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Abstract

Mobile manipulator systems hold promise in many
industrial and service applications including as-
sembly, inspection, and work in hazardous envi-
ronments. The integration of a manipulator and
a mobile robot base places special demands on
the vehicle’s drive system. For smooth accurate
motion and coordination with the manipulator a
holonomic, vibration-free wheel system which can
be dynamically controlled is preferred. The work
presented here is part of the commercial efforts
of Nomadic Technologies Inc. and continuing re-
search at the Stanford University Computer Sci-
ence Robotics Laboratory focused on dextrous mo-
bile manipulation.

1 Introduction

A holonomic system is one in which the number
of degrees of freedom are equal to the number of
coordinates needed to specify the configuration of
the system. In the field of mobile robots, the term
holonomic mobile robot is applied to the abstrac-
tion called the robot, or base, without regard to the
rigid bodies which make up the actual mechanism.
Thus, any mobile robot with three degrees of free-
dom of motion in the plane has become known as a
holonomic mobile robot. Holonomic mobile robots
are desirable because they do not have kinematic
motion constraints, which makes path planning and
control much simpler.
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Figure 1: Nomadic XR4000 and PUMA 560

Many different mechanisms have been created
to achieve holonomic motion. These include vari-
ous arrangements of universal or omni wheels, dou-
ble universal wheels, Swedish or Mecanum wheels,
chains of spherical or cylindrical wheels, orthogo-
nal wheels, and ball wheels [1, 2, 3, 4, 5, 6, 7, 8.
All of these mechanisms, except for some types
with ball wheels, have discontinuous wheel contact
points which are a great source of vibration; pri-
marily because of the changing support provided;
and often additionally because of the discontinu-
ous changes in wheel velocity needed to maintain
smooth base motion. These mechanisms tend to
have poor ground clearance due to the use of small
peripheral rollers and/or the arrangement of the
mechanism leaves some of the support structure
very close to the ground.



The design and actuation of these mechanisms
has been driven by kinematic concerns for mini-
mum actuation and minimal sensing to make to the
implementations of odometry and control mathe-
matically exact. Yet, many of these designs have
multiple rollers with the contact points of the wheel
on the ground moving from one row to the other
while it is assumed to remain stationary in the mid-
dle of each wheel. This emphasis on minimal de-
sign has led to many three wheeled designs which
are more likely to tip over, or at least lift a wheel,
as performance and payload is increased. Also, the
minimal use of actuators often led to complex me-
chanical transmissions to distribute the power to
the driving elements. The designs discussed are me-
chanically complex; often with many moving parts,
some active, some passive.

Just as a kinematic approach was used in the de-
sign of these holonomic mechanisms, the control of
these mechanisms was looked at from a purely kine-
matic perspective. Many of the designs incorporate
passive rollers without sensing of their motions, so
that the dynamics of these elements cannot be ac-
counted for. Without dynamic control, it is difficult
to perform coordinated motion of a mobile base and
dynamically controlled manipulator.

We present here another type of holonomic ve-
hicle mechanism which we will refer to as a pow-
ered caster vehicle or PCV. It was conceptually de-
scribed by Muir and Neuman [9] as early as 1986 as
an “omnidirectional wheeled mobile robot” having
“non-redundant conventional wheels”. (A “pow-
ered office chair” is maybe a simpler conceptual de-
scription.) They dismissed pursuing the idea since
it had the potential for actuator conflict. Others
have also chosen to not implement such a design
because of the difficulty of the control [8]. We will
present the design of a working PCV mechanism
and the framework for dynamic control.

The use of a dynamically-controlled, holonomic
mobile robot in a mobile manipulation system is
particularly desirable because it provides easier
planning and navigation for gross motion, along
with the ability to fully use the null space motions
of the system to improve the workspace and overall
dynamic endpoint properties.

Figure 2: Powered Caster Module

2 Design

The PCV is good mechanism to provide holonomic
mobility for many reasons. The contact points be-
tween the wheels and the ground move in a con-
tinuous manner and thus do not induce vibrations
from shifting support points or discontinuous wheel
velocities. The location of each contact point is well
known so that control is more exact. Each wheel
mechanism contains a single nonholonomic wheel
which is large enough for good ground clearance
[10]. One final point which has not been addressed
previously is that this is the only holonomic mech-
anism which can be designed to effectively use cur-
rently available pneumatic tires. Because there are
no passive and more importantly no unmeasured
bodies in a powered caster design the dynamics of
the system can be accurately modeled.

A PCV is composed of n > 2 powered caster
modules as illustrated in Figure 2. The modules
could vary in size and power from module to mod-
ule, but without loss of generality, we will assume
that all the modules are identical. The PCV design
is defined by the strictly positive geometric param-
eters: wheel radius(r), caster offset(b), and wheel
module placement(h, 3) (see Figure 3). Along with
the mass and inertia of each component in the de-
sign, parameters which affect the system dynamics
include the gear ratios and motor sizes. Values for
the geometric parameters must be selected so that
the area swept out by each wheel does not inter-



sect any other. The wheels should have a large
enough radius to surmount anticipated obstacles.
The dynamic tradeoffs involve the geometry as well
as the motors and gearing. Careful selection must
be made to result in a mechanism which has good
acceleration while maintaining the ability to reach
the desired top speed. At the same time, by choos-
ing components so that motor and gearbox speeds
are kept low, mechanical noise due to high compo-
nent speeds can be minimized.

The PCV mechanism shown in Figure 1, a No-
madic Technologies XR4000 mobile robot, was de-
signed to be a high performance holonomic vehicle
for mobile robotics and mobile manipulation. It
has four 11 cm diameter wheels with 2 cm caster
offset. It can accelerate at 2 m/s? on most surfaces
and has a top speed of 1.25 m/s. The controller of
the XR4000 used herein was modified at Stanford
University by replacing the standard PWM motor
amplifiers with current controlled motor amplifiers.

3 Dynamic Modeling

Typically, the dynamic equations of motion for a
parallel system with nonholonomic constraints such
as a PCV are formed in one of two ways: the uncon-
strained dynamics of the whole system can be de-
rived and the the constraints are applied to reduce
the number of degrees of freedom [11]; or the sys-
tem is cut up into pieces, the dynamics of these sub-
systems are found, and the loop closure equations
are used to eliminate the extra degrees of freedom.
For our four-wheeled XR4000 robot, using the first
method, we will obtain 11 equations for the uncon-
strained system and 8 constraint equations for a to-
tal of 19 equations. The second method will yield
12 equations for the unconstrained subsystems and
9 constraint equations for a total of 21 equations.
These systems of equations must then be reduced
to 3 equations. Ideally, both these methods would
yield the same minimal set of dynamic equations,
but in practice it is difficult to reduce the prolifera-
tion of terms that are introduced in a large number
of equations.

To get a more efficient form of the dynamic equa-
tions of motion we will use a method which uses
compatible 3 DOF systems. We can model the
PCV as a collection of cooperating manipulators
such as shown in Figure 3. The dynamic equations
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Figure 3: Powered Caster “Manipulator”

of motion for this three DOF serial manipulator can
be written [12],

A(q) 4 +b(q,q) =T (1)

where q and its derivatives are the joint positions,
velocities, and accelerations, A is the symmetric
mass matrix, and b is the vector of centripetal and
coriolis coupling terms. We assume that the PCV
is on level ground and have dropped the effects of
gravity.

Because of the parallel nature of the final mech-
anism we choose to write the relationship between
joint speeds and local Cartesian speeds, x, as

4= Gx 2)
—s¢/b  cp/b hlcBeg + sPBs¢p]/b— 1
G= co/r so/r  h[cBsd — sfBed]/r

—s¢/b ch/b  hlcfcd +sPsp]/b

As shown in Figure 3, ¢ is the steering rate, p is
the angular speed of rolling, and ¢ is the angu-
lar twist rate at the wheel contact. For compact-
ness we use s- and c¢- as shorthand for sin(-) and
cos(+). It is interesting to note that the first two
rows of G express the nonholonomic constraints due
to ideal rolling while the third row is a holonomic
constraint: § = o — ¢.

Using the joint space dynamics from eqn.1 and
the Jacobian in eqn. 2, we can express the opera-
tional space dynamics [13] of the i*" manipulator
as

Ai(qi)% + pi(ai; 4i, %) = F; 3)
with
A = Gl AG,

n =Gj (AiGiX + bi)



where A is the operational space mass matrix, u
is the operational space vector of centripetal and
coriolis terms, and F. is the force/torque vector
at the origin of the end effector coordinate system.
Since our manipulator is simple and not redundant
we compute G directly, thus avoiding an inversion
operation which is traditionally required. Also note
that as expressed here p; is a function of q;,q;
and x. This representation allows us to use exact
local information, such as the rolling speed of the
wheel, which is measured directly and to use the
best estimates of the base speeds which we develop
in section 4.

If we choose the end effector frames of the various
manipulators such that they are coincident while
the wheel modules are correctly positioned with re-
spect to one another, then, using the augmented
object model of Khatib [14], we can write the over-
all operational space dynamics of the mobile base.

A%+p=F (4)

with
A=D A s p=3m ; F=)F

Here, A, pt, and F have the same meanings as before
but now represent the properties of the entire robot.

With this algorithm we have determined the op-
erational space dynamic equations of motion di-
rectly. For our four-wheeled XR4000 robot we gen-
erate 12 equations, 3 for each i in eqn. 3, which are
then added in groups of four to give the required
3 operational space equations. Using the symbolic
dynamic equation generator AUTOLEV to create
A and p, the number of multiplies and additions
are reduced from 8180 and 2244, to 2174 and 567.

4 Dynamically Decoupled
Control

One of the more effective techniques for controlling
a coupled non-linear system such as the PCV is the
nonlinear dynamic decoupling approach [13]. Non-
linear dynamic decoupling in operational space is
obtained by the selection of the following control
structure:

F=AF"+p (5)

where F' is the operational space force which is to
be applied to the PCV and F* is the control force
for our linearized unit mass system. As an example
we can choose to implement a simple P-D controller

(6)

with K, K, the position and velocity gains and
x4 and its derivatives the desired position, velocity
and acceleration.

This approach requires that we know the oper-
ational space velocities, x, of the PCV and the
actuated joint torques, I, necessary to produce
the commanded operational space force, F. The
XR4000 powered casters (see Figure 2) have an en-
coder on each motor. The encoders together with
knowledge of the gearbox kinematics allow us to
calculate the positions and velocities of the steering
and rolling joints of each module. We can write the
relationships between the observed joint speeds and
the operational speeds of the i*" wheel as the wheel
constraint matriz, C;, which contains the two non-
holonomic constraints from “manipulator” model
in eqn.2. We will use ¢, = [¢; pi]7 to designate
the observed joint speeds of the i*" wheel.

F* = —Kp(x — Xd) — KU(X — Xd) + I3xq

Q=0 % (1)
o - [ —s¢i/b  coi/b  hilcBice; +sPisgi]/b— 1
i coi/r so/r  hi[cBisp; —sPicdi]/r

The overall motion of the joints in the robot can
be described by gathering the wheel constraint ma-
trices into the constraint matriz, C.

d=Cx% (8)
a Ch
q =1 : P C=|
A, Cn
The dual of this relationship describes the opera-
tional space force produced by the torques at the
actuated joints.
F=0TT1 (9)

To find the operational space velocities and ac-
tuated joint torques we need to find the recipro-
cal relationships to eqns. 8,9. Since the constraint

matrix is not square with size 2nx 3, it is not in-
vertible. For our overconstrained system with more



measurements than states, we can use a generalized
inverse of the constraint matrix, C#, to give results
we desire. For an ideal robot with no measurement
error, using any arbitrary left inverse will yield the
same results. However, when there is unmodeled
slippage at the wheel contacts along with the ever
present measurement errors of real hardware, the
particular choice of generalized inverse will yield
different results.

One common choice of generalized inverse is the
Moore-Penrose pseudo-inverse [9]. This leads to an
% which minimizes, in a least-squares manner, the
joint velocity differences between the measured sys-
tem and the consistent set of joint velocities associ-
ated with that robot velocity. The physical mean-
ing of fitting a solution to the joint velocities is
elusive.

Figure 4: Contact point velocities

A more physically meaningful solution can be
found by looking at the set of wheel velocities at
the contact points, p, as shown in Figure 4. The
sensed velocities of these points can be found from
the measured joint speeds with the mapping below
where C, is square, full rank, block diagonal, and
invertible.

q=0C,p (10)

When the robot obeys the ideal rolling assump-
tions there exists a robot velocity where the sensed
contact speeds are identical to the consistent set of
contact speeds, f), found with the kinematic rela-
tionship

(11)

However, as is to be expected, when there is some
slippage and measurement noise, p # p. By us-
ing the Moore-Penrose pseudo-inverse of the non-
square matrix C, we will minimize the total per-
ceived slip by minimizing the differences between p
and p. Our estimate of the robot velocity assuming

p=0C, x

that slip is minimized uses a generalized inverse of
the constraint matrix and is
x=C* g (12)

with

ct=crot (13)
We have tested the odometry of our XR4000 mov-
ing randomly for one minute in a 1.5m x 2.5m
area and then returning to its starting position.
When using the generalized inverse from eqn. 13 the
dead-reckoning error was less than half as large as
when the pseudo-inverse of the constraint matrix
was used.

The dual of this result is just as ideal. There are
many ways to distribute the effort among the joints
to achieve a desired operational space force. By
distributing the joint torques using the transpose
of the generalized inverse in eqn. 13

I'=Cc#* F (14)
we minimize, in a least squares way, the contact
forces developed by the wheels. The consequence is
that the tractive effort is spread as evenly as possi-
ble among the wheels and the tendency for any one
wheel to loose traction is minimized.

Other useful, physically meaningful generalized
inverses can be found. For instance there ex-
ists a different generalized inverse to distribute
the torques in a way that minimizes the actuator
power.
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Figure 5: Controller Schematic

ROBOT

The controller outlined in Figure 5 was im-
plemented on a modified Nomadic Technologies
XR4000 mobile robot. The real-time operating sys-
tem QNX was used to run the controller containing
the full dynamics of PCV at 1000 Hz. on an on-
board 450 MHz. Pentium II.



5 Conclusions

We have presented the design of a new wheeled
holonomic mobile robot, the powered caster vehicle,
or PCV, which is being produced as the XR4000
mobile robot by Nomadic Technologies. The de-
sign of the powered casters provides smooth accu-
rate motion with the ability to traverse the hazards
of a typical office environment. The design can be
used with two or more wheels and as implemented
with four wheels provides a stable platform for mo-
bile manipulation. A modular, efficient dynamic
model was derived by using the augmented object
model originally developed for the study of coop-
erating fixed-base manipulators. The framework
for dynamically decoupled control of the PCV, an
over-actuated parallel system, was developed us-
ing physically meaningful generalized inverses of
the kinematic constraint matrix. We look forward
to further results demonstrating the coordination
of the dynamically controlled mobile base with the
dynamically controlled PUMA manipulator it car-
ries.
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