
Expressive Subgroup Signatures

Xavier Boyen 1 and Cécile Delerablée 2

1 Voltage, Palo Alto, California — xb@boyen.org
2 Orange Labs - ENS — cecile.delerablee@orange-ftgroup.com

Abstract. In this work, we propose a new generalization of the notion
of group signatures, that allows signers to cover the entire spectrum
from complete disclosure to complete anonymity. Previous group signa-
ture constructions did not provide any disclosure capability, or at best a
very limited one (such as subset membership). Our scheme offers a very
powerful language for disclosing exactly in what capacity a subgroup of
signers is making a signature on behalf of the group.

1 Introduction

Collective signatures allow an individual to make a signed statement anony-
mously on behalf of a coalition. Whereas ring signatures [30] are unconditionally
anonymous, group signatures [17] come with an anti-abuse protection mecha-
nism, whereby a tracing authority can lift a signature’s anonymity to uncover
the identity of the signer in case of necessity. In group signatures, membership
to the group must be restricted and subject to a formal vetting and enrollment
process of its members: these are desirable properties in many applications.

In many contexts, the blunt anonymity provided by group signatures goes
too far, and it would be preferable to go half-way between full anonymity and
full disclosure — e.g., to boost the credibility of a statement without completely
engaging the individual responsibility of the signer. This is especially important
in groups with many members, or with members of differing competences, or
any time several signers wish to sign a joint statement while retaining some
anonymity within a larger group.

The “Ad Hoc Group Signatures” from [20] at Eurocrypt 2004 provided a
partial answer, by allowing a signer to disclose that he or she belongs to a
particular subset of the group, not just the entire group. The “Mesh Signatures”
from [11] at Eurocrypt 2007 went further by providing a very expressive language
that signer(s) could use to make very specific statements as to the capacity in
which they created the signature (such as, “undersigned by, either, five senators,
or, two deputies and the prime minister”). Unfortunately mesh signatures were
a generalization of ring signatures with no provision for traceability.

In this work, we propose a group signature with a mesh-like expressive lan-
guage for proving and verifying complex propositions about group membership,
including those whose fulfillment requires credentials from more than one group

member. Given a valid signature, anyone can verify that it was created by a
subgroup of signers that satisfied a certain condition (stated as an expression
given with the signature), and learn nothing else. However, the tracing author-
ity is able to unblind the signature and find out exactly how the condition was
fulfilled, and thus who the signers are.

The construction we propose is based primarily on the mesh signatures of
[11], which we modify in order to equip with a tracing capability. The tracing
mechanism is inspired by a number of recent group signature constructions [12, 1,
13, 21], which all made use of zero-knowledge proof systems in bilinear groups of
composite order [10, 22, 23]. Compared to those, however, the present work pro-
vides a technical novelty: the composite algebraic group and the zero-knowledge
proofs had to be flipped “inside out” in order to be compatible with the more
expressive language that we implement.

Our signatures are efficient, both in the asymptotic and the practical sense:
the signature size will be linear in the size of the expression that it represents,
with a small proportionality constant. Although it would surely be nice to shrink
the cryptographic part of the signature further down to a constant-size compo-
nent, this is not of great importance here since the total signature size and
verification time would still have to be linear or worse — because the verifica-
tion expression has to be stated and used somewhere, and the access structure
it represents is likely to change from one signature to the next. (Contrast this
with regular group signatures, where it is more desirable to have signatures of
constant size, because the group composition is fixed and need not be repeated.)
For comparison, our fine-grained group signature is essentially as short and ef-
ficient as the mesh signature of [11], which is the most relevant benchmark for
it is the only known anonymous signature that is as expressive as ours (albeit
lacking the tracing capability).

Our scheme satisfies (suitable version of) the usual two main security prop-
erties of group signatures originally defined in [5]. The two properties are here:
Full Anonymity for CPA-attacks [9] and Full Traceability with Dynamic Join
[6], from which other natural requirements such as existential unforgeability,
non-frameability, strong exculpability, collusion resistance, etc., can be shown
to follow (see [5, 6]). We shall define the two core properties precisely as they
generalize to our more expressive notion of group signatures, and prove that
our scheme satisfies them under previously analyzed complexity assumptions,
in the standard model (unless a join protocol is used for strongly exculpability,
in which case we need either random oracles or a common reference string to
realize extractable commitments).

The name “Expressive Subgroup Signatures” is meant to capture that at
the core these are group signatures, albeit not ones whose level of (revocable)
anonymity is fixed and depends only on the group composition, but can be
adjusted “in the field” with great precision, any time a new signature is created
by any subgroup of signer(s) within the group boundaries.

1.1 Related Work

Ring signatures. Ring signatures were introduced in [30]. Each user in the system
has a public key, and can generate a ring signature. Such a signature implicates
some other users, chosen by the signer, and is such that a verifier is convinced
that someone in the ring formed by the public keys of the signer and the chosen
members is responsible for the signature, but nothing else. Constant-size ring
signatures were constructed in [20]. Recently, a number of ring signatures without
random oracles have been constructed from pairings, such as [18, 7, 31, 11].

Mesh signatures. Mesh signatures were recently proposed [11] as a powerful gen-
eralization of ring signatures, with a rich language for striking the desired balance
from full disclosure to full anonymity and almost anything in between (including
complex statements involving, inter alia, trees of conjunctions and disjunctions
of multiple potential signers). The work of [11] gave the first unconditionally
anonymous ring signatures without random oracles as a special case.

Group signatures. Group signatures were first proposed in [17] to allow any
member of a specific group to sign a message on behalf of the group, while
keeping the signer anonymous within the group. However, a tracing authority
has the ability to uncover the identity of the signer, which it should only do
in certain extenuating circumstances. Group signatures have attracted much
attention in the research community; we mention for example the works of [1–3,
5, 6, 9, 12–16, 27, 29, 32].

For completeness, we mention the recently proposed notion of “attribute-
based group signature” [26, 25], which, contrarily to what the name might sug-
gest, is a far cry from fulfilling our goal. (These signatures are rather inflexible,
as they require that the attribute trees be constructed by the setup authority,
and not the signer. Furthermore, verifying each attribute tree requires a different
public key which must be requested interactively from the setup authority.)

2 Preliminaries

2.1 Composite-Order Pairings

Our construction makes use of bilinear pairings defined over groups of composite
order, whose cryptographic applications were first investigated in [10].

A (symmetric) composite-order pairing is an efficiently computable function
e : G×G→ GT , where G and GT are finite cyclic groups of order N = pq, and
with the following properties:

Bilinearity: ∀u, v ∈ G, ∀a, b ∈ Z, we have e(ua, vb) = e(u, v)ab mod N .

Non-degeneracy: ∃g ∈ G such that e(g, g) has order N and thus generates GT .

Although the composite group order N can be made public, it is usually impor-
tant that the factorization N = pq remains a secret. The most common hardness
assumption that relies on hardness of factoring in the context of bilinear maps
is called the Decision Subgroup assumption.

The Decision Subgroup Assumption. Let G be a bilinear group of order
N = pq. Let Gp be the subgroup of points of order p with no residue of order q,
that is, u ∈ Gp iff up = 1 ∈ G. Similarly, we let Gq be the subgroup of points of
order q congruent to 1 in Gp.

Informally, the decision subgroup assumption says that one cannot efficiently
distinguish G from Gp with non-negligible advantage.

Formally, we consider an “instance generator” G, which, on input 1λ, outputs
a tuple (p, q,G,GT , e), where p and q are random λ-bit primes, G and GT are
cyclic groups of order N = pq, and e : G × G → GT is a bilinear pairing. The
subgroup decision problem is, given (N,G,GT , e) derived from an execution of
G(1λ), to decide whether a given element w was chosen randomly in G or in Gp.
The Subgroup Decision assumption states that this is infeasible in polynomial
time with non-negligible probability above 1/2, that of a random guess.

An alternative definition is to give the distinguisher two reference generators
gN ∈ G and gp ∈ Gp in addition to (N,G,GT , e) and w; the task remains to
decide whether w ∈ G or w ∈ Gp. We use this definition to simplify our proofs.

The Poly-SDH Assumption. The traceability proof of the ESS scheme will
be based on the unforgeability of the mesh signature scheme of [11], which was
itself proved from the so-called Poly-SDH assumption in bilinear groups. The
(q, `)-Poly-SDH is a parametric assumption that mildly generalizes the earlier
Strong Diffie-Hellman assumption [8] in such groups. It can be stated as:

(Poly-SDH) Given g, gα1 , ..., gα` ∈ G and q ` pairs (wi,j , g1/(αi+wi,j)) for
1 ≤ i ≤ ` and 1 ≤ j ≤ q, choose a list of values w1, ..., w` ∈ Fp and output
` pairs (wi, gri/(αi+wi)) such that

∑`
i=1 ri = 1.

2.2 Group Signatures

A group signature scheme involves a group manager, an opening manager, group
members and outsiders. The group manager is able to add new members by
issuing private keys thanks to a master key MK, while the opening manager can
use the tracing key TK to revoke the anonymity of any group signature.

Such a scheme is specified as a tuple GSS = (Setup, Join, Sign, Verify, Trace) of
algorithms described as follows:

– The setup algorithm Setup generates, according to a security parameter, a
public verification key PK, a master key MK, and a tracing key TK.

– The enrollment algorithm, Join, that generates a private signing key using
the master key MK. The private key is then given to the new user.

– The group signing algorithm, Sign, that outputs a signature σ on a message
M , using a group member’s private key.

– The (usually deterministic) group signature verification algorithm, Verify,
that takes as input the group verification key PK and a signature σ on a
message M , and outputs either valid or invalid.

– The (usually deterministic) tracing algorithm, Trace, that takes a valid sig-
nature σ and a tracing key TK, and outputs the identity of a group member
or ⊥.

The following correctness and security properties are required.

Consistency. Given a group signature generated by a honest group member, the
verify algorithm should output valid, and the tracing algorithm should identify
the actual signer.

Security. Bellare, Micciancio, and Warinschi [5] characterize the fundamental
properties of group signatures in terms of two crucial security properties from
which a number of other properties follow. The two important properties are:

Full Anonymity. This requires that no PPT adversary be able to decide (with
non-negligible probability over one half) whether a challenge signature σ on a
message M emanates from user id1 or id2, where id1, id2, and M are chosen
by the adversary. In the original definition of [5], the adversary is given
access to a tracing oracle, which it may query before and after being given
the challenge σ, much in the fashion of IND-CCA2 security for encryption.

Full Traceability. This requires that no coalition of users be able to generate,
in polynomial time, a signature that passes the Verify algorithm but fails to
trace to a member of the coalition under the Trace algorithm. According to
this notion, the adversary is allowed to ask for the private keys of any user
of its choice, adaptively, and is also given the secret key TK to be used for
tracing—but of course not the enrollment master key MK.

It is noted in [5] that the full traceability property implies that of exculpability
[4], which is the requirement that no party should be able to frame a honest group
member as the signer of a signature he did not make, not even the group manager.
However, the model of [5] does not consider the possibility of a (long-lived) group
master, which leaves it as a potential framer. To address this problem and achieve
the notion of strong exculpability, introduced in [2] and formalized in [29, 6], one
also needs an interactive enrollment protocol, call Join, at the end of which
only the user himself knows his full private key; the same mechanism may also
enable concurrent dynamic group enrollment [6, 29]. In this work, we opt for this
stronger notion and thus we shall explicitly describe such a Join protocol.

We remark that some of the preceding requirements have been relaxed in
[9] and a fair number of subsequent works, by withholding access to the tracing

oracle during the anonymity and/or traceability games, thus mirroring the notion
of IND-CPA security for encryption. In our model, we shall also withhold the
tracing key from the adversary in the traceability game. We argue that this is
only a minor concession, since in typical group signature schemes the tracing
authority is the final adjudicator without any possibility of appeal to a higher
authority. It seems rather picayune to assume that the tracing authority would
ever need to cheat in a traceability game, which is essentially what the full
traceability model amounts to. Incidentally, the (much more frequently debated)
property of strong exculpability seems better motivated in comparison.

We refer the reader mainly to [5] for more precise definitions of these and
related notions.

2.3 Mesh Signatures

We now briefly recapitulate the notion of mesh signature introduced in [11].

In short, a mesh signature is a non-interactive witness-indistinguishable proof
that some monotone boolean expression Υ (L1, . . . , Ln) is true, where the input
literals Li denote the validity of “atomic signatures” of the form {Msgi}Keyi for
arbitrary messages and different keys. (The special case of ring signatures [30]
corresponds to Υ being a flat disjunction.)

Admissible mesh expressions Υ consist of trees of And, Or, and Threshold
gates, and single-use input literals, generated by the following grammar:

expr ::= L1 | ... | L` single-use input symbols
| ≥t{expr1, ...,exprm} t-out-of-m threshold, with 1 < t < m
| ∧{expr1, ...,exprm} m-wise conjunction, with 1 < m
| ∨{expr1, ...,exprm} m-wise disjunction, with 1 < m

Not all literals need to be true in order for Υ to be satisfied. However the
mesh signature must only attest to the truth of Υ without revealing how it is
satisfied: this is the anonymity property. Conversely, a signer should not be able
to create a mesh signature without possessing a valid atomic signature for every
literal set to true: this is the unforgeability property.

2.4 Security of Expressive Subgroup Signatures

ESS are just as expressive as mesh signatures, and provide the same anonymity,
except that the latter can be lifted by a tracing authority. We require:

ESS Anonymity. The notion of anonymity we seek is not that we wish to
hide the identity of the users named in the ESS expression Υ (which is public
anyway), but to hide who among the users actually created the signature.

Precisely, we require that the identity of the actual signer(s) be computa-
tionally indistinguishable in the set of all valid ESS signatures specified by the
same expression Υ , even under full exposure of all user keys. This is the same
notion as in the mesh signatures of [11], except that here the requirement is
computational and not information-theoretic in order not to stymie the tracing
authority, and is of course conditional on the secrecy of the tracing key.

ESS Traceability. Traceability is the group-signature version of unforgeability.
For ESS, as for mesh signatures before them, this notion is tricky to formalize
because of the potentially complex dependences that may exist between good
and forged signatures. To see this, consider a coalition of two forgers, U1, U2,
and a honest user, U3. Suppose that the forgers fabricate a valid ESS signature
σ for the expression Υ = {m1}U1 ∨ ({m2}U2 ∧ {m3}U3), that can be traced the
subgroup U2, U3. Is that a successful forgery? What if σ traced to U2 only?

The answer is a double “yes”: in the first case, because U3 was wrongly
designated by the tracer; and in the second case, because U2 alone could not
have satisfied Υ , which means that some guilty party escaped detection. If on the
other hand, the finger were pointed at U1, the signature would have a satisfactory
explaination that involves only (the parties that we know to be) the culprits:
this would be a failed forgery since the coalition got caught.

The ESS traceability challenge is thus, for any coalition of signers, to come
up with a valid signature σ for an expression Υ (L1, . . . , Ln), such that σ, either,
traces to at least one user outside of the coalition, or, traces to a subset of the
coalition that does not validate Υ (that is, when Υ is “false” after setting the
designated literals Li to “true” and only those).

Strong Exculpability. This last notion is borrowed straight from group signa-
tures [2, 29, 6], and is orthogonal to the above. It gives any user the possibility to
dispute his alleged binding to any certificate that he did not request. To defend
from such accusation, the group manager (who signed the disputed certificate)
must produce a valid certificate request signed by the user’s individual key reg-
istered in some PKI. The enrollment protocol must guarantee that only the user
learns the private key associated with their certificates. Together, this prevents
the ESS group manager from framing users for signatures they did not make.

2.5 Formal Security Models

We now specify the formal ESS security model in accordance with the previously
stated requirements.

Anonymity The ESS anonymity game is played between a challenger and an
adversary.

Initialization. The challenger gives to the adversary the public param-
eters of an ESS.

Interaction. The following occurs interactively, in any order, driven by
the adversary.
User enrollment. The adversary may ask the challenger to enroll

a polynomially bounded number of new users in the group. The
adversary may either impersonate the user in the enrollemnt pro-
tocol, or ask the challenger to simulate it all by itself. The re-
sulting public certificates are published.

Signature queries. The adversary may ask the challenger to sign
any ESS expression Υ on behalf of the users it controls.

Key recovery. The adversary may ask the challenger to reveal the
group signing key of any user.

The challenger processes each request before accepting the next one.
Challenge: The adversary finally output a specification Υ and two sets

of assignments χ1 and χ2 to its literals Li, that both cause Υ to be
satisfied. These truth assignments indicate which users are supposed
to sign Υ . The adversary must also supply the necessary atomic
signatures for the users for which it has the keys.
The challenger chooses one assignment b ∈ {1, 2} at random, and
creates an ESS signature σ on the specification Υ using only atomic
signatures corresponding to the true literals in χi. The signature σ
is given to the adversary.

Guess: The adversary makes a guess b′, and wins the game if b = b′.

The adversary’s advantage in the ESS anonymity game is Pr[b = b′]− 1/2, where
the probability is defined over the random coins used by all the parties.

Traceability The ESS traceability game is played between a challenger and an
adversary.

Initialization. The challenger gives to the adversary the public param-
eters of an ESS. The challenger also reserves a number ` of user
indices to represent the “honest users” under its control.

Interaction. The following occurs interactively, in any order, driven by
the adversary.
Honest user enrollment. The adversary may request that the chal-

lenger create up to ` honest users, kept in the challenger’s control.
The challenger publishes the corresponding certificates.

Corrupted user enrollment. The adversary makes polynomially
user enrollment queries, for the users under the adversary’s con-
trol. The adversary chooses or receives the user secret keys in
accordance with the chosen enrollment protocol. The challenger
computes the corresponding certificates in accordance with the
enrollment protocol, and publishes them.

ESS signature queries. The adversary makes up to q ESS signa-
ture queries, one at a time, on specifications Υj , indicating to
the challenger which ones of the honest users are supposed to
issue the signature. To be acceptable, each request must be for
a signature that the specified subset of honest users is supposed
to be able to make based on the specification and supporting
atomic signatures provided by the adversary.
The adversary may also make up to q queries for atomic signa-
tures, to each of the users controlled by the challenger.

The challenger processes each request before accepting the next one.
Forgery: The adversary finally output a fresh valid ESS signature σ

for some specification Υ of its choice. It wins the game if the list of
literals Li designated by the tracing algorithm on input σ fails to
satisfy the two following properties:
1. All the designated literals Li correspond to atomic signatures
{Msgi}Useri under the adversary’s control (either because the
adversary controls the corresponding user, or had obtained the
atomic signature by querying the challenger).

2. The specification formula Υ (..., Li, ...) can be satisfied by setting
all the designated literals to “true” (>) and all the other literals
to “false” (⊥).

The adversary’s advantage in the ESS traceability game is simply the probability
that it wins the game. The probability is defined over the random coins used by
all the parties.

3 Construction

Our Expressive Subgroup Signature construction will bring together a number
of different techniques.

To get the anonymity properties we seek, we will naturally start with the
ring/mesh signatures from [11], which comes with a powerful language and proof
system. We use it to create an anonymous group identification mechanism for
certificates issued by the group manager. Since we need a signature scheme and
not just an identification scheme, we shall extend the certificates into certificate
chains ending with actual signatures from users’ keys. This part is easy to do us-
ing the mesh language, so this step will be a simple matter of specifying how the
various terminal signatures and their supporting certificates should be assem-
bled. This gives us a multi-user anonymous signature with a central authority.
However, we still lack traceability.

To get traceability, we need to build a trapdoor that will remove the blinding
from the mesh signatures. Recall that the ring and mesh signatures from [11] con-
sist of one signature element per ring or mesh member. Some of those elements
are “live”, meaning that they were created using the member’s actual secret key.

The remaining elements are “blank” and do not contribute to the verification
equation. Since it would be easy to tell who the signers were just by finding the
live elements, the elements are information-theoretically blinded so that they all
look the same. Here, to get traceability, we shall swap out the perfect blinding
for one that has a trapdoor. Since the mesh signatures require a bilinear pairing
for their verification, we shall add the trapdoor into the bilinear group, using a
standard trick used in several previous constructions [22]. We simply translate
the signatures into a bilinear group of composite order, and restrict the blind-
ing elements to one of its two algebraic subgroups. An adversary will just see
smoke under the proper hardness assumption [10]; but a tracing authority that
knows the order of the subgroups will be able to cancel the blinding (by pairing
each signature component with a neutral element in that subgroup), and hence
distinguish which signature components are live and which ones are blank.

In the following subsections, we explain step-by-step how to construct ex-
pressive subgroup signatures. We work in an algebraic group G of composite
order N = pq and equipped with a bilinear pairing e : G×G→ GT . We call G
the bilinear group and GT the targer group; both are of order N . Bilinearity is
the property that ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab mod N .

3.1 User Credentials

Users must be affiliated with the group in order to create signatures, which
means that they must have acquired proper credentials from the group manager
(which controls the user vetting and enrollment process).

In its most basic instantiation, a certificate for user i could simply be a secret
key for the Boneh-Boyen signature scheme [8]. The secret key (yi, zi) ∈ Z2

p

would be securely handed over to the user, and the corresponding public key
(gyi , gzi) ∈ G2 signed by the group manager and perhaps published as part of the
group description. A signature onm ∈ Zp would be a random pair (t, S) ∈ Zp×G,
where S = g1/(yi+m+zit), which is verifiable by testing e(S, gyigmgzit) = e(g, g).
The drawback is that the group manager would know yi and zi and would thus
be able to create signatures on the user’s behalf. We would also need to embed
a tracing trapdoor into all user-generated signatures.

In the preferred instantiation, a group certificate will depend on a secret
component that is known only to the user, to prevent users from being framed.
It should also depend on a secret from the manager, to guarantee traceability.
Using a technique close to the one proposed by Delerablée and Pointcheval [19],
we let the credentials for user i consist of a secret key (xi, yi, zi) and a public
certificate (Ai, Bi, Ci), where Ai = gyi/(γ+xi), Bi = g1/(γ+xi), and Ci = gzi/(γ+xi),
for some random xi. Here, γ and Γ = hγ are respectively the secret and public
key of the group manager, and g and h are two fixed generators of the group G.
The certificate of user i is the triple (Ai, Bi, Ci) signed by the group manager.
For randomly chosen t ∈ Zp, an “atomic signature” on m ∈ Zp will be a pair:

σ = (t, S) ∈ Zp ×G s.t. S = (Γhxi)1/(yi+m+zit) .

The verification equation is thus: e(S,AiBmi C
t
i) = e(h, g).

For simplicity reasons, we can merely suppose a enrollment protocol where
the user chooses (yi, zi), sends (gyi , gzi) to the group manager along with a
proof of knowledge, and receives (xi, Ai, Bi, Ci) in return. Nevertheless, following
a technique from [19], in Section 3.7 we present a more complex “dynamic”
enrollment protocol, which renders our scheme secure under concurrent join [28],
and provides strong user exculpability [6] against dishonest managers.

3.2 Atomic Signatures

Using their credentials, users are able to create atomic signatures on any message
of their choice, which for simplicity we assume represented as an integer m ∈ Zp.
Atomic signatures provide no anonymity; they merely serve as building blocks
in more complex assemblies.

An atomic signature created from credentials as above is a pair (t, S) ∈ Zp×G
that satisfies a verification equation of the form,

e(S,AiBmi C
t
i︸ ︷︷ ︸

R

) = e(h, g) ,

with respect to a publicly verifiable certificate (Ai, Bi, Ci) associated to user i.
We observe for later use that this is exactly a Boneh-Boyen signature, and that
the right-hand side e(h, g) in the verification equation is the same for all users.

3.3 Ring Signatures

Once we have atomic signatures of the previous form, we can easily construct an
information-theoretically anonymous ring signature, based on the approach pro-
posed in [11]. Suppose that there are n users with public certificates (A1, B1, C1)
through (An, Bn, Cn), and consider the following verification equation for some
message m, or more generally, for respective user messages m1 through mn:

n∏
i=1

e(Si, AiBmii Ctii︸ ︷︷ ︸
Ri

) = e(h, g) .

Any one of the n users is able to create, by himself, a vector of n pseudo-
signatures (ti, Si) for i = 1, . . . , n that will jointly verify the preceding equation.
In order to do so, the user will need his own key and everyone else’s certificates.
For example, user 1 would pick random r2, . . . , rn, and t1, . . . , tn, and set:

S1 = (Γhx1)1/(y1+m1+z1t1) ·
[n∏
i=2

Rrii

]
, S2 =

[
R−r21

]
, . . . , Sn =

[
R−rn1

]
.

It is easy to see that, for any random choice of ri ∈ Zp, the blinding terms
in the square brackets will cancel each other in the product of pairings in the

verification equation; e.g., e(Rr22 , R1) from S1 will cancel e(R−r21 , R2) from S2.
What is left is the Boneh-Boyen signature component (Γhx1)1/(y1+m1+z1t1) in S1,
which in the verification equation will produce the value e(h, g) we seek.

For the example of user 1 being the actual signer, the cancellation that occurs
is, in extenso, if we let S′1 = (Γhx1)1/(y1+m1+z1t1):

n∏
i=1

e(Si, Ri) = e(S1, R1) · e(
n∏
i=2

Rrii , R1) ·
n∏
i=2

e(Si, Ri)

= e(S′1, R1) · e(
n∏
i=2

Rrii , R1) ·
n∏
i=2

e(R−ri1 , Ri)

= e(h, g) ·
n∏
i=2

e(Ri, R1)ri ·
n∏
i=2

e(R1, Ri)−ri = e(g, h)

The point is that user 2 (or any other user j) could have achieved the same
result by using his own secret key inside S2 (or Sj), but nobody else could,
without one of the users’ key. Also, because there are 2n components in the
signature, but 2n− 1 randomization parameters and 1 perfectly symmetric veri-
fication equation, it is easy to see that the joint distribution of the full signature
(ti, Si)ni=1 is the same regardless of which one of the n listed users created it.

Hence, this is a ring signature, i.e., a witness-indistinguishable proof for the
disjunction “{m1}user1 ∨ {m2}user2 ∨ . . . ∨ {mn}usern”. The signature can be
shown to be unconditionally anonymous, and existentially unforgeable under the
n-Poly-SDH assumption [11], which slightly generalizes the SDH assumption [9].

3.4 Mesh Signatures

The next step is to turn those ring signatures into something that is much more
expressive. Recall that ring signatures can be viewed as witness-indistinguishable
“disjunctions” of individual signatures. Since the disjunction L1∨L2∨ . . .∨Ln is
the least restrictive of all (non-trivial) propositional expressions over L1, . . . , Ln,
it should be possible to express different statements by adding more constraints
to the signature. E.g., we could require that supplemental verification equations
be satisfied conjointly. The “mesh signatures” of [11] are based on this principle.

A classic result from [24] shows that any monotone propositional expression
over a set of literals can be represented efficiently and deterministically using
a system of linear equations {

∑n
i=1 λi,jνi = λj}k+1

j=1 over the same number of
variables: a literal Li will be true in a true assignment if and only if the corre-
sponding variable νi has a non-zero value in the corresponding system solution
(of which there may be many).

In the construction of [11], the linear system coefficients λi,j will become
public exponents in the verification equations. Depending on the expression it
represents, a mesh signature (ti, Si)ni=1 requires 1 ≤ k + 1 ≤ n verification

equations (with the usual Ri = AiB
mi
i Ctii computable from public values):

n∏
i=1

e(Si, Ri) = e(h, g) ,

n∏
i=1

e(Si, Ri)λi,1 = 1 ,

. . .
n∏
i=1

e(Si, Ri)λi,k = 1 .

To make a signature, the signer, or coalition of signers, must prove that the
propositional expression has a solution, i.e., that there is a vector of Si that
passes all the equations. This can be done by setting Si ← ((Γhxi)1/(y1+mi+z1t1))νi
given any solution vector (ν1, . . . , νn) of the linear system. However, for every
index i with a non-zero solution νi 6= 0, the signer(s) will be unable to create Si
unless they possess or are able to create the atomic signature (Γhxi)1/(y1+m+z1t1).
Only for νi = 0 can they get by without it.

This procedure results in a valid signature, but not in an anonymous one.
The last step is thus to hide the witness, i.e., the vector (ν1, . . . , νn) used to
build the Si. This is done by adding blinding terms to the Si just as in the ring
signature. The result is an unconditionally anonymous signature for arbitrary
monotone propositional expressions.

The entire mesh signing process and its security proofs are somewhat more
involved. Full mesh signatures also require a presence of a dummy user “in the
sky” (with a public random public key and no known secret key), who will “sign”
a hash of the entire mesh expression in order to “seal” it. We refer the reader to
[11] for details.

3.5 Tracing Trapdoor

We now have an expressive anonymous signature, albeit not a traceable one. To
make mesh signatures traceable, we need to redefine the mesh signature scheme
in bilinear groups of composite order N . The factorization N = pq is a trapdoor
that is only known to the tracing authority. Let thus GN ' Gp ⊗Gq.

ESS signatures are defined as mesh signatures in a composite-order group G.
We do require however that the “main” generator g generate only the subgroup
Gp of order p. That is, we impose that gp = 1 ∈ G or equivalently g ≡ 1 ∈ Gq.
Since the Ai, Bi, Ci, and thus the Ri, are powers of g, all those elements will
belong in the subgroup Gp of order p. It is easy to see that, since the verification
equation is of the form

∏
e(Si, Ri) = e(h, g), both sides will always evaluate into

the target subgroup of order p, with no contribution of order q. It follows that
only the Gp components of the Si will matter for ESS verification.

In order to provide a tracing capability, we pick h as a generator of the entire
group G, hence with a non-trivial component h 6≡ 1 ∈ Gq. The same will be true
for the public key Γ = hγ . As a result, all the user-created atomic signatures of
the form S = (Γhxi)1/(...) will also contain a non-trivial component S 6≡ 1 ∈ Gq,
which has no effect on the ESS verification equation, per the preceding argument.
These order-q components will be our tracers, since they appear in all atomic
signatures (which are powers of h ∈ G), but not in any of the blinding coefficients
(which are powers of g ∈ Gp).

Since we now work in a composite-order group of order N , we redefine the
user’s signing exponents in ZN instead of Zp.

Remark that if h had no residue of order q, then everything would be in Gp.
It would be as if the subgroup Gq did not exist, and the ESS scheme would
reduce to an information-theoretically untraceable mesh signature in Gp. As the
Decision Subgroup assumption [10] states that h ∈ G and h ∈ Gp should look
the same to an outsider, it follows that our tracing mechanism cannot be public
and will thus require some trapdoor (in this case, the factorization of N).

3.6 Tracing Procedure

The presence of a non-trivial residue of order q in h will act as a silent tracer for
lifting the anonymity of any signature, using the factorization of N as trapdoor.

To unblind an ESS signature (ti, Si)ni=1, the tracing authority raises each Si
to the power of p, to strip it from all components of order p. Then, for each i:

– If the residue (Si)p = 1, there was no contribution from h in Si, hence νi = 0,
and thus the truth value of the associated literal Li is “false”. Conclusion:
user i did not participate in the creation of the ESS signature.

– If the residue (Si)p 6= 1, there was some h contribution in Si, hence νi 6= 0,
and thus the truth value of the associated literal Li is “true”. Conclusion:
(an atomic signature issued by) user i took part in the ESS signature.

The tracer can thus efficiently determine the exact set of users that are involved
(and in what capacity).

We emphasize that, unlike tracing schemes in many other contexts that can
only guarantee that one of the guilty parties will be exposed, here the tracing
authority finds out exactly how the signature was constructed, and thus uncovers
the identity of all of the culprits.

Notice also that such detailed “exhaustive tracing” requires signatures whose
size is (at least) linear in the size of the propositional expression. Hence, in that
respect, our scheme is optimally compact up to a constant factor.

3.7 Concurrent Join Protocol

As in [19] we can define a Join protocol, using some standard techniques: an
extractable commitment (Ext-Commit), a zero-knowledge proof of equality of the

discrete logarithms (NIZKPEqDL), and a zero-knowledge proof of knowledge of a
discrete logarithm (NIZKPoKDL). During this protocol, a future group member
(Ui) interacts with the group manager (GM), in order to obtain a valid group
certificate (Ai, Bi, Ci), with a private key (xi, yi, zi), with (yi, zi) not known
by the group manager. We suppose, as in [19] that there is a separated PKI
environment: each user Ui has a personal secret key usk[i] and the corresponding
certified public key upk[i].

The details of the Join protocol are presented on figure 1 in the Appendix.

3.8 The Full ESS Construction

The step-by-step construction outlined above gives us the complete ESS scheme.
The only operational differences with the mesh signature scheme of [11] are:

1. the setup, which asks for a bilinear group G of composite order N = pq, two
generators g ∈ Gp and h ∈ G, and a group manager’s public key Γ = hγ ;

2. the existence of two additional algorithms or protocols: one for joining the
group, the other for tracing a signature.

The full details of the construction are given in the Appendix.

4 Security

Theorem 1 (Anonymity). There is no PPT algorithm that wins the Expres-
sive Subgroup Signature anonymity game over G with advantage ε in time τ ,
unless the Decision Subgroup problem in G is decidable in time τ ′ ≈ τ with
advantage ε′ ≥ ε/2.

Theorem 2 (Traceability). There is no PPT algorithm that wins the Expres-
sive Subgroup Signature traceability game over G with advantage ε in time τ ,
unless the Decision Subgroup problem is decidable in time τ ′ with advantage ε′,
and mesh signatures in Gp can be existentially forged in time τ ′′ with advantage
ε′′, where τ ′ + τ ′′ ≈ τ and ε′ + ε′′ ≥ ε/2.

5 Conclusion

In this work, we have proposed a new generalization of the notion of group signa-
tures, that allows signers to cover the entire spectrum from complete disclosure
to complete anonymity. Previous group signature constructions did not provide
any disclosure capability, or at best a very limited one (such as subset member-
ship). Our scheme offers a very powerful language for disclosing exaclty in what
capacity a subgroup of signers is making a signature on behalf of the group.

References

1. Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical group signatures without random oracles. Cryptology ePrint Archive,
Report 2005/385, 2005. http://eprint.iacr.org/.

2. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 255–270, Santa Barbara, CA,
USA, August 20–24, 2000. Springer-Verlag, Berlin, Germany.

3. Giuseppe Ateniese, Dawn Xiaodong Song, and Gene Tsudik. Quasi-efficient re-
vocation in group signatures. In Matt Blaze, editor, FC 2002, volume 2357 of
LNCS, pages 183–197, Southampton, Bermuda, March 11–14, 2002. Springer-
Verlag, Berlin, Germany.

4. Giuseppe Ateniese and Gene Tsudik. Some open issues and new directions in group
signatures. In Matthew Franklin, editor, FC’99, volume 1648 of LNCS, pages
196–211, Anguilla, British West Indies, February 1999. Springer-Verlag, Berlin,
Germany.

5. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 614–629, Warsaw, Poland, May 4–8, 2003. Springer-Verlag, Berlin,
Germany.

6. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures:
The case of dynamic groups. In Alfred Menezes, editor, CT-RSA 2005, volume
3376 of LNCS, pages 136–153, San Francisco, CA, USA, February 14–18, 2005.
Springer-Verlag, Berlin, Germany.

7. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger
definitions, and constructions without random oracles. In Shai Halevi and Tal
Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 60–79, New York, NY,
USA, March 4–7, 2006. Springer-Verlag, Berlin, Germany.

8. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027
of LNCS, pages 56–73, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag,
Berlin, Germany.

9. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55,
Santa Barbara, CA, USA, August 15–19, 2004. Springer-Verlag, Berlin, Germany.

10. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ci-
phertexts. In Joe kilian, editor, TCC 2005, volume 3378 of LNCS, pages 325–341,
Cambridge, MA, USA, February 10–12, 2005. Springer-Verlag, Berlin, Germany.

11. Xavier Boyen. Mesh signatures. In Moni Naor, editor, EUROCRYPT, volume
4515 of LNCS, pages 210–227. Springer, 2007.

12. Xavier Boyen and Brent Waters. Compact group signatures without random ora-
cles. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
427–444, St. Petersburg, Russia, May 28 – June 1, 2006. Springer-Verlag, Berlin,
Germany.

13. Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size
group signatures. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public Key
Cryptography, volume 4450 of LNCS, pages 1–15. Springer, 2007.

14. Jan Camenisch. Efficient and generalized group signatures. In Walter Fumy, edi-
tor, EUROCRYPT’97, volume 1233 of LNCS, pages 465–479, Konstanz, Germany,
May 11–15, 1997. Springer-Verlag, Berlin, Germany.

15. Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new the-
oretical aspects. In Proceedings of SCN 2004, pages 120–133, 2004.

16. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and applica-
tion to efficient revocation of anonymous credentials. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 61–76, Santa Barbara, CA, USA,
August 18–22, 2002. Springer-Verlag, Berlin, Germany.

17. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies,
editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265, Brighton, UK,
April 8–11, 1991. Springer-Verlag, Berlin, Germany.

18. Sherman S. M. Chow, Victor K.-W. Wei, Joseph K. Liu, and Tsz Hon Yuen.
Ring signatures without random oracles. In ASIACCS 06, pages 297–302, Taipei,
Taiwan, 2006. ACM Press.

19. Cécile Delerablée and David Pointcheval. Dynamic fully anonymous short group
signatures. In Phong Q. Nguyen, editor, VIETCRYPT 2006, volume 4341 of LNCS,
pages 193–210. Springer, 2006.

20. Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anony-
mous identification in ad hoc groups. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 609–626, Interlaken,
Switzerland, May 2–6, 2004. Springer-Verlag, Berlin, Germany.

21. Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru
Kurosawa, editor, ASIACRYPT, volume 4833 of LNCS, pages 164–180. Springer,
2007.

22. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 339–358, St. Petersburg, Russia, May 28 – June 1, 2006. Springer-Verlag,
Berlin, Germany.

23. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. Cryptology ePrint Archive, Report 2007/155, 2007. http://eprint.iacr.
org/.

24. Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of
Structures in Complexity Theory, pages 102–111, 1993.

25. Dalia Khader. Attribute based group signature with revocation. Cryptology ePrint
Archive, Report 2007/241, 2007. http://eprint.iacr.org/.

26. Dalia Khader. Attribute based group signatures. Cryptology ePrint Archive, Re-
port 2007/159, 2007. http://eprint.iacr.org/.

27. Aggelos Kiayias and Moti Yung. Extracting group signatures from traitor tracing
schemes. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
630–648, Warsaw, Poland, May 4–8, 2003. Springer-Verlag, Berlin, Germany.

28. Aggelos Kiayias and Moti Yung. Group signatures: Provable security, efficient
constructions and anonymity from trapdoor-holders. Cryptology ePrint Archive,
Report 2004/076, 2004. http://eprint.iacr.org/.

29. Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 198–214,
Aarhus, Denmark, May 22–26, 2005. Springer-Verlag, Berlin, Germany.

30. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565, Gold
Coast, Australia, December 9–13, 2001. Springer-Verlag, Berlin, Germany.

31. Hovav Shacham and Brent Waters. Efficient ring signatures without random ora-
cles. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public Key Cryptography,
LNCS, pages 166–180. Springer, 2007.

32. Dawn Xiaodong Song. Practical forward secure group signature schemes. In ACM
CCS 01, pages 225–234, Philadelphia, PA, USA, November 5–8, 2001. ACM Press.

A The Complete ESS Scheme

For reference purposes, in this section we describe the complete ESS construction
in full detail. The construction follows exactly the outline given in the main body
of the paper. Most of the technicalities are borrowed directly from the mesh
signature scheme of [11], with which the ESS scheme shares many similarities.

A.1 Algebraic Representation of ESS Specifications

An ESS expression is specified as a monotone propositional formula or “access
structure” Υ of a number of literals L1, ..., L`. As explained earlier, we need to
transform Υ into an algebraic form suitable for manipulation in the exponents
of pairing-based atomic signatures represented by the L1, ..., L`. Recall that Υ
is generated by Υ ::= N in the grammar:

N ::= L1 | ... | L` | ≥t{N1, ..., Nm} | ∧ {N1, ..., Nm} | ∨ {N1, ..., Nm} .

For technical reasons (see [11]), we need to consider one additional literal L0

that does not correspond to any user key, whose meaning will be specified later.
Let thus Υ̃ be as above with `+ 1 input literals L0, ..., L`.

We show how to convert the recursive expression of Υ̃ into an algebraic
representation consisting of a system of ` + 1 linear equations in some number
θ + 1 ≤ ` + 1 of variables. The form of the polynomials and the number of
variables will depend on the structure of Υ̃ . The transformation relies on Linear
Secret Sharing Structures [24].

The principle is as follows. To each input symbol Li we associate a degree-1
homogeneous polynomial πi =

∑`
j=0 yi,j Zj , where the variables Z0, ..., Z` are

common to all polynomials and the integer coefficients yi,j are constant. The
polynomials are such that, if the formula Υ̃ is satisfied by setting some subset of
symbols to > (i.e., “true”), then the span of the corresponding polynomials will
contain the pure monomial Z0; conversely, any set of polynomials whose span
contains the monomial Z0 indicates a satisfying assignment.

The following algorithm computes such a representation from Υ̃ . Proceeding
recursively, it assigns temporary polynomials to the interior nodes as it walks
down the tree from the root to the leaves (i.e., from the output gate to the input
symbols):

1. Initialize a counter kc ← 0.

The counter kc is used for allocating new variables, so that each Zk+kc is
always a “fresh” variable that is never used before or after in the algorithm.

2. Label the root node N0 with the polynomial πN0 ← Z0.
3. Select a non-leaf node N with non-empty label πN 6= ∅.

(a) Denote by N1, ..., Nm the m ≥ 2 children of N .
(b) If N is ∨{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN .
(c) If N is ∧{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN +

∑m−1
k=1 li,k Zk+kc

where li,k ∈ Z. The selection of li,k is explained below.
(d) If N is ≥t{N1, ..., Nm}, then ∀i = 1, ...,m let πNi = πN+

∑t−1
k=1 li,k Zk+kc

where li,k ∈ Z.
(e) Label each child Ni with the polynomial πNi .
(f) Unlabel node N , i.e., set πN ← ∅.
(g) Increment kc ← kc + t− 1 (using t = 1 and t = m for ∨- and ∧-gates).
(h) Continue at Step 3 if an eligible node remains, otherwise skip to Step 4.

4. Let ϑ ← kc and output the polynomials (π0, ..., π`) associated with the leaf
nodes L0, ..., L`. Each polynomial πi is represented as a vector of coefficients
(yi,0, ..., yi,ϑ) ∈ Fϑ+1

p such that πi =
∑ϑ
k=0 yi,k Zk is the result of the sequence

of operations in Steps 3b, 3c and 3d.

We note that the only variables with non-zero coefficients in the output polyno-
mials are Z0, ..., Zϑ, where ϑ = kc is the final counter value and may be equal to
or lesser than `.

In Steps 3c and 3d, the coefficients li,k must ensure that no linear relation
exists in any set of πi of size < m or < t. (By construction, m or t of them
will always be linearly dependent.) To ensure this property, we let (li,k) form
a Vandermonde matrix in Fm×(m−1)

p or Fm×(t−1)
p , i.e., set li,k = aki for distinct

ai ∈ Fp; independence follows from the existence of polynomial interpolation.
We also require that (li,k) be constructed deterministically, so that anyone can
verify that the πi faithfully encode Υ̃ simply by reproducing the process.

The following lemma states the equivalence between the recursive specifica-
tion of Υ̃ and its flattened representation.

Lemma 1. [24] Let Υ̃ be an arborescent monotone threshold circuit as defined,
and (π0, ..., π`) a flattened representation of it per the above algorithm. A minimal
truth assignment χ : {L0, ..., L`} → {⊥,>} satisfies Υ̃ (χ(L0), ..., χ(L`)) = > if
and only if there exist integer coefficients (ν0, ..., ν`) such that,

∑̀
i=0

νi πi = Z0 , and ∀i : νi = 0 ⇐⇒ χ(Li) = ⊥ .

Composite-order Groups. Since the signers who compute these representations
work in a G without knowing the factorization N = pq, they will define all those
polynomials over ZN instead of Fp. By the CRT, the preceding lemma will apply
in both projections of order p and order q, although only the projection of order
p will actually matter (since in the ESS scheme the coefficients will be applied
exclusively on the generator Gp of order p).

A.2 Computational Blinding of Atomic Signatures

In the ESS signature scheme (yet to be described), we use both the polynomials
(π0, ..., π`) and the linear combination (ν0, ..., ν`) from Lemma 1: the latter to
create a signature, and the former to indicate how to verify it. However, since the
linear coefficients νi reveal which of the Li are true, they must be kept secret, as
explained earlier. In the actual signature, these coefficients appear not as integers
but as exponents of elements of G, and so they are already computationally
hidden in the sense of one-wayness. However, this is not enough and we need to
take an extra step to ensure indistinguishability.

By Lemma 1 we know that
∑`
i=0 νi πi = Z0, where each νi ∈ Fp and each

πi ∈ Fp[Z0, ..., Zϑ]1. We hide the linear coefficients νi using random blinding
terms (h0, ..., h`) such that

∑`
i=0 hi πi = 0. Since

∑`
i=0 (νi + hi)πi = Z0, the

blinded coefficients νi + hi still bear witness that Υ̃ (L0, ..., L`) = >. However,
these witnesses have been rendered information-theoretically indistinguishable,
because the distribution of (ν0 + h0, ..., ν` + h`) is conditionally independent of
the truth values of the Li given that Υ̃ (L0, ..., L`) = >.

The difficulty is that no scalar hi will satisfy
∑`
i=0 hi πi = 0 when the πi

contain uninstantiated variables. However, given a specific set of πi, it is easy to
build hi that have polynomial values.

1. Draw a random vector s = (s1, ..., s`) ∈ F`p of scalar coefficients.
2. For i = 1, ..., `, define hi = −si π0, and set the remaining term h0 =∑`

j=1 sj πj .

In the actual scheme, these polynomials are evaluated “in the exponent” for un-
known assignments to the Zk, but regardless of their values we have

∑`
i=0 hi πi =

(
∑`
j=1 sj πj)π0 +

∑`
i=1 (−si π0)πi = 0, and so the blinding terms (h0, ..., h`)

meet our requirements.

Remark that the random vector s can be chosen independently of the πi. This
is important for the actual signature scheme, where the relevant polynomials
will have coefficients that involve discrete logarithms not known explicitly (in
addition to the Zk being instantiated as discrete logarithms of random group
elements). In spite of this, we will be able to select a suitable vector s and
compute the blinding terms hi “in the exponent”.

Composite-order Groups. As before, since the users who compute these blinding
polynomial work modulo N = pq without knowing p, those users will have to
perform the preceding steps in ZN instead of Fp. The projections modulo q will
not matter since the blinding exponents will be applied to (various powers of)
the generator Gp of order p.

In the same vein, and although our discussion suggests that the blinding will
be perfect, this will only be true in the subgroup Gp of order p where the blind-
ing takes place. However, atomic signatures do also also contain non-vanishing

components of order q, which will not be blinded. This is of course by design,
to ensure that the ESS tracing authority is able to see through the blinding.
The effectiveness of the blinding with respect to outsiders will depend on the
hardness of distinguishing random elements of order p from random elements of
order N = pq, as we mentioned earlier.

A.3 ESS Algorithms

The full ESS signature scheme can now be described as follows.

Group Setup: Given a security parameter κ the group manager generates a
bilinear group G and target group GT of composite order N = pq, where p
and q are two random primes of suitable size for the security parameter. Let
e : G×G→ GT be the associated bilinear pairing. Let g ∈ Gp be a random
point of order p in the bilinear group, and let h ∈ G be a random point of
order N in the bilinear group.
Given an ESS expression size parameter λ, the group manager publishes a
random string K that specifies λ + 1 elements g0, g1, ..., gλ in Gp. It also
publishes λ+ 1 random triples (A0,k, B0,k, C0,k) ∈ G3

p for k ∈ {0, ..., λ};
the latter constitute a public verification key “in the sky” that does not
correspond to any user signing key (it may be viewed as the manager’s
group signing key, although the manager signs anything with it).
The group manager also specifies a hash function H : {0, 1}∗ → Fp from a
collision-resistant family.
Lastly, the group manager selects a secret random γ ∈ ZN and publishes
Γ = hγ ∈ G. Notice that h and Γ are the only two published elements that
have non-null residues in Gq.

User Enrollment: User #i may join the group either by receiving his cre-
dentials directly from the group manager, or by engaging in an interactive
enrollment protocol that allows the user to keep his signing exponents secret
from the manager.
In either case, upon being successfully admitted into the group, User #i
obtains a random signing key (xi, yi, zi) ∈ (Z×N)3. The corresponding public
certificate is a triple (Ai,k, Bi,k, Ci,k), where Ai,k = g

yi/(γ+xi)
k , Bi,k = g

1/(γ+xi)
k ,

and Ci,k = g
zi/(γ+xi)
k , for each k ∈ {0, ..., λ}.

ESS Signing: On input the following ESS signature specification:
– formal atomic signature statements {Msgi}Useri and boolean flags Li,

for i = 1, ..., `;
– a well-formed ESS formula Υ with ` boolean inputs; and a truth assign-

ment χ : {L1, ..., L`} → {⊥,>} such that Υ (L1, ..., L`) = >;
– for each i such that χ(Li) = >, a valid atomic signature in G for the the

statement {Msgi}Useri , namely, a pair:

σi =
(
ui = (Γhx)1/(y+wi+tiz) ∈ G, ti ∈ ZN

)
,

where wi = Msgi and (x, y, z) is the signing key for the signer mentioned
in the specification clause {Msgi}Useri .

The signer firsts extends Υ into Υ ′ that involves the public key “in the sky”:
1. Compute Msg0 = H({Msg1}User1 , ..., {Msg`}User` , Υ) by hashing the full

ESS formal specification, and associate the special literal L0 to the sup-
plemental formal clause {Msg0}User0 .
The purpose of the hash is to “seal” the specification in order to prevent
someone from weakening a finished ESS signature by OR-ing it with
additional clauses (which would otherwise give a valid signature).

2. Construct Υ̃ = L0 ∨ Υ , which is a well-formed ESS formula.
3. Set the truth assignment χ so that χ(L0) = ⊥. We have to use the value

“false” since we do not have an atomic signature for L0.
The signer then builds the ESS signature from the ESS formula Υ̃ , the
truth assignment χ, and the atomic signatures (ui, ti) known for such i that
χ(Li) = >, as follows:
4. Create a flattened representation of Υ̃ and χ as discussed in Section A.1.

Accordingly, let π0, ..., π` ∈ ZN [Z0, ..., Zϑ] be public degree-1 multivari-
ate polynomials that encode Υ̃ , and ν0, ..., ν` ∈ ZN the secret scalar co-
efficients of a linear combination that expresses χ. Explicitly determine
all the coefficients yj,k ∈ ZN in all polynomials πj =

∑ϑ
k=0 yj,k Zk.

5. Create a random blinding vector s = (s1, ..., s`) ∈ Z`N as in Section A.2.
6. For all i ∈ {0, ..., `} : χ(Li) = ⊥, pick ti ∈ ZN and fix ui = g0 = 1 ∈ G.
7. For all j = 0, ..., ` and k = 0, ..., ϑ, let mj = Msgj and calculate,

vj,k =
(
Aj,k B

mj
j,k C

tj
j,k

)yj,k
, vj =

ϑ∏
k=0

vj,k .

8. Compute, for i = 1, ..., `, and k = 0, ..., ϑ, respectively,

Si = ui
νi v0

−si , Pk =
∏̀
j=1

vj,k
sj .

(The value of any intervening ui such that χ(Li) = ⊥ is unimportant
since then νi = 0; this is true in particular for the fictitious User 0.)

9. Output the ESS signature, consisting of the formal ESS statement Υ and
the tuple,

σ = (t0, ..., t`, S1, ..., S`, P0, ..., Pϑ) ∈ Z`+1
N ×G`+ϑ+1 .

ESS Verification: A fully qualified ESS signature consists of:
– `+ 1 propositions {Msg0}User0 , ..., {Msg`}User` viewed as inputs to,
– an arborescent monotone threshold circuit Υ̃ : {⊥,>}`+1 → {⊥,>},
– an ESS signature σ = (t0, ..., t`, S1, ..., S`, P0, ..., Pϑ) ∈ Z`+1

N ×G`+ϑ+1.
To verify such a signature, the verifier proceeds as follows:
1. Ascertain that Υ̃ (>, ?, ..., ?) = >, extract from Υ̃ (L0, ..., L`) the sub-

circuit Υ (L1, ..., L`) such that Υ̃ = Υ ∨ L0, and verify that Msg0 =
H({Msg1}User1 , ..., {Msg`}User` , Υ).

2. Compute the representation (π0, ..., π`) of the formula Υ̃ by reproducing
the deterministic conversion of Section A.1.

3. For i = 0, ..., `, determine the coefficients yi,k ∈ ZN of the polynomials
πi =

∑ϑ
k=0 yi,k Zk.

4. For i = 0, ..., ` and k = 0, ..., ϑ, retrieve (Ai,k, Bi,k, Ci,k) from the certifi-
cate of User i, let mi = Msgi, and calculate,

vi,k =
(
Ai,k B

mi
i,k C

ti
i,k

)yi,k
, vi =

ϑ∏
k=0

vi,k .

5. Using the pairing, verify the θ + 1 equalities, for all k = 0, ..., ϑ,

e (Pk, v0) ·
∏̀
i=1

e (Si, vi,k) =

{
e(h, g0) for k = 0
1 ∈ GT for k = 1, ..., ϑ

.

6. Accept the signature if and only if all ϑ+ 1 equalities hold in the target
group GT .

Trapdoor Tracing: To trace a (fully qualified) ESS signature σ that passes
the verification test, the tracing authority proceeds as follows:
1. For each i = 1, ..., `, compute S̄i = (Si)p ∈ G, using the knowledge of p

as a trapdoor.
2. For each i such that S̄i = 1 ∈ G, say, “User i did not take part in σ”.
3. For each i such that S̄i 6= 1 ∈ G, say, “User i took part in signing σ”.

B Optional Join Protocol

As discussed earlier, user enrollment into the ESS group can be done using an
interactive protocol in order to preserve the strong exculpability property. This
protocol is essentially the same as the protocol studied in the group signatures
of [19], where more details can be found.

C Proof Details

C.1 Anonymity

Proof (of Theorem 1). We use a game hopping argument that starts with G0,
the real ESS anonymity game, and ends with G1, a game that is identical to
the previous one except that the generator g now generates all of G, not just
the subgroup Gp. The advantage of the adversary in G0 is ε. We denote his
advantage in G1 by ε1.

In Lemma 2, we show that the games G0 and G1 must be indistinguishable
to the adversary, unless the Decision Subgroup problem in G is easy.

U〉 (upk[i], usk[i]) GM (γ, gmsk)

(yi, zi)
R← Z2

p, C ← gyi , C′ ← gzi

U ←

0BB@
c = Ext-Commit(yi),
NIZKPEqDL(c, C, g),
c′ = Ext-Commit(zi),
NIZKPEqDL(c′, C′, g),

1CCA C,C′,U−−−−−−−−−−→ Verifies (C,C′) ∈ G2, checks U

xi
R← Zp, Ai ← C

1/(γ+xi)

Bi ← g
1/(γ+x), Ci ← C′

1/(γ+x)

V ← e(C, g)/e(Bi, Γ)
D ← e(Bi, g)

Ai,Bi,Ci,W←−−−−−−−−−− W ← NIZKPoKDL(V,D)
V ← e(C, g)/e(Bi, Γ)
X ← e(Bi, g)
Verifies Bi ∈ G, Ai = Byii , Ci = Bzii
Checks W

σ ← Signusk[i](Ai, Bi, Ci)
σ−−−−−−−−−−→ Checks S w.r.t. upk[i] and A

Checks that Ax+γ
?
= gy

xi←−−−−−−−−−− adds (upk[i], Ai, Bi, Ci, σ)
i.e. e(Ai, g)xi · e(Ai, Γ) = e(g, g)yi

Fig. 1. Join Protocol

In lemma 3, we then appeal to an information-theoretic argument to show
that signatures in G1 enjoy unconditional and perfect anonymity, and thus that
the adversary’s advantage in that game must be nil.

The theorem follows from these two results. ut

In this proof, we note that the details of the ESS anonymity game G0 are
not important, since the Decision Subgroup assumption makes ESS signatures
computationally indistinguishable from the mesh signatures, which have perfect
anonymity. The only important point in the ESS anonymity game is that no
tracing queries are allowed.

Lemma 2. For all τ ′-time adversaries, ε− ε1 ≤ 2ε′.

Proof (of Lemma 2). Consider a distinguisher D for the subgroup decision prob-
lem. When presented with a subgroup decision challenge (N,G,GT , e, w), the
algorithm D creates public parameters for the ESS scheme by first setting g = gp
and h = w and then choosing the remaining public parameters exactly as in the
ESS scheme. It then transmits the public information to the adversary and plays
the ESS anonymity game with it.

If w was drawn from the full group G, then this is exactly the ESS game,
which we called G0. If w belongs in the subgroup Gp, then all the elements now
live in Gp, and thus the scheme reduces to a mesh signature in the prime-order

Gp; we call this game G1. In either game, D can answer all the private key and
signature queries, since it chose the parameters and knows all the secret keys.

At some point, the adversary will choose a message M , an ESS expression
Υ , and two assignments θ1 and θ2 to the literals of Υ that cause it to evaluate
to “true”. The simulator D will pick a random b ∈ {1, 2} and output an ESS
signature created using atomic signatures as specified by the truth assignment
θb. The adversary will then make a guess b′ for the value of the bit b. If the
adversary’s guess is correct, that is, if b′ = b, the distinguisher D returns 1,
otherwise, D returns 0.

Denote by ε′ the advantage of the D in the Decision Subgroup problem. Since
in the Decision Subgroup challenge we have Pr[w ∈ Gp] = Pr[w ∈ G] = 1/2, we
have:

ε− ε1 = Pr[b = b′|w ∈ G]− Pr[b = b′|w ∈ Gp]

=
Pr[b = b′, w ∈ G]

Pr[w ∈ G]
− Pr[b = b′, w ∈ Gp]

Pr[w ∈ Gp]

=
Pr[b = b′]

1/2
= 2ε′ .

Since the total computation time τ ′ required of the distinguisher is dominated
by the time τ consumed by the adversary, we also have τ ′ ≈ τ . The claim follows.

ut

Simulation with Dynamic Join. In the case where group enrollment is performed
via the Dynamic Join protocol given in Section 3.7, the group manager normally
cannot learn the users’ private keys as part of the enrollment process. How-
ever, since the join protocol uses extractable commitments, in the simulation
above the distinguisher is still able to recover all the users’ secrets by setting the
proper trapdoor into the commitment protocol’s common reference string (or by
extracting the secrets from queries to the commitment scheme’s random oracles,
if a random-oracle commitment scheme is preferred). In short, the simulator al-
ways knows all the secrets, and is thus able to answer all the queries. See [19]
for the full details.

Lemma 3. For all adversaries, ε1 = 0.

Proof (of Lemma 3). The game G1 is obtained by setting up the ESS system
with both g and h in the subgroup Gp of order p. As a result, all group elements
in the scheme end up in Gp, and all their projections onto Gq vanishes. Such
an ESS setup is therefore isomorphic to a regular mesh signature setup in any
prime-order bilinear group G′ of order p.

We then invoke the unconditional perfect anonymity of mesh signatures [11]
to deduce that the signatures in the game G1 must then be unconditionally and
perfectly anonymous against unbounded adversaries.

The advantage of any adversary in the anonymity game G1 is thus exactly
ε1 = 0, as required. ut

In the preceding proof, we note that it may not be easy to compute the
isomorphism between a regular mesh scheme in G′ and the scheme of game G1,
without at least knowing the factorization of N = pq. However, it is obvious
that the isomorphism exists, and that is all we need to deduce that the scheme
in G1 leaks no information about the signer.

C.2 Traceability

Proof (of Theorem 2). We begin with a game hopping argument, to show that the
adversary’s advantage in the real traceability game is essentially the same as in a
synthetic game with two independent mesh signature schemes in the respective
subgroups of order p and q. We will use this indistinguishability to conclude that
a successful traceability attack in the ESS scheme implies a successful forgery
attack against (at least) one of the mesh signature schemes, which is know from
[11] is hard under the PolySDH assumption.

The starting game is G0, the real ESS traceability game. The adversary’s
advantage in G0 is ε0 = ε.

The next game is G1, a game that is identical to the previous one, except
that the challenger selects a random g of order N instead of order p (that is, g
will generate all of G instead of Gp). The adversary’s advantage in G1 is ε1.

In Lemma 4, we show that the games G0 and G1 are indistinguishable to the
adversary, unless the Decision Subgroup problem in G is easy.

We remark that the signatures in G1 are no longer traceable (that is, when
g ∈ G). The signature setup that the adversary is faced with in G1 is identical to
the mesh signature setup from [11], except that it is not defined in a prime-order
bilinear group, but in the composite-order group G. (That is, all the random
generators are drawn from G, and all the random exponents are drawn from
ZN .)

The next game is G2, a game where we once again change how the signature
scheme is constructed. Instead of using an order-N “composite-order” mesh sig-
nature as in G1, we use two simultaneous independent mesh signatures in the
subgroups Gp and Gq, that are combined in G using the Chinese Remainder
Theorem (the simulator will know the factorization).

Precisely, the challenger in G2 will set up two independent mesh signature
schemes in the respective prime-order groups Gp and Gq. We call them the p-
scheme and the q-scheme. Then, for every integer x1 ∈ N (or group element
X1 ∈ G) that used to play some role R in the mesh scheme in G1, we define
a corresponding x2 ∈ N (or X2 ∈ G) in G2, uniquely defined by the two inte-
gers x2 mod p and x2 mod q (or group elements Xq

2 ∈ Gp and Xp
2 ∈ Gq) that

respectively play the same role R in the p-scheme and the q-scheme. Notice
that it is easy to go back and forth between the decomposed and the composite
representation using the CRT.

In Lemma 5, we show that the view of the adversary in games G1 and G2 in
exactly the same.

To conclude the proof, it suffices to show that any successful traceability
attack against the scheme in G2 leads to a successful mesh signature forgery in
the p-scheme. To do so, we need to construct a simulator for the game G2, which
will act as challenger in the ESS traceability game, and as opponent in the mesh
signature unforgeability game.

We give the details of this final reduction in Lemma 6. The theorem follows.
ut

Lemma 4. For all τ ′-time adversaries, ε0 − ε1 ≤ 2ε′.

Proof (of Lemma 4). The proof is analogous to that of Lemma 2 and is omitted.
(The main difference is that we let h and not g be equal to the Decision Subgroup
challenge value w.) ut

Lemma 5. For all adversaries, ε1 − ε2 = 0.

Proof (of Lemma 5). It follows by inspection of the mesh scheme in [11] that the
following two entities are exactly isomorphic: (1) a single random instance of the
scheme in any bilinear group GN of order of N = pq; and (2) two independent
random instances of the scheme in any respective bilinear groups Gp and Gq of
order p and q.

The isomorphism can furthermore be efficiently computed using the Chinese
Remainder Theorem, if Gp and Gq happen to be subgroups of GN . The details
of this computation are omitted. ut

Lemma 6. There exists a tight and computationally efficient reduction from the
ESS traceability game G2 and the mesh signature eUF-CMA unforgeability game
in the p-scheme.

Proof (of Lemma 6). The construction of the simulator is as follows. The simu-
lator is given a set of mesh signature parameters in Gp. It generates independent
random mesh parameters in Gq, combines the two using the CRT as outlined
above, and gives the resulting set of composite-order mesh parameters to the
adversary.

To enroll adversarially-controlled users, the simulator does the following
steps. For the user of index i, the simulator will first select a random key
(ai, bi, ci) ∈ Z3

N , or recover it from the extractable commitments in case the
enrollment protocol of Section 3.7 is employed. Using the CRT, the simulator

separates each of those exponents into its projections modulo p and q, and re-
tains the two resulting triples (a(p)

i , b
(p)
i , c

(p)
i) ∈ Z3

p and (a(q)
i , b

(q)
i , c

(q)
i) ∈ Z3

q as
mesh private keys for user i in the p-scheme and the q-scheme. The simula-
tor then constructs the corresponding public keys (A(p)

i , B
(p)
i , C

(p)
i) ∈ G3

p and

(A(q)
i , B

(q)
i , C

(q)
i) ∈ G3

q in the p-scheme and the q-scheme, and combines them
into a single public-key triple (Ai, Bi, Ci) ∈ G3, which it publishes in the group
manifest.

The adversary may also make any number of enrollment queries for users
that should remain in the control of the simulator. To process such a request,
the simulator will proceed differently in the p-scheme and the q-scheme. In the
q-scheme, the simulator picks a secret key and constructs the corresponding
public key from it in the normal way. In the p-scheme, the simulator will ask
the mesh challenger for a mesh public key (without learning the corresponding
signing key). The simulator then uses the CRT to combine the two public keys
into a single one, (Ai, Bi, Ci) ∈ G3, which it signs and publishes in the group
description.

To answer ESS signature queries, the simulator proceeds as follows. A signa-
ture query is given as a propositional expression indicating what the signature
is meant to represent, and a list of atomic signatures needed to construct it. The
list may be incomplete, as the adversary is not supposed to provide atomic sig-
natures on behalf of any of the simulator-controlled users. To answer the query,
the simulator simply passes on the request to the p-scheme mesh challenger, and
obtains a mesh signature in the p-scheme in return. The simulator also constructs
a mesh signature in the q-scheme, which it can do explicitly since it knows all the
secret keys in that scheme. With component-wise use of the CRT, The simulator
combines the two prime-order mesh signatures into a single composite-order one,
which it gives to the adversary as the requested ESS signature.

Eventually, the adversary outputs an ESS forgery that purportedly cannot
be satisfactorily attributed to a coalition of adversarially-controlled users. The
simulator simply projects down the forgery onto the subgroup of order p, and
outputs the result as its own forgery in the mesh p-scheme.

Although the simulator does not know whether the forgery is a valid one, it
is easy to see that this will be the case if and only if the adversary’s ESS forgery
is valid (of course, in the game G2 no tracing is possible, but the adversary’s
view of G2 is essentially the same as in G0, where it is). ut

