
Machine Learning
of Jazz Grammars

Jon Gillick,∗ Kevin Tang,†

and Robert M. Keller∗∗
∗Annkissam
One Broadway, 14th Floor
Cambridge, Massachusetts 02459, USA
jrgillick@wesleyan.edu
†Stanford University
Palo Alto, California 94305, USA
kdtang@stanford.edu
∗∗Harvey Mudd College
301 Platt Blvd.
Claremont, California 91711, USA
keller@cs.hmc.edu

In the context of an educational software tool that
can generate novel jazz solos using a probabilistic
grammar (Keller 2007), this article describes the
automated learning of such grammars. Learning
takes place from a corpus of transcriptions, typically
from a single performer, and our methods attempt
to improvise solos representative of such a style.
In order to capture idiomatic gestures of a specific
soloist, we extend an earlier grammar representation
(Keller and Morrison 2007) with a technique for rep-
resenting melodic contour. Representative contours
are extracted from a corpus using clustering, and
sequencing among contours is done using Markov
chains that are encoded into the grammar.

This article first defines the basic building
blocks for contours of typical jazz solos, which we
call slopes, then shows how these slopes may be
incorporated into a grammar wherein the notes
are chosen according to tonal categories relevant
to jazz playing. We show that melodic contours
can be accurately portrayed using slopes learned
from a corpus. Experimental results, including blind
comparisons of solos generated from grammars
based on several corpora, are reported.

Related Work

Grammars form the basis of our melody gener-
ation technique (Keller and Morrison 2007). Use
of grammars for creating musical structures has
also been suggested or investigated by numerous
researchers (Winograd 1968; Roads 1979; Bell and

Computer Music Journal, 34:3, pp. 56–66, Fall 2010
c© 2010 Massachusetts Institute of Technology.

Kippen 1992; Cope 1992; McCormack 1996; Pachet
1999; Papadopoulos and Wiggins 1999; and others).
Dubnov et al. (2003) used probabilistic and statis-
tical machine learning methods for musical style
recognition. Eck and Lapalme (2008) investigated
automatic composition and improvisation with
neural networks, and Cruz-Alcazar and Vidal-Ruiz
(1998) developed a method for learning grammars
to model musical style. The latter applied three
grammatical inference algorithms to automatic
composition of melodies in Gregorian, Bach, and
Joplin styles, achieving the best results with the
Gregorian melodies. They classified 20 percent of
composed melodies as very good, which they defined
as able to be “taken as an original piece from the
current style without being a copy or containing
evident fragments from samples.” We strove toward
the same definition of “very good” solos.

An important part of our representation involves
a formalization of melodic contour. Kim et al. (2000)
used contours for musical classification and query-
ing, and Chang and Jiau (2003) investigated musical
contour with applications to extracting repeating
figures and themes from music. In addition, De
Roure and Blackburn (2000) proposed melodic pitch
contours for content-based navigation of music.

We use clustering as a means of organizing
and abstracting a large variety of similar melodic
fragments, and Markov chains to represent likely
transitions between abstract fragments. Kang, Ku,
and Kim (2001) used a graphical clustering algorithm
for extraction of melodic themes. Jones (1981)
described uses of both Markov chains and grammars
in music composition. Verbeurgt, Dinolfo, and
Fayer (2004), among others, used Markov models
as a means for composition by learning transition

56 Computer Music Journal



probabilities between patterns. Ames (1989) dealt
with different-sized Markov chains of notes.

Jazz Improvisation

Ideally, jazz improvisation involves the creation of
new melodies while the melodies themselves are
being performed. It is known that this process is
often informed by prior creation and practice of
vocabulary ideas prior to performance. One of the
purposes of our work is to construct software tools
that facilitate the construction and recording of
such ideas. Such a tool can also be used to transcribe
and analyze existent ideas. The present work shows
that, once transcribed, a solo can be put to use in the
creation of a grammar, which can then be used to
provide improvisations over any chord progression,
not just the ones in the corpus.

Although a given jazz performer might not be
aware of how he or she does improvise, it seems
reasonable to say that ideas of what one is able
and willing to play can be captured in the form of
patterns or, more generally, some form of grammar.
It is obvious that a finite set of patterns can be
described by an ad hoc grammar. A grammar that is
too ad hoc, however, would tend to generate only
very predictable, and thus eventually uninteresting,
melodies. It is important, then, that melodic ideas
be abstracted to enable the replacement of certain
elements with others, so that novel results can be
produced. If the abstraction is too coarse-grained,
however, the melody may lose coherence.

Melody Generation Based on Abstraction

The purpose of jazz solo generation is to create
novelty, while at the same time adhering to some
structural and harmonic guidelines. Although
melodic abstraction has obvious uses in analysis,
we contend that it is very useful in generation as
well. For example, one can generate a melody by
first generating an abstraction of a melody, then
instantiating that abstraction to an actual playable
melody. We elaborate on this approach in the
following.

Table 1. Note Categories Used in Grammar
Terminals

Symbol Color Meaning

C black Chord tones of the current chord
L green Color tones (chord extensions)
H —— Either a chord tone or a color tone

(“Helpful” tones)
A blue Tones that chromatically Approach

one of the above
—— red Tones that are neither C, L, H, nor A
X —— Arbitrary tone
R —— Rest

Note Categories

Our grammatical approach for jazz melodies at-
tempts to strike a balance between novelty and
coherence by augmenting the note categories of
Keller and Morrison (2007) that correspond to
concepts in jazz playing. These categories are in-
stantiated probabilistically and also in observance
of other constraints, such as range considerations, at
generation time. Each category, as given in Table 1,
has a corresponding terminal symbol in the gram-
mar and four of them show as different note head
colors on the staff, for elucidation and feedback to
the user. Owing to printing limitations, we do not
show the colors in examples here, but will call out
salient aspects of categories by annotation. One
other category, S, for scale tones, was used by Keller
and Morrison (2007), but it does not play a major
role in the current work.

A grammar generates a list of terminal symbols,
from which a melody is then generated. Each
note corresponds to one terminal symbol, but the
terminal symbol specifies only the note category,
as described earlier, and the duration. The actual
note retains the duration, but the pitch is generated
probabilistically, and with certain attention being
paid to the interval between it and the previous note.
For example, in the terminal alphabet, C4 represents
a chord tone of duration one quarter-note, L4/3 a
color tone of a quarter-note triplet, A8 represents
an approach tone of duration one eighth-note, H4
a dotted quarter-note chord or color tone, R2 a

Gillick, Tang, and Keller 57



Figure 1. Two example
realizations of the
S-expression (� 1 2 H8 H8
H8). The interpretation of
this expression is an
ascending group of three

eighth notes that are chord
or color tones, with each
note separated in pitch
from the previous by at
least one semitone and at
most two semitones.

half-note rest, etc. (By “color tones,” we mean tones
that are not in the chord, but that are complementary
to it and have a sonorous quality. Sometimes these
are referred to as “extensions” or “tensions” of the
chord.) The symbols for note categories are derived
from ones for expressing concrete melodies in Impro-
Visor (Keller 2005). That notation was intended to
make it easy for jazz musicians to enter and read
melodies in textual form, and the category notation
is aimed at achieving similar ergonomic goals.

Abstract Melodies

It is reasonable to regard a sequence of terminal
symbols in the grammar as being an abstract
melody, in the sense that multiple melodies will
fit the sequence when the note categories are
instantiated to corresponding pitches. Another
advantage of such melodic abstractions is that they
can be instantiated over any chord progression, even
for chords of different quality, such as major, minor,
diminished, dominant, etc.

Although individual note categories can be used
to generate somewhat convincing jazz melodies,
in order to capture specific styles it is necessary
to introduce one or more mechanisms to provide
greater coherence among individual notes. Thus we
extend the individual note categories with “macros”
that can capture sequences of notes in certain
patterns. The current work focuses on a single
macro concept, called a slope. Each slope has two
numeric parameters, followed by a sequence of one
or more terminal symbols. The numeric parameters
indicate the minimum and maximum rise between
successive notes in the sequence. Negative numbers
indicate fall rather than rise. In the grammar rules,
slopes are treated as terminal symbols appearing
in the consequent of a production. In generating
a melody, the terminal symbols inside a slope are
converted to specific notes, as before.

Figure 2. Two example
realizations of the
S-expression (� -3 -4 C4 H8
H8 C4). The interpretation
of this expression is a
descending series of a
chord quarter note, two
“helpful” eighth notes, and

a chord quarter note, with
a minimum separation of
three semitones and a
maximum separation of
four semitones. (“Helpful”
means either a chord tone
or a color tone.)

S-expressions (McCarthy 1960) are used in our
grammar notation to provide grouping of notes in
a sequence, and for hierarchy, when necessary. For
brevity, we will represent the word “slope” by � in
this paper. Figures 1–4 gives some examples of S-
expressions for slopes, along with the interpretation
of those expressions. It is not always possible to
obey the constraints of both the slope and the note
category, so sometimes the tool must give priority
to one or the other.

Slopes are unidirectional, and thus not sufficient
by themselves to represent all idioms of interest. For
example, consider the bebop idiom of an enclosure
(Baker 1998), wherein a chord tone is approached
by notes above and below. It requires two slopes
to represent this contour, as shown in Figure 3.
Our notation for chords follows jazz lead sheet
abbreviations, as given in Table 2.

In addition to short idioms, we can capture larger
selections, such as in Figure 5, from Red Garland’s
solo on Bye Bye Blackbird (Davis 1961). Notes such
as the G# in the first measure of the original melody
in Figure 5 begin an ascending segment, and so have
only one interval from which to choose a minimum
and maximum slope. In such cases, we found that
relaxing the step bounds by a half step in each
direction yielded better results. Consequently, we
relax (�-9-9 A16) to (�-8-10 A16) before instantiating
to a melody.

Because chord tones play the most significant role
in shaping the melody, we prioritize chord tones
higher than slope bounds, but for note categories
other than chord tones, we do not. Above the
melody is a series of line segments intended to
show the qualitative contour of the original line.
The caption of Figure 5 shows the derived abstract
melody. Figures 6 and 7 illustrate two melodies
generated from that abstract melody. For contrast,
Figure 8 shows what happens when we use only the
note categories and ignore the contour information
encoded as slopes, whereas Figure 9 shows using
slopes, but suppressing note categories. In the last

58 Computer Music Journal



Figure 3. Two example
realizations of the
S-expression (R8 L8 (� 3 5
H8) (� -2 -1 C4.)). The
interpretation of this
expression is a rest,
followed by an eighth note

color tone, followed by a
chord or color tone three to
five semitones up, then a
chord tone one or two
semitones down. This is an
example of an “enclosure”
(Baker 1998).

instance, more notes (shown circled) outside the
harmony are generated.

If there is no tone of the given type available
within the pitch bounds, we use a probability table
to choose another note. This could involve relaxing
the pitch bounds (usually when looking for chord
tones) or selecting a note of a different type within
the bounds (usually for all notes except chord
tones). The purpose of such expedients is to avoid
introducing a full-blown constraint-solving system
into the implementation.

Grammar Learning

Grammatical inference algorithms attempt to define
the rules of a grammar for an unknown language
through analysis of a training data set. The data
can contain both positive samples (strings in the
language) and negative samples (strings that should
not be accepted). In our case, we use only positive
sample sets, e.g., performances from an artist that
we want to attempt to imitate. The grammar, then,
should generate strings corresponding to melodies
similar to those in the training corpora, and ideally
generate nothing that differs greatly from them.

We experimented with several methods for ex-
tracting grammar rules from training data, including
extraction by phrases, with a phrase defined as a
section of a solo starting after a rest and ending with
a rest. Given the variable length of phrases and the
difficulty of recombining phrases into a solo of a
specified size, we settled on breaking melodies into
time windows of a predefined length. After choosing
two parameters, the number of beats per window
and the number of beats by which to slide the
window (which is necessarily less than or equal to
the window size), we collect all melodic fragments
of a certain length in a corpus and associate one
grammar terminal for each abstract melody of the
given length. We found that, among fragments of
between 1 and 8 beats, 4-beat fragments achieved

Figure 4. An example
realization of the
S-expression: (R4
(� 5 5 C8/3 C8/3)
(� -5 -5 C8/3)
(� -2 -2 C8/3)
(� 5 5 C8/3)
(� -5 -5 C8/3)

(� -1 -1 C8/3) (� 5 5 C8/3)
(� -5 -5 C8/3) (� -2 -2 C4))
The interpretation of this
expression is a standard
jazz idiom, containing
triplets descending dia-
tonically by chord tones,
with specified intervals.

Table 2. Chord Symbols

Symbol Meaning

M major
m minor
m7 minor seventh
7 dominant seventh, if by itself
6 added sixth

the best balance between originality and continuity
in the case of 4/4 meter, which was the most typical.

Markov Chaining

To improve continuity between melodic fragments,
once we have gathered the abstract melodies that
will make up our generated solos we combine them
into full solos based on a Markov chain (Kemeny et
al. 1959) represented within the grammar. Markov
chains represent a system with a sequence of
states, using conditional probabilities to model
the transitions between successive states. Because
our grammars are already probabilistic, Markov
chains can be fit into the grammar framework more
or less naturally. An n-gram Markov chain uses
probabilities conditioned on the previous n – 1
states. Sets of abstract melodies serve as the states
in the Markov chain. Given a starting melody, we
add the next phrase based on a list of transition
probabilities from the first measure.

Clustering

To increase the variety in recombination of melodic
ideas, we cluster similar abstract melodies together
using the k-means clustering algorithm (Hartigan
and Wong 1979). We then collect statistics that
represent which clusters follow other clusters in
the corpus and build our table of probabilities
accordingly, using clusters as states of the Markov
chain. To compose new solos, we first generate a

Gillick, Tang, and Keller 59



Figure 5. An
original melody line, with
contour suggested above
it. An abstract melody
(slope representation)
is extracted from it

as the S-expression: (R8 C8
(� -6 -6 A16)(� 1 3 C16
C16 C16 C8)(� -12 -12 C8)
(� 2 4 C8 L8) (� -4 -1 L8
C8 C8 A8 C8)(� 12 12 C8)
(� -12 -2 C8 C8)) Figures

6–9 show example realiza-
tions of this S-expression.
The S-expressions
are not always strictly
adhered to (see text).

sequence of clusters from the grammar, and then
randomly select representatives from clusters, again
using the grammar rules to specify the distribution
of representatives.

Clustering algorithms represent data as points in
an n-dimensional plane and group points together
through some distance metric. Our cluster analysis
is based on a Euclidean distance measure on seven
parameters:

1. number of notes in the abstract melody,
2. location of the first note that starts within

the window,
3. total duration of rests,
4. average maximum slope of ascending or

descending groups of notes,
5. whether the window starts on or off the beat,
6. order of the contour (how many times it

changes direction), and
7. consonance.

The average maximum slope (parameter 4 in the
list) is obtained by segmenting the abstract melody
into sequences of notes that are all ascending or
all descending, calculating the slopes between each
pair of neighboring notes within each sequence,
taking the absolute value of each slope, finding the
maximum absolute value within each sequence, and
then averaging the maximum absolute values from
all such sequences within the abstract melody.

The consonance value (parameter 7) is assigned
to a measure based on the note categories. For each
note, we add to the consonance value a coefficient
for the note category multiplied by the duration of
the note. For example, typical coefficients are 0.8 for
a chord note, 0.6 for an approach note, 0.4 for a color
note, and 0.1 for other notes.

Given a parameter k for the number of clusters,
the k-means algorithm selects k points as cluster
centers and then begins an iterative process given
by the following two steps:

Figure 6. A melody
generated from the
S-expression of Figure 5,
using slopes.

1. Assign each data point to the nearest cluster
center.

2. Re-compute the new cluster centers.

These steps are repeated for some number of
iterations or until few enough data points switch
clusters between iterations. In principle, the user
can set the value of k. However, we currently use
for k the number of melodic fragments divided by
10 as a nominal empirical value. Figure 10 shows
three representative one-measure melodies from a
corpus of Charlie Parker solos. The algorithm first
abstracted these melodies, and then clustered the
corresponding abstract melodies together.

Transition Probabilities

Transition probabilities of the Markov chain are
based on clusters as states. In the training data, real
melodies are mapped to abstract melodies, which
are then mapped to clusters, as described previously.
Then we re-consult the training data and count, for
each pair of clusters A, B how many times a melody
from cluster B follows a melody from cluster A.
Normalizing these counts gives us the transition
probabilities between clusters. Figure 11 illustrates
the result for clusters derived from a small corpus.

Grammar Representation

We encode, into the grammar, the transition prob-
abilities as derived from clustering. In effect, the
transition probabilities generate a sequence of clus-
ters, and then an abstract melody is chosen from
each cluster and instantiated to a real melody.

Table 3 shows a simple probabilistic grammar
corresponding to the transitions in Figure 11. Note
that each non-terminal symbol has an argument
indicating the number of measures to be filled.
This is only used to control the expansion of the

60 Computer Music Journal



Figure 7. Another melody
generated from the
S-expression of Figure 5,
using slopes.

Figure 7.

Figure 8. A melody
generated from the
S-expression of Figure 5,
using only note categories,
and not slopes.

Figure 8.

grammar to fill a certain amount of temporal space,
the number of measures of which is specified as the
argument to the Start production. Non-terminals
Start, C0, C1, and C2 represent the states of the
Markov chain. The rules with Q0, Q1, Q2 on the
right-hand sides show the choices from clusters.
For brevity, we have included only one of the
representative abstract melodies for each of Q0, Q1,
and Q2. We have transcribed our implementation’s
notation from S-expressions to more conventional
grammar rules for readability.

The grammar of Table 3 is for a first-order Markov
chain. For an nth-order chain, where n ≥ 2, the states
would be labeled by sequences of n-1 cluster indices.
These correspond to sequences of clusters that can
actually occur in the corpus.

Generating with a Grammar

The terminal string derived from the grammar is
an abstract melody, created by chaining together a
representative abstract melody in each cluster. The
representatives are currently chosen by a uniform
distribution. We then generate a real melody by
randomly selecting an initial note of the specified
note category and then filling in the rest from slope
and note category constraints.

Algorithm Summary

The following summarizes the algorithmic approach
used in the current work, beginning with the analysis

Figure 9. A melody
generated from the
S-expression of Figure 5,
using only slopes, and not
note categories. Circled
notes are neither chord nor
color tones.

Figure 9.

Figure 10. Three
melodies instantiated
from representatives
within one cluster of a
Charlie Parker solo corpus.

Figure 10.

phase, which creates a grammar from a corpus of
solos over chord progressions, followed by synthesis,
which creates new solos over possibly quite-different
chord progressions. There will be many syntheses
performed for a given analysis phase, as our users
will mostly be using grammars synthesized by
themselves or others.

Analysis, resulting in a grammar:

1. Break up the corpus of transcriptions into
melodic fragments (time windows), typically
one measure in length.

2. Translate each fragment into an abstract
melody made up of slopes, note categories,
and rhythms.

3. Run a clustering algorithm on abstract
melodies, grouping all abstract melodies into
clusters, with typically ten abstract melodies
per cluster on average.

4. Reexamine each transcription in the corpus
to determine the sequence in which clusters
appeared.

5. Collect n-gram statistics on the clusters,
typically for n between 2 and 4, at the option
of the user.

Gillick, Tang, and Keller 61



Figure 11. Example of
derived transition
probabilities between
clusters.

Table 3. Probabilistic Grammar Embedding a
Markov Chain

Production Rule Probability

Start(Z) → C0(Z) 0.23
Start(Z) → C1(Z) 0.25
Start(Z) → C2(Z) 0.52
C0(0) → () 1
C1(0) → () 1
C2(0) → () 1
C0(Z) → Q0 C0(Z-1) 0.24
C0(Z) → Q0 C1(Z-1) 0.24
C0(Z) → Q0 C2(Z-1) 0.52
C1(Z) → Q1 C0(Z-1) 0.18
C1(Z) → Q1 C1(Z-1) 0.28
C1(Z) → Q1 C2(Z-1) 0.54
C2(Z) → Q2 C0(Z-1) 0.25
C2(Z) → Q2 C1(Z-1) 0.24
C2(Z) → Q2 C2(Z-1) 0.51
Q0 → ((� 0 0 R2 R4 R8 C16/3) 1

(� 1 1 A16/3 L16/3)
Q1 → ((� 0 0 C8) (� -9 -9 C8) 1

(� 2 3 C8 G4+8 R4))
Q2 → ((� 0 0 C4/3) (� 1 2 L4/3 A4/3) 1

(� -7 -1 C4/3 G4 C8/3))

6. Create a probabilistic grammar that generates
sequences of clusters based on the n-gram
data.

Melody synthesis, using a grammar:

1. Given a leadsheet with a chord progression
but no melody, the user selects a section of
the tune over which to generate a solo.

2. The grammar rules expand, using production
probabilities, until a sequence of clusters
that corresponds to the desired number of
measures is generated.

3. From each cluster in the sequence, randomly
choose one abstract melody, and concatenate
the abstract melodies.

4. Translate the abstract melodies into music
by probabilistically selecting notes that obey
the constraints of slope and note category as
designated by the abstract melody.

5. (Optional): At the user’s discretion, the gen-
erated melody can be rectified automatically,
pulling any notes not classified as chord,
color, or approach into line with the har-
mony by a half-step correction. This corrects
for any conflicts between the specified ab-
stract note qualities and slope specifications.

Qualitative Results

Figures 12 and 13 show two solos created using our
approach, both over the same chord progression, a
12-bar blues. The grammars were learned from the
corpora of Charlie Parker and John Coltrane, respec-
tively. Nine solos (Anthropology, Cheryl, Dewey
Square, Laird Baird, Moose the Mooche, Now’s
the Time, Ornithology, Scrapple from the Apple,
and Yardbird Suite) were used for learning from
the Parker corpus, and two solos (Giant Steps and
Moment’s Notice) for the Coltrane corpus. Both mu-
sicians were known to create relatively dense solos.
In contrast, Figure 14 shows a solo generated from a
grammar learned from a Miles Davis corpus of one
solo (On Green Dolphin Street). Davis was known
for much less density, and this clearly shows in the
line generated by the grammar. However, we should
reemphasize that the differentiating characteristics
of the generated solos are based entirely on the tran-
scribed solos that were learned. Given a different cor-
pus, say from a different point in the soloist’s career,
noticeably different results are apt to be generated.

62 Computer Music Journal



Figure 12. Twelve-bar
blues solo generated using
Charlie Parker–style
grammar.

Figure 12.

Figure 13. Twelve-bar
blues solo generated using
John Coltrane–style
grammar.

Figure 13.

Implementation and Usage

Our ideas and methods were added as a learning
extension of the solo-generation functionality of the
open-source software tool Impro-Visor (Keller 2007),
implemented in Java, for which both the executable

and source code are publicly available. To learn a
grammar in Impro-Visor, the user makes available
one or more solo transcriptions that have been
encoded in Impro-Visor’s leadsheet format (Keller
2005). These are collected together in a common
directory. Then a few button presses will generate

Gillick, Tang, and Keller 63



Figure 14. Twelve-bar
blues solo generated using
Miles Davis–style
grammar.

a grammar. The following parameters are currently
settable by the user:

1. Window size, in beats
2. Window slide amount, in beats
3. Number of representatives per cluster
4. Order of the Markov chain

Qualitative Evaluation

For short solos of four to eight measures, we found
that our algorithm’s compositions usually sound like
a reasonably capable jazz soloist and occasionally
like a convincing imitation of an artist. Longer solos
were more apt to lack a sense of direction. Four-gram
Markov chains produced longer coherent passages
than bi-gram and tri-gram models, and were also
able to generate very good 12- or 16-measure solos
about 25 percent of the time. Higher order n-grams,
for n > 4, seemed to provide no more coherence than
the four-gram case. However, with a much larger
training set than our largest, which was around 400
measures of Charlie Parker solos, it is possible that
higher order n-gram models could regularly yield
coherent solos of 16 or more measures.

Blind Evaluation by Third Parties

To measure our method’s effectiveness at style
emulation, we set up an experiment to determine
whether or not test subjects could match the
styles of three prominent jazz trumpet players with
solos composed in the style of each player. We
inferred grammars for Clifford Brown, Miles Davis,
and Freddie Hubbard from 72 bars of solos from
each. Each subject listened to one transcribed solo
from each artist and one generated solo from each
grammar, with each generated solo being over the
chord progression for Bye Bye Blackbird, six solos
total. Without revealing the names of the artists,
we asked the subjects to try to match the emulated
artist from each computer-composed solo with the
actual artist from the transcribed solo. We also
asked subjects to qualitatively indicate how close
the resemblance was by “Not close,” “Somewhat
close,” “Quite close,” or “Remarkably close.”

Out of 20 test subjects, 95 percent correctly
matched the computer-composed solo in Clifford
Brown’s style to the original Clifford Brown solo,
90 percent correctly matched Miles Davis, and 85
percent correctly matched Freddie Hubbard. Of the
same subjects, 85 percent correctly matched all three
solos. All but one undecided subject characterized

64 Computer Music Journal



the resemblance to the original artists as either
“Somewhat close” or “Quite close,” with 45 percent
“Somewhat close” and 50 percent “Quite close.”
On a scale of 1 to 10, half of the subjects rated their
own musical knowledge between 2 and 5, and half
between 6 and 9.

Conclusion and Future Work

The ability of our method to generate solos that
sound similar to the artist from the training data,
yet distinct from any particular solo, shows that our
method of data abstraction is effective. The combina-
tion of contours and note categories seems to balance
similarity and novelty sufficiently well to be charac-
terized as jazz. In addition, clustering appears to be
a workable algorithm for grouping similar abstract
melodic fragments. Markov chains were effective in
structuring solos; however, additional global struc-
ture is desirable for providing intra-solo coherence.

A more convincing test of our method would
be an experiment to determine whether listeners,
particularly jazz musicians, can tell the difference
between a solo generated by a learned grammar and
a human-composed solo.

There is much that can be done at the grammar
level to permit greater expressiveness and succinct-
ness. We introduced slopes to represent contours,
but it is clear that the general idea of macro con-
structs other than slopes could prove very useful.
Examining more specific information about notes
in conjunction with the note categories, such as
interval from the root of a chord, could also prove
beneficial.

The greatest weakness of our generated long solos
is their lack of global structure. A more conclusive
evaluation of the effectiveness of n-grams for
global structure could be done given a sufficiently
large training set. Another approach that could be
explored is to construct the high-level structure of
a generated solo based on a particular solo from the
training set.

Acknowledgments

This work was supported by grant 0753306 from
the National Science Foundation. We thank the

anonymous referees for providing input on earlier
drafts.

References

Ames, C. 1989. “The Markov Process as a Compositional
Model: A Survey and Tutorial.” Leonardo 22(2):175–187.

Baker, D. 1998. How To Play Bebop, I. Van Nuys,
California: Alfred.

Bell, B., and J. Kippen (1992). “Bol Processor Grammars.”
In M. Balaban, K. Ebcioglu, and O. Laske, eds. Un-
derstanding Music with AI: Perspectives on Music
Cognition. Cambridge, Massachusetts: MIT Press,
pp. 366–400.

Chang, C.-W., and H. C. Jiau. 2003. “Extracting Significant
Repeating Figures in Music by Using Quantized Melody
Contour.” Proceedings of the Eighth IEEE International
Symposium on Computers and Communication. New
York: IEEE, pp. 1162–1167.

Cope, D. 1992. “Computer Modeling of Musical Intelli-
gence in EMI.” Computer Music Journal 16(2):69–83.

Cruz-Alcazar, P., and E. Vidal-Ruiz. 1998. “Learning
Regular Grammars to Model Musical Style: Comparing
Different Coding Schemes.” Proceedings of the Fourth
International Conference on Grammatical Inference.
New York: Springer-Verlag, pp. 211–222.

De Roure, D. C., and S. G. Blackburn. 2000. “Content-
Based Navigation of Music Using Melodic Pitch
Contours.” Multimedia Systems 8(3):1–11.

Dubnov, S., et al. 2003. “Using Machine-Learning Methods
for Musical Style Modeling.” Computer 36(10):73–80.

Davis, M. 1961. Miles Davis in Person, Friday Night at
the Blackhawk, San Francisco. Audio recording (LP).
Columbia C2K 87097.

Eck, D., and J. Lapalme. 2008. “Learning Musical Structure
Directly from Sequences of Music.” Technical report
1300. Montreal: Université de Montréal, Département
d’informatique et de recherche opérationnelle.

Hartigan, J. A., and M. A. Wong. 1979. “Algorithm AS 136:
A k-Means Clustering Algorithm.” Applied Statistics
28(1):100–108.

Jones, K. 1981. “Compositional Applications of Stochastic
Processes.” Computer Music Journal 5(2):45–61.

Kang, Y.-K., K.-I Ku, and Y.-S. Kim. 2001. “Extracting
Theme Melodies by Using a Graphical Clustering
Algorithm for Content-Based Music Information
Retrieval.” Proceedings of the Fifth East Euro-
pean Conference on Advances in Databases and
Information Systems. New York: Springer-Verlag,
pp. 84–97.

Gillick, Tang, and Keller 65



Keller, R. M. 2005. “Impro-Visor Leadsheet Notation.”
Available from www.cs.hmc.edu/∼keller/jazz/
improvisor/LeadsheetNotation.pdf. Last accessed 26
April 2010.

Keller, R. M. 2007. Impro-Visor, Jazz Improvisation
Advisor, www.cs.hmc.edu/∼keller/jazz/improvisor/.
Last accessed 26 April 2010.

Keller, R. M., and D. R. Morrison. 2007. “A Grammatical
Approach to Automatic Improvisation.” Proceedings of
the Fourth Sound and Music Computing Conference.
Athens: National and Kapodistrian University of
Athens, pp. 330–337. Available online at http://smc07
.uoa.gr/SMC07%20Proceedings.htm.

Kemeny, J. G., H. Mirkil, J. L. Snell, and G. L.
Thompson. 1959. Finite Mathematical Struc-
tures. 1st ed. Englewood Cliffs, New Jersey:
Prentice-Hall.

Kim, Y. E., et al. 2000. “Analysis of a Contour-Based
Representation for Melody.” Proceedings of the Inter-
national Symposium on Music Information Retrieval.
Amherst, New York: University of Massachusetts.
Available online at http://ciir.cs.umass.edu/music2000/
indexnoframes.html.

McCarthy, J. 1960. “Recursive Functions of Symbolic
Expressions and their Computation by Machine.”
Communications of the ACM 3(1):184–195.

McCormack. 1996. “Grammar-Based Music Compo-
sition.” In R. Stocker et al., eds. Complex Systems
96: From Local Interactions to Global Phenomena.
Amsterdam: IOS Press, pp. 321–336.

Pachet, F. 1999. “Surprising Harmonies.” International
Journal on Computing Anticipatory Systems 4:1–20.

Papadopoulos, G., and G. Wiggins. 1999. “AI Methods
for Algorithmic Composition: A Survey, a Critical
View and Future Prospects.” AISB Symposium on
Musical Creativity. Menlo Park, California: American
Association for Artificial Intelligence, pp. 110–117.

Roads, C. 1979. “Grammars as Representations for
Music.” Computer Music Journal 3(1):48–55.

Verbeurgt, K., et al. 2004. “Extracting Patterns in Music
for Composition via Markov Chains.”Proceedings of
the 17th International Conference on Innovations
in Applied Artificial Intelligence. New York:
Springer-Verlag, pp. 1123–1132.

Winograd, T. 1968. “Linguistics and Computer Analysis of
Tonal Harmony.” Journal of Music Theory 12(1):2–49.

66 Computer Music Journal

http://www.cs.hmc.edu/~keller/jazz/improvisor/LeadsheetNotation.pdf
http://www.cs.hmc.edu/~keller/jazz/improvisor/
http://smc07.uoa.gr/SMC07%20Proceedings.htm
http://ciir.cs.umass.edu/music2000/indexnoframes.html

