
Supplementary Material to ICML04 Submission
Apprenticeship Learning via

Inverse Reinforcement Learning

Abstract
In this document, we give more elaborate
proofs for the theorems in the submitted pa-
per. We also have a section on a different
interpretation of the projection algorithm.

A. Proofs of Theoretical Results

Due to space constraints, in (Abbeel & Ng, 2004) we
gave a full proof only for the case of µ̂E ∈ M . Here
we give proofs for the more general case, i.e. we have
not necessarily that µ̂E ∈ M . First however, we give
a more extensive proof of Lemma 3 in (Abbeel & Ng,
2004), which was proved very densely there.

A.1. Extended Proof of Lemma 3

Figure 1 may be helpful for conveying geometric intu-
ition.

Proof of Lemma 3

Proof. For simplicity of notation, we let the origin of
our coordinate system coincide with µ̄(i). Then

(µ̃(i+1) − µ̂E) · (µ̃(i+1) − µ̂E)

µ̂E · µ̂E

(1)

=
µ(i+1) · µ(i+1) − (µ(i+1)·µ̂E)2

µ̂E ·µ̂E

µ(i+1) · µ(i+1)
(2)

≤ µ(i+1) · µ(i+1) − 2µ̂E · µ(i+1) + µ̂E · µ̂E

µ(i+1) · µ(i+1)
(3)

=
(µ(i+1) − µ̂E) · (µ(i+1) − µ̂E)

(µ(i+1) − µ̂E) · (µ(i+1) − µ̂E) + µ̂E · µ̂E + 2(µ(i+1) − µ̂E) · µ̂E

(4)

≤ (µ(i+1) − µ̂E) · (µ(i+1) − µ̂E)

(µ(i+1) − µ̂E) · (µ(i+1) − µ̂E) + µ̂E · µ̂E

(5)

≤ k2/(1 − γ)2

k2/(1 − γ)2 + µ̂E · µ̂E

, (6)

where we used in order:
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1. The definition of µ̃(i+1) = µ(i+1)·µ̂E

µ(i+1)·µ(i+1) µ
(i+1),

which gives for the numerator (µ̃(i+1) − µ̂E) ·
(µ̃(i+1) − µ̂E) = ( µ(i+1)·µ̂E

µ(i+1)·µ(i+1) µ
(i+1) − µ̂E) ·

( µ(i+1)·µ̂E

µ(i+1)·µ(i+1) µ
(i+1) − µ̂E) = (µ(i+1)·µ̂E)2

(µ(i+1)·µ(i+1))2
µ(i+1) ·

µ(i+1) − 2 µ(i+1)·µ̂E

µ(i+1)·µ(i+1) µ
(i+1) · µ̂E + µ̂E · µ̂E =

− (µ(i+1)·µ̂E)2

µ(i+1)·µ(i+1) + µ̂E · µ̂E . Using this expression for

the numerator, and multiplying numerator and

denominator by µ(i+1)·µ(i+1)

µ̂E ·µ̂E
gives Equation (2).

2. The following inequalities are easily seen to be
true:

(µ(i+1) · µ̂E − µ̂E · µ̂E)2 ≥ 0

(µ(i+1) · µ̂E)2 − 2(µ(i+1) · µ̂E)(µ̂E · µ̂E) + (µ̂E · µ̂E)2 ≥ 0

−(µ(i+1) · µ̂E)2 ≤ −2(µ(i+1) · µ̂E)(µ̂E · µ̂E) + (µ̂E · µ̂E)2

−(µ(i+1) · µ̂E)2

µ̂E · µ̂E

≤ −2(µ(i+1) · µ̂E) + µ̂E · µ̂E .

We used the last of these inequalities.

3. For the numerator, we just used (µ(i+1) − µ̂E) ·
(µ(i+1)−µ̂E) = µ(i+1)·µ(i+1)−2µ̂E ·µ(i+1)+µ̂E ·µ̂E .
We rewrote the denominator as follows µ(i+1) ·
µ(i+1) = (µ(i+1)− µ̂E + µ̂E) · (µ(i+1)− µ̂E + µ̂E) =
(µ(i+1)−µ̂E)·(µ(i+1)−µ̂E)+(µ̂E ·µ̂E)+2(µ(i+1)−
µ̂E) · µ̂E .

4. Since π(i+1) = arg maxπµ̂E ·µ(π) (recall the origin
is at µ̄(i) for notational convenience), we have µ̂E ·
µ(i+1) = µ̂E · µ(π(i+1)) ≥ µ̂E · µ̂E , which implies
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Figure 1. Progress in one iteration step.



2(µ(i+1) − µ̂E) · µ̂E ≥ 0, which implies Equation
(4).

5. All points considered lie in M = [0, 1
1−γ

]k, so their

norms are bounded by k/(1 − γ).

This proves the one step improvement equation of the
Lemma.

It remains to prove that that µ̃(i+1) = λµ(i+1) + (1 −
λ)µ̄(i), for some λ ∈ [0, 1]. It is easily seen from

the definition of µ̃(i+1) that for λ = µ̂E ·µ(i+1)

µ(i+1)·µ(i+1) , we

have µ̃(i+1) = λµ(i+1) + (1 − λ)µ̄(i). (Recall we still
have µ̄(i) as our origin to simplify notation.) Since
π(i+1) = arg maxπµ̂E · µ(π), we have µ̂E · µ(i+1) =
µ̂E · µ(π(i+1)) ≥ µ̂E · µ̂E ≥ 0, which implies λ ≥ 0.

Now to prove λ ≤ 1, we start with Cauchy-Schwartz
inequality

(µ(i+1) · µ̂E)2 ≤ (µ(i+1) · µ(i+1))(µ̂E · µ̂E), (7)

which combined with µ̂E · µ̂E ≤ µ(i+1) · µ̂E gives

(µ(i+1) · µ̂E)2 ≤ (µ(i+1) · µ(i+1))(µ̂E · µ(i+1)), (8)

from which we immediately get

λ =
µ̂E · µ(i+1)

µ(i+1) · µ(i+1)
≤ 1 (9)

�

A.2. More General Convergence Theorem

We first review some definitions from the proofs sec-
tion in (Abbeel & Ng, 2004). Given a set of policies
Π, we define M = M(Π) = Co{µ(π) : π ∈ Π} to
be the convex hull of the set of feature expectations
attained by policies π ∈ Π. Hence, given any vec-
tor of feature expectations µ̃ ∈ M , there is a set of
policies π1, . . . , πn ∈ Π and mixture weights {λi}n

i=1

(λi ≥ 0,
∑n

i=1 λi = 1), so that µ̃ =
∑n

i=1 µ(πi). Thus,
given any point µ̃ ∈ M , by mixing together policies in
Π, we can obtain a new policy whose feature expec-
tations are exactly µ̃. (Here, mixture policies are as
defined in Section 2 of the paper.

We also define M (i) = Co{µ(π(j)) : j = 0, . . . , i} to
be the convex hull of the set of feature expectations of
policies found after iterations 0, . . . , i of our algorithm.

As mentioned previously, µ̂E is a noisy estimate of
µE . Thus, it may not be a valid feature expectation
vector for any policy; i.e., we do not necessarily have
µ̂E ∈ M . So rather than proving convergence to µE ,
we will instead consider a small ball with radius ρ cen-
tered around µ̂E and that intersects M , and prove con-
vergence to this ball.

Lemmas 4-6 will establish properties for a single iter-
ation of the algorithm, that will be useful for proving
the main convergence theorem. In reading the proofs,
Figure 2 may be helpful for conveying geometric intu-
ition.

Lemma 4. Let µ̄(i), µ̂E ∈ R
k, and ρ ∈ R, with ‖µ̂E −

µ̄(i)‖2 ≥ ρ be given,
then the two following optimization problems

min
µ:‖µ̂E−µ‖2≤ρ

‖µ − µ̄(i)‖2 (10)

min
µ:‖µ̂E−µ‖2≤ρ

µ · (µ̂E − µ̄(i)) (11)

have the same minimizing argument, which is given by

µρ,i =
ρ

‖µ̂E − µ̄(i)‖2
µ̄(i) +

‖µ̂E − µ̄(i)‖2 − ρ

‖µ̂E − µ̄(i)‖2
µ̂E (12)

We also have that

∃α > 0 such that µ̄(i) − µρ,i = α(µ̄(i) − µ̂E) (13)

Proof. This can be verified by solving each of the prob-
lems, which can be done by forming the Lagrangian,
taking derivatives and setting to zero. The deriva-
tion is trivial but quite long, and thus omitted. Equa-
tion (13) follows immediately from Equation (12). �

Lemma 5. Let there be given an MDP\R, features
φ : S 7→ [0, 1]k, a set of policies Π, µ̄(i) ∈ M , and
ρ ∈ R. Suppose ‖µ̂E − µ̄(i)‖2 ≥ ρ, and that there exists
some µ̄E ∈ M such that ‖µ̂E−µ̄E‖2 ≤ ρ. Let π(i+1) be
the optimal policy for the MDP\R with reward R(s) =
(µ̂E − µ̄(i)) · φ(s), and µ(i+1) = µ(π(i+1)). Further, let
µρ,i = arg minµ:‖µ̂E−µ‖2≤ρ ‖µ − µ̄(i)‖2. Then, we have
that

(µ(i+1) − µρ,i) · (µ̄(i) − µρ,i) ≤ 0 .

Proof. Since µ(i+1) = µ(π(i+1)), and π(i+1) is the
optimal policy for the MDP\R with reward R(s) =
(µ̂E − µ̄(i)) · φ(s), we have

µ(i+1) = arg maxµ∈M (µ̂E − µ̄(i)) · µ.

This implies

(µ̂E − µ̄(i)) · µ(i+1) ≥ (µ̂E − µ̄(i)) · µ̄E (14)

since µ̄E ∈ M . Using the equivalent definition of µρ,i

as given by Equation (11) in Lemma 4 and ‖µ̄E −
µ̂E‖2 ≤ ρ, we have (µ̂E − µ̄(i)) · µ̄E ≥ (µ̂E − µ̄(i)) ·µρ,i,
which combined with Equation (14) gives

(µ̂E − µ̄(i)) · µ(i+1) ≥ (µ̂E − µ̄(i)) · µρ,i

Simple manipulation gives

(µ̄(i) − µ̂E) · (µ(i+1) − µρ,i) ≤ 0
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Figure 2. Triangle characterizing improvement for one it-
eration. µ̄(i) ∈ M (i), w(i+1) = α(µ̂E − µ̄(i)), µ(i+1) =
µ(π(i+1)), with π(i+1) the optimal policy for the given
MDP\R, and R(s) = w(i+1) ·φ(s). µ̂E is the estimate of the
expert’s feature expectations. µρ,i is the point in the ρ-ball
around µ̂E closest to µ̄(i). µ̃(i+1) is the projection of µρ,i

onto the line through µ(i+1), µ̄(i).A, B, C denote the 3 an-
gles of the triangle. a, b, c denote the vectors of each of the
sides, i.e. a = µρ,i−µ(i+1), b = µ̄(i)−µρ,i, c = µ̄(i)−µ(i+1).

By using Equation (13) of Lemma 4 we get the desired
result

(µ̄(i) − µρ,i) · (µ(i+1) − µρ,i) ≤ 0

�

Lemma 6. Let there be an MDP\R, features φ : S 7→
[0, 1]k, a set of policies Π, µ̄(i) ∈ M , and ρ ∈ R. Sup-
pose ‖µ̂E − µ̄(i)‖2 ≥ ρ and there is some µ̄E ∈ M such
that ‖µ̂E − µ̄E‖2 ≤ ρ. Let π(i+1) be the optimal policy
for the MDP\R with reward R(s) = (µ̂E − µ̄(i)) · φ(s),
and µ(i+1) = µ(π(i+1)). Further, let µ̃(i+1) be the or-
thogonal projection of µρ,i = arg minµ:‖µ̂E−µ‖2≤ρ ‖µ −
µ̄(i)‖2 onto the line passing through the points µ(i+1)

and µ̄(i). We then have that

‖µ̃(i+1) − µρ,i‖2

‖µ̄(i) − µρ,i‖2
≤

√
k

√

k + (1 − γ)2‖µ̄(i) − µρ,i‖2
2

.

Proof. Consider the triangle formed by the three
points µ̄(i), µ(i+1) and µρ,i, and name the sides and
angles as in Figure 2. (Note that a, b, and c are vec-
tors; see figure caption.) Then we have

h

‖µ̄(i) − µρ,i‖2
=

h

‖b‖2
(15)

= sin A (16)

=
‖a‖2

‖c‖2
sinC (17)

≤ a
√

‖a‖2
2 + ‖b‖2

2

, (18)

where we used in order: the definition of b; the sin

rule for right triangles; the sin rule for triangles1;
sin C ≤ 1 and ‖c‖2

2 = cT c = (a + b)T (a + b) =
aT a + bT b + 2aT b ≥ ‖a‖2

2 + ‖b‖2
2, where the inequality

follows from aT b = (µ(i+1) − µρ,i) · (µ̄(i) − µρ,i) ≤ 0,
which follows directly from Lemma 5. By taking

the first derivative, we easily verify that ‖a‖2√
‖a‖2

2+‖b‖2
2

is strictly increasing as a function of ‖a‖2 and thus
‖a‖2√

‖a‖2
2+‖b‖2

2

≤
√

k√
k+(1−γ)2‖b‖2

2

since
√

k/(1−γ) is an up-

perbound on the distance between 2 points in M . This
upperbound on the distance follows from φ ∈ [0, 1]k

which implies µ ∈ 1
1−γ

[0, 1]k. Combining this inequal-

ity with Equation (18) and b = µ̄i−µρ,i (by definition)
gives the lemma. �

The above lemma describes how, starting from feature
expectations µ̄(i) ∈ M , we can pick w = µ̂E − µ̄(i)

such that the feature expectations µ(i+1) of the corre-
sponding optimal policy π(i+1) and µ̄(i) have a mixture
µ̃(i+1) such that ‖µ̃(i+1)−µρ,i‖2 ≤ c‖µ̄(i)−µρ,i‖2, with
c < 1. Convergence of each version of the algorithm
is proved below, by showing how in each iteration, we
achieve the improvement from the lemma.

For simplicity, in Section 3 of the paper we gave
the algorithm assuming we are given the exact
feature expectations µE . In the general case,
the algorithm will use an estimate µ̂E instead,
and convergence will be to a ball of radius ρ
around µ̂E , for any ρ ≥ minµ∈M ‖µ − µ̂E‖2. So

now we let t
(i)
mm = minν∈M(i),µ:‖µ̂E−µ‖2≤ρ ‖ν −

µ‖2 for the max-margin version, and t
(i)
proj =

minν∈Co{µ̄(i),µ(i+1)},µ:‖µ̂E−µ‖2≤ρ ‖ν − µ‖2. Note that

t
(i)
proj ≥ t

(i)
mm, because the t

(i)
proj is defined using a

minimize over a smaller domain (Co{µ̄(i), µ(i+1)} ⊆
M (i+1)). Here, as before, we use CoZ to denote the
convex hull of the set Z. Using our new definition of
t(i), we can now state a more general version of the
convergence theorem which can be seen to be the spe-
cial case where µ̂E = µE and thus we can choose ρ = 0
and the old and new definition of t(i) coincide.

Theorem 1. Let an MDP\R, features φ : S 7→ [0, 1]k,
any ε > 0 and any ρ ≥ minµ∈M ‖µ − µ̂E‖2 be given.
Then the apprenticeship learning algorithm (both max-
margin and projection versions) will terminate with
t(i) ≤ ε after at most

n = O
(

k
(1−γ)2ε2

log k
(1−γ)ε

)

(19)

iterations.

1For any triangle with sides a, b, c and opposite angles
A, B, C the sin rule for triangles states sin A

a
= sin B

b
=

sin C
c

.



Proof. We first show for both versions that we have

geometric convergence at a rate
√

k√
k+(1−γ)2ε2

, and then

use this to compute the required number of iterations.

In the max-margin version, the computation of w(i) at
every iteration, is easily seen to be equivalent to setting
w(i) = µ̂E − µ̄(i), for µ̄(i) = arg minµ∈M(i) ‖µ̂E − µ‖2.

Obviously µ̄(i) ∈ M (i) as is required to apply Lemma 6
later. If we define µρ,i = arg minµ:‖µ̂E−µ‖2≤ρ ‖µ −
µ̄(i)‖2 as in Lemma 6, then we see that

t(i)mm = ‖µρ,i − µ̄i‖2. (20)

Define µ̃(i+1) as in Lemma 6 and observe that µ̃(i+1) ∈
M (i+1), and using the definition of t

(i+1)
mm we have

t(i+1)
mm ≤ ‖µ̃(i+1) − µρ,i‖2 (21)

Combining Equations (20) and (21) gives

t
(i+1)
mm

t
(i)
mm

≤ ‖µ̃(i+1) − µρ,i‖2

‖µ̄i − µρ,i‖2

Applying Lemma 6 gives

t
(i+1)
mm

t
(i)
mm

≤
√

k
√

k + (1 − γ)2‖µ̄(i) − µρ,i‖2
2

For the projection version, at every iteration we have
µ̄(i) = µ̃(i) = arg minµ∈Aff{µ̄(i−1),µ(i)} ‖µ̂E − µ‖2 =

arg minµ∈Co{µ̄(i),µ(i+1)} ‖µ̂E − µ‖2, so obviously µ̄(i) ∈
M (i) as is required to apply Lemma 6 later. Here,
AffZ denotes the affine hull of Z; specifically, if Z
is a set of two points, then this is the line through
these 2 points.2 The first equality holds because in
step 2 of our algorithm we compute µ̄(i−1) exactly like
we defined µ̃(i−1). The second equality corresponds
to the definition of orthogonal projection onto a line
(and thus corresponds to our definition of µ̃(i)), the
last equality follows because of Lemma 5.3 If we define
µρ,i = arg minµ:‖µ̂E−µ‖2≤ρ ‖µ − µ̄(i)‖2 as in Lemma 6,
then we see that

t
(i)
proj = ‖µ̄i − µρ,i‖2 (22)

Define µ̃(i+1) as in Lemma 6, and observe that µ̃(i+1) ∈
M (i+1), and using the definition of t

(i+1)
proj we have

t
(i+1)
proj ≤ ‖µ̃(i+1) − µρ,i‖2 (23)

2More formally, AffZ = {
P

i λizi : zi ∈ Z,
P

i λi =
1, λi ∈ R}.

3More precisely, Lemma 5 implies the 3 points
µ(i+1), µρ,i, µ̄

(i) form an obtuse angle at µρ,i, which implies

the orthogonal projection of µρ,i onto Aff{µ(i+1), µ̄(i)}

falls into Co{µ(i+1), µ̄(i)}.

Combining Equations (22) and (23) gives

t
(i+1)
proj

t
(i)
proj

≤ ‖µ̃(i+1) − µρ,i‖2

‖µ̄i − µρ,i‖2

Applying Lemma 6 gives

t
(i+1)
proj

t
(i)
proj

≤
√

k
√

k + (1 − γ)2‖µ̄(i) − µρ,i‖2
2

So in both cases we get the same guarantee for im-
provement in every iteration. Throughout iterations
this results into

t(i) ≤ (

√
k

√

(1 − γ)2ε2 + k
)it(0) ≤ (

√
k

√

(1 − γ)2ε2 + k
)i

√
k

1 − γ

where the last inequality follows from M ⊆ 1
1−γ

[0, 1]k,

and so
√

k
1−γ

is an upper bound on the distance between

any 2 points in M . So we have t(i) ≤ ε if and only if

(

√
k

√

(1 − γ)2ε2 + k
)i

√
k

1 − γ
≤ ε

which is equivalent to

i ≥ log

√
k

(1 − γ)ε
/log

√

(1 − γ)2ε2 + k√
k

= O

(

k

(1 − γ)2ε2
log

k

(1 − γ)ε

)

�

Note that in practice, convergence might be much
faster than predicted by the upperbound in the theo-
rem, since we have an improvement by at least a fac-

tor of
√

k√
k+(1−γ)2‖µ̄(i)−µρ,i‖2

2

for every iteration, which

is typically much better than the bound
√

k√
k+(1−γ)2ε2

used in the proof.

Remark (using approximate RL algorithms).
Sometimes, in each iteration of the algorithm we will
be able to solve the MDP only approximately. It is
straightforward to generalize our result to this setting.
Assume on each iteration we can obtain an approxi-
mately optimal policy π such that ‖µ(π) − µ(π∗)‖2 ≤
ε1, with π∗ the optimal policy for that iteration. Then
for any ρ ≥ minµ∈M ‖µ − µ̂E‖2 and any ε > 0
our algorithm will converge to a policy π̃, such that
‖µ̂E −µ(π̃)‖2 ≤ ρ+ ε1 + ε after at most the number of
iterations given in Equation (19) of Theorem 1. This
result is easily proved by changing the definition of the
ρ-ball around µ̂E to a (ρ + ε1)-ball.



A.3. Sample Complexity

We now consider the number of samples from the ex-
pert required. In the paper we assumed µ̂E ∈ M . Here
we do not assume this, which leads to slightly different
constant factors. The differences between this proof
and the proof in the paper are the following: we take
into account the possibility µ̂ /∈ M , the proof is a little
less dense.

Theorem 2. Let an MDP\R, features φ : S 7→ [0, 1]k,
and any ε > 0, δ > 0 be given. Suppose the appren-
ticeship learning algorithm (either max-margin or pro-
jection version) is run using an estimate µ̂E for µE

obtained by m Monte Carlo samples. In order to en-
sure that with probability at least 1 − δ the algorithm
terminates after at most a number of iterations n given
by Equation (19), and outputs a policy π̃ so that for
any true reward R∗(s) = w∗T φ(s) (‖w∗‖1 ≤ 1) 4 we
have

E[
∑∞

t=0 γtR∗(st)|π̃] ≥ E[
∑∞

t=0 γtR∗(st)|πE ]−ε, (24)

it suffices that

m ≥ 9k
2(ε(1−γ))2 log 2k

δ
.

Proof. Recall φ ∈ [0, 1]k so µ ∈ [0, 1
1−γ

]k. Let µi de-
note the i’th component of µ then applying the Cher-
noff bound on the m-sample estimate (1 − γ)µ̂i of
(1 − γ)µi ∈ [0, 1] gives

P ((1 − γ)|µi − µ̂i| > τ) ≤ 2 exp(−2τ 2m). (25)

Using Equation (25) for all components i and the union
bound gives us

P (∃i ∈ {1 . . . k}.(1−γ)|µi−µ̂i| > τ) ≤ 2k exp(−2τ 2m).
(26)

Now we subtract both sides of Equation (26) from 1,
to find that

P (¬∃i ∈ {1 . . . k}.(1 − γ)|µi − µ̂i| > τ) (27)

= P ((1 − γ)‖µE − µ̂E‖∞ ≤ τ) (28)

≥ 1 − 2k exp(−2τ 2m) (29)

Substituting τ = (1 − γ)ε/(3
√

k) into Equation (29)
gives

P (‖µE−µ̂E‖∞ ≤ ε

3
√

k
) ≥ 1−2k exp(−2(

ε(1 − γ)

3
√

k
)2m),

(30)

4The rationale for the 1-norm constraint on w and ∞-
norm constraint on φ is that these are dual norms, and
thus we have w · φ(s) ≤ ‖w‖1‖φ(s)‖∞ (Hölder’s inequal-
ity). So it corresponds to constraining the maximal reward
maxsR(s) ≤ 1. Taking any 2 dual norms for w and φ would
imply maxsR(s) ≤ 1. Taking 2-norm constraints on w and
φ results in exactly the same theorem.

where k is the dimension of the feature vectors φ and
feature expectations µ, and m is the number of sample
trajectories used for the estimate µ̂E . So if we take
m ≥ 9k

2(ε(1−γ))2 log 2k
δ

then with probability at least

(1 − δ) we have that

‖µE − µ̂E‖∞ ≤ ε

3
√

k

Using ‖·‖2 ≤
√

k‖·‖∞ for k-dimensional space, we get

‖µE − µ̂E‖2 ≤ ε

3
(31)

Since µE ∈ M , Theorem 1 together with Equation (31)
guarantee convergence to the ball of radius ρ = ε

3
around µ̂E . After sufficient iterations of the algorithm
as specified in Equation (19), we have t(i) ≤ ε

3 , and
thus the algorithm will return a policy π̃ such that
µ̃ = µ(π̃) satisfies

‖µ̃ − µ̂E‖2 ≤ t(i) + ρ ≤ 2ε

3
(32)

Now (keeping in mind that ‖.‖2 ≤ ‖.‖1 and so ‖w‖1 ≤
1 implies ‖w‖2 ≤ 1) we can easily prove the result

|E[

∞
∑

t=0

γtR∗(s(t))|π̃] − E[

∞
∑

t=0

γtR∗(s(t))|πE ]| (33)

= |(w∗)T (µ̃ − µE)|
= |(w∗)T (µ̃ − µ̂E + µ̂E − µE)|
≤ |(w∗)T (µ̃ − µ̂E)| + |(w∗)T (µ̂E − µE)|
≤ ‖w∗‖2‖µ̃ − µ̂E‖2 + ‖w∗‖2‖µ̂E − µE‖2

≤ 1(
2ε

3
+

ε

3
) w.p. (1 − δ) for m ≥ 9k

2(ε(1 − γ))2
log

2k

δ

= ε w.p. (1 − δ) for m ≥ 9k

2(ε(1 − γ))2
log

2k

δ

where we used in order the definition of w,µ; adding
subtracting the same terms; the triangle inequal-
ity; Hölder’s inequality for p = q = 2;5 Equa-
tions (31), (32); and simplification. The last line di-
rectly implies the theorem.

�

Note that in case the underlying reward function R∗

does not lie exactly in the span of basis functions,
we have graceful degradation of performance. Let
R∗(s) = w∗ · φ(s) + f(s), then it is easy to see from
Equation (33) in the proof above, that performance

degradation is bounded by ‖f‖∞

1−γ
.

5Hölder’s inequality states that for any p ≥ 1, q ≥
1, 1/p + 1/q = 1 and any x, y in some vector space we
have x · y ≤ ‖x‖p‖y‖q.



B. Alternative Interpretation of the

Projection Algorithm

It is well-known that MDP’s can be solved via linear
programming, more specifically by solving the Bellman
LP

minV e′V (34)

s.t. ∀s, a V (s) ≥ R(s) + γ
∑

z P (z|s, a)V (z)

where e is an |S| dimensional vector of all ones. Al-
though this LP is generally too big to solve exactly,
there has been recent work on using this LP for-
mulation to get approximate solutions (de Farias &
Van Roy, 2003; Guestrin et al., 2003). The dual of
this LP is

maxλ

∑

s,a λ(s, a)R(s) (35)

s.t. ∀s
∑

a λ(s, a) − γ
∑

z,a P (s|z, a)λ(z, a) = 1

The entry λ(s, a) represents the expected frequency
of the state-action pair s, a, the constraints ensure λ
is consistent with the transition probabilities in the
MDP. So we can write the feature expectations for a
policy specified by λ explicitly as a function of λ

(µ(λ))k =
∑

s,a

λ(s, a)φk(s) (36)

We can explicitly formulate the problem of matching
the expert’s feature expectations µE as a QP

minλ

∑

k(µE,k − ∑

s,a λ(s, a)φk(s))2 (37)

s.t. ∀s
∑

a λ(s, a) − γ
∑

z,a P (s|z, a)λ(z, a) = 1

In practice, the above QP is typically too large to solve
exactly, just like the Bellman LP and its dual. We
will now derive an algorithm to solve the above QP,
assuming we have access to a reinforcement learning
algorithm, i.e. we assume we can get a solution to the
Bellman LP (and/or its dual). The idea is to linearize
the objective of (37) at the point of its current iterate,
and then use the RL algorithm to solve the correspond-
ing LP. Then the algorithm does a line search between
the current iterate’s point, and the solution to the LP
(which is feasible, but not necessarily optimal for the
QP). Then we linearize around the obtained point and
iterate the above steps. 6 The linearized objective at
a point λ(i) with corresponding feature expectations
µ(i) is easily computed to be

∑

s,a

λ(s, a)
∑

k

(µE,k − µ
(i)
k )φk(s) (38)

6Note our algorithm is an instantiation of the so called
Frank-Wolfe algorithm (Censor & Zenios, 1997).

So the corresponding LP is the dual of a Bellman

LP, with reward R(s) =
∑

k(µE,k − µ
(i)
k )φk(s) =

(µE − µ(i)) · φ(s). It is easily seen that the above al-
gorithm corresponds to the projection algorithm. The
projection corresponds to the line search, and choos-
ing a reward weight vector w and finding the respective
optimal policy corresponds to linearizing and solving
the obtained LP.
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