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Abstract

Redundancy is a source of freedom in task execution. Posi-
tioning and orienting the end-effector of a redundant manip-
ulator can be obtained with an infinity of postures of the me-
chanical structure. Another important aspect of redundancy
is concerned with forces. End-effector forces are affected by
the joint torques delivered by the redundant number of actua-
tors. Determining how generalized joint torques are reflected
at the end-effector is crucial in tasks that involve active force
control. This is the central issue addressed in this paper. The
limitstions of kinematic and static analyses are shown and
a dynamic treatment of the problem is performed. The dy-
namically consistent relationship between joint torques and
end-effector forces is established and a general strategy for
the control of redundant manipulators is discussed.

1 Introduction

Manipulator redundancy has received an increased attention
in recent years. Most of the work in this area, however,
has focused on what can be called the motion redundancy
problem. For some specified motion of the end-effector, the
problem is to find the appropriate motions of manipulator’s
joints. This problem has been generally addressed by solv-
ing the linearized kinematic model using generalized inverses
and pseudo-inverses of the Jacobian matrix (Whitney 1972;
Liegois 1977; Fournier 1980; Hanafusa, Yoshikawa, and Naka-
mura 1983). More recently, an interesting approach aimed
at finding inverse kinematic functions has been investigated
(Wampler 1987).

Another important problem in redundancy is the force redun-
dancy problem. One aspect of this problem is found in the
control of multi-manipulator and multi-fingered hand sys-
vems. This is the problem associated with finding the inter-

nal forces acting on the grasped object (Salisbury and Craig
1982; Kerr and Roth 1986; Nakamura, Nagai, and Yoshikawa
1987).

The force redundancy problem, however, is also encountered
in the control of redundant manipulators for tasks that in-
volve active force control. Exerting forces on the environment
requires accurate control of the end-effector forces gencrated
by the redundant number of actuators. In many constrained
motion operations, these forces are to be maintained while
the end-effector contact point is moving along a surface or
while the posture of the manipulator is changing. The ap-
plied joint torques used in the control of the manipulator
for the execution of these additional tasks will clearly have
an impact on the resulting forces at the end-effector. Deter-
mining how joint torques are reflected at the end-effector of
a redundant manipulator, the central issue in this paper, is
therefore ‘essential for the development of a control strategy
that allows to achieve accuracy and performance in compli-
ant motion operations.

2 Kinematic Relationships

One of the basic relationships in manipulator kinematics
is the linearized kinematic model which expresses the rela-
tionships between elementary displacements, 6q, of the joint
coordinates, q, and the corresponding elementary displace-
ments, §x, of the operational coordinates, x, which describe
the end-effector’s position and orientation. This model is

§x = J(q)éq; (1)

where J(gq) is the Jacobian matrix. For an n-degree-of-
freedom manipulator whose end-effector is operating in an
m-dimensional space, the operational space, the Jacobian,
J(q), is an n x m matrix.
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Using this kinematic model, Whitney (1972) proposed the
resolved motion-rate control approach for the coordination of
manipulator joint motions. The resolved motion-rate control
uses the inverse of the Jacobian matrix. For a non-redundant
manipulator, i.e, n = m, the solution is simply

éq = J 1 (q)éx. 2)

For a given trajectory of the end-effector, motion control is
achieved by continuously controlling the manipulator from its
current configuration q to the configuration q + §q, where
éq is evaluated in accordance with éx using equation (2).

Redundant Manipulators

The position and orientation of the end-effector of a redun-
dant mechanism can be obtained with an infinite number
of postures of its links. Generalized inverses and pseudo-
inverses have been used to solve the inverse kinematic prob-
lem. Using a generalized inverse J#(q) of the Jacobian ma-
trix, the general solution is

bq = J*(q)éx + [I - J*(a)J(@))éqo; ©)

where I is the identity matrix of appropriate dimensions and
6qo denotes an arbitrary vector. The matrix [I-J#*(q)J(q))
defines the mapping to the null space associated with J#(q),
and vectors of the form [I — J#(q)J(q))éqo correspond to
zero-variation of the position and orientation of the end-
effector. The additional freedom of motion associated with
the null space is generally used to minimize some criteria or
to achieve an additional task.

3 Torque/Force Relationships

The basic relationship between end-effector forces, F, and
joint torques, T, is .
' T = JT(q)F; ()

This relation is obtained using the identity between the vir-
tual works associated with torques and forces in the virtual
displacements éq and éx.

Redundant Manipulators

At a given configuration of a redundant mechanism, we have
seen that there is an infinity of elementary joint displace-
ments that can take place without altering the configuration
of the end-effector. These displacements take place in the
null space associated with the Jacobian matrix.

Let us consider the case of a three-degree-of-freedom manip-
ulator whose task is to exert a force F on the environment
at some point, x, as illustrated in Figure 1. The required
joint torques are still given by the relationship of equation
(4). The application of the joint torques I" will achieve the
desired vector of force F at the end-effector. Submitted to
the environment reaction forces —F and to the applied joint
torques I', the mechanism will remain in static equilibrium.
This manipulator is redundant with respect to the task of
applying F at the end-eflector at a point x. If the manip-
ulator’s posture was to change or if the contact point was

Figure 1: A Force Control Task

to evolve (sliding along the surface), while maintaining the
desired forces, additional control will be needed. Whatever
control methodology is used, the additional control will re-
sult by the application of some additional torques, 44, at
the manipulator joints. The total joint torques become

T = JT(Q)F + Caua- (5)

Determining how the additional joint torques, T'sqq affect the
resulting forces at the end-effector is crucial for the design of

_ a control strategy that allows the execution of both tasks.

This issue is part of the more general problem of finding how
applied generalized joint torques are reflected at both the
redundant structure and the end-effector.
The relationship (4) has been established by expressing the
identity between the virtual works done by the generalized
joint torques and the end-effector forces:

Ir'T6q = FTéx. (6)

In stating this identity the underlying assumption is that the
mechanism is held at static equilibrium. This assumption
will not be any more verified, for instance, for the task of
changing the posture of the manipulator, while the exerted
force at the end-effector is to be maintained.

For such a task, indeed, the applied joint torques will not
be any more totally supported by the reaction forces of the
environment, that is the total virtual work will be greater
than F7éx. For this task, the total virtual work involves, in
addition, the work of ['paq in the displacements associated
with the changes in the manipulator’s posture.

Maintaining the position and orientation of the end-effector
implies that the trajectory along which the manipulator will
be taken from its initial configuration to the desired posture
must lay in the null space associated with the Jacobian ma-
trix. Let us assume, for instance, that the actual displace-
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ment of the manipulator is done following the relationship
(3). The total virtual displacement will be

éq = J¥(q)éx + [I - J*(q)J(q)l6qo.

This shows that, in addition to éx, displacements [/ —
J#¥(q)J(q)]6qo in the null space must be accounted for. The
total virtual work

sW =TTéq;

done by the generalized joint forces I' in the virtual displace-
ment g becomes

SW = §W, + 6Wy; )
with .
§W, = [J*" (q)T)Tbx; (8)
and
§W, = {[I - J#(q)J(q))"T')Téqo. (©)

éW), corresponds to the virtual work done in the virtual dis-
placements éx and §W, corresponds to the virtual work done
by the joint torque vector [I — JT(q)J #r(q)]I‘ in the virtual
displacement éqg.

In order for the additional torques IT'yya to not produce any
work along éx, the force J#T(q)I‘ in (8) must be equal to F.
Using equation (5), this yields

J*7(q)[J7 (q)F + Faad] = F;

which reduces to .
J#* (q)Taga = 0.
This equation implies that the additional joint torques must
lay in the null space associated with the matrix J#' (q), this
is
Tesa = [ = J7(q)7*" (@)]T0. (10)
And §W, becomes I'7,,6q,. :

In these conditions, the total joint torques I' of (5) can be
written in the form

T = JT(Q)F + [I - JT(q)J*" (q)]To; (11)

4 Dynamic Considerations

The relationship of joint torque/effector force (11) has been
established with specific assumptions about the relationship
of joint position/eflector position (3). The consistency be-
tween forces and motions is governed by the dynamic equa-
tions of the system and these equations must be taken into
account in order to enforce that consistency.

The relationship (11) can be interpreted as a decomposi-
tion of the joint vector I following some generalized inverse,
J#(q), this is

L= JT(@U* (@) + [ - IT(@)J* (@IT.  (12)

In this decomposition, (J #7 (q)T') corresponds to the end-

effector forces and [I — JT(q)J*" (q)]T to torques acting in
the null space.

This decomposition is arbitrary since it depends on the
generalized inverse being used (any matrix J# such that
J = JJ#J). Clearly diflerent selections of generalized
inverses correspond to different joint torque vectors, [ —
JT(q)J#T(q)]Fo, and ultimately to different responses of the
manipulator.

The Gravity Example

Considering, for instance, the gravity vector g(q) associated
with the three-degree-of-freedom manipulator, the relation-
ship (12) leads to the decomposition into: J7(q)p(q) and

[7 = JT(a)7*" (a))g(q), where

r(a) = J* (q)g(q)-

Two cases are to be considered. First, for configurations q
such that :

[7-JT(q)7*" (a)lg(q) = O;

the manipulator can be clearly maintained in static equilib-
rium by the application of end-eflector forces p(q). This
is, for instance, the case for the configuration shown in fig-
ure 2.a, where the gravity vector g(q) is orthogonal to all
displacements in the null space. At this configuration, the
gravity forces can be supported by a force, p(q), acting at
the end-eflector. In contrast, if we started from the config-
uration shown in figure 2.b, the gravity, g(q), will have 2
component in the null space.

(1 - J7(@)7* (a)lg(a) # O.

Let us select the pseudo inverse of the Jacobian, J*(q), for
the evaluation of the gravity forces p. The response of the
manipulator to the application of p(q), as obtained from a
dynamic simulation of the system, is shown in Figure 3.b.
The manipulator initial configuration is shown in Figure 3.a.
The resulting behavior clearly shows that the forces being
reflected at the end-effector to be different from p(q) and
illustrates the need for a dynamic treatment of this problem.

Dynamics of Redundant Manipulators

The joint space equations of motion of a manipulator are

A(Q)d+b(q.q9)+g(q) =T, (13)

where b(q, 4), g(q), and T, represent the Coriolis and cen-
trifugal, gravity, and generalized forces in joint space.

The basic question to answer here is how the manipulator
dynamic forces are reflected at the end-effector. This is part
of the study of operational space dynamics for redundant
manipulators.

First, let us examine the effects of the acceleration forces.
Starting from static equilibrium, equations (1) and (13)
show that the acceleration at the end-effector resulting
from the application of a joint torque vector T is given by
J(q)A~(q)T (at zero-velocity x = J(q)q = J(q)A~'(q)T).
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Figure 2: Gravity Components in the Null Space

Dynamically Consistent Null Space

In order for the null space joint torques, J(q)A~*(q)[/ —

JT(q)J*" (q)JT, to not produce any acceleration at the end-
effector, it is necessary to have

IT(QA QU = IT(QI* (QIT=0.  (14)

The null space associated with a generalized inverse satisfy-
ing the sbove constraint is said to be dynamically consistent.

Theorem 1: (Dynamic Consisiency)

A generalized inverse that is consistent with the dynamic
constraint of equation (14), J(q), is unique and given by

J(q) = A7} (q)I7 (a)A(q). (15)

where
A(Q) = (@A™ (@I (@)™ (16)
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Figure 3: Gravity Compensations (Pseudo-Inverse)

is defined as the operational space kinetic energy matrix.
J(q) in equation 15 is actually a generalized inverse of the Ja-
cobian matrix corresponding to the solution that minimizes
the manipulator’s instantaneous kinetic energy.
End-Effector Dynamics

The operational space study shows in fact that all dynamic
forces (inertial and gravitational) are reflected at the end-

effector by the matrix TT(q). The end-effector dynamic be-
havior resulting from the application to the manipulator (13)
of the joint torque vector

T = JT(Q)F + [I - JT(q)T" (q))To;
is described by

77 ()[A(a)d + b(q, )g(q)) = F;
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Table 1: Position/Force Duality

Position Force
Non-Redundant Manipulator Systems | 6q = J=1(q) 6x I = Ji'(q)F
Redundant Manipulator Systems §q = J(q) bx+[I-J(q) J(qQ)éqo | T = JT(q) F+[I-JT(q) 77(‘1)] To

The dynamics of the end-eflector of a redundant manipulator
can be written in the form (Khatib 1987)

A(qQ)k + p(q,9) +p(q) = F; (17

where u(q, q), representing the centrifugal and Coriolis forces
acting at the end-effector, is related to the joint space dynam-
ics by

u(a,4) = 77 (@)b(a, 4) - A(@)F(2)d;
and where p(q), representing the gravity forces acting at the
end-eflector, is

r(a) = 7" (a)g(a)-

Generalized Torque/Force Relationship

In consistency with the manipulator dynamics, the torque/-
force relationship becomes

T =J7(Q)F +[I - JT(@)7 (@)Ts; (18)

With this relationship, the manipulator control can be de-
composed into two dynamically decoupled control vectors:

e End-effector control using F.
o Internal motion control using the joint torques Io.

The force/position duality for non-redundant manipulators is
extended with the relationship (18) to the¢ case of redundant
manipulators as summarized in Table 1.

The Gravity Example (Dynamic Compensation)

Let us consider the example of the three-degree-of-freedom
manipulator in the configuration shown in Figure 4.a. The
goal is to maintain the end-effector at static equilibrium by
the only application of operational forces F. All motions of
the redundant manipulator should be constrained to the null
space. Starting from rest, the operational forces, F, should
be designed to compensate for the gravity, centrifugal, and
Coriolis forces reflected at the end-effector. The response of
the manipulator to the application at the end-effector of the
compensation force u(q, q)+p(q), as obtained by a dynamic
simulation, is shown in Figure 4.b. Figure 5 shows the ma-
nipulator response, when starting from a different configura-
tion. In these two examples, the end-effector is maintained
at static equilibrium by the only application of end-eflector
forces (which do not involve any position error feedback con-
trol). Compared to the result obtained with the transpose of
the Jacobian pseudo-inverse (see Figure 3), these two exam-
ples illustrate the significance of dynamic considerations in
the control of redundant manipulators.
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Figure 4: Dynamic Compensation (Configuration 1)

Internal Motion Control

The generalized torque/force relationship (18) provides an
effective means for the design of a dynamically decoupled
control of internal motions. An additional task to be carried
out using the manipulator internal motions can be rcalized
by constructing a potential function, Vp(q), whose minimum
corresponds to the desired task. By selecting Ty as the gra-
dient of this function

Lo=-VV;

one obtains the needed attraction (Khatib, 1986) to the de-
sired task. The interference of the additional torques on the
end-effector is simply eliminated by projecting this gradient
in the dynamically consistent null space. This is

n= == JT(@7 @)V (19)
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Figure 5: Dynamic Compensation (Configuration 2)

The avoidance of obstacles and kinematic singularities can be
achieved by integrating an “artificial potential field” function
into Vp. However, the avoidance will be only realized within
the freedom of internal motions, due to the projection of
the gradient into the null space. Asymptotic stabilization
of the redundant mechanism requires additional dissipative
joint forces, which should also be selected from the dynami-
cally consistent null space.

5 Conclusion

The general relationship between joint torques and end-
effector forces for redundant manipulator mechanisms has
been established. Consistent with the dynamics of the re-
dundant manipulator and the effector, this relationship pro-
vides a decomposition of joint torques into two dynamically
decoupled control vectors:

e Joint torques corresponding to forces acting at the end-
effector;

e Joint torques only aflecting the internal motions.

With this dynamically decoupled decomposition, the end-
effector is then controlled by the action of forces based on its
dynamic model, while tasks involving internal motions are
controlled by joint torques which do not alter the effector
dynamic behavior.

The generalized joint-torque/effector-force relationship pro-
vides an important tool for motion and active force con-
trol for redundant manipulator systems. This relationship is
also important for dealing with the dynamic forces resulting
at the manipulated object in multi-manipulator and multi-
fingered hand systems.
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