuo construction is
set in the KEM/DEM framework, where a CCA2-secure KEM is constructed simply by hashing
an ElGamal session key, from which an expansion-less one-time chosen-ciphertext-secure DEM is
used to encrypt the actual message. For an apparent security parameter κ, the ciphertext is 2κ
bits longer than the message, which is the smallest possible expansion for a Discrete-Log-based
cryptosystem, due to the birthday bound barrier associated with generic discrete-log attacks.

On the negative side, the security reduction of the Kurosawa-Matsuo system relies on the
original DHIES construction, which is based on a rather strong interactive assumption called the
Oracle Diffie-Hellman assumption. Roughly speaking, the ODH problem asks us to distinguish
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(g, ga, gb, gab) from (g, ga, gb, gr) given access to an oracle O : h 7→ H(ha), which can be thought of
as the composition of the composition of a secret-power exponentiation with an ideal random hash
function (also kept secret by default). We note however that Cramer and Shoup [16] later gave
an alternative security proof of DHIES, replacing ODH with Gap-DH in the random oracle model.
Their proof should also apply to the Kurosawa-Matsuo system.

Perhaps the main downside of the Kurosawa-Matsuo system is that it depends on rather complex
modes of operation for block ciphers, such as the deterministic, redundancy-free, one-time chosen-
ciphertext-secure modes given in [23, 24]. Because of those extraneous components, the Kurosawa-
Matsuo system may suffer from a larger implementation footprint than competing schemes. The
complex modes of operation may also pose practical challenges for arbitrary-size plaintexts.

2.4 The New Construction

Here, we propose another efficient public-key encryption system without redundancy and with a
tight adaptive chosen-ciphertext security proof. A feature of our scheme is its simple and self-
contained algebraic structure. The security reduction is to the Gap Diffie-Hellman assumption
in the random-oracle model. Gap-DH is a “decisional/computational gap” assumption [25], which
simply posits that CDH is hard given a DDH oracle. Since Gap-DH itself reduces to the usual CDH
in groups equipped with a bilinear map (which we know how to construct), our scheme belongs
with the “plain” random-oracle schemes of Section 2.2, as opposed to the “fancy” interactive-
assumption schemes of Section 2.3, which until now were the only ones known to avoid redundancy.
Practically speaking, our system only uses hashing and generic group arithmetic (no block cipher
and no complex mode of operation), and so its implementation should be straightforward in any
programming language with a decent library.

The main idea of the scheme is to blind the message not once, but twice, using ElGamal one-time
pads that are homomorphically related to the same secret decryption key. The resulting ciphertext
has no explicit redundancy because the second key can be reconstructed from the first without
having to include any information about it. In the random oracle model, this however gives us the
implicit consistency check needed for chosen-ciphertext security. Furthermore we can simulate it
in constant time and almost perfectly (i.e., with negligible security loss) against any polynomially
bounded adversary, hence the tight security.

2.4.1 Security and Compacity

It should be mentioned that it does not seem feasible to achieve a better “ciphertext compacity
vs. exact security” tradeoff without leaving the realm of Discrete-Log-based algebraic CCA2 PKE
systems. Indeed, at the 2−κ exact security level, the ciphertext overhead is a single group element,
which takes as few as 2κ bits to represent; however, the randomness embedded in this element
cannot be removed, and any attempt to reduce the entropy of that group element further will
enable a generic discrete logarithm attack of relative complexity lower than

√
22κ = 2κ.

However, one should not infer from this that shorter ciphertexts are not possible using different
techniques. For example, with trapdoor permutations it is possible to reduce the overhead to
the theoretical minimum of κ bits, as in the Phan-Pointcheval system; one problem with this
approach is that RSA-based trapdoor permutations require much larger groups than elliptic curves
for the same security (which is why Phan-Pointcheval ciphertexts remain large despite the very
low overhead). Substituting a more compact trapdoor permutation for RSA in Phan-Pointcheval

6



would be an excellent way to create a more compact scheme than the present proposal. Of course,
constructing a compact trapdoor permutation in the first place, e.g., whose inputs and outpus are
no greater than 3κ bits at the 2−κ security level, is another long-standing famous open problem in
cryptography.

2.4.2 State of the Art

We do not claim that our construction constitutes a deep result, but merely a practical one that
we hope will be adopted in practice. In retrospect, our construction and its security proof appear
quite simple, indeed, as surely many other results of this sort have before it. However, the fact that
with a simple trick we have improved upon the state of the art on an old problem is a compelling
indication that there are still new insights to be gained in this area. Thus we hope that this
contribution will be useful to security practitioners, and perhaps inspire new ideas to researchers
in the field.

3 The Miniature CCA2 System

We are now almost ready to present the construction. Unlike Kurosawa and Matsuo, we seek to
build an integrated encryption scheme without insisting on a separation between KEM and DEM.
On the contrary, we look for an algebraic construction that avoids block ciphers and their complex
modes of operations, and seek to base our scheme on a single mild and well-studied assumption.

3.1 Inching toward a Solution

Before we present our construction, it is useful to try out a few approaches, to see what works and
what does not. This will make it easier to understand the design of the final scheme.

1. To start, consider the hashed ElGamal system, whose ciphertext is (c1, c2) = (M ⊕H(gr
1), gr

2)
for random r ∈ Fp. The public key is (g1, g2) ∈ G2, and the decryption key is k = dlogg1

(g2).
The ciphertext is free of redundancy, but it is malleable and thus the scheme is only secure
under passive attacks.

2. To make the scheme secure under active attacks, we can modify the ciphertext as follows:
(c1, c2) = (M ⊕H1(gr

1), gr
2 g

r
3
H2(c1)), where H1 is viewed as a random oracle and H2 is collision

resistant. The public key is (g1, g2, g3) and the secret key their discrete logs.

Here, there is no obvious active attack, and in fact the scheme can be proven IND-CCA2 secure
under the Gap-DH assumption in the random oracle model. Unfortunately, the reduction is
not tight, and is in fact rather expensive because, for each decryption query, the DDH oracle
must be tested against the inputs to all previous random-oracle queries.

3. The reduction in the previous scheme can be made more efficient, and thus the scheme more
secure in the exact sense, by including more information inside the random-oracle input, as
in: (c1, c2) = (M ⊕H1(gr

1, g
r
2), gr

2 g
r
3
H2(c1)). We can also take g3 = g1 to make the key shorter.

This simple modification greatly reduces the number of DDH oracle queries needed by the
simulator (in a security reduction to Gap-DH), to the point that we now have proportion-
ality between the adversary’s and the simulator’s use of their respective oracles, i.e., one
query to the DDH oracle for each random-oracle query. The resulting reduction is thus more
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efficient, and, indeed, public-key systems with this exact structure have been recently and
independently suggested in at least two places [33, 29], prior to the publication of this work.

However, security still is not tight. For every decryption query, the simulator must perform
a non-trivial group operation between c2 and the input to every random oracle query made
so far. Thus, if the adversary makes qd decryption and qH random-oracle queries, the sim-
ulator’s running time will be at least the product of the two, i.e., Ω(qd qH), which is clearly
disproportionate (i.e., super-linear) to the sum total of all of the adversary’s queries.

Hence, although the efficacy or succcess probability of the reduction may be tight, and the
use of the DDH oracle parsimonious, the reduction algorithm remains inefficient due to an
excess of bookeeping.

A general principle that emerges from these examples is how random oracles can be utilized
to extract the information needed to answer decryption queries, when the ciphertext contains no
redundancy that would let us do so in another way (as in the schemes mentioned in Section 2.1).

We can also see, in all these examples and analogous constructions based on a Gap assumption,
that the simulator must try out all random oracle inputs to see if one works for every decryption
query that it answers. This is not unrelated to the fact that our assumption (Gap-DH) only provides
a decisional (yes/no) oracle to the simulator, and perhaps one of the reasons the Kurosawa-Matsuo
scheme avoids this problem is because its DHIES component relies on a stronger assumption.

However, the central reason for the schemes’ reduction inefficiency is their use of a single random
oracle for blinding the message (as in M⊕H(...)). It turns out that a much more efficient simulator
can be made if we had two random-oracle one-time pads to play with (as in M ⊕H1(...)⊕H2(...)).
Why this is so will become apparent when we construct a simulator in Section 3.4.

Remark: KEM without DEM. Incidentally, we note that the KEM-only version of hashed
ElGamal from Item 1 above, namely, with ciphertext c = gr

2 and random session key k = H(gr
1),

was already redundancy-free and secure against active attacks (under Gap-DH in the random-oracle
model). Most of the difficulties we encountered above were caused by the addition of an improper
or suboptimal DEM component.

This is another illustration that the secure encryption of a random key can sometimes be easier
to achieve than that of an arbitrary message; see also [10] for a different manifestation of this
phenomenon.

3.2 The Full Scheme

Our construction is based on some of the principles hinted to above. The main difficulty is to obtain
a double one-time-pad blinding of the message without lengthening the ciphertext, and then to use
this double blinding in the security proof to achieve a tight reduction.

We start with the construction, which uses two random oracles Φ and Ψ, and one collision-
resistant function π which could be a simple injection.

Context: Let κ ∈ N be an arbitrary security parameter. Let G = 〈U〉 be a cyclic prime-order group
(written multiplicatively), generated by U , of prime order p, such that 22κ−1 < p < 22κ+1.
Let Fp be the finite field of size p, and let F×p = Fp \ {0} denote its multiplicative group of
order p− 1. Let M = {0, 1}` be the set of all bit strings of length `, for any fixed ` ≥ 2κ.
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Let π :M→ F×p be an arbitrary injection or a collision-resistant hash function.
Let Φ : G×G→M and Ψ : G→M be two cryptographic hash functions (viewed as RO).

Key generation: Draw a secret random exponent s ∈$ F×p , and calculate V ← U s.

The public encryption key is Pk← (U, V ) ∈ G2.
The private decryption key is Sk← s ∈ F×p .

Encryption: Given Pk and a plaintext Msg ∈M, pick a randomizer r ∈$ F×p , and let,

A← V r

B ← Ψ(A)⊕Msg
C ← V r/π(B)

D ← U r/π(B)

E ← Φ(D,C)⊕B

The ciphertext is Ctx = (D,E) ∈ G×M.

Decryption: Given Sk and a ciphertext Ctx = (D̄, Ē), check that 1 6= D̄ ∈ G, and let,

C̄ ← D̄Sk

B̄ ← Ē ⊕ Φ(D̄, C̄)
Ā← C̄π(B̄)

M̄ ← B̄ ⊕Ψ(Ā)

The decrypted plaintext is M̄sg = M̄ ∈M.

3.3 Operational Efficiency

Encryption and decryption have essentially the same computational costs, which are dominated by
the costs of two exponentiations in G, plus (for long messages) two passes on a buffer whose size is
that of the input string (resp. plaintext or ciphertext). In particular, we note the following:

• Encryption requires only two exponentiations (and not three), because most of the work done
to compute V r can be reused to compute V r/π(B), regardless of the exponentiation algorithm
used (whether straight double-and-add, or one of the many efficient window methods; cf.,
e.g., [34]).

• Decryption can similarly be performed in about a single exponentiation (instead of two), by
computing C̄π(B̄) as D̄π(B̄)·Sk, which uses the same generator as D̄Sk and thus shares the same
intermediate powers.

• In both cases, only two passes on the buffer are needed (and not three): first on the input
string Msg or Ē, and then a second pass on the intermediate string B or B̄ which must be
stored temporarily. We do not need a separate pass to compute π(B) or π(B̄), since these
values can be evaluated on-the-fly while computing B or B̄. However, this really matters only
for long inputs, where the benefits of redundancy-free encryption are less pronounced.

Any plaintext represented as a string of at least 2κ bits can be encrypted without requiring any spe-
cial encoding, and without using any downstream symmetric-key cipher or other hybrid component.
The ciphertext overhead is a single group element in G.
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3.4 Security Reduction

We prove the security of our scheme in the well-known and very standard sense of IND-CCA2
security, or indistinguishability under an adaptive chosen-ciphertext attack. The reduction will
proceeds from an instance of the Gap-DH problem, in the random oracle model.

We recall that the Gap-DH problem is to solve the CDH problem given access to a DDH oracle.
In a computational group G, such an instance is a triple (U, V,W ) = (U,Uv, Uw) ∈ G3, and the
task is to compute the value Uvw ∈ G, given repeated access to a decision oracle indicating whether
an input tuple (A,B,C,D) ∈ G4 satisfies the relation dlogA(B) = dlogC(D).

Theorem 1. The miniature public-key cryptosystem is IND-CCA2 secure in the random oracle
model, provided that the Gap Diffie-Hellman assumption holds in G. The reduction is tight w.r.t.
computational cost (“efficiency”) and success probability (“efficacy”) simultaneously.

Proof. Suppose there is an adversary A that breaks the encryption scheme. We build from it an
algorithm B that solves the Gap-DH problem by simulating an attack environment to such an
adversary. During the course of the interaction, the simulator will record the answers it makes in
response to all queries, and additionally maintain two separate “watch-lists” for Φ and Ψ.

Key generation. B is given access to a Decision Diffie-Hellman oracle DDH : G4 → {0, 1}; it
receives a Diffie-Hellman instance (U, V,W ) = (U,Uv, Uw) ∈ G3, and is to compute Uvw ∈ G.

To start the simulation, B gives to A the public key Pk = (U, V ), implicitly letting Sk = v.

Decryption queries. A makes adaptive decryption queries on any ciphertexts (Dk, Ek) ∈ G×M.

To respond, B sifts the query logs for a random oracle query Φ(Dj , Cj) such that Dj = Dk

and Cj = Dk
Sk. To do this in constant time, B can maintain a hash-table of those oracle

queries such that DDH(U, V,Dj , Cj) = 1. Let thus (Dj , Cj) be the retrieved entry, if it exists.

– If it does, let φj = Φ(Dk, Cj) be the previously assigned value; the simulator then computes
Bk ← Ek ⊕ φj and Ak ← Cj

π(Bk), and returns Mk ← Bk ⊕Ψ(Ak) as the plaintext.
– Otherwise, the simulator simply returns a random string Mk ∈$ M, while privately adding

the triple (Dk, Ek,Mk) to the watch-list associated with Φ, for future use given below.

Hash-Φ queries. A adaptively queries the random oracle Φ on unique input pairs (Dj , Cj) ∈ G2.

To respond, B picks a random string φj ∈$ M which it returns as answer to the query.
Additionally, it tests whether DDH(U, V,Dj , Cj) = 1, in which case it pulls from the watch
list associated with Φ all the triples (Dk, Ek,Mk) such that Dk = Dj . For all such triples,
the simulator lets Bk ← Ek ⊕ φj , computes Ak ← Cj

π(Bk), defines ψk ← Bk ⊕Mk, adds the
pair (Ak, ψk) to the watch-list associated with Ψ, and deletes the triple from the list of Φ.

Observe that all Ek and thus all Ak are necessarily distinct, unless π collided, and that the
work of the simulator is linear in the number of triples that were pulled from the watch-list.
Later, we account for the small probability of getting a collision Ak1 = Ak2 for Dk1 6= Dk2 .

Hash-Ψ queries. A adaptively queries the random oracle Ψ on arbitrary unique inputs Ai ∈ G.

To respond, B first determines whether the watch-list associated with Ψ contains a pair
(Ak, ψk) with Ak = Ai. If there exists such a pair, the simulator removes it from the watch-
list and returns the string ψk; otherwise, it returns a fresh random string ψi ∈$ M.
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Challenge. A at some point outputs two messages M1 and M2 on which it wishes to be challenged.

To create the challenge, B picks a random string E∗ ∈$ M, sets D∗ ← W from the Gap-DH
instance, and declares the challenge ciphertext to be (D∗, E∗). It disregards M1 and M2.

Additional queries. A makes more adaptive decryption and random oracle queries on arbitrary
inputs (but no decryption query on the challenge ciphertext), to which B responds as before.

As it services the queries, the simulator is now on the lookout for a query Φ(D∗, C∗) such
that D∗ = W and DDH(U, V,W,C∗) = 1. As soon as A makes this query, B terminates the
simulation and outputs C∗ = Uvw as solution to the Gap-DH instance.

Outcome. If the adversary never asks for the value of Φ(W,Uvw), its advantage must be zero,
since then the simulation is perfect and the ciphertext is random. On the contrary, as soon
as A makes this particular query, B obtains the solution it seeks without further interaction.

We now analyze the parameters of the reduction. We consider both efficacy (i.e., the probability
of success) and efficiency (i.e., the computational overhead needed for a successful reduction).

Reduction Efficacy. It is easy to see that B’s probability of solving Gap-DH is no less than
A’s advantage in the IND-CCA2 attack, minus a negligible loss ∆ε that corresponds to the
probability that the simulator made two conflicting random oracle assignments. A conflict can
arise for Ψ(Ak) due to a collision Ak1 = Cj1

π(Ek1
⊕φj1

) = Cj2
π(Ek2

⊕φj2
) = Ak2 when Cj1 6= Cj2 .

Since the φj are jointly independent of the Cj and Ek, and since every troublesome Cj can
be traced to a watch-list entry that in turn originates from a unique decryption query, the
probability of such a collision over qd decryption queries, which dictates the total efficacy loss
of the system, is given by the birthday bound:

∆ε = ε(A)− ε(B) ≤ (qd)2/p ≈ (qd)2 2−2κ = negl(κ) .

Reduction Efficiency. To express B’s running time of in terms of A’s, let us assume that the
adversary makes qd decryption and qΦ and qΨ hash queries, and that each exponentiation
in G or DDH query costs the simulator one time unit. The simulation time overhead ∆τ is
then given by ∆τ = τ(B)− τ(A) = Θ(qd + qΦ + qΨ), from which we deduce that the running
times of A and B are within a constant factor & 1 (1 being the best possible ratio):

τ(B)/τ(A) = Θ(1) .

It follows that the reduction is tight in all parameters, as long as the number of random oracle and
decryption queries made by the adversary is sub-exponential in κ, as required.

3.5 Practical Extensions

We briefly describe two simple extensions to the basic scheme, which we expect to be useful in
certain applications.

3.5.1 Adaptive Chosen-Ciphertext Security vs. Integrity

Most CCA2-secure cryptosystems, with or without random oracles, achieve security against active
attacks by performing an integrity check during the decryption process, based on some amount of re-
dundancy that is embedded in the ciphertext during encryption. Cryptosystems of this kind include
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Dolev-Dwork-Naor [17], Cramer-Shoup [14, 15], Fujisaki-Okamoto [19, 20], Kurosawa-Desmedt [30],
and Canetti-Halevi-Katz [12], among others. Usually the redundancy is secret, but need not be.

By contrast, our scheme does not authenticate the ciphertext; it is similar in that respect to a
few other systems such as Phan-Pointcheval [36] and Kurosawa-Matsuo [31] as already discussed.
Indeed, without redundancy there cannot be a test to reject malformed ciphertexts, and thus the
decryption process always succeeds. Hence there is no such thing as an “incorrect” ciphertext. (We
remark, however, that because the IND-CCA2 security property implies PA-CCA2, or plaintext
awareness, any ciphertext that was not created using the proper procedure will safely decrypt to
an unpredictable and useless plaintext.)

In some applications, it may be desirable to detect that a ciphertext has been tampered with.
One solution is of course to use a “traditional” efficient CCA2-secure scheme, such as Fujisaki-
Okamoto in the random oracle model or Kurosawa-Desmedt in the standard model. Another
solution is to add a small amount of redundancy in the plaintext of our scheme, such as a few
zeros. This approach might be more desirable in cases where a quick and inexpensive integrity test
is desired but not required for the security of the larger system: in this case adding a few zeros to
the plaintext of our scheme will be the cheapest and most effective solution.

3.5.2 Non-interactive Distributed Threshold Decryption

Recall that in a threshold public-key system, a number of distributed “partial decryption centers”
compute partial decryptions from the ciphertext, or shares, which are then combined in a threshold
manner by a single combiner to produce the final plaintext; cf., e.g., [22].

As mentioned earlier, CCA2-secure threshold cryptosystems are difficult to deploy based on
the two-key paradigm, and also using the random-oracle-based Fujisaki-Okamoto transformation,
because the decryption process will require the partial decryptors to communicate with each other
in order to decide whether a ciphertext is valid or not. Essentially, this is because the redundancy
in those schemes is secret [38], which makes it difficult to perform a validity test before the plaintext
has been recovered. By contrast, the identity-based approach is much more conducive to secure
threshold decryption under active attacks, because its redundancy is public and can be checked
non-interactively by the decryption centers without costly inter-communications [6].

Our scheme appears to be easy to turn into a non-interactive CCA2-secure threshold system.
The reasons for this are twofold. First, since the security of our scheme does not depend on any
integrity check, the difficulty of conducting such a check in a threshold setting should have no ill
effect. Second, the algebra of the scheme itself turns out to be very propitious to secret sharing,
because the secret key Sk is only used once in the decryption process, to compute C̄ ← D̄Sk.
Thus, our scheme can be used as a basis for a threshold scheme, by splitting the secret key Sk
into a number of random shares Sk1, ...,Skn using Shamir’s secret sharing. The decryption centers
would use those shares to produce decryption shares (analogous to) C̄i ← D̄Ski . With enough of
those, the combiner could perform Lagrange interpolation “in the exponent” to recover the value
of C̄ =

∏
i C̄

Λi
i , where the Λi are publically computable Lagrange coefficients. Once it knew C̄, the

combiner could finish the decryption without further interacting with the decryption centers.

Of course, the above is only an outline of the central idea, since in addition we must prevent
partial decryptions C̄i from leaking damaging information; recall that in the non-threshold scheme
the intermediate value C̄ is never revealed. This is easy to do by adding safety checks to the
decryption shares C̄i by playing with D without interfering with the interpolation of C̄ =

∏
i C̄

Λi
i .

Unfortunately, this will increase the ciphertext overhead by at least one additional group element.
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In Appendix A.1, we show as an example how to turn our scheme into a non-interactive threshold
scheme based on the above ideas. It requires one element’s worth of redundancy for CCA2-secure
threshold decryption, but it can also be operated in non-threshold mode without the redundancy.

We call “strippable” a threshold scheme that has this removable redundancy feature, and is
thus operable in one of two modes: threshold with redundancy, and direct without redundancy.
The dual one-time pad structure of the underlying encryption will confer CCA2 after removal of
the threshold redundancy as in Section 3.2 (albeit under a reduction to a different gap assumption,
because a bilinear pairing is needed for the threshold mode; see Appendix A.1.)

It remains open to perform non-interactive threshold decryption securely against active attacks
without using any redundancy (with only one group element of total ciphertext overhead).

3.6 Implementation on Curves

Although our scheme generally relies on the Gap-DH assumption, it is possible to implement it in a
computational group G where DDH is known to be easy (and CDH still believed to be hard): in this
case the DDH oracle can actually be implemented and locally computed from public information
without making any oracle call, causing Gap-DH to reduce to the usual CDH assumption. In such
groups, the security of the scheme thus follows from computational Diffie-Hellman, which has of
course been studied extensively.

Elliptic curves equipped with an efficiently computable bilinear pairing are an obvious choice
for the group G, because the pairing lets us decide (but not compute) the Diffie-Hellman problem
efficiently. (More precisely, G will be a prime-order subgroup of the group of points on a “pairing-
friendly” curve.) We refer to [7] and the abundant literature on pairings for details; see also [9] for
an informal tour, and [21] for a compendium of their cryptographic properties.

It follows that, on pairing-friendly curves, and more generally in any computational group with
a bilinear map, the mere fact that the DDH oracle could be implemented efficiently, means that
our scheme has a tight IND-CCA2 security reduction to the CDH assumption rather than Gap-DH,
in the random-oracle model.

We emphasize that for this simplification to occur, the pairing only needs to exist; in reality
we do not need to use it or implement it, or even know how to implement it. Consequently, an
existential proof that there exists an efficient pairing (or of any other way to make the required DDH
determination in the simulation) is sufficient to relax Gap-DH into the weaker CDH assumption.

4 Summary

We have proposed a very simple public-key cryptosystem with the most compact ciphertext for a
given level of exact CCA2 security, without relying on hybrid constructions. Earlier constructions
with similarly compact ciphertexts required complex modes of operations for block ciphers and/or
stronger assumptions.

The ciphertext appears difficult to shrink further because it has no redundancy left to remove,
and also because the scheme offers a tight security reduction (both efficacy-wise and efficiency-wise)
to a basic complexity assumption (Gap-DH, or just CDH if the arithmetic is done on a pairing-
friendly curve). Although our ciphertext still contains an apparent excess of randomness, like all
Discrete-Log-based encryption schemes, it appears difficult to remove any of it without departing
from the algebraic realm of prime-order computational groups and the hardness of Discrete Log.
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We have utilized a few new tricks to achieve “direct” tightness without redundancy. These tricks
are set in the random oracle model, but we managed to avoid one of the main problems associated
with the random oracle methodology, namely, the fact that, once instantiated, the hash function
can be queried offline a practically unlimited number of times by any sufficiently powerful attacker.
Since our scheme’s security is not sensitive to the number of queries (beneath the birthday bound),
exact security remains tight as long as the hash function is adequately modeled as a black box.

Of course, it would be nice to construct a redundancy-free CCA2-secure public-key encryption
system in the standard model (even with a polynomially sloppy security reduction). However, this
appears to be a very difficult problem, because, without redundancy in the ciphertext, it is not
clear how the simulator could feasibly extract the information needed to answer decryption queries.
In this respect, our scheme represents another in a long series of a priori surprising results that
crucially rely on the random oracle methodology [2, 13, 26, 18].

We hope that our scheme will appeal to the practitioners of cryptography. Ideal uses for it
would be in radio systems that make frequent transmissions of short independent messages, or,
more generally, in all bandwidth-contrained environments where active attacks are a concern.
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A Appendix

A.1 A “Strippable” Non-Interactive Threshold Scheme

In this section we build a non-interactive CCA2-secure threshold encryption scheme based on the
strategy outlined in Section 3.5.2. First, it is instructive to see why extra safeguards are needed.

Suppose we merely applied Lagrange interpolation to the scheme of Section 3, and used for
decryption shares the intermediate values C̄i ← DSki . An active adversary wishing to decrypt some
ciphertext (D,E) could make a decryption query on (Ds, E′) 6= (D,E) for some blinding exponent
s ∈$ Fp; it would obtain the shares Cs

i ← (Ds)Ski in return, and be able to reconstruct Cs = (DSk)s

and thus C = DSk. From there, the original ciphertext would be easy to decrypt, illegitimately.
Protecting the decryption shares C̄i from mauling is thus a necessity. It is also relatively easy to do,
especially in the random-oracle model, without changing the structure of our underlying scheme.
One idea is to add a (thin) identity-based encryption layer on top of the existing structure, based
on preexisting randomness. Its purpose will be to make the ciphertext “tamper-evident”, even to
those who are not aware of the private key, such as the partial decryption servers.

For this, we can use the BB1 scheme [5] and recycle the randomness already present in the
“miniature” ciphertext. This setup has the advantage of preserving the tightness of the security
reduction, while only adding one group element’s worth of redundancy to the ciphertext. Of course,
the main drawback of using a pairing-based IBE subsystem is that the pairing is no longer optional.
The following is an example of such a “miniature-&-threshold” hybrid construction:

Context: Same as in the main scheme, except that G is now equipped with an efficient bilinear
pairing e : G×G→ Gt. We use the following hash functions:

– Two collision-resistant hash functions π :M→ F×p and θ : G×M→ Fp.
– Two “random-oracle” hash functions Φ : Gt ×G→M and Ψ : Gt →M.
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Key generation: Draw a random exponent s ∈$ F×p , and calculate Y = e(U,U)s. Also draw an
additional random generator U ′ ∈$ G, obtained, e.g., by raising U to a random power.

The public encryption key is Pk← (U, U ′, Y ) ∈ G2 ×Gt.
The private decryption key is Sk← s ∈ F×p .

Each center receives a private key share Ski ← si, where the si are random shares of s in
Shamir’s polynomial secret sharing scheme with publically computable Lagrange coefficients.
Additionally, the verification values Yi ← e(U,U)si are made public.

Encryption: Given Pk and a plaintext Msg ∈M, pick a randomizer r ∈$ F×p , and let,

A← Y r

B ← Ψ(A)⊕Msg
C ← Y r/π(B)

D ← U r/π(B)

E ← Φ(C,D)⊕B
F ← (U θ(D,E)V )−r/π(B)

The ciphertext is Ctx = (D, E, F ) ∈ G×M×G.

Partial Decryption (@ i-th center): Given a ciphertext Ctx = (D̄, Ē, F̄ ), and a private key
share Ski = si, verify that e(D̄, U θ(D̄,Ē)V )e(F̄ , U) = 1, and, if so, pick t ∈$ Fp, and let,

Ki ← (U θ(D̄,Ē)V )tWi

Li ← U−t

The partial decryption share is Ctxi = (Ki, Li) ∈ G2.

Final Decryption (@ combiner): Given a ciphertext Ctx = (D̄, Ē, F̄ ), and enough decryption
shares Ctxi = (K̄i, L̄i) from distinct centers, check that e(D̄, U θ(D̄,Ē)V )e(F̄ , U) = 1, and that
e(K̄i, U)e(L̄i, U

θ(D̄,Ē)V ) = Yi for each share i. If so, determine the interpolation coefficients
Λi for the selected set of shares, and let,

K ←
∏

i (K̄i)Λi

L←
∏

i (L̄i)−Λi

C̄ ← e(D̄,K)e(F̄ , L) or equivalently C̄ ←
∏

i C̄
Λi
i where C̄i ← e(D̄, K̄i)/e(F̄ , L̄i)

B̄ ← Ē ⊕ Φ(C̄, D̄)
Ā← C̄π(B̄)

M̄ ← B̄ ⊕Ψ(Ā)

The decrypted plaintext is M̄sg = M̄ ∈M.

Decryption (directly from ciphertext, without threshold): Given the main private key Sk
and a ciphertext Ctx = (D̄, Ē, ?), where only the first two ciphertexts components matter,
verify that 1 6= D̄ ∈ G, and, if so, let,

C̄ ← e(D̄, USk) comparable to an “exponentiation into Gt” given the constant USk

B̄ ← Ē ⊕ Φ(C̄, D̄)
Ā← C̄π(B̄)

M̄ ← B̄ ⊕Ψ(Ā)

The decrypted plaintext is M̄sg = M̄ ∈M.
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We note that a threshold encryption system based on a similar “self-authenticating” IBE layer
has been constructed before [6], in the standard model. Both systems require a pairing, and incur
the same ciphertext overhead (two elements of G on top of the blinded message itself). They both
have a tight security reduction to the computational Bilinear Diffie-Hellman (BDH) assumption
defined in [7, 25]. The main difference with the scheme of [6] and other efficient threshold systems
is that, here, the redundancy is only needed during threshold decryption, and can otherwise be
removed ex post facto by truncating the ciphertext (D, E, F ) into (D, E), in a process that we
call “stripping”.

Security-wise, our “strippable” threshold scheme satisfies two properties concurrently:

• With the full ciphertext (D, E, F ), the scheme has a tight reduction to the BDH assumption,
in the random-oracle model, for threshold and non-threshold CCA2 adversaries alike. Apart
from the presence of random oracles, the reduction is essentially the same as in [6].

• With the stripped ciphertext (D, E), there is a tight reduction to the Gap-BDH assumption,
in the random-oracle model, for non-threshold CCA2 adversaries only. This reduction exploits
the “dual one-time pad” structure of the sequential blinding Msg 7→ B 7→ E, as in Section 3.4.

“Strippable” threshold systems are useful in applications where the primary requirement is that
ciphertexts be as compact as possible, and the secondary consideration that threshold decryption
remain available for occasional use, at little or no extra cost to non-threshold recipients.
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