
Reusable Cryptographic Fuzzy Extractors

Xavier Boyen
Voltage Security, Palo Alto, California

xb@boyen.org

ABSTRACT
We show that a number of recent definitions and construc-
tions of fuzzy extractors are not adequate for multiple uses
of the same fuzzy secret—a major shortcoming in the case of
biometric applications. We propose two particularly strin-
gent security models that specifically address the case of
fuzzy secret reuse, respectively from an outsider and an in-
sider perspective, in what we call a chosen perturbation at-
tack. We characterize the conditions that fuzzy extractors
need to satisfy to be secure, and present generic construc-
tions from ordinary building blocks. As an illustration, we
demonstrate how to use a biometric secret in a remote error
tolerant authentication protocol that does not require any
storage on the client’s side.

Categories and Subject Descriptors: E.3 [Data En-
cryption]; E.4 [Coding and Information Theory].

General Terms: Algorithms, Security, Theory.

Keywords: error tolerant cryptography, fuzzy extractor,
chosen perturbation security, zero storage remote biometric
authentication.

1. INTRODUCTION
Often, one would like to use some cryptographic appara-

tus with approximate, noisy, and non-uniformly distributed
keys, rather than the precise, strictly random strings that
are usually required. Such a “fuzzy” secret could be a mea-
surement on a somewhat hidden biometric feature—a retinal
scan rather than a thumbprint—, a long password imper-
fectly committed to memory, or one’s spontaneous answers
to a list of subjective questions [7, 8]. Ideally, one would seek
a general method to convert any of the above into crypto-
graphically strong keys usable for many purposes. A num-
ber of constructions geared toward specific applications have
surfaced in the last few years [5, 11, 12, 10]. Related lines of
work have also been pursued in different contexts, e.g., for
privacy amplification [2, 3], or noise suppression [4].

The general idea is based on a two-step process, where an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

extraction function first transforms any sufficiently random
fuzzy secret into an almost uniform random private string,
and outputs some public information which is used in the re-
generation step to reconstitute the exact same private string
from a close enough approximation of the original fuzzy se-
cret. Dodis et al. [6] propose the most general definitions,
and also introduce the notion of secure sketch (here renamed
fuzzy sketch to avoid ambiguities), which works like an ex-
tractor except that no private string is extracted; rather, the
goal is to allow an exact reconstruction of the original in-
put given an approximation thereof. Although the repeated
use of the regeneration function on many inputs is typi-
cally allowed, all these schemes implicitly assume that no
more than a single extraction is ever performed from any
secret—clearly a problematic state of affairs for biometric
applications.

Toward a more robust definition of fuzzy sketch and ex-
tractor, we propose a security model based on the stringent
notion of adaptive chosen perturbation attacks, wherein the
adversary may query an oracle to perform extractions and
regenerations based on chosen perturbations of the secret
under attack. If the adversary is only given an extraction
oracle, we speak of an outsider attack; in the general case
we have an insider attack. We first show under the outsider
security requirements how to achieve information theoretic
security, and prove that certain existing constructions al-
ready satisfy these conditions. We then show how to harden
the generic construction to withstand insider attacks, al-
though in this case unconditional security is no longer feasi-
ble. We give fairly detailed security analysis based on simple
assumptions, which we keep as general as possible to fit the
generic nature of our constructions, and justify by showing
their necessity; we rely on random oracles only in the case of
extractors. Finally, we illustrate the power of our model by
contructing a simple “zero storage” biometric authentication
protocol based on universally reusable biometric certificates.

2. PRELIMINARIES
We briefly recall various definitions, mostly following [6].

Metric Spaces and Hamming Distance.
For the purpose of this paper, we define a metric space M
as a finite set equipped with a non-negative integer distance
function d :M×M→ Z≥0 which obeys the usual properties
of a distance (symmetry, triangle inequality, zero distance
between equal points). The elements of M are assumed to
admit an efficient compact representation as bit strings of
length O[log2 #M].

We usually consider multi-dimensional metric spaces of
the form M = Σn for some alphabet Σ (usually a finite
field Fp), equipped with the Hamming distance. For any
two words w, w′ ∈ Σn, the Hamming metric d[w, w′] is the
number of coordinates in which they differ.

Error Correcting Codes and Linear Codes.
For a given choice of metric d, one can define error correct-
ing codes in the corresponding spaceM. A code is a subset
C = {w1, ..., wK} ⊆ M. The set C is sometimes called code-
book ; its K elements are the codewords. The (minimum)
distance of a code is the smallest distance d between two
distinct codewords (according to the metric d). Given a
codebook C, we can define a pair of functions 〈C, D〉. The
encoding function C is an injective map from the elements
of some domain of size K to the elements of C. The decod-
ing function D maps any element w ∈ M to the pre-image
C−1[wk] of the codeword wk that minimizes the distance
d[w, wk]. The error correcting distance is the largest radius
t such that for every element w ∈ M there is at most one
codeword in the ball of radius t centered on w. For inte-
ger distance functions we have t = b(d− 1)/2c. A standard
shorthand notation in coding theory is that of a (M, K, t)-
code.

We also define a complementary notion and say that the
code has error correction limit t′ if for any codeword wk ∈ C
and any element w ∈ M such that C[D[w]] = wk we have
that d[w, wk] ≤ t′.

If the alphabet is a finite field Σ = Fp then M = Σn is
a finite vector space. A linear code of parameters [n, k, d]
over Fp is a code whose codebook C is a vector subspace of
Fn

p—i.e., C is closed under vector addition and scalar mul-

tiplication by elements of Fp—such that C has size nk and
distance d. The natural notion of distance for linear codes
is the Hamming metric.

The “square bracket” parameter notation [n, k, d] is also
used for non-linear codes over spaces of the form M = Σn

when k = log#Σ #C is integral. Such a code is said to have
dimension k.

Entropy and Average Min-Entropy.
Let A and B be two random variables with values in the
discrete domains A and B. The entropy of A is defined
as the expectation H[A] = Ea←A[− log2 P[A = a]]. The
conditional entropy of A given B is written H[A | B] =
Eb←BH[A | B = b] = E〈a,b〉←〈A,B〉[− log2 P[A = a | B = b]].

The notion of entropy quantifies the “expected random-
ness” of a random variable. To quantify the cryptograph-
ically more robust notion notion of “worst-case random-
ness”, we consider the min-entropy of A which is defined as
H∞[A] = − log2 maxa∈AP[A = a]. For conditional distri-
butions, we use the notion of average min-entropy, defined as
H̄∞[A | B] = − log2 Eb←B [maxa∈AP[A = a | B = b]]. This
is not the expected min-entropy of A given B, but rather
the (negative) logarithm of the average probability of the
most likely value of A given B; it is more pessimistic since
H̄∞[A | B] ≤ Eb←B [H∞[A | B = b]].

Statistical Distance.
The statistical distance between two probability distribu-
tions A1 and A2 over a common discrete domainA is written
D[A1, A2] = 1

2

P
a∈A |P[A1 = a]−P[A2 = a]|.

It is often useful to consider the statistical distance to a

uniform distribution. We use the notation U` to denote a
uniformly distributed random variable over {0, 1}`.

Permutation Groups.
Let P = {πp :M→M} be a family of functions indexed by
p in some finite set. P is said to be a permutation group if
〈P, ◦〉 is a group (observe that the πp must be permutations
of M since they have inverses in P). The group operation
◦ in P and the action of the permutations πp onM are im-
plicitly assumed to be efficiently computable from canonical
representations. We define the following properties of any
such permutation group P:

• P is transitive if for any pair of points w, w′ ∈M, there
is an (efficiently determinable) permutation πp ∈ P
such that πp[w] = w′.

• P is isometric with respect to the distance d in M if
for all permutation πp ∈ P and points w, w′ ∈ M it
holds that d[πp[w], πp[w′]] = d[w, w′].

3. FUZZY SKETCHES & EXTRACTORS
In this section, we review the definition of a fuzzy extrac-

tor as introduced by Dodis et al. [6] and related notions. We
then show by a counterexample that fuzzy extractors may
be quite insecure if the same noisy secret is reused a few
times.

3.1 Randomness Extractors
Intuitively, a (non-fuzzy) strong randomness extractor [13]

is a randomized function that tranforms its input from any
biased distribution of sufficient min-entropy into an output
that appears to be drawn from an almost uniform distribu-
tion. We require that this be the case even if one is given
access to the random bits used by the extractor (but not its
input).

Definition 1. An efficient (n, m′, `, ε)-randomness ex-
tractor (or strong extractor) is a polynomial time random-
ized algorithm Ext : {0, 1}n → {0, 1}` such that, for any
random variable W over {0, 1}n with min-entropy m′, it
holds that D[〈Ext[W ; R], R〉, 〈U`, R〉] ≤ ε. Here, Ext[W ; R]
denotes the application of Ext to the input word W using
randomization bits R; the random variable R is required to
have a uniform distribution independent from W and U`.

As shown in [14], the theoretical limit is given by ` ≤
m′ − 2 log2[1/ε] +O[1]. A number of optimal constructions
that also minimize the size of r are surveyed in [15]. If the
size of r is not critical, simpler optimal constructions can be
obtained from pairwise independent hash functions [3, 9].

3.2 From Fuzzy Sketches To Fuzzy Extractors
Dodis et al. [6] define the following notions of fuzzy sketch

(or secure sketch, in their terminology) and fuzzy extractor,
and show how to construct the former can be transformed
into the latter using a randomness extractor.

Definition 2. A (M, m, m′, t)-fuzzy sketch is a pair of
algorithms 〈Fsk, Cor〉 where:

Fsk is a (typically randomized) sketching function that on
input w ∈ M outputs a sketch or redundancy data
p ∈ {0, 1}∗, such that for all random variable W over

M with min-entropy H∞[W] ≥ m, it holds that the
average min-entropy of W given Fsk[W] satisfies the
bound H̄∞[W | Fsk[W]] ≥ m′.

Cor is a correction function that given a word w′ ∈M and
a sketch p outputs a word w′′ ∈ M, such that for any
p← Fsk[w] and d[w, w′] ≤ t, it holds that w′′ = w.

When we need to explicitly consider the random bits r used
by Fsk on input w, we write Fsk[w; r]. The functions Fsk
and Cor are assumed efficiently computable, and the domain
of r finite.

Definition 3. A (M, m, `, t, ε)-fuzzy extractor is a pair
〈Gen, Reg〉 where:

Gen is a (necessarily randomized) generation function that
on input w ∈ M extracts a private string s ∈ {0, 1}`
and a public string q, such that for all random variable
W overM such that H∞[W] ≥ m and dependent vari-
ables 〈s,q〉 ← Gen[W], it holds that D[〈s,q〉, 〈U`,q〉] ≤
ε.

Reg is a regeneration function that given a word w′ ∈ M
and a public string q outputs a string s′ ∈ {0, 1}`, such
that for any words w, w′ ∈ M satisfying d[w, w′] ≤ t
and any possible pair 〈s,q〉 ← Gen[w], it holds that
s = Reg[w′,q].

When we need to explicitly consider the random bits r used
by Gen on input w, we write Gen[w; r]. The functions Gen
and Reg are assumed efficiently computable, and the domain
of r finite.

Lemma 4 (Lem. 3.1 from [6]). Consider 〈Fsk, Cor〉 a
(M, m, m′, t)-fuzzy sketch. Suppose that Ext is a (n, m′, `, ε)-
randomness extractor, assumed optimal and based on pair-
wise independent hashing so that ` = m′−2 log2[1/ε]. Then
for uniformly distributed randomization strings r1 and r2,
the algorithms 〈Gen, Reg〉 define a (M, m, `, t, ε)-fuzzy ex-
tractor, where:

Gen[w; 〈r1, r2〉]: compute p ← Fsk[w; r1], s ← Ext[w; r2],
set q← 〈p, r2〉, and output 〈s,q〉.

Reg[w′, 〈p, r2〉]: recover w ← Cor[w′, p] and output s ←
Ext[w; r2].

3.3 Concrete Constructions
Working towards showing a flaw in the above definitions,

we recall for concreteness some fuzzy extractor constructions
given in [6].

Construction For Hamming Distance.
A fuzzy extractor is easily obtained by viewing the notion of
“fuzzy commitment” from [11] as a fuzzy sketch. We follow
[6, Section 4].

Let C : {0, 1}k → {0, 1}n be a (non-necessarily linear)
binary code of parameters [n, k, 2 t+1], and let D : {0, 1}n →
{0, 1}k be the matching decoding function. For random r ∈
{0, 1}k we define the Juels-Wattenberg (M, m, m+k−n, t)-
fuzzy sketch over the Hamming space M = {0, 1}n as:

Fsk[w; r] = w ⊕ C[r] , Cor[w′, p] = p⊕ C[D[w′ ⊕ p]] .

By combining the Juels-Wattenberg fuzzy sketch above with
a randomness extractor as in Lemma 4, we immediately ob-
tain a (M, m, `, t, ε)-fuzzy extractor 〈Gen, Reg〉 where ` =
m + k − n− 2 log2[1/ε] and t measures Hamming distance.
We call it the JW-DRS fuzzy extractor.

Permutation Based Extractors.
Let C ⊆ M be a code with encoding and decoding functions
〈C, D〉, and P a transitive group of isometric permutations
inM. Given such a family, a generic (randomized) “permu-
tation based” fuzzy sketch 〈Fsk, Cor〉 is easily to construct:

Fsk[w; r] = p where

(
w̄ ← C[r] ∈ C
p s.t. πp[w] = w̄

,

Cor[w′, p] = (π−1
p ◦ C ◦D ◦ πp)[w

′] .

The principle is as follows. On input word w, the sketch-
ing function Fsk returns a permutation πp that maps w to
a randomly chosen codeword w̄ ∈ C. Since the permutation
is an isometry, the same permutation is used in the correc-
tion function Cor to turn any input w′ in the vicinity of w
into some word πp[w

′] in the vicinity of w̄; from there, the
application of C ◦D reconstitutes w̄ and the subsequent in-
verse permutation π−1

p maps it back to the original w. From
there, the rest of the fuzzy extractor construction is as in
Lemma 4. Dodis et al. [6] show that if C is a (M, K, t)-
code and P is a transitive family of isometric permutations,
the permutation based fuzzy sketch above is a (M, m, m′, t)-
fuzzy sketch with entropy loss m−m′ = log2[#P]− log2[K],
from which Lemma 4 gives a (M, m, `, t, ε)-fuzzy extractor
of output size ` = m′ − 2 log2[1/ε].

4. INSECURE REUSE OF EXTRACTORS
Whereas Definitions 2 and 3 may be adequate for single-

use fuzzy secrets, we now demonstrate various ways in which
multiple invocations can coerce otherwise compliant fuzzy
sketches and extractors to completely expose the secret. The
avenues of attack we explore are: an insecure fuzzy sketch,
a biased code, and a overly broad permutation family, re-
spectively.

4.1 Algorithmic Vulnerability
Our first counterexample illustrates how a careless—yet

compliant—fuzzy sketch and the extractor constructed from
it can rapidly leak information about the input secret, if used
multiple times.

A Flawed Construction.
Let 〈Fsk, Cor〉 be a Juels-Wattenberg (M, m, m + k − n, t)-
fuzzy sketch as in Section 3.3. We construct a modified fuzzy
sketch as follows:

Fsk′[w; 〈r, r′〉] = 〈Fsk[w; r], r′, w � r′〉 = 〈p, r′, b〉 ,

Cor′[w′, 〈p, r′, b〉] = Cor[w′, p] .

Here, r ∈ {0, 1}k and r′ ∈ {0, 1}n are randomization strings
assumed to be independently and uniformly distributed, and
b = w � r′ ∈ {0, 1} is the inner product of w and r′.

By the properties of 〈Fsk, Cor〉, for any random variable W
of min-entropy m we know that H̄∞[W | Fsk[W]] ≥ m+k−
n. Since r′ is independent of W and b is a single bit, it follows
that H̄∞[W | Fsk′[W]] ≥ m + k − n − 1. Thus, 〈Fsk′, Cor′〉
is a (M, m, m + k − n − 1, t)-fuzzy sketch. We combine
the fuzzy sketch 〈Fsk′, Cor′〉 with a randomness extractor
Ext as in Lemma 4, to yield a (M, m, `, t, ε)-fuzzy extractor
〈Gen′, Reg′〉 with ` = m + k − n− 2 log2[1/ε]− 1.

An Outsider Attack.
We claim that the modified fuzzy extractor 〈Gen′, Reg′〉 is
flawed, though it is in all respects a “good” extractor ac-
cording to the definition of [6]. Indeed, assume that one
makes a number q of independent calls to Gen′ on the same
(secret) input w∗. Assume for simplicity that q � n. Then,
with high probability the q public strings q′1, ...,q

′
q con-

tain enough information to uniquely determine the secret
word w∗. Furthermore, recovering w∗ from that informa-
tion amount to solving an (over-constrained) n × q linear
system in F2, which can be done very efficiently. Once w∗ is
known, recovering the extracted private strings s1, ..., sq is
as easy as computing s′i ← Reg′[w∗,q′i] for all i ∈ {1, ..., q}.

4.2 Coding Vulnerability
Improper sketch constructions are not the only sources

of information leaks. Even the a priori secure JW-DRS
construction of Section 3.3 is prone to a total break when
used with the wrong error correction code, if used multiple
times. We outline the general argument.

Biased Codes.
The argument is based on the notion of (non-linear) binary
codes with a special property: on average over all the code-
words in the codebook, the value 0 is more likely to appear
than the value 1, at every coordinate of the code space.
Specifically, we say that a p-ary [n, k, d]-code C has bias β,
if, for a uniformly sampled random codeword w ∈ C, we
have:

∀i = 1, ..., n : P[w|i = 0] ≥ 1

p
+ β .

There are many ways to construct efficiently decodable bi-
ased codes. For now, we assume that C is a binary β-biased
[n, k, d]-code with efficient encoding and decoding functions
C and D.

When the JW-DRS construction of Section 3.3 is applied
to the code 〈C, D〉, we obtain a ({0, 1}n, m, `, t, ε)-fuzzy ex-
tractor 〈Gen, Reg〉 where t = b(d− 1)/2c and ` = m + k −
n− 2 log2[1/ε].

Majority Vote Attack.
Recall that in the JW-DRS scheme the public string q pro-
duced by a call to Gen[w∗] contains the substring w∗ ⊕C[r]
for some r chosen uniformly at random. Since we are us-
ing a binary code with bias β, it follows that each bit of
w∗⊕C[r] is equal to the corresponding bit of w∗ with prob-
ability at least 1

2
+β. Thus, given a sufficiently large number

q = Θ[poly[1/β]] of public strings q1, ...,qq derived from in-
dependent calls to Gen[w∗], it is indeed quite easy for an at-
tacker to recover the secret w∗ from public information: sim-
ply do a majority vote among all q public strings q1, ...,qq

for each of the n bits of w∗⊕C[r], one coordinate at a time.

4.3 Permutation Vulnerability
A third source of potential information leak can be found

in the abstractions used in generic fuzzy sketches and ex-
tractors, such as the permutation based construction of Sec-
tion 3.3. It can be shown that a poor implementation of a
particular abstraction can easily leak damaging information,
if used multiple times.

Assume for the sake of illustration thatM is the Hamming
space Fn

p with vector addition +. Consider the permutation
group P = {πp : w 7→ p + w} ∪ {π̄p : w 7→ p− w} consisting
of all linear shifts (the πp) and their mirror images (the π̄p).
Clearly, P is a transitive isometric permutation group of size
#P = 2#M, and it is easy to see that for any pair of words
w, w̄ ∈ M there is exactly one “direct” and one “mirror”
permutation in P maping w to w̄, which we denote by πw,w̄

and π̄w,w̄. Now, assume that 〈Fsk, Cor〉 is a permutation
based (M, m, m′, t)-fuzzy sketch as in Section 3.3. The con-
struction must specify how to select p s.t. πp[w

∗] = w̄ given
a random w̄ ∈ C. We specify it as follows: let r′ ← H[πw∗,w̄]
for some fixed hash function H. If the parity of (a bit string
representation of) w∗� r′ is 0, then pick p s.t. πp = πw∗,w̄;
otherwise pick p s.t. πp = π̄w∗,w̄.

In an attack, the adversary can easily determine whether
p corresponds to πw∗,w̄ or π̄w∗,w̄, and from there find the
value of w∗ � r′. If w∗ � r′ = 0, then r′ = H[πp] is easily
recovered. Over q queries, an attacker can thus expect to
obtain q/2 distinct pi for which r′i can be recovered this way.
Given enough of these, it is easy to reconstruct the secret
w∗ using the method of Section 4.1.

This attack may seem contrived, but similar leaks can
realistically occur in practice, e.g., whenever p is selected
deterministically among multiple choices from a set P that
is ordered haphazardly. Although randomizing the choice
of p would thwart this particular vulnerability, it is possible
to mount much more powerful attacks in the same spirit if
the adversary is allowed to obtain public strings for distinct
secrets with a known or chosen relationship.

4.4 Noisy Inputs
All the previous attacks assume that that multiple public

strings are independently extracted from the same secret
input. Since the secret is fuzzy, a more realistic scenario
is to consider that the multiple extractions are performed
on noisy variants of the fuzzy secret. We dispell the notion
that such noise could somehow drastically hamper the above
attacks.

Regarding the scheme of Section 4.2, observe that the at-
tack is robust to small Hamming perturbations of the secret
word w∗. Specifically, instead of Gen being applied multiple
times to the same secret w∗, suppose that Gen is applied to
q variations w1, ..., wq of the secret w∗. It is easy to see that
if all the wi are contained within a ball of radius t centered
on w∗, then the “majority vote” attack of Section 4.2 will
produce a word w̃ that with high probability is also within
distance t of the secret w∗ (and possibly quite closer if the
various perturbations cancel each other on average). From
there, in virtue of the error tolerance that defines fuzzy ex-
traction, the attacker can exactly regenerate the extracted
private key strings s1, ..., sq from the corresponding public
strings q1, ...,qq, simply by computing si ← Reg[w̃,qi] for
all i ∈ {1, ..., q}.

The attacks of Section 4.1 and 4.3 can also be adapted to
cope with noisy secrets. Recall that in Section 4.1 we engi-
neer fuzzy sketches that leak one bit of the input secret along
a randomly chosen projection. Under noisy conditions, this
results in an over-determined inconsistent set of contraints.
The attacker can nonetheless attempt to solve, e.g., for the
least squared error approximation w̃, using techniques of
linear algebra.

5. SECURELY REUSABLE EXTRACTORS
The counterexamples of Section 4 clearly demonstrate the

need for stronger notions of security for fuzzy sketches and
extractors.

Our first notion is that of security against outsider chosen
perturbation attacks; it directly addresses the vulnerabili-
ties exposed in Section 4, and is mostly relevant to fuzzy
sketches. In such attacks, the challenger holds a secret,
and the adversary adaptively asks the challenger to run
the sketching function Fsk on chosen perturbations of the
secret—where a perturbation is a function specified by the
adversary and applied by the challeger to the secret prior
to processing a query. The adversary must not learn un-
due information about the secret from any number of such
queries. (In the case of fuzzy extractors, the challenger runs
Gen instead of Fsk, and shows the resulting public strings to
the adversary, but not the private strings.)

Our second notion is that of security against insider cho-
sen perturbation attacks; it is much more stringent and only
applies to fuzzy extractors. In addition to making chosen
perturbation queries on Gen as in the outsider attack, the
adversary may adaptively ask the challenger to reconstruct
certain private strings by applying Reg on chosen pertur-
bations of the secret for arbitrary public strings (including
ones from previous queries to Gen). The adversary must be
computationally unable to recreate or distinguish any pri-
vate string that it has not queried.

Perturbation Families.
We need a manageable notion of perturbation that is useful
to the adversary and manageable by the challenger. At the
very least, perturbations should be efficiently computable.
We keep the formal definition as simple and general as pos-
sible. Later, we will impose additional restrictions.

Definition 5. We call perturbation (the canonical rep-
resentation of) any efficiently computable function δ :M→
M. We call perturbation family any finite family ∆ =
{δd :M→M} of such functions, indexed by d in some fi-
nite set.

To fix ideas, suppose thatM is a Hamming metric space,
and define ∆ as the set of all functions f : M → M such
that ∀w ∈M, d[w, f [w]] ≤ d̄. In this case, the admissible
perturbations are precisely the ones whose maximum dis-
placement is bounded by d̄; for example, the “shift” pertur-
bations δd :M→M : w 7→ w+d are ∆-admissible provided
that ‖d‖ = d[0, d] ≤ d̄.

In general, perturbations are not required to be invertible,
or even composable in the sense that the composition of
perturbations from a family may not itself be in the family.

5.1 Outsider Chosen Perturbation Security
Let ∆ be a family of perturbations over some metric space
M as previously defined. We define an adaptive outsider
chosen perturbation attack against a fuzzy sketch (or a fuzzy
extractor constructed from it) as the following game between
a challenger and an adversary:

Preparation: The adversary sends to the challenger
the specification (such as an efficient sampling
procedure) of a random variable W ∈M.

Randomization: The challenger selects a secret word
w∗ ∈ M by randomly sampling W , and signals
to the adversary that the query phase may begin.

Queries: The adversary makes arbitrarily many fuzzy
sketching queries. The queries may be submitted
adaptively, where for k = 1, ..., the k-th query
proceeds as follows. The adversary chooses a per-
turbation δdk ∈ ∆ and sends dk to the chal-
lenger. The challenger runs Fsk on input word
wk ← δdk [w∗] using fresh random bits rk, obtain-
ing a sketch pk ← Fsk[wk; rk], and responds to
the query by giving pk to the adversary.

Outcome: Eventually, the adversary produces a word
ŵ∗ ∈ M. The winning condition for the adver-
sary is that ŵ∗ = w∗.

We call the unbounded adversary Ainfo in the above game
a Fuz-CPA adversary.

Definition 6. Let 〈Fsk, Cor〉 be some (M, m, m′, t)-fuzzy
sketch. If in the above game we have for all Fuz-CPA adver-

sary whenever H∞[W] ≥ m that P[ŵ∗ = w∗] ≤ 2−m′
, then

we say that the fuzzy sketch is unconditionally secure against
adaptive outsider chosen perturbation attacks in ∆.

Outsider security for fuzzy extractors is defined in a sim-
ilar way, except that the challenger responds to adversarial
queries with the public output of Gen instead of the output
of Fsk, and has to guess the private string corresponding to
one of the public outputs it received. This corresponds to
the game described in the coming section, where all private
queries are disallowed.

5.2 Insider Chosen Perturbation Security
Let again ∆ be a family of perturbations over some met-

ric space M as previously defined. We define an adaptive
insider chosen perturbation attack against a fuzzy extractor
as the following game between a challenger and an adver-
sary (which simultaneously describes a computational and
a decisional version of the attack):

Preparation: The adversary gives the challenger the
specification of a random variable W ∈M.

Randomization: The challenger randomly samples
W to obtain a secret word w∗ ∈M.

Public queries: The adversary presents up to q fuzzy
generation queries to the challenger. The queries
are made adaptively. For i = 1, ..., q, the i-th pub-
lic query goes as follows. The adversary chooses
a perturbation δdi ∈ ∆ and sends di to the chal-
lenger. The challenger runs Gen on input word
wi ← δdi [w

∗] using fresh random bits ri, obtain-
ing a pair 〈si,qi〉 ← Gen[wi; ri]. The challenger
discards the private string si, and responds to the
query by giving the public string qi to the adver-
sary.

Private queries: The adversary also presents up to
q′ fuzzy regeneration queries to the challenger.
These queries are made adaptively and may be
interspersed with public queries. For j = 1, ..., q′,
the j-th private query goes as follows. The adver-
sary chooses a perturbation δd′j

∈ ∆ and a public

string q′j , and sends both to the challenger. The
challenger runs Reg on input word w′j ← δd′j

[w∗]

and public string q′j , obtaining a private string
s′j ← Reg[w′j ,q

′
j]. The challenger responds by

giving s′j to the adversary.

Challenge: At some point, the adversary selects any
public string q̂ ∈ {q1, ...,qq} that was returned
by the challenger in a previous public query, un-
der the constraint that in any private query 〈δ, q̂〉
involving q̂ the perturbation δ must have mini-
mum displacement minw∈M d[w, δ[w]] > t̄. The
adversary gives q̂ to the challenger.

In the Decisional version only, the challenger then
flips a fair coin b ∈ {0, 1}. If b = 1 it computes the
corresponding private string Reg[w∗, q̂] and gives
it to the adversary, otherwise it draws a random
string 6= Reg[w∗, q̂] of equal length ` and returns
it instead.

Additional queries: The adversary may make fur-
ther public and private queries up to the respec-
tive quotas q and q′. An additional restriction is
imposed that no private query 〈δ, q̂〉 be made on
the challenge q̂ unless δ has minimum displace-
ment greater than t̄.

Output: The adversary eventually outputs a private
string candidate ŝ. The winning condition for the
adversary is that ŝ = Reg[w∗, q̂].

In the Decisional version, the adversary only out-
puts a single bit b̂, and wins if b̂ = b.

We call the adversary Acomp in the computational game
an OW-Fuz-CPA adversary1. For the decisional version, we
refer to the adversary Adeci as an IND-Fuz-CPA adversary2.
If ` is the size of the extracted private strings, we define

each adversary’s advantage in its respective game as:

AdvAcomp = |P[ŝ = sk̂]− 1

2`
| ,

AdvAdeci = |P[b̂ = b]− 1

2
| .

Definition 7. Let 〈Gen, Reg〉 be a (M, m, `, t, ε)-fuzzy
extractor. Let A be a (randomized) adversary for the (com-
putational or decisional) game above, such that H∞[W] ≥ m
and all query perturbations are chosen from some family ∆.
Suppose that A runs in time τ and makes q public and q′

private queries, and that the private queries involving the
challenge public string are further subject to the minimum
displacement requirement minw∈M d[w, δ[w]] > t̄.

If for all such OW-Fuz-CPA adversary A we have AdvA ≤
α, we say that the fuzzy extractor is (τ, q, q′, t̄, α)-one-way
secure against adaptive insider chosen perturbation attacks
in ∆.

If for all such IND-Fuz-CPA adversary A it holds that
AdvA ≤ α, we say that the fuzzy extractor is (τ, q, q′, t̄, α)-
indistinguishable against adaptive insider chosen perturba-
tion attacks in ∆.

Model Rationale.
We require the challenge public string q̂ to be one of the
strings previously generated by the challenger, rather than
any well-formed public string, since the point of the attack
is to break a system under someone else’s contro, here repre-
sented by the challenger. Similarly, the adverary’s objective

1OW-Fuz-CPA = one-wayness of fuzzy extraction against
adaptive chosen perturbation attacks.
2IND-Fuz-CPA = indistinguishability of fuzzy extraction
against adaptive chosen perturbation attacks.

is to guess the private string for the specific secret w∗, as
opposed to, say, any perturbation thereof, since the point
of the attack is to impersonate whomever the system was
set up to protect or authenticate. Note that we could allow
the target to be any small perturbation of the secret, but
this would not substantially change the security properties
thanks to error correction.

In the query phases however, the attacker is given much
greater flexibility in its ability to probe and disturb the chal-
lenger using a wide range of perturbations and faulty inputs.
This captures the idea of an adversary set out to “break into
the system, by any means necessary”.

Minimum Displacements.
The reason for the minimum displacement restriction on
challenge private queries is to ward against trivial queries
that by design are intended to reveal the target private
string, e.g., 〈δ, q̂〉 for any δ whose maximum displacement is
no greater than the error correction distance t. Incidentally
we must take t̄ ≥ t for this to be of any use. The smaller the
difference t̄−t, the tighter the requirement, and the stronger
the resulting security notion.

More generally, it is enough to require that the chosen
perturbations for the relevant queries displace all but a neg-
ligible fraction of the points inM by a distance greater than
t̄ (as would, e.g., a rotation about the origin). Specifically,
the relaxed requirement asks that all perturbation δ used
in a private query in conjunction with the challenge public
string satisfy P[d[W, δ[W]] > t̄] > 1 − 2−` for all random
variable W ∈ M with minimum entropy H∞[W] ≥ m. To
keep things simple, we stick with the previously stated def-
inition.

5.3 An Alternative: Random Perturbations
Weaker forms of secure reusability can be achieved us-

ing relaxed security definitions. For instance, we can de-
fine the notion of a random perturbation attack. Here, in-
stead of answering the queries using a perturbation function
specified by the adversary to produce the perturbed secret
wi, the challenger would sample wi from some distribution,
possibly specified by the adversary, conditionally on the se-
cret w∗. For instance, random perturbations could be dis-
tributed such that P[wi | w∗] decreases exponentially with
the distance d[wi, w

∗].
It may be argued that random perturbations are a plau-

sible model of the physical reality of imperfect biometric
measurements. However, it is not clear how appropriate it
models the mental processes involved in the imperfect recall
of a password—e.g., if a user’s secret is based on a list of
favorite movies [10], the adversary could attempt to selec-
tively distract her memory by playing movie themes in the
computer room while she is entering her secret. In such cir-
cumstances, asking for chosen perturbation security may be
erring on the side of caution.

Although this paper does not delve any further into this
topic, the notion of security against random perturbations
is worthy of further study.

6. OUTSIDER SECURITY
Our first general results show that unconditional outsider

security can be achieved in a generic way from codes that
feature sufficient “symmetry” with respect to the selected
perturbation operator.

6.1 Fundamental Limitations
To temper one’s optimism, we start by showing that no

viable fuzzy extractor can withstand an active attack with
unrestricted perturbations.

Admissible Perturbations.
Suppose that the fuzzy sketch or extractor to break is non
trivial, i.e., there exist two words w1, w2 ∈ M on which it
behaves differently. Then the adversary can recover any q-
bit challenger secret w∗ in only q public queries, using the
following perturbation for query k = 1, ..., q:

δdk : w 7→

(
w1 if w|k = 0

w2 if w|k = 1
,

i.e., the k-th perturbation tests the k-th bit of its input and
outputs w1 or w2 accordingly.

To avoid giving such an unfair advantage to the adversary,
we need a reasonable notion of perturbation that treats all
possible secret words in a comparable way. A natural solu-
tion is to require all perturbations to be isometric permu-
tations. The theorems that follow in this section show that
this is indeed a natural notion of admissible perturbation.

6.2 Construction: Exploiting Symmetry
Our reusable fuzzy sketch construction is based on codes

with certain symmetry properties, which we now define.

Weakly Symmetric Subcodes.
We previously showed how to break fuzzy sketches and ex-
tractors by exploiting various asymmetries, e.g., in the error
correcting code or in the permutation family (in the case of
a permutation based extractor). We need a notion of sym-
metry in order to close these loopholes. Since natural def-
initions of symmetry are based on groups of permutations,
we define the following (very weak) notion of symmetry for
a code C based on a permutation group.

Definition 8. Let C be a code in some finite space M.
Let Q be a group of permutations in M. We say that an
element ω0 ∈ C is a Q-pivot of C if:

∀π ∈ Q : π[ω0] ∈ C .

In other words, the set of images of ω0 under the permu-
tations in Q forms a subcode C′ ⊆ C closed under Q and on
which Q acts transitively (i.e., mapping any of its elements
to any other). We emphasize that nothing is said about the
effect of Q on the remainder of the code C \ C′.

A Generic Fuzzy Sketch.
Equipped with the above notion of symmetry, we can con-
struct a generic fuzzy sketch based on permutations that is
unconditionally secure against outsider attacks.

Let C be a (not necessarily linear) code over a metric space
M. Let P be a transitive group of isometric permutations
over M. Suppose that C contains a Q-pivot ω0 where Q is
some subgroup of P. We construct the generic fuzzy sketch
〈Fsk, Cor〉 as follows:

Fsk[w; r] = p where

8><>:
p1

r← {p′ : πp′ ∈ P, πp′ [w] = ω0}
p2

r← {p′′ : πp′′ ∈ Q}
p s.t. πp = πp2 ◦ πp1 ∈ P

Cor[w′, p] = (π−1
p ◦ C ◦D ◦ πp)[w

′] .

Here, the assigmnents p1
r← {p′} and p2

r← {p′′} are ran-
domized using different portions of r.

6.3 Unconditional Security
The following theorem relates the “entropy loss” achieved

by the generic fuzzy sketch to the relative sizes of P and
Q. We see that the construction has an active (outsider)
security comparable to the passive security of the permuta-
tion based construction of [6], provided that the chosen code
offers enough symmetry for the chosen family of perturba-
tions.

Theorem 9. Let C ⊆ M be a (M, K, t)-code in a finite
metric space M. Let Q ⊆ P be a subgroup of a transi-
tive isometric permutation group P. Assume that the code
C admits a Q-pivot ω0 ∈ C. Then the generic algorithms
〈Fsk, Cor〉 above form a (M, m, m′, t)-fuzzy sketch with un-
conditional security against adaptive outsider chosen pertur-
bation attacks in any perturbation family ∆ ⊆ P, provided
that m−m′ ≥ log2[#P]− log2[#Q].

Proof. First, we show that the above construction is a
fuzzy sketch with the required error correction capabilities.
Specifically, we have the following claims.

Claim 9.1. 〈Fsk, Cor〉 is a fuzzy sketch with error correc-
tion distance ≥ t for all inputs in M.

This already shows the security of the construction in the
case of a single sketch or extraction.

Next, we bound the information that an adversary can ob-
tain from repeated identical queries (i.e., without perturba-
tion). Consider the function Fsk : w 7→ {Fsk[w; r] : ∀r} that
maps any w ∈M to the set of values taken by Fsk[w; r] for
all possible random drawings of the hidden randomization
parameter r. We successively obtain the following.

Claim 9.2. Fsk[w] captures all information about w that
can be gathered from an Fsk[w] oracle.

Claim 9.3. The map Fsk defines a partition ofM into n
equivalence classes with n ≤ #P/#Q.

Claim 9.4. Fsk[w∗] reveals at most log2[#P/#Q] bits of
information about w∗.

It follows that 〈Fsk, Cor〉 is a (M, m, m′, t)-fuzzy sketch for
any m −m′ ≥ log2[#P/#Q], which furthermore is uncon-
ditionally secure against repeated queries (i.e., a “chosen
perturbation” attack where the only perturbation available
to the adversary is the identity map).

Last, we show that the ability to specify perturbations in
∆ ⊆ P does not provide additional information to the ad-
versary. Precisely, we show that for any secret w∗ ∈M, the
challenger’s answers to any (multi-)set of chosen perturba-
tion queries in the family ∆ do not collectively contain more
information than Fsk[w∗] itself. Using our previous claims,
we find the following.

Claim 9.5. The value of Fsk[δ[w∗]] for any w∗ ∈M and
δ ∈ P is computable from Fsk[w∗] and δ.

The security of the generic construction against adaptive
chosen perturbation outsider attacks follows immediately
from Claims 9.1, 9.2, 9.4, and 9.5.

We then easily obtain an outsider secure fuzzy extractor
using the construction of Lemma 4.

Corollary 10. Under the assumptions of Theorem 9,
there is a (M, m, `, t, ε)-fuzzy extractor with (∞,∞, 0, 0, α)-
IND-Fuz-CPA security against adaptive chosen perturbation
attacks in ∆, for arbitrary α > 0, with ` = m + log2[#Q]−
log2[#P]− 2 log2[1/ε].

6.4 Generic Tightness
Our next theorem shows that the assumptions of Theo-

rem 9 are “tight”, in the sense that if there exists any fuzzy
sketch (not necessarily based on permutations) with outsider
security vs. a sufficiently powerful perturbation family, then
we necessarily have all the elements we had to assume for
the generic fuzzy sketch construction to go through.

This theorem serves to show that the requirements from
the results of the previous section are far from being arbi-
trary.

Theorem 11. Assume that 〈Fsk, Cor〉 is a (M, m, m′, t)-
fuzzy sketch unconditionally secure against adaptive outsider
chosen perturbation attacks in a family ∆ (containing the
identity perturbation). Suppose that a subset ∆′ ⊆ ∆ gen-
erates a transitive group P of isometric permutations in
M. Then there exists a subgroup Q ⊆ P and a (M, K, t)-
code C ⊆ M that contains a Q-pivot ω0 ∈ C with K =
#M#Q/#P, where furthermore m − m′ ≥ log2[#P] −
log2[#Q].

Proof. Since the challenger responses may be random-
ized, we start by deterministically characterizing the infor-
mation that an unbounded adversary may gather in an out-
sider attack.

1. We define the function Fsk : w 7→ {Fsk[w; r] : ∀r} that
maps any element w ∈ M to the set of all possible
randomized values of Fsk[w]. The function Fsk is ef-
fectively computable with arbitrarily high probability
given a black box simulator for Fsk, since with enough
queries one will eventually exhaust the finite set of
possible randomization strings used by Fsk.

2. We define the map Fsk : w 7→ {〈δ, Fsk[δ[w]]〉 : ∀δ ∈ ∆}
that associates any element w ∈ M to the relation
between the admissible perturbations δ ∈ ∆ and the
values taken by Fsk on the perturbated input δ[w].
Since the set ∆ is finite, this function can be computed
from Fsk.

Claim 11.1. Given a randomized oracle that computes
Fsk[δ[w∗]] for chosen δ ∈ ∆, the value of w∗ can be dis-
ambiguated with arbitrarily high probability up to the set of

preimages of Fsk[w∗].

Claim 11.2. Conversely, the value of Fsk[w∗] captures
the total information about w∗ that can be gathered from
arbitrarily many queries to Fsk[δ[w∗]] for chosen δ in ∆.

Claim 11.3. The number n of equivalence classes induced

overM by Fsk is bounded as n ≤ 2m−m′
, unless m′ = 0 (in

which case the theorem is vacuous).

Claim 11.4. There is a subgroup Q ⊆ P that preserves
the equivalence structure between classes, where log2[#P]−
log2[#Q] = log2[n] ≤ m−m′.

Claim 11.5. Each equivalence class Ci forms a (M, K, t)-
code of size K = #M/n, whose elements are Q-pivots of Ci.

The theorem follows from Claims 11.4 and 11.5.

6.5 Example: Linear Codes, Hamming Spaces
Let M be the n-dimensional vector space Fn

p with the
Hamming metric d : M×M → {0, 1, ..., n}, and suppose
that C ⊆ M is a linear p-ary [n, k, d]-code in that space. Let
P be the transitive isometric permutation group of all maps
πp :M→M : w 7→ w+p for p ∈M. Let Q be the subset of
maps πp ∈ P such that p ∈ C. Since the code C is linear, it
is easy to see that Q is closed under function inversion and
function composition; Q is thus a subgroup of P, and any
element ω0 ∈ C is a Q-pivot of C. We have #P = #M = pn

and #Q = #C = pk. By Theorem 9 the generic construction
of Section 6.2 immediately gives us a (M, m, m′, t)-fuzzy
sketch unconditionally secure against outsider attacks with
t = b(d− 1)/2c provided that m−m′ ≥ (log2 p) (n− k). By
Corollary 10 we get a (M, m, `, t, ε)-fuzzy extractor uncondi-
tionally secure against outsider attacks with binary output
size ` = m′−2 log2[1/ε] ≤ m− (log2 p) (n− k)−2 log2[1/ε].

In the binary case Fp = F2, it is easy to show that this con-
struction precisely reduces to the JW-DRS fuzzy extractor
previously mentioned. This proves that the JW-DRS con-
struction is unconditionally secure against outsider attacks
provided that it is used with a linear code.

We note that the use of linear codes for reconstructing
imperfectly shared secret information has been extensively
studied, e.g., in the context of privacy amplification and in-
formation reconciliation [3, 2]. It has also been observed in
[6] that the fuzzy commitment scheme of [11] described in
Section 3.3 reduces when applied on a linear code to a deter-
ministic fuzzy sketch equal to the code’s syndrome function
S :M→M : w 7→ (w − C[D[w]]).

6.6 Counterexample: Text Edit Distance
Dodis et al. [6] also present a fuzzy sketch construction for

text, based on the notion of edit distance. Roughly speaking,
the edit distance between two texts A and B is the length of
an “edition script” that turns A into B using combinations of
three basic commands: insertion, deletion, and displacement
of sequences of characters at specified locations in the text.

A natural choice for the family of perturbations is the
set of all edition scripts, possibly with a length restriction.
Unfortunately, it is easy to see that this gives too much
power to the adversary.

Consider the script Subst[char, pos] that substitutes the
supplied character char for the character at the given posi-
tion pos in the text. It is easy to see that the instantiation
of this script for specific char and pos gives a perturbation
that allows the adversary to test whether the pos-th char-
acter in the secret text is equal to char. This allows the
adversary to quickly recover the hidden secret text charac-
ter by character, in a similar way as in the example given in
Section 6.1.

7. INSIDER SECURITY
We now convert an unconditionally outsider secure fuzzy

sketch, such as the one of the previous section, into a fuzzy
extractor with insider security using random oracles [1].

Recall how in our previous construction we arranged to
confine all public queries to a symmetric subcode C′ ⊆ C,

steering clear from any potentially recognizable “landmark”
lurking in C \ C′. Unfortunately, private queries cannot be
confined so easily, as a clever query 〈δ,q〉 can always cause
any secret w∗ to be corrected to any codeword in C, not just
C′. However, we can randomly shuffle things around at de-
coding time to render all codewords indistinguishable up to
permutations in Q, thereby preventing too much informa-
tion from being leaked. Nevertheless, by the Q-symmetry of
the subcode C′, any legitimate query that only involves the
subcode will be impervious to the randomization.

Let thus ω0 ∈ C ⊆ M and Q ⊆ P be as in Section 6.
First, we define the fully randomized generic fuzzy sketch
〈Fsk, Cor〉 as follows:

Fsk[w; r] = p

8><>:
p1

r← {p′ : πp′ ∈ P, πp′ [w] = ω0}
p2

r← {p′′ : πp′′ ∈ Q}
p s.t. πp = πp2 ◦ πp1 ∈ P

Cor[w′, p] = (π−1
p ◦ π−1 ◦ C ◦D ◦ π ◦ πp)[w

′]

for random π ← Q .

We now define the full generic fuzzy extractor 〈Gen, Reg〉:

Gen[w; 〈r, r′〉] = 〈s,q〉 where

8><>:
p = Fsk[w; r]

s = H[w, r′, p]

q = 〈p, r′〉

Reg[w′,q] = H[Cor[w′, p], r′, p] where 〈p, r′〉 = q .

Here, H is a hash function treated as a random oracle in the

analysis, with inputs in M× {0, 1}` × {0, 1}`
′

and outputs
in {0, 1}`. We assume that the random input r′ is drawn
from some {0, 1}` and that the representation of the fuzzy

sketch p fits in {0, 1}`
′
. Notice that Reg is randomized.

Theorem 12. Under the conditions of Theorem 9 where
the code C has error correction limit ≤ t̄, the algorithms
〈Gen, Reg〉 constitute a (M, m, `, t, 0)-fuzzy extractor that is
(∞,∞, q′, t̄, α)-OW-Fuz-CPA and IND-Fuz-CPA secure when-

ever α ≥
`

q′

2

´
2−`, in the random oracle model, where q′ also

includes direct queries to the random oracle.

Observe that the random oracle dispenses us from dis-
tilling the input word w through a randomness extractor.
If in practice the random oracle assumption should not be
relied upon for randomness extraction purposes, one would
first filter the input through a (n, m′, `, ε)-strong random-
ness extractor Ext, such that the elements of M are rep-
resentable in {0, 1}n, before feeding its output to H, i.e.,
letting s = H[Ext[w; r′], p]. This gives a (M, m, `, t, ε)-fuzzy
extractor OW-Fuz-CPA secure in the random oracle model
for α ≥

`
q′

2

´
(2−` + ε).

It is an open problem to achieve OW-Fuz-CPA security
without random oracles.

8. LIGHTWEIGHT REMOTE BIOMETRIC
AUTHENTICATION

To demonstrate the power of the reusable fuzzy extractor
machinery, we briefly present a remote biometric authenti-
cation protocol with third party certification, that does not
require Alice to securely or insecurely store anything—other
than her fuzzy secret.

Suppose that Alice wishes to remotely authenticate herself
to Bob using biometrics. Due to privacy concerns, she does

not wish to reveal any of them to Bob (even if he does not
play the protocol by the rules, and/or colludes with other
Bobs against her). Conversely, for the authentication to be
meaningful, Bob wants some assurance that Alice is in fact
in possession of her purported biometrics at the time the
authentication is taking place (i.e., that nobody is imper-
sonating her). We assume that there is a third party, Trent,
whom Bob trusts to honestly certify Alice’s biometrics, and
to whom Alice will temporarily grant access to her biomet-
rics for the purpose of generating such a certificate. Alice
will want to be able to obtain as many or as few of those
certificates as she wants, and to reuse as many of them with
multiple Bobs, some of whom may be dishonest, without
fearing privacy leaks or risking impersonation. The proto-
col is as follows.

Certification: Under Trent’s supervision, and using Alice’s
own secret biometrics w∗:

1. Alice generates a random string pair 〈s,q〉 ←
Gen[w∗] using an insider secure fuzzy extractor
as that of Section 7;

2. Alice derives the public key pbks that corresponds
to the private string s viewed as a private key
in some existentially unforgeable (UF-CMA) sig-
nature scheme 〈Sign, Verify〉. (If s is not a well
formed private key, one is deterministically de-
rived from s first).

If Trent is satisfied that Alice has executed the steps
honestly, he certifies the binding between Alice’s name
and the public key pbks, i.e., he issues a signature for
the pair 〈“Alice”, pbks〉. In the sequel, we take pbks to
denote the public key accompanied with its certificate.

At this point, Alice may send the pair 〈q, pbks〉 to Bob,
or even publish it for everyone to see.

Challenge: At any time when appropriate (e.g., whenever
Alice desires to authenticate to Bob), Bob sends Alice
a fresh random challenge cnonce and reminds her of her
public string q.

Response: Using what Bob claims to be her public string
q, and an approximation of her fuzzy secret biometrics
w̃∗, Alice responds to the challenge as follows:

1. Alice recovers her private string s̃← Reg[w̃∗,q];

2. Alice signs the challenge and gives Bob the signa-
ture snonce ← Sign[s̃ : cnonce].

Verification: Bob authenticates Alice by checking the va-
lidity of the signature under her authentic public key
pbks, viz., evaluating Verify[pbks : cnonce, snonce].

Other black box identification schemes can be substituted
for the last three steps.

The important point is that the protocol does not require
Alice to “remember” anything other than her fuzzy secret
(and in particular does not have to obtain Trent’s authentic
public key to verify a certificate). Alice’s credentials remain
secure in an attack where Alice is given a corrupted q by a
malicious Bob.

Security Analysis.
The protocol passes muster with Bob in that it properly
authenticates Alice. Indeed, since the signatures are exis-
tentially unforgeable, we have non-repudiation, and, thus,
knowledge of the private key is required to properly respond
to a new challenge.

The protocol is also to Alice’s taste in terms of protection
of her privacy, at least against a computationally bounded
adversary. Indeed, since the signature scheme is secure, nei-
ther pbks nor the signatures created from s computationally
reveal anything about the private string. In the adversary’s
view the certification phase is thus nothing more than a
public query in the insider game of Section 5.2. Regarding
the challenges, since a fuzzy extractor with insider security
is used, Bob can trick Alice to respond to bogus challenges
built from public strings q′ 6= q of its own crafting without
gaining any computational knowledge about s. Alice’s re-
sponses to Bob’s honest challenges are also safe, since when
the correct q is used Alice creates a signature under her
correct private key s, which as we noted earlier does not
computationally leak anything about s.

The above properties still hold if Alice uses the same cer-
tificate with multiple Bobs, or conversely obtains multiple
certificates and uses them with the same correspondent.

Related Key Attacks.
Observe that we need a fuzzy extractor with insider security
for the following (rather counter-intuitive) reason: although
we know that issuing signatures under UF-CMA signature
scheme does not computationally leak the private key, we
cannot assume that this remains the case when signatures
are also issued under other, related private keys. If the signa-
ture is well behaved in this respect then a (suitably defined)
outsider secure fuzzy extractor suffices for this application.

9. CONCLUSION
We have studied the question of generating keys of cryp-

tographic quality from non uniformly distributed, non per-
fectly reproducible “fuzzy” processes, focusing on the no-
tions of fuzzy sketches and fuzzy extractors. Dealing with
fuzzy secrets is a problem of great practical significance in
applications where security relies at least in part on fuzzy
secrets such as biometric measurements or imperfectly mem-
orized passwords.

We demonstrated with a number of simple attacks that
the existing definitions and constructions are inadequate and
may lead to a total break of security in any circumstance
where one is compelled to reuse the same fuzzy secret—
which severely undermines their adequacy for biometrics.

We introduced two strong security models that allow fuzzy
sketches and extractors to reuse secrets; in the first model
the adversary is an outsider, and the other in which it is
an insider. Our models are based on the security notion of
“chosen perturbation attack”.

We presented generic outsider secure fuzzy sketch and ex-
tractor constructions, and precisely characterized the con-
ditions under which information theoretic security can be
achieved.

We then extended our method to handle the case of in-
sider attacks, and showed that essentially any outsider se-
cure fuzzy sketch can be transformed into an insider secure
fuzzy extractor using random oracles.

We finally illustrated the power of our model with a sim-
ple zero storage fuzzy authentication protocol that remains
secure even if the secret holder is unable or unwilling to
remember anything but her fuzzy secret.

Acknowledgements
The author thanks Yevgeniy Dodis for useful insights that
arose from a spirited discussion on a draft of this paper at
Eurocrypt’04.

10. REFERENCES
[1] M. Bellare and P. Rogaway. Random oracle are

practical: A paradigm for designing efficient protocols.
In ACM Conf. on Computer and Communications
Security—CCS 1993, pages 62–73, 1993.

[2] C. Bennett, G. Brassard, C. Crépeau, and U. Maurer.
Generalized privacy amplification. IEEE Trans.
Information Theory, 41(6):1915–1923, 1995.

[3] C. Bennett, G. Brassard, and J. Robert. Privacy
amplification by public discussion. SIAM J.
Computing, 17(2):210–229, 1988.

[4] C. Crepeau. Efficient cryptographic protocols based
on noisy channels. In Proc. Advances in
Cryptology—Eurocrypt ’97, pages 306–317, 1997.

[5] G. Davida, Y. Frankel, and B. Matt. On enabling
secure applications through offline biometric
identification. In Proc. IEEE Symp. Security and
Privacy, pages 148–157, 1998.

[6] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and
other noisy data. In Proc. Advances in Cryptology—
Eurocrypt ’04, 2004. Full paper available as: Fuzzy
extractors and cryptography, or how to use your
fingerprints. http://eprint.iacr.org/2003/235.

[7] C. Ellison, C. Hall, R. Milbert, and B. Schneier.
Protecting keys with personal entropy. Future
Generation Computer Systems, 16:311–318, 2000.

[8] N. Frykholm and A. Juels. Error-tolerant password
recovery. In Proc. ACM Conf. Computer and
Communications Security, pages 1–8, 2001.

[9] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A
pseudorandom generator from any one-way function.
In Proc. 21st ACM Symp. Theory of Computing, 1989.

[10] A. Juels and M. Sudan. A fuzzy vault scheme. In
IEEE Int. Symp. Information Theory, 2002.

[11] A. Juels and M. Wattenberg. A fuzzy commitment
scheme. In Proc. ACM Conf. Computer and
Communications Security, pages 28–36, 1999.

[12] F. Monrose, M. Reiter, and S. Wetzel. Password
hardening based on keystroke dynamics. In Proc.
ACM Conf. Computer and Communications Security,
pages 73–82, 1999.

[13] N. Nisan and D. Zuckerman. Randomness is linear in
space. JCSS, 52(1):43–52, 1996.

[14] J. Radhakrishnan and A. Ta-Shma. Tight bounds for
depth-two superconcentrators. In Proc. 38th IEEE
Symp. Foundations of Computer Science, pages
585–594, 1997.

[15] R. Shaltiel. Recent developments in explicit
constructions of extractors. Bul. EATCS, 77:67–95,
2002.

