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Abstract— We consider the task of grasping novel objects and
cleaning fairly cluttered tables with many novel objects. Recent
successful approaches employ machine learning algorithms to
identify points on the scene that the robot should grasp. In
this paper, we show that the task can be significantly simplified
by using segmentation, especially with depth information. A
supervised localization method is employed to select graspable
segments. We also propose a shape completion and grasp
planner method which takes partial 3D information and plans
the most stable grasping strategy. Extensive experiments on our
robot demonstrate the effectiveness of our approach.

I. INTRODUCTION

We consider the task of robots cleaning a desk by grasping

objects. Many challenges are posed by this task: the variation

in shapes and orientations of new objects, lack of complete

3D information. An example of such scenarios is shown in

Figure 1.

Fig. 1. An example scene which our STAIR2 robot tries to clean.

Recent successful methods for robotic grasping cast the

problem as a machine learning task. Specifically, [1], [2], [3]

show that grasping contacts can be learned and generalized

among objects. The methods they developed, thus can be

applied to grasp many novel objects. Most of these algo-

rithms use local features and segmentation is avoided because

color segmentation does not usually yield good results for a

cluttered scene.

Cleaning a table by grasping, however, remains a very

difficult task. In our experiments, grasping most of the

objects is challenging without the knowledge of their shapes.

For many objects, grasping at the centroid is most stable
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and having partial shape information makes the task very

difficult and is one of the main reasons that leads to failures

in grasping.

In this paper, we consider segmentation as a way to

achieve better grasping and address the aforementioned fail-

ures. Unlike previous methods which consider only visible

light images, we take advantage of depth cues along with

visible light images to achieve better segmentation. With

depth data, we can solve problems that are very difficult

to solve by visible light images such as indistinguishable

background, shadows etc. For this to work well in the case

of grasping, we use an active triangulation sensor that gives

very accurate and detailed depth data [4].

Finally, given all the segments for a scene, the robot has

to distinguish between graspable and ungraspable segments.

For this reason, we employ a supervised learning method to

classify between whether a given segment can be grasped

or not. For example, segments that are very large such as

the walls or the tables cannot be grasped by the robot. Our

approach is based on an intuition that ungraspable segments

(“artifacts”) usually have some common patterns such as

being too flat on the tables or being too small, thin or large.

We can therefore use such patterns to discard these bad

segments.

Having good segmentation information can be very useful

for grasping. To illustrate this fact, we consider a simple

grasping method that perhaps makes best use of the segmen-

tation algorithm. It estimates the 3D shape of the objects and

samples good stable antipodal grasps from that.

The five steps of our method are shown in Figure 2.

Note that the goal of step one (“Complete missing 3D

information”) is to fill in missing depth readings due to

occlusions and bad readings. In this step, we employ the

Gauss Siedel algorithm to smooth the 3D data and fill in

missing values. The details of all the steps will be described

in following sections.

Extensive experimental results show that the method de-

veloped in this paper achieves better grasping results for

novel objects as well as cleaning a desk compared to previous

work of our group. More specifically, the method developed

in this paper enables the STAIR2 robot to achieve higher

accuracy compared to competitive methods. Further, the

robot also makes less failures for cleaning-a-desk scenarios.

II. RELATED WORK

Prior work in robot grasping assumed complete 2D or 3D

models of objects. Under such assumptions, many types of

grasps can be modeled and computed, for example force

closure [5], [6], [7], form-closure [8], equilibrium grasps [9],



Fig. 2. The pipeline for our method.

[10], [11], stable grasps [12], compliant grasps [10]. More

recent approaches use machine learning to combine more

information for better grasping using SVMs [13] or for better

controlling using reinforcement learning [14], [15].

The main drawback of these methods is that it is hard

to extend them to real-world data where capturing complete

3D models for objects is difficult. For example, given a static

scene, the back face of objects cannot be captured using a

stereo camera. This realization leads further developments

in robotic grasping where methods have to consider more

realistic sensory data, for example, intensity images, point

clouds, haptic feedbacks. With such sensory data, researchers

have to take into account sensory noises and partial shapes.

Using local visual features, methods are proposed to find

planar grasps, i.e., looking for 2D locations where the robot

can place its fingertips [16], [17], [18], [19]. For non-

planar grasps, a schema structured method is presented to

deal with simple objects [20]. Also with schema structured

learning, Platt et al. [21] proposes a method that assumes

segmentation and fits ellipsoids to objects. Edsinger and

Kemp [22] designed an algorithm to grasp cylindrical objects

with power grasp using visual servoing.

Learning to grasp novel objects has also received special

attention in recent years [23] [2] [24] . The key idea is

that there are certain common 2D and 3D cues that humans

consider when grasping objects. These cues are so robust

such that they can be generalized for grasping objects that we

have never seen before. Saxena et al. [2], for example, apply

this idea to the robotic context and employ machine learning

algorithms to figure out the cues which enable robots to grasp

new objects. Further, Le et al. [3] extends the above methods

and use 3D information that adapts well to the configuration

of the robot hand.

The above approaches do not consider shape information

of the objects. This appears to be advantageous because

finding the shape information of the objects in a scene is a

very challenging computer vision task. In fact, segmentation

is still an active area in computer vision despite many years

of effort. However, as we observe in many experiments,

having shape information is essential in order to have a

high success rate for grasping. In this paper, we will show

that segmentation can be significantly simplified if we use

an accurate 3D sensor and that grasping can be made

remarkably easy once segmentation is achieved.

Segmentation with depth data is a relatively old idea. One

of the most well known method for range segmentation

is described in [25]. Specifically, Trucco and Verri [25]

illustrate a surface extraction method called HK segmentation

that fits parametric shapes to range data. Parametric shape

fitting and segmentation is also the focus of [26]. Most of

the methods in the previous cases are used in the context of

robotic navigation [27], [28] where the required accuracy is

low.

Robotic manipulation, especially grasping, with segmen-

tation is a focus of [29], [30]. Specifically, the authors

consider common cases where objects can be segmented

easily because they are in isolation on a flat surface such as

floors, desks, tables. Once segmentation is achieved, grasping

can be made trivial even with very simple rules. Our work

builds on this insight and extends further to the case where

objects, their shadows and background cannot be easily

segmented using only intensity images.

Likewise, visible-light image segmentation for grasping

has been considered in the work of [21]. Specifically, the

authors consider fitting parametric shapes to objects and

then apply learned decision rules for particular shapes. The

method we developed in this paper, as mentioned above,

considers segmentation with depth and hence achieve better

results. Furthermore, we also employ a supervised learning

algorithm that identifies ”bad” segments and discards them.

As a result, our method can be applied successfully to more

sophisticated scenarios than the ones considered by [21].

III. FILLING MISSING DEPTH DATA

Our system makes use of both depth and visible light

image data. To capture depth data, we used an active tri-

angulation sensor [4] (see Figure 3). An important feature

of this sensor is that it gives very detailed depth data (also

called depth map or point cloud).

Fig. 3. Image and depth data captured by our robot.(Note: Missing back
face of objects

Unlike visible light images, depth data usually contains

mis-readings [4]. Mis-readings occur if the camera cannot

see the laser beam because of occlusions or variation in

lighting conditions. For segmentation and grasping to work,

we employ a simple algorithm to fill in missing values for

depth readings. Here, we describe the algorithm in full detail.

Specifically, we apply the successive overrelaxation

method (SOR) to iteratively extrapolate the 3D data of the

missing pixels. This iterative extrapolation method alternates



between two steps. The first step computes values of the

missing pixels given their neighbourhood while the second

step computes values of the missing pixels given their

previous values. The method terminates when the values of

the missing pixels do not change. In this work, initial values

for missing pixels are set to zero.

IV. SEGMENTATION WITH DEPTH DATA

The problem of image segmentation remains a great

challenge for computer vision, having received continuous

attention since the birth of the field. There have been a

large number of fairly successful methods for segmenting

visible image data. In this paper, we consider a graph-based

segmentation algorithm described in [31] which our method

will be based on.

In detail, Felzenszwalb and Huttenlocher [31] design a

graph based representation of an image and find the evidence

of a boundary between regions based on L2-Norm between

the intensity of pixels.

||I(pi) − I(pj)||2 > τ

where I(pi) ∈ R3 is the intensity of the pixel pi and τ is

the threshold function.

If the L2 Norm of the intensities is greater than the

threshold function then the pixels are considered to be in

different regions.

Despite its robustness, the method has some limitations.

Since the algorithm is based entirely on pixel intensities it

works poorly in scenes having shadows or more than one

light source. This is because segmenting an image on the

basis of color information is not an ideal approach. An

advantage of depth data allows us to extend the approach in

[31]. We follow the same scheme of representing an image

as a graph but updated the metric for finding boundaries

between regions to include the depth data.

||WT ∗ (F (pi) − F (pj))||2 > τ

where F (pi) ∈ R4 is the intensity of the pixel pi having an

extra dimension of depth value corresponding to that location

in 3D space, W ∈ R4 is the weight vector assigning weights

to different elements of F and τ is the threshold function.

The intuition behind including weights in the equation was

to rank the elements in order of their importance. In our

experiments, we observe that setting greater weight to the

depth value than color intensities often gives much better

results than setting equal weights to all of them. We found

that setting weights to 0.1 for the color channels and 0.7 for

the depth channel gives the best results.

Figure 4 shows a comparison between the two segmen-

tation approaches – segmentation without and with depth

information. It can be seen in Figure 4(a) that although the

method proposed in [31] works well to segment the scene,

it is not robust to shadows and tiny scratches on the table.

This creates a large number of artifacts on the table and

the wall which cannot be grasped by the robot. In contrast,

segmentation with depth gives much better segments.

(a) Segmentation without depth (b) Segmentation with depth

Fig. 4. Comparison between the two approaches: segmentation without
and with depth.

V. LOCALIZING GRASPABLE SEGMENTS

Given all segments for a particular scene, obtained by

the previous step, the robot has to distinguish between

which segment can be grasped. For example, if we run the

segmentation algorithm, we may find large segments like

the walls, tables, floors which are very large and cannot

be grasped by the robot hand. Likewise, the segmentation

algorithm, even with accurate depth data, can produce some

small segments such as textures on the table.

We employ a supervised learning classifier to localize all

graspable segments from the previous unsupervised segmen-

tation stage. The basic intuition here is that ungraspable seg-

ments have common simple patterns compared to graspable

segments. The following features are used in our classifier:

a) Geometric 2D features: These features are computed

from the image plane. For every segment, we compute the

width, height and area of the segment from the visible

image data. The intuition behind using these features is that

graspable objects have to be close to the robot and thus can

never appear very small or very large.

b) Color image features: These features are computed

from the color information provided by the visible image.

We first convert RGB image to LAB image which is more

insensitive with lighting conditions. We then compute the

variance in L, A and B channels of the new LAB image.

c) Geometric 3D features: These features are computed

from the point cloud data. They are the variance in depth,

variance in height and range of height. Compared to the

geometric features from the image plane, geometric features

from 3D point cloud are more sensitive to the coordinate

axes. To address this issue, we use the robot frame as the

main coordinate axes. In this frame, the XY plane is the flat

horizontal plane which corresponds to table or desk surfaces.

Computations for height, depth etc in this frame are therefore

considerably simplified.

The intuition for above features is that ungraspable seg-

ments tend to be either very small or very large and tend

to have lesser variations in color composition as compared

to graspable segments or objects. We further illustrate the

discriminative power of the above features in Figure 6.

To train the classifier, we collected 200 scenes of 6 objects

(shown in Figure 5). We used the Support Vector Ma-

chine (SVM) algorithm with Gaussian Radial Basis Function

(RBF) kernel.



In the prediction phase, once all the segments are classified

or “localized”, we pick the graspable segment that is closest

to the robot and also farthest away from other graspable

objects in the scene.

Fig. 5. Objects used for training the supervised localization classifier.

VI. GRASPING OVERVIEW

In this section, we will describe how our grasping algo-

rithm works. The data provided to the algorithm is a 2D

image, a 3D point cloud and a 2D bounding box from the

segmentation algorithm described above.

Our algorithm consists of three main steps. It first trans-

forms the bounding box from 2D to 3D to take advantage

of provided 3D data. It then constructs a mesh which is

an approximation of the shape of the object. Finally, by

assuming the symmetry of the object, we perform sampling

to find contact points that are accessible to the robot.

In our algorithm, we consider antipodal grasps in which

the robotic manipulator grasps an object by placing its fingers

at two opposite points on the object. Note that 3D data is

not adequate because the backside cannot be captured by the

sensors. To address this problem, we assume symmetry of

objects and construct a triangular mesh for the current object.

The algorithm will then use this mesh to find grasping points

such that no collision will occur.

A. 3D Bounding Box

To find a 3D bounding box, we first transform 3D data

to a new coordinate system, where one axis corresponds to

gravity force, i.e., the vertical direction, the other axis is the

horizontal direction, and the third is the cross product of the

two.

We project every point in the 2D bounding box to this

coordinate system and use the minimum and maximum

values for every coordinate to define the 3D bounding box.

B. Triangular Mesh Construction

In this step, we construct a triangular mesh from the depth

data and then use it to check collisions between the hand and

the object.

We construct a mesh of the object using the 3D data of all

pixels in the 2D bounding box. A mesh for an object consists

of many local meshes. Each local mesh is constructed using

four adjacent pixels. If any points corresponding to these

pixels lie outside the 3D bounding box, they will be projected

to the nearest face of the 3D bounding box.

C. Antipodal Grasp

Once a triangular mesh is constructed, we are now ready

to find contact points for the robot to grasp the objects. Our

goal is to find points that make the grasps most stable. In

this section, we will elucidate a simple method that makes

best use of the given segmentation information and hand

configuration.

We consider the case of grasping with two contact points.

This is because manipulators with two fingers are quite

common and also our algorithm is significantly simplified

under such configuration. To extend this method to three-

fingered configuration, we use the thumb to reach the first

point and configure the second point to be in the middle of

the other two fingers.

First, our method samples random initial grasp points.

For each grasping point, it computes the normal vector at

the grasping point based on nearby surface information.

Specifically, the normal vector can be computed by principal

component analysis of depth data around the current grasping

point. We denote the grasping point by P and the normal

vector by ~n (see Figure 7a).

Next, by assuming object symmetry along the vertical

axis of the object, when a grasping point is acquired, its

opposite grasping point is assumed to have a normal vector

pointing in the direction opposite to the normal vector of

the initial grasping point. The opposite grasping point, under

the symmetry assumption, is therefore obtained by taking the

intersection of the line formed by P and n with the opposite

side of the object.

Once the two points are chosen, we have one remaining

degree of freedom, which is the approach angle of the hand

to the pair. This degree of freedom will be further solved by

collision detection.

Specifically, according to the configuration of the hand, a

finger is in contact with the object when the finger is pointing

into the normal direction ~n which is perpendicular to the

approaching direction ~a of the hand. Since such direction is

perpendicular to the normal vector of the grasping point, this

degree of freedom forms a plane. This plane will be used for

collision checking between the hand and the object.

We discretize this degree of freedom (by angles) and

search for one that has no collision with nearby objects.

Among all searched angles, we choose the angle that has

the maximum distance between the intersection and the line

formed by the grasping point and the normal vector. If

this distance (dg in Fig. 7(b)) is not adequate for the palm

placement dh in Fig. 7(b)), the grasping point is rejected.

If the space between these two points is enough to place a

finger (dp < ds and dt < df ), the initial grasping point ~p

and the first reached point ~p1 are reported as a valid grasp.

We can repeat the above process to find more valid grasps

for all sampled points. In this work, we find 30 valid grasps

and rank them by their distance to the centroid of the object.

VII. DESCRIPTIONS OF THE ROBOT

We performed our experiment on the STanford AI Robot

(STAIR2). This robot has a 7-DOF arm (WAM, Barrett



(a) Variance in A and B in the LAB color space (b) Variance in depth and height of the segments
in the point cloud data

(c) Width and height of the segments in the 2D
image.

Fig. 6. Feature Vector Plots for a subset of features employed by our classifier. Blue dots correspond to graspable segments (positive class) and red dots
correspond to ungraspable segments (negative class).

(a) (b)

Fig. 7. Finding an antipodal grasp. (a) Two grasping pairs (p, p1) and (p, p2) formed by p and ~n and their intersection with the object boundaries. (b)
Grasping pair (p, p1) is considered because it best matches the hand configuration and no collision occurs.

Technologies) and a three-fingered 4-DOF hand.

As mentioned earlier, to capture depth data, the robot uses

an active triangulation sensor which contains a laser projector

and a camera [4]. The camera returns a 640x480 color image.

The active triangulation sensor returns a very dense depth

map for most pixels in the image. Figure 3 shows data

captured by the camera and the active triangulation system.

The whole system (arm, camera, laser) is calibrated by

our recently proposed algorithm for joint calibration [32].

The average calibration errors of the entire system are often

less than 5mm.

VIII. EXPERIMENTS

A. Offline experiments with segmentation

In the first experiment, we would like to test the perfor-

mance of our localization algorithm on a offline labelled

dataset. Our goal of this experiment is to understand how

well the segmentation and supervised classifier (Stage 2 and

Stage 3 in Figure 2) perform without actual grasping. For

this experiment, we collected a test set that consists of 100

fairly cluttered scenes of novel objects and a 100 scenes of

single novel objects. Novel objects are the ones which do

not belong to the training set or more informally the ones

that “the robot has never seen before.” Each scene generally

has up to ten such objects. For each scene, we labelled all

graspable objects by drawing a contour segment along the

boundary of the objects. Whenever the segmentation and

classifier return a segment, that overlaps 70% with a labelled

segment, we consider that a “success”; otherwise we consider

that a “failure”.

We record the Max F1-score and average precision on

this test set and report it in Table I. As can be seen from

the Table, our segmentation with depth gives significantly

better results than segmentation without depth. Moreover,

our algorithm gives very high accuracy before any grasping

takes place. We also plot the results in Figure 8. We also

visualize the effectiveness of segmentation with depth and

color data in comparison with standard color segmentation

and show the results in Figure 9. This visualization confirms

previous numerical results: segmentation with depth is more

robust than segmentation without depth. As a result, the first

two steps give very high accuracy even with rather cluttered

tables.

B. Visualizing grasping points

We further analyze the performance of our algorithm by

visualizing the grasping points produced by Stage 4 and 5



Fig. 8. Precision Recall curves for object localization in simple (Left) and cluttered scenes (Right).

Fig. 9. Segmentation with and without depth and localization for a cluttered table with many novel objects. Column 1: original scenes. Column 2:
segmentation without depth data. Column 3: segmentation with depth data. Column 4: Localization with depth segmentation – objects in red rectangles
will be grasped first. The execution of grasping will result in the simplification of the scenes.

in the processing pipeline (see Figure 2).

In this experiment, we took several cases in the previous

algorithm, ran the segmentation and localization algorithm

to produce the bounding boxes. We then visualized the 3D

meshes and the grasping points produced by our algorithm

in Figure 10.

C. Grasping novel objects

In this experiment, we executed all the steps of our

algorithm in order to grasp novel objects using the STAIR2

robot. A success case is recorded if the robot can grasp an

object on a table and drop it into the bin; otherwise we

record that as a failure. Our grasping pipeline was executed



TABLE I

LOCALIZATION STATISTICS FOR CLUTTERED AND SINGLE-OBJECT

SCENES.

Cluttered Scenes Single Object Scenes

3D 2D 3D 2D

Max. F-1 Score 0.9102 0.8323 0.9231 0.8627

Average Precision 0.6021 0.5240 0.6584 0.6159

Fig. 10. Visualization of the grasping points produced by the grasping
algorithm (best viewed with colors). Left: point cloud with 3D bounding
boxes around segmented objects. Middle: 3D mesh of segmented objects.
Right: grasping points (red dots) produced by the grasping algorithm.

under different test conditions placing the robot at different

positions with respect to the table. We report our grasping

results in Table II and compare them with results in [1] and

[3]. The results show that despite its simplicity, the algorithm

performs very well in grasping novel objects. Note that the

3D mesh is an approximation of the shape of the object,

hence the robot hand in some cases collides with objects

while grasping.

D. Robot cleaning a table

We also applied the above algorithm to successfully clean

tables with several new objects. In general, our algorithm is

more robust than the algorithm described in [3]. The video

attachment with this paper shows two such cases.

TABLE II

GRASPING NOVEL OBJECTS WITH THE STAIR2 ROBOT.

Objects Method in [1] Method in [3] Our Method

Football 50% 70% 95%

Mug 80% 90% 95%

Nerf Gun 50% 75% 65%

Helmet 90% 75% 95%

Robot Arm 70% 80% 80%

Foam 70% 85% 90%

Cup 70% 85% 85%

CD Holder 75% 95% 95%

Mean/Std 69.3 ± 13.7% 81.8 ± 8.4% 87.5 ± 10.6%

IX. DISCUSSION AND CONCLUSION

In this paper, we considered the task of grasping novel

objects and cleaning a cluttered table. We showed that

grasping can be significantly simplified if segmentation is

employed. To achieve good segmentation, we proposed to

use depth data in combination with visible light image

data. We also designed a supervised classifier to select only

graspable segments. Given the segments, 3D construction of

the object can be carried out. As a result, we can use a very

simple grasping algorithm and achieve very high accuracy

compared to other competitive methods.
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