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Abstract. In this survey, we review a number of the many “expres-
sive” encryption systems that have recently appeared from lattices, and
explore the innovative techniques that underpin them.

1 Introduction

Lattice-based cryptosystems are becoming an increasingly popular in the re-
search community, owing to a unique combination of factors. On the one hand,
lattice systems are often conceptually simple to understand and thus easy to
implement by non-specialists, at least if one makes abstraction of the finer
mathematical intricacies surrounding their security analysis. On the other, their
soundness is backed by strong complexity-theoretic evidence that the underlying
problems are suitably “hard”, of which the most often repeated are the existence
of certain average-case to worst-case equivalences [7, 19] and their conjectured
resistance to quantum attacks. All those factors conspire to make lattices a prime
choice, if not the primary one yet, for mathematical crypto design looking out
into the future.

Although empirical uses of lattices have been made in commercial cryptog-
raphy, they have had a rather slow start in research circles. For more than a
decade, indeed, signature schemes and basic public-key encryption have essen-
tially remained their sole confine [7, 19]. In the past few years, however, lattices
have flourished into a theoretically solid, comprehensive framework, owing to the
discovery of a few key concepts and techniques. This ushered the way to the con-
struction of ever more powerful and expressive public-key encryption systems,
writ large — a whole new world of cryptographic constructions waiting to be
explored and conquered.

The search for encryption systems with complex functionalities arguably orig-
inates with the field of modern cryptography itself; but it is the arrival of bilinear
maps, or pairings, that truly jumpstarted it, by providing such spectacular solu-
tions to long-standing open problems as identity-based encryption [10]. Lattices
are late to this game, and currently still lag in functionality and practicality with
respect to pairing-based constructions. Nevertheless, an unmistakable shift from
pairings to lattices is presently occurring in the research community, driven as
much as the looming threat of quantum attacks that lattices seek to alleviate, as
the sheer scientific draw of tackling tough problems from wholly new directions.



In this lecture, we set out to explore some of the recent advances in that search,
and distill the essential new ideas that made them possible. 1

2 Background

A lattice is an additive subgroup of Rn; it is therefore generated by a basis of n
(linearly independent) vectors in Rn. In high dimensions, many computational
problems on lattices are intractable, and in some cases are even known to be
NP-hard. What makes lattices useful in cryptography, is that, though all bases
are equivalent from a linear algebraic point of view, bases whose vectors have
low norm can provide easy solutions to otherwise intractable lattice problems.
For instance, the “closest vector problem” (which consists of finding a lattice
point within a prescribed radius from a given reference in Rn) becomes soluble
if avails a low-norm lattice basis. Without such a good basis, this problem and
many related ones remain intractable.

Whereas this asymmetry is, of course, central to lattices’ use in asymmetric
cryptography, general lattices as defined above are somewhat unwieldy to work
with. One often prefers to restrict oneself to a restricted class of lattices with
special properties; be it for reasons of convenience or efficiency, or both.

To wit, many of the recently developed expressive cryptosystems make use
of Ajtai’s lattices [6]. Those are sets of vectors x ∈ Zm that lie in the kernel of
some A ∈ Zn×m modulo some prime q, i.e., defined by an equation A · x = 0
(mod q). Aside from their definitional convenience, Ajtai’s lattices are appealing
for two reasons: one of security, the other of flexibility. First, they induce rich
and usable cryptographic key spaces, owing to the Regev’s result that random
instances are just as hard as worst-case ones [19]. Second, they are closely related
to error-correction codes, and in particular the matrix A defines a “public”
computational operator that can be effectively reverted with knowledge of a
“private” trapdoor, as first shown by Gentry et al. [15]: the map x 7→ A · x,
restricted to for low-norm inputs x ∈ Zm, can be reverted, in the sense of
finding a colliding pre-image x′ ∈ Zm, if one knows a good basis for the implied
lattice. This combination of features — easy-to-sample key spaces and a kind of
invertibility — are sought for in asymmetric cryptographic constructions.

By way of comparison, we mention that Gentry’s fully homomorphic encryp-
tion scheme made extensive use of a different kind of lattices, constructed from
polynomial rings, whose ring structure was crucial to realize full homomorphism
in his original system.

1 Around the same time, also appeared the first realization of “fully homomorphic
encryption” [14], a hugely significant breakthrough of both theoretical and (one
hopes) eventual practical significance. FHE undoubtedly contributed greatly to the
general surge in lattice popularity, notwithstanding the quite different flavors of
problems involved. FHE has since taken a life of its own, with the most recent
performance and conceptual improvements seemingly taking it away from its lattice
roots, and squarely into the realm of pure number theory. We refer the interested
reader to the rapidly growing literature on the subject; see [16] for pointers.



Note. Due to space contraints, we do not give formal statements of the various
notions and schemes in this abstract, but refer the reader to the original papers.

2.1 Lattice Notions

We let parameters q,m, n be polynomial functions of a security parameter λ.

Lattices. Let B =
[
b1
∣∣ . . . ∣∣ bm ]

be an m × m real matrix with linearly
independent column vectors. It generates an m-dimensional full-rank lattice Λ,

Λ = L(B) =
{
y ∈ Rm s.t. ∃s = (s1, . . . , sm) ∈ Zm , y = B s =

m∑
i=1

si bi

}
Of interest to us is the case of integer lattices that are invariant under translation
by multiples of some integer q in each of the coordinates, or Ajtai lattices.

Ajtai lattices (and their shifts). For q prime, A ∈ Zn×mq and u ∈ Znq , define:

Λ⊥q (A) =
{
e ∈ Zm s.t. A e = 0 (mod q)

}
Λu
q (A) =

{
e ∈ Zm s.t. A e = u (mod q)

}
Ajtai [6] first showed how to sample an essentially uniform matrix A ∈ Zn×mq ,

along with a full-rank set TA ⊂ Λ⊥(A) of low-norm vectors or points on the
lattice. We state an improved version of Ajtai’s basis generator, from [8].

Trapdoors for lattices. Let n = n(λ), q = q(λ),m = m(λ) be positive integers
with q ≥ 2 and m ≥ 5n log q. There exists a probabilistic polynomial-time algo-
rithm TrapGen that outputs a pair of A ∈ Zn×mq and TA ∈ Zm×mq such that A is

statistically close to uniform and TA is a basis for Λ⊥(A) with “Gram-Schmidt”

length L = ‖T̃A‖ ≤ m · ω(
√

logm), with all but n−ω(1) probability.

2.2 Discrete Gaussians

Central to all cryptosystems based on Ajtai lattices, is the study of the dis-
tribution of various vectors of interest (e.g., preimages to the operation A).
Multidimensional discrete Gaussian distributions are particularly useful.

Discrete Gaussians. Let m be a positive integer and Λ an m-dimensional lattice
over R. For any vector c ∈ Rm and any positive spread parameter σ ∈ R>0, let:

ρσ,c(x) = exp
(
− π ‖x−c‖

2

σ2

)
: a Gaussian function of center c and parameter σ;

ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) : the infinite discrete sum of ρσ,c over the lattice Λ;
DΛ,σ,c : the discrete Gaussian distribution on Λ of center c and parameter σ:

∀y ∈ Λ , DΛ,σ,c(y) =
ρσ,c(y)

ρσ,c(Λ)

For convenience, we abbreviate ρσ,0 and DΛ,σ,0 respectively as ρσ and DΛ,σ.



2.3 Sampling and Preimage Sampling

The public-key and secret-key functions we need for asymmetric cryptography
arise from the previous notions. Specifically, while anyone can sample a discrete
Gaussian preimage with no prescription on its image under A, only with a
trapdoor or short basis B can one sample a preimage hitting a specific target
image u with the same conditional distribution. The following results are due
to Gentry, Peikert, and Vaikuntanathan [15]. They first construct an algorithm
for sampling from the discrete Gaussian DΛ,σ,c, given a basis B for the m-

dimensional lattice Λ with σ ≥ ‖B̃‖ · ω(
√

logm). Next they give an algorithm
that given an trapdoor and a target, can sample a preimage with the same
(conditional) discrete Gaussian distribution.

Sampling a discrete Gaussian. There exists a probabilistic polynomial-time al-
gorithm, denoted SampleGaussian, that, on input an arbitrary basis B of an
m-dimensional full-rank lattice Λ = L(B), a parameter σ ≥ ‖B̃‖ · ω(

√
logm),

and a center c ∈ Rm, outputs a sample from a distribution statistically close to
DΛ,σ,c.

Preimage sampling from trapdoor. There exists a probabilistic polynomial-time
algorithm, denoted SamplePre, that, on input a matrix A ∈ Zn×mq , a short

trapdoor basis TA for Λ⊥q (A), a target image u ∈ Znq , and a Gaussian parameter

σ ≥ ‖T̃A‖ · ω(
√

logm), outputs a sample e ∈ Zmq from a distribution within
negligible statistical distance of DΛu

q (A),σ.

Micciancio and Regev [17] show that the norm of vectors sampled from dis-
crete Gaussians is small with high probability. We omit the full statement.

2.4 Hardness Assumption

One of the classic hardness assumptions associated with Ajtai lattices, refers to
the LWE — Learning With Errors — problem, first stated by [19], and since
extensively studied and used. For polynomially bounded modulus q, the compu-
tational and decisional versions of the problems are polynomially reducible to
each other. We give the following statement of the decisional version.

The decisional LWE problem. Consider a prime q, a positive integer n, and a
distribution χ over Zq, all public. An (Zq, n, χ)-LWE problem instance consists
of access to an unspecified challenge oracle O, being, either, a noisy pseudo-
random sampler Os carrying some constant random secret key s ∈ Znq , or, a
truly random sampler O$, whose behaviors are respectively as follows:

Os: outputs noisy pseudo-random samples of the form (wi, vi) =
(
wi, wT

i s +

xi
)
∈ Znq × Zq, where, s ∈ Znq is a uniformly distributed persistent se-

cret key that is invariant across invocations, xi ∈ Zq is a freshly generated
ephemeral additive noise component with distribution χ, and wi ∈ Znq is a
fresh uniformly distributed vector revealed as part of the output.



O$: outputs truly random samples
(
wi, vi

)
∈ Znq × Zq, drawn independently

uniformly at random in the entire domain Znq × Zq.

The (Zq, n, χ)-LWE problem statement, or LWE for short, allows an unspeci-
fied number of queries to be made to the challenge oracle O, with no stated
prior bound. We say that an algorithm A decides the (Zq, n, χ)-LWE problem if∣∣Pr[AOs = 1]− Pr[AO$ = 1]

∣∣ is non-negligible for a random s ∈ Znq .

Average to worst case. The confidence in the hardness of the LWE problem
stems in part from a result of Regev [19] which shows that the for certain noise
distributions χ, the LWE problem is as hard as (other) classic lattice problems
(such as SIVP and GapSVP) in the worst case, under a quantum reduction. A
non-quantum reduction with different parameters was later given by Peikert [18].
We state Regev’s result for reference below.

The Regev reduction theorem. Consider a real parameter α = α(n) ∈ (0, 1) and
a prime q = q(n) > 2

√
n/α. Denote by T = R/Z the group of reals [0, 1) with

addition modulo 1. Denote by Ψα the distribution over T of a normal variable
with mean 0 and standard deviation α/

√
2π then reduced modulo 1. Denote by

bxe = bx + 1
2c the nearest integer to the real x ∈ R. Denote by Ψ̄α the discrete

distribution over Zq of the random variable bq Xe mod q where the random
variable X ∈ T has distribution Ψα. Then, if there exists an efficient, possibly
quantum, algorithm for deciding the (Zq, n, Ψ̄α)-LWE problem, there exists a
quantum q · poly(n)-time algorithm for approximating the SIVP and GapSVP
problems, to within Õ(n/α) factors in the `2 norm, in the worst case.

Since the best known algorithms for 2k-approximations of GapSVP and SIVP

run in time 2Õ(n/k), it follows that the LWE problem with noise ratio α = 2−n
ε

ought to be hard for some constant ε < 1.

3 Classic Constructions

We start this presentation with the systems from which all recent developments
are based, starting with Regev’s minimalistic public-key cryptosystem.

3.1 Regev public-key encryption

The basic principle of Regev’s original public-key cryptosystem is deceptively
simple, as long as one does not delve too deep in its analysis. Paradoxically,
Regev’s system predated the GPV trapdoor preimage sampling, and required
no other machinery than a basic random Ajtai lattice, not even a short basis.

The algorithms defining the system are as follows:

Key generation. Pick a suitable modulus q, a random Ajtai matrix A ∈ Zn×mq ,
and a short random vector d ∈ Zm; and let u = A·d mod q ∈ Znq . The public
and secret keys are:

PK = (q,A,u) SK = e



Encryption. To encrypt a bit m ∈ {0, 1}, pick a random vector s ∈ Znq , a noise
scalar y0 ∼ ψ, and a noise vector y1 ∼ ψm, and output:

CT =
(
c0 = s> u +m · bq

2
c+ y0, c1 = A> s + y1

)
Decryption. The bit m is deemed to be 0 or 1, if the following quantity is

respectively closer to 0 or q
2 , modulo q:

c0 − c>1 d (mod q)

It is easy to see that all terms cancel in the decryption operation, but for the
noise contributions due to y0 and y1 and the term m · b q2c which redundantly
encodes m. The noise is chosen sufficiently small so that, even after taking the
inner product of y1 with the secret key vector d, the message m remains rec-
ognizable. However, for an attacker who can only find large preimages of u,
decoding will fail as the noise will completely mask the message. Technically,
the noise distribution ψ is chosen according to Regev’s reduction theorem, so
that semantic security of the system can be reduced to a worst-case lattice hard-
ness assumption. We refer to Regev’s paper for details.

Remark. We note that in Regev’s original paper [19], the roles of d and s were
reversed. The above is Regev’s dual, more conveniently extended as we now
describe.

3.2 GPV identity-based encryption

Gentry et al. [15] first showed how to realize identity-based encryption from
lattices. In IBE, the public key is arbitrary, and the corresponding secret key
can be “extracted” from it by a central authority that holds a special trapdoor.

The GPV system can be viewed as an instantiation of the Regev system,
where instead of having a single fixed “syndrome” vector u (see the description
above), said vector is made to depend on the recipient’s identity using a hash
function, as in uid = H(id). Since no predetermined d can serve to deduce u, a
central authority will need the preimage sampling trapdoor to compute a short
preimage did for any desired target uid; the trapdoor is thus the IBE master key.

Their system is described as follows:

System setup. Pick a suitable modulus q, and sample a random Ajtai matrix
A ∈ Zn×mq with associated trapdoor B ∈ Zm×m. The public parameters and
master secret key are:

PP = (q,A) MK = B

Private key extraction. To extract a private key corresponding to a public
identity id, first compute uid = H(id) ∈ Znq , and then, using the trapdoor
B, find a short preimage did, i.e., a low-norm vector such that A · did = uid

(mod q). Output the private key as:

SKid = did



Encryption. To encrypt a bit m ∈ {0, 1} for an identity id, compute uid =
H(id) ∈ Znq and then encrypt as in the Regev system; i.e., picking a random
vector s ∈ Znq , a noise scalar y0 ∼ ψ, and a noise vector y1 ∼ ψm, output:

CT =
(
c0 = s> uid +m · bq

2
c+ y0, c1 = A> s + y1

)
Decryption. Proceed as in the Regev system, using the private key did; i.e.,

decrypt as 0 or 1 depending on whether the following is closer to 0 or q
2 ,

modulo q:

c0 − c>1 did (mod q)

The proof of security follows readily from that of Regev’s system, given the
properties of trapdoor preimage sampling, in the random-oracle model.

4 Techniques and Refinements

Building upon those earlier results, a number of significant refinements were
quick to appear, showing that full security reductions were possible and practical,
even in the standard model.

4.1 Bit-by-bit Standard-model IBE

The first step was taken concurrently by several teams [3, 13], that quickly figured
out a way to realize IBE from lattices in the standard model, albeit with a stiff
efficiency penalty over the GPV system.

The idea was to encode the identity not in Regev’s vector u as in GPV
(which required a random oracle), but in the matrix A itself, in a binary fashion
reminiscent of the pairing-based from [12]. Specifically, for an `-bit identity id =

(b1, . . . , b`) ∈ {0, 1}`, the matrix Aid ∈ Zn×(`+1)m
q is defined as the following

concatenation of `+ 1 constant matrices of dimension n×m:

Aid =
[
A0

∣∣A1,b1

∣∣A2,b2

∣∣ . . . ∣∣A`,b`

]
from which the following relationship between (a user’s) public and private key
will be enforced:

Aid · did = u (mod q)

It is easy to see (but harder to prove) that all that is needed to find a short
solution did in the above equation, is a preimage sampling trapdoor for any of
the matrices Ai,· intervening in Aid. Accordingly, all the submatrices Ai,bi for
i ≥ 1 can be picked at random, as merely a trapdoor B0 for A0 suffices to find
short preimages under the whole of Aid. Hence, such shall be the IBE master
key in the real system.

The full system is described as follows:



System setup. Pick a suitable modulus q, and sample a random Ajtai matrix
A0 ∈ Zn×mq with associated trapdoor B0 ∈ Zm×m. Also sample 2` random
matrices Ai,b ∈ Zn×mq for i ∈ [`] and b ∈ {0, 1}, and a random vector u ∈ Znq .
The public parameters and master secret key are:

PP = (q,A0, {Ai,b},u) MK = B0

Private key extraction. To extract a private key corresponding to a public
identity id, using the trapdoor B0, find a low-norm vector did such that
Aid · did = u (mod q). The private key is: SKid = did.

Encryption. Proceed as in the Regev system substituting Aid for A.
Decryption. Proceed as in the Regev system, substituting did for d.

The large matrix Aid renders the system rather inefficient, but enables a se-
curity proof against “selective-identity” attacks (where the attacker reveals the
target id∗ in advance) in the standard model. One builds a simulator that can
extract private keys for all identities but the pre-announced target id∗. The sim-
ulator shall set itself up with a trapdoor for every submatrix Ai,(1−b∗i ) where b∗i is
the i-th bit of the target identity — but not A0 (which shall be assembled from
an LWE challenge to show a reduction). This way, the resulting concatenation
Aid will have one or more known trapdoors, unless id = id∗.

4.2 All-at-once Standard-model IBE

Just like the “bit-by-bit” construction of [3, 13], above, is a lattice analogue to
the pairing-based IBE by Canetti, Halevi, and Katz [12], a similar analogy can
be made from the “all-at-once” pairing-based IBE by Boneh and Boyen [9], as a
more efficient way to build a provably secure IBE in the standard model. The full
analysis is due to Agrawal et al. [1] and is quite involved, but the construction
is based on a simple principle.

Here, the recipient identity is encoded into the Regev matrix A all at once,
without decomposing it bit by bit. Specifically, the Regev encryption matrix
becomes (for constant A0,A1,A2 ∈ Zn×mq ),

Aid =
[
A0

∣∣A1 + id ·A2

]
when the identity id ∈ Zq, or even, in all generality,

Aid =
[
A0

∣∣A1 + Mid ·A2

]
when the identity id ∈ Znq , based on a straightforward deterministic encoding
into a regular square matrix Mid ∈ Zn×nq , such that any non-trivial difference
Mid1

−Mid2
is itself non-singular.

In the real system, the central authority will have a trapdoor for A0, and
thus be able to find short solutions did for every requested id in the equation
(for constant u ∈ Znq ):

Aid · did = u (mod q)



In the simulation for the security reduction, one sets things up so that the
simulator can extract private keys for all identities id except the challenge id∗.
The matrix A0 is imposed from an external LWE challenge, and thus without a
trapdoor. We set A1 = A0 ·R−Mid∗ ·A2, for some random R ∈ {−1, 1}m×m.
It follows that for all non-challenge identities, the encryption matrix reads:

Aid =
[
A0

∣∣A0 ·R + (Mid −Mid∗) ·A2

]
For the challenge identity, the factor (Mid −Mid∗) in parentheses vanishes, and
what is left is:

Aid∗ =
[
A0

∣∣A0 ·R
]

Agrawal et al. [1] give an algorithm to find short preimages under matrices
Aid of this form,without a trapdoor for A0, provided one knows a trapdoor for
(Mid −Mid∗) ·A2, which will simply be that of A2 provided that the factor in
parentheses is regular. Their algorithm exploits the appearance of multiples of A0

on both sides of the concatenation to engineer a cancellation. Note that the role
of the matrix R is to blind the simulation setup, so that it looks indistinguishable
from the real system to an attacker. In the case where id = id∗, the term in A2

vanishes, and so with it any beneficial use of its trapdoor.
For completeness, we describe their system as follows:

System setup. Pick a suitable modulus q, and sample a random Ajtai matrix
A0 ∈ Zn×mq with associated trapdoor B0 ∈ Zm×m. Also sample two ran-
dom matrices A1,A2 ∈ Zn×mq , and a random vector u ∈ Znq . The public
parameters and master secret key are:

PP = (q,A0,A1,A2,u) MK = B0

Private key extraction. To extract a private key corresponding to a public
identity id, define its matrix encoding Mid and its encryption matrix Aid =
[A0|A1 + Mid ·A2]. Using the trapdoor B0, sample a low-norm vector did

solution of Aid · did = u (mod q). The private key is: SKid = did.
Encryption. Proceed as in the Regev system substituting Aid for A.
Decryption. Proceed as in the Regev system, substituting did for d.

4.3 Adaptive or “Full” Security

A drawback of the previous systems is their need to relax the security notion,
from a bona fide adaptive-identity attack to a less realistic selective-identity one,
in order to achieve a reduction in the standard model (sans random oracle).

In [11], we propose a scheme and accompanying proof technique that address
this limitation. The general idea is to set up the simulator to fail not on one
but several possible challenge queries, using an efficient key-space partitioning
technique that is quite specific to lattices. The full version of [1] describes the
fully secure system and its proof.



5 Delegation and Hierarchies

A classic generalization of the notion of IBE is that of hierarchical IBE, where
private-key holders can serve as local authorities to issuing private keys to any
identity below them in the hierarchical tree of identities.

5.1 Concatenation-based Delegation

The first inroad into HIBE from lattice is due to Cash et al. [13], who in the
same paper leverage their bit-by-bit IBE approach into a hierarchical scheme
thanks to a trapdoor delegation mechanism of their design.

The principle is as follows. Let an Ajtai matrix A0 and its associated “good”
trapdoor T0. Let A1 be an arbitrary matrix that is dimension-compatible with
A0. Cash et al. provide an algorithm that transforms A0’s trapdoor T0 into a
trapdoor T for the concatenated matrix A = [A0|A1], and in such a way that the
new trapdoor T has only a slightly higher norm than the originating trapdoor
T0. (While the norm might not increase at all under a näıve delegation process,
the degradation of quality is a by-product of a necessary re-randomization step
to ensure that the delegated basis cannot be used to reconstruct the delegator
basis).

The Cash-Hofheinz-Kiltz-Peikert HIBE. Based on this delegation algorithm,
Cash et al. [13] extend their bit-by-bit IBE scheme into a hierarchical scheme in a
straightforward manner: subordinate identities are constructed by extending an
identity prefix with additional bits; the corresponding encryption matrices are
likewise constructed by concatenating additional sub-matrices to the right; and
the corresponding private keys are obtained by invoking the delegation algorithm
for such concatenations.

The (first) Agrawal-Boneh-Boyen HIBE. Based on the same CHKP delegation
algorithm, Agrawal et al. [1] likewise extend their all-at-once IBE scheme into a
hierarchical scheme, in the same straightforward manner.

5.2 Multiplicative In-Place Delegation

A second approach to delegation and HIBE, due to Agrawal et al. [2], relies not
on concatenation, but on multiplication by invertible low-norm matrices. They
propose a delegation mechanism that operates “in place”, i.e., without increasing
the dimensions of the lattices or the number of elements in the matrices defining
them.

Given a good basis TA for an Ajtai lattice Λ⊥(A), they show how to create a
(slightly less) good basis TB for another lattice Λ⊥(B), whose defining matrix B
has the same dimension as A and can be deterministically and publicly computed
from A. The delegation mechanism furthermore ensures that given A,B and TB,
it is difficult to recover TA or any other a short basis for Λ⊥(A), thus ensuring
the “one-wayness” of the delegation process.



Very informally, the delegated matrix B ∈ Zn×mq is defined from the delegator
matrix A ∈ Zn×mq and a low-norm invertible public delegation matrix R ∈
Zm×mq , as the product:

B = A ·R−1

Since TA is a trapdoor for A, i.e., a short basis for Λ⊥(A), it follows that
A ·TA = 0 (mod q). Hence, we also have that (A ·R−1) · (R ·TA) = 0 (mod q).
Hence, R ·TA ∈ Zm×mq defines a basis for Λ⊥(B), and a “good” one since R has
low norm. A final re-randomization step will ensure that the delegation cannot
be undone, ensuring its “one-wayness”.

The (second) Agrawal-Boneh-Boyen HIBE. Equipped with their delegation tool,
Agrawal et al. [2] construct an efficient HIBE system, with provable security from
the LWE assumption [19], and where the dimension of the keys and ciphertexts
does not increase with the depth of the hierarchy. In particular, for shallow hier-
archies, the efficiency of their system is directly comparable to the random-oracle
non-hierarchical system of [15]. For deep hierarchies, the number of private key
and ciphertext elements remains the same, but the bit-size of the modulus needs
to increase linearly. This results in an HIBE system whose space complexity is
only linear in the depth of the hierarchy.

6 Attributes and Predicates

To conclude this tour, we note a couple of brand new results, that concurrently
demonstrated that encryption systems even more expressive than (H)IBE could
be constructed from lattices — thereby breaking the “IBE barrier”.

Lattice-based “fuzzy IBE”. One system, due to Agrawal et al. [4], is a Fuzzy IBE
system. Fuzzy IBE, a notion originally defined and constructed from bilinear
maps in [20], was the first instance of what is now referred under the umbrella
of attribute-based encryption. In Fuzzy IBE, decryption is conditioned upon an
approximate rather than exact match between recipient attributes stated in the
ciphertext, and those actually present in the actual recipient’s private key.

Lattice-based “fuzzy IBE”. The other system, due to Agrawal et al. [5], is an
instance of Predicate-based encryption system, where decryption is controlled by
the (non-)vanishing of the inner product of two vectors of attributes: one from
the ciphertext, the other from the private key.

7 Conclusion

While a great many technical and conceptual challenges remain unsolved, if there
is a lesson to be drawn from the many recent exciting developments in just a
few focused areas of investigation, is that lattice-based cryptography is poised to
jump from the sidelines to the mainstream, and find its place into all manners
of real-world applications in the coming decades. We certainly look forward to
this transformation.
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