

| System | Setup |
|--------|-------|
|--------|-------|

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

# Multi-Contact Compliant Motion Control for Robotic Manipulators

Jaeheung Park\*, Rui Cortesao\*\*, Oussama Khatib\*

\*Stanford AI Lab, Stanford University \*\*University of Coimbra, ISR

## 1. System Setup



| System Setup              |
|---------------------------|
| Motivation                |
| Multi-Contact Formulation |
| Control                   |
| Results                   |
| Movie                     |
| Conclusion                |
| Future Works              |
|                           |





- PUMA560
- Two contacts with vertical board and horizontal table

## 2. Motivation



#### System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

### **Multi-Contact Formulation**

- Our previous work<sup>1</sup> developed a general multi-contact model, which cannot be described by the Raibert-Craig model.<sup>2</sup>
- Extend the framework by modeling the stiffness of the environment.

## 2. Motivation



System Setup Motivation Multi-Contact Formulation Control Results Movie Conclusion Future Works

### **Multi-Contact Formulation**

- Our previous work<sup>1</sup> developed a general multi-contact model, which cannot be described by the Raibert-Craig model.<sup>2</sup>
- Extend the framework by modeling the stiffness of the environment.

### **Force Control**

A modified Kalman estimation(AOB) is well suited for our system.

- Uncertain input torque additional input error state.
- Varying measurement noise on-line variance calculation.

 $<sup>^1\</sup>mathrm{Roy}$  Featherstone, Stef Sonck Tiebaut, and Oussama Khatib. A general contact model for dynamically decoupled force/motion control, 1999.

<sup>&</sup>lt;sup>2</sup>Raibert, M. H., and Craig, J. J. Hybrid Position/Force Control of Manipulators, ASME Jnl. Dynamic Systems, Measurement & Control, 1981



System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

3. Multi-Contact Formulation

### **Multi-Contact model**

- $f_c = N\alpha$  $N = \begin{bmatrix} \vec{n} \\ \vec{n} \times \vec{l} \end{bmatrix}$ 
  - $\alpha$  : magnitude of contact force





System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

3. Multi-Contact Formulation

### Multi-Contact model

- $f_c = N\alpha$  $N = \begin{bmatrix} \vec{n} \\ \vec{n} \times \vec{l} \end{bmatrix}$ 
  - $\alpha$  : magnitude of contact force



### **Projection Matrices**



- $\vartheta$  velocity of the operational point
- f force at the operational point
- N spans contact normal space

## 4. Control





WOUVALION

Multi-Contact Formulation

Contro

Results

Movie

Conclusion

Future Works



Equations of Motion with Operational Space Formulation

$$\Lambda_o(x)\dot{\vartheta} + \mu_o(x,\vartheta) + p_o(x) + f_c = F,$$

$$F = f_{com}^{\star} + \hat{\mu}_o(x,\vartheta) + \hat{p}_o(x) + \hat{f}_o$$
  
$$f_{com}^{\star} = \Lambda_o \Omega_m f_t^{\star} + \Lambda_o \Omega_f f_c^{\star}.$$

### **Force control**



With equations of motion in Contact Normal Space

$$\dot{\vartheta}_c = \Omega_f f_c^{\star}$$

| System | Setup |
|--------|-------|
|--------|-------|

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

### **Force control**



With equations of motion in Contact Normal Space

$$\dot{\vartheta}_c = \Omega_f f_c^\star$$

and a spring model

$$\dot{f}_{c,i} = k_{s,i}\vartheta_{c,i},$$

System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

### **Force control**



System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

With equations of motion in Contact Normal Space

$$\dot{\vartheta}_c = \Omega_f f_c^{\star}$$

and a spring model

$$\dot{f}_{c,i} = k_{s,i}\vartheta_{c,i},$$

The system transfer function can be derived as

1

$$G(s) = \frac{k_{s,i}e^{-sT_d}}{s(s+K_2)}.$$

 $T_d$  system input delay  $K_2$  additional damping

### Force control Design



#### System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works



- $L_r$  a full state feedback gain obtained by Pole Placement Method
- $L_1$  a scaling factor to compute reference input
- $f_c$  contact force
- $f_{c,d}$  desired contact force
- $r_k$  reference input
- $\hat{x}_k$  state estimate
- $\hat{p}_k$  input error estimate

### Noise Variance $(R_k)$ Estimation



System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

• The discrete time first order high-pass filter

$$\alpha_f(z) = G_f(z)\alpha(z),$$

 $G_f(z)$  the filter with a zero at 3[Hz] and a pole at 60[Hz]  $\alpha(z)$  the measured contact force for each contact force space

### Noise Variance $(R_k)$ Estimation



- System Setup Motivation
- Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

• The discrete time first order high-pass filter

$$\alpha_f(z) = G_f(z)\alpha(z),$$

 $G_f(z)$  the filter with a zero at 3[Hz] and a pole at 60[Hz]  $\alpha(z)$  the measured contact force for each contact force space

• The estimation of the measurement noise,  $\hat{R}(t_i)$ 

$$\hat{R}(t_i) = \frac{1}{N} \sum_{j=i-N+1}^{i} \{ [\alpha_f(t_j) - \bar{\alpha}_f] [\alpha_f(t_j) - \bar{\alpha}_f]^T \},\$$

where  $\bar{\alpha}_f$  is the mean of the filtered force over a time window.

• 50 samples have been used in the experiments.



5. Results

System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

Experiment for Analysis

### Measured and Estimated forces in contact with the table.



System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works



#### (a) Measured force of the first contact. z direction.



(b) Estimated force of the first contact. z direction.

### Measured and Estimated forces in contact with the vertical board.



#### System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works



(a) Measured force of the second contact. y direction.



(b) Estimated force of the second contact. y direction.

### Noise Variance Estimations.



#### System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works



(a) Noise Covariance Estimation for the first contact force.



(b) Noise Covariance Estimation for the second contact force.

### Wrist translational motion in $\boldsymbol{x}$ direction.





System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works





System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

Linear/Angular Motion with Contacts ( 90/120 degree )



System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

Without/With online calculation of Noise Variance,  $R_k$ 

## 7. Conclusion



| System Setup              |
|---------------------------|
| Motivation                |
| Multi-Contact Formulation |
| C                         |

Curtaria Cata

Results

Movie

Conclusion

Future Works

### **Multi-Contact Formulation**

- Extend our previous work(multi-contact motion/force control for rigid contact) to deal with compliant contact.
- This new formulation sets up dynamic equation for contact force control.

### **Force Control**

- Apply a modified Kalman filter estimator(AOBs).
- On-line noise Estimation.

## 8. Future Work



System Setup

Motivation

Multi-Contact Formulation

Control

Results

Movie

Conclusion

Future Works

• More experiments with different stiffness environment.

- Implement on-line stiffness estimation strategy.
- Multi-contact with multi-link.