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Abstract

In this paper we examine a novel addition to the
known methods for learning Bayesian networks
from data that improvesthe quality of the learned
networks. Our approach explicitly representsand
learnsthelocal structureintheconditional proba-
bility tables (CPTs), that quantify these networks.
This increases the space of possible models, en-
abling the representation of CPTswith avariable
number of parametersthat dependson thelearned
local structures. Theresulting learning procedure
is capable of inducing models that better emulate
the real complexity of the interactions present in
the data. We describe the theoretical foundations
and practical aspects of learning local structures,
aswell asan empirical evaluation of the proposed
method. This evaluation indicates that learning
curves characterizing the procedure that exploits
the local structure converge faster than these of
the standard procedure. Our results also show
that networks learned with local structure tend to
be more complex (in terms of arcs), yet require
less parameters.

1 Introduction

In recent years there has been agrowing number of interest-
ing results in the literature on learning Bayesian networks
fromdata. Most of theseresultsfocusonlearning the global
structure of the network; that is, the edges of the directed
acyclic graph that describes the independencies embodied
by the network. Once this structure is fixed, learning the
parameters in the Conditional Probability Tables (CPT) is
usually solved by estimating a locally exponential num-
ber of parameters from the data. In this paper we propose
the use of local structures for representing the CPTs and
introduce the methods and algorithms for learning these
structures as part of the process of learning the network.
Using these structures we can model various degrees of
complexity in the CPT representations. As we will show
this considerably improves the quality of the learned net-
works.
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Figure 1: A simple network structure and the associated
CPT for node S.

A Bayesian network represents a probability distribution
whose parameters are specified by a set of CPTs. Each
node in the network has an associated CPT that describes
the conditional probability distribution of that node given
the different values for its parents. In its most naive form,
a CPT is encoded using a tabular representation which is
locally exponential on the number of parents of a node:
each assignment of valuesto the parents of a node requires
the specification of aconditional distribution over that node.
Thus, for example, consider the simplenetwork in Figure 1,
where the nodes A, B, £ and S correspond to the events
“alarm armed,” “burglary,” “earthquake” and “loud alarm
sound,” respectively. Assumingthat all variablesarebinary,
anaivetabular representation of the CPT for Swill require8
parameters, one for each possible state of the parents. One
possible quantification of this CPT is given in Figure 1.
Note however, that when thealarm is not armed, (i.e., A =
0), the probability of S = 1iszero, regardless of the values
B and E. Thus, the interaction between .S and its parents
is simpler than the 8-way situation that is assumed in the
naive representation of the CPT.

The locally exponential size of the naive representation
of the CPTs is a major problem in learning Bayesian net-
works. As a genera rule, learning many parameters is a
liability, sincealarge number of parametersrequiresalarge
training set to be assessed reliably.! Thus, in general, learn-
ing procedures encode a bias against structuresthat involve

Thisissue is related to the problem of induced models over-
fitting the training data.
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Figure 2: Example of the two representations of the local
CPT dtructure. Part (a) shows a default table, and Part (b)
shows adecision tree,

many parameters. For example, given a training set with
instances sampled from the network of Figure 1, the learn-
ing procedure might choose a simpler network structure
over that of the original network. Using the naive tabular
representation, the CPT for .S requires 8 parameters. How-
ever, anetwork with only two parents for S, say A and B,
would require only 4 parameters. Thus, for a small train-
ing set, such a network may be preferred, even though it
ignores the effect of £ on S. The point of this exampleis
to illustrate that by taking into account the number of pa-
rameters, the learning procedure may penalize alarge CPT
even if the interactions between the node and its parentsare
relatively benign. Our strategy isto alleviate this problem
by explicitly representing the local structure of the CPT.
This enables the learning procedure to consider each CPT
according to the “real” number of parametersit actually re-
quires to represent the conditional probability distribution,
rather than the maximal possible number it might use with a
naive representation. In other words, this explicit represen-
tation of local structure in the network’s CPT alows us to
adjust the penalty incurred by the network to reflect the real
complexity of the interactions described by the network.

In this paper we examine two possible representations of
the local structure of CPTs, and the methods for learning
them. These representations, shown in Figure 2, will, in
general, require fewer parameters than a naive representa-
tion. Part (a) in Figure 2 describes a default table, which
is similar to the usual tabular representation, except that it
does not list all of the possible values of S’s parents. In-
stead it provides a default probability assignment to all the
values of the parents that are not explicitly listed. In this
example, the default table uses 5 parameters as opposed to
theoriginal 8. Part (b) describes another possible represen-
tation based on decision trees. Each leaf inthe decision tree
describes aprobability for S. Theinternal nodes of thetree
encode possible values of S’s parents. In our example, the
tree captures the additional structure that whenever B = 1
and A = 1, the probability of S is the same regardless of
the state of . Thus, it requires 4 parameters instead of 8.

Our hypothesis is that incorporating local structure rep-
resentations into the learning procedure leads to two im-
portant improvementsin the quality of theinduced models.

First, the parameters are more reliable. Since these rep-
resentations usually require less parameters, the frequency
estimation for each parameter takesalarger number of sam-
ples into account and thus they are more robust. Second,
the global structure of the directed acyclic graph is a bet-
ter approximation to the real (in)dependencies in the data.
The use of local structure enables the learning procedure to
explore networks that would have incurred an exponential
penalty and thus would have not been taken into consid-
eration. We cannot stress enough the importance of this
last point. Finding better estimates of the parameters for
aglobal structure that makes unrealistic independence as-
sumptionswill not overcome the deficiencies of the model.
Thus, it is crucial to obtain a good approximation of the
global structure. The experiments described in Section 5
validate this hypothesis. Moreover, the results in that sec-
tion show that the use of local representations for the CPTs
have a significant impact on the learning process itself. It
trandates into a faster learning to the distribution in the
data. In other words, the learning procedures require fewer
data samples in order to induce a network that better ap-
proximates the target distribution.

The main contributions of this paper are twofold. The
first is the formulation of the hypothesis introduced above,
which uncovers the benefits of having an explicit local rep-
resentation for CPTs. The second is the empirical inves-
tigation that validates this hypothesis. In the process we
also derive, in a principled manner, an MDL metric and
algorithms for learning the local representations. In addi-
tion, wediscuss the necessary modificationsto the Bayesian
metric of [Heckerman, Geiger, and Chickering 1995].

We are certainly not the first to suggest local structure
for the CPTS. Such structures have been often used in
knowledge acquisition from experts; the noisy-or gate and
its generalizations are well known examples [Heckerman
and Breese 1994; Pearl 1988; Srinivas 1993]. In the con-
text of learning, it has been noted by several authors that
CPTs can be represented using logistic regression, noisy-
ors, neural networks and decision trees [Buntine 1991b;
Diez 1993; Musick 1994; Nea 1992; Spiegelhalter and
Lauritzen 1990]. With the exception of Buntine, these au-
thors have focused on the case where the network structure
isfixed in advance, and motivate the use of local structure
for learning reliable parameters. Buntine does not limit
his investigations to the case of a fixed structure, yet the
advantages he foresees are the same ones that motivated
the introduction of local structurein knowledge acquisition
tasks. To the best of our knowledge, the benefits that relate
to a more accurate induction of the global structure of a
network have been unknown in the literature prior to this
paper.

This paper is organized as follows: Section 2 reviews
the definition of Bayesian networks, and the derivation of
the minimum description length (MDL) score for learn-
ing Bayesian networks. Section 3 formally derives the
MDL score for default tables and decision trees, and Sec-
tion 4 describes the procedures for learning these struc-
tures. Section 5 presents the experimental results, and we
conclude with a discussion and summary in Section 6. Ap-
pendix A describes the modifications needed for adapting



the Bayesian scoring metric to networks with local struc-
ture.

2 Learning Bayesian Networks

Consider afiniteset U = {X3, ..., X, } of discreterandom
variables where each variable X; may take on values from
a finite domain. We use capital letters, such as X, Y, Z,
for variable names and lowercase letters z, y, z to denote
specific valuestaken by thosevariables. Theset of values X
can attain isdenoted as Val (X)), the cardinality of thisset is
denoted as || X || = |Val(X)|. Setsof variables are denoted
by boldface capital letters XY, Z, and assignments of
values to the variables in these sets will be denoted by
boldface lowercase lettersx, y, z (we use Val (X) and || X||
intheobviousway). Let P beajoint probability distribution
over the variablesin U, and let X, Y, Z be subsets of U.
X and Y are conditionally independent given Z if for al
x € Va(X),y € Val(Y),z € Val(Z), P(x | z,y) =
P(x | z) whenever P(y,z) > 0.

A Bayesian network is an annotated directed acyclic
graph that encodes a joint probability distribution of a do-
main composed of a set of random variables. Formally,
a Bayesian network for U is the par B = (G,0). G
is a directed acyclic graph whose nodes correspond to the
random variables X1, . .., X,,, and whose edges represent
direct dependenciesbetween the variables. Thegraph struc-
ture G encodes the following set of independence assump-
tions: each node X; isindependent of its non-descendants
given its parents in ' [Pearl 1988].? The second compo-
nent of the pair, namely O, represents the set of param-
eters that quantifies the network. It contains a parameter
HMHZ = P(x;|II;,) for each possible value z; of X;,
and IL;, of II x, (the set of parentsof X; in ). B defines
aunique joint probability distribution over U given by:

n

.,Xn) = HPB(XilﬂXz) = HHXJHX, (1)
i=1 i=1

Pa(Xa,..

Theproblem of learning aBayesian network canbestated
asfollows. Given atraining set D = {uy,...,uy} of in-
stances of U (i.e, each u; is a value assignment to al
variables in U), find a network B that best matches D.
To formalize the notion of goodness of fit of a network
with respect to the data, we normally introduce a scoring
metric, and to solve the optimization problem we usually
rely on heuristic search techniques over the space of pos-
sible networks [Heckerman 1995]. Several different met-
rics have been proposed in the literature. In this paper
we focus our attention on the Minimal Description Length
(MDL) score [Lam and Bacchus 1994]. This scoreis sim-
ple, very intuitive, and has proven to be quite effective in
practice. Another scoring metric that has received much at-
tention recently isthe Bayesian scoring metric [ Cooper and
Herskovits 1992; Buntine 1991b; Heckerman, Geiger, and
Chickering 1995]. We defer the discussion of this metric

2Formally there is anotion of minimality associated with this
definition, but wewill ignoreit in this paper. See [Pearl 1988] for
details.

and its modification to learn networks with local structure
to Appendix A.

The MDL principle [Rissanen 1989] has a simple mo-
tivation in universal coding. Suppose that we are given a
set D of instances which we would like to store and keep
in our records. Naturally, we would like to conserve space
and save a compressed version of D. To this end we need
to find asuitable model for D such that an encoder can take
this model and produce a compact image of D. Moreover,
as we want to be able to recover D, we must also store a
version of the model used by the encoder to compress D.
The description length of the data based on a model, and
using a particular encoder, is then the length of the com-
pressed data plus the representation size of the model itself.
The MDL principle dictates that the optimal mode is the
one (from a particular class of interest) that minimizes the
total description length.

The MDL principle is applied to learning Bayesian net-
works by taking a network to be the model for the data used
by an encoder to produced a compressed version of D. The
ideaisasfollows: anetwork B assignsaprobability to each
instance of U. Using these probabilities we can construct
an efficient code. In particular, we use the Huffman code
[Cover and Thomas 1991], which assigns shorter codes to
frequent instances. The benefit of using the MDL as a scor-
ing metric isthat the best network for D optimally balances
the complexity of the network with the degree of accuracy
with which the network represents the frequenciesin D.

We now describe in detail the representation length re-
quired for the storage of both the network and the coded
data. The MDL score of a candidate network is defined as
thetotal description length. Tostoreanetwork B = (G, ©),
we need to describe U, GG, and ©:

To describe U, we store the the number of variables, n,
and the cardinality of each variable X;. Note that since U
will be the same for each candidate network, we will ignore
the description length of U in the comparisons between
networks. Yet, we will assume that this information is
present in the encoding for the rest of the terms in the
description length.

To describe the DAG G it is sufficient to store for each
variable X; adescription of II x, (namely, itsparentsin (7).
This description consists of the number of parentsfollowed
by alist of the parents. Since we can encode each of these
using log n bits, thedescription length of the graph structure

is:
DLgapn(G) = > (1 + [ x,])logn.

To describe the parametersin ©, we must store the pa-
rametersin each conditional probability table. For thetable
associated with X;, we need to store || IT x, || (]| X;]| — 1)
parameters. The representation length of these parameters
depends on the number of bits we use for each numeric pa
rameter. The usual choiceintheliteratureis1/2log N (see
[Friedman and Yakhini 1996] for a thorough discussion of
this point). Thus, the encoding length of X;'s CPT is

1
DLtapie( X3, I x,) = §||HX, (|[X:]| —1)log N.

Weturn our attention to the description length of the data.



Using the probability measure defined by B, we construct
a Huffman code for the instances in D. In this code, the
exact length of each codeword depends on the probability
assignedto that particular instance. Thereisno closed-form
description of thislength. However, it isknown [Cover and
Thomas 1991] that when we choose longer coding blocks
we can approximate the optimal encoding length in which
the encoding of each u is —log Pg(u) bits. Thus, the
description length of the dataiis simply:

N
Dlaaa(©x, 17, . D) = = > " log Py(u;).
i=1

We can rewrite this expression in a more convenient

form. Let Pp betheempirical probability measureinduced
by the data set D. More precisely, we define

1< 1 ifueAd
Pp(A) = NZlA(uZ») WherelA(u):{ 0 ifugA
i=1

for al events of interest, i.e., A C Val(U). Using (1) we
can rewrite the representation length of the data as:

DLdata(@X,lHX , D) =-—N Z PD(xi, Har,) |Oglgxllﬂz
e, I,

_ (2)

Thus, the encoding of the data can be decomposed based

on terms that are “local” to each CPT: these terms depend
only on © X x.* Standard arguments show that:

i

Proposition 2.1: |f®X|HX isrepresented asatable, then
the parameters values that minimize DLdata(@X|HX , D)

ared, 7, = Pp(x|IT,).

Thus, given a fixed network structure GG, learning the pa-
rameters that minimize the description length is straightfor-
ward: we simply compute the appropriate long-run frac-
tions from the data.

Assuming that we assign parameters in © in the man-
ner prescribed by this proposition, we can rewrite in
DLdata(@X|HX , D) in amore convenient way in terms of
conditional entropy: N - H(X;|IIx,), where H(X|Y) =
— ey Po(x, y)log Pp(x|y) istheconditional entropy of
X given Y. This gives a nice information theoretic inter-
pretation for representation of the data: it measures how
many bits are necessary to encode the value of X; once we
know the value of I x,.

Finally, the MDL score of a candidate network structure
G, assuming that we choose parameters © as prescribed
above, is defined asthe total description length

DL(G,D) = Dlgan(G)+ Y Dliae(X:, M x,) +

K3

N> H(X;|Hx,).

According to the MDL principle, we should strive to find
the network structurethat minimizesthisdescription length.
In practice, thisis usually done by searching over the space
of possible networks.

We remark that the MDL score we just described co-
incides with the Bayesian Information Criterion (BIC) of
[Schwarz 1978] whichisrelated to Bayesian learning meth-
ods (see Appendix A). Roughly speaking, BIC would score
aBayesian network B withlog Pg(D) — 3 log N dim(B),
where dim(B) is the dimension of B, i.e., the number of
parameters it embodies. If we assume that the samples in
D are sampled independently from the same distribution,
then log Pg(D) = >, log Pg(u;). Thus the BIC score
(which one attempts to maximize) is the negative of the
MDL score (which one attempts to minimize), when we
ignore the description of G.

3 AddingLocal Structure

In the derivation of the MDL score in the previous section
we used a simplistic encoding for representing the param-
eters ©. We assumed the usua representation of CPTs
requiring a locally exponential number of parameters. To
be precise, for each node X; we assumed that we need to
encode || IT x,||(||X;|| — 1) parameters. In practice, how-
ever, the relation between X; and its parents I1 x, can be
more benign, and some regularities can be then exploited
to represent the same information with fewer parameters.
In the example of Figure 1, the information in the CPT can
be encoded with four parameters using the decision tree in
Figure 2 (b), as opposed to the eight parameters required by
the naive tabular representation in Figure 1.

In this section we focus on defining compact represen-
tations that will exploit these regularities in the relations
between a node and its parents to provide a smaller rep-
resentation. Thisis crucial since, as discussed above, the
MDL metric tradeoffs the complexity of the network for ac-
curacy in therepresentation. Thus, it hasabiasfor learning
networks with smaller families. By using the exponential
encoding we may be unduly penalizing nodes in a network
with alarge number of parents. Compact encodings, on the
other hand, will take advantage of the simpler interaction
between the node and its parents, and will allow the explo-
ration of networks with large families, accurately scoring
their fitness with the data.

This section describes the encoding of these compact
representations, and the changesinthe MDL scoring metric.
In the next two sections we discuss in detail how these
representations can be learned and present experimental
results that show their effectiveness.

3.1 Default Tables

A default table is very similar to a standard tabular repre-
sentation for aCPT, except that only asubset of the possible
values of the parents of anode are explicitly represented as
rows in the table. The values of the parents that are not
explicitly represented as individual rows are mapped to a
special row called the default row. The idea is that the
probability of anode X isthe samefor al the values of the
parentsthat are mapped to the default row, thereforethereis
no need to represent these values separately using different
entries. Consequently the number of parameters explicitly
represented in a default table is less than the number of pa-
rametersin anaive representation for aCPT. In theexample



of Figure 2 all the values of the parents of S where A = 0
(the alarm is not armed), are mapped to the default row in
the table since the probability of S = 1 is equal to zero
regardless of these values.

Formally, a default table is an object D. We define
Rows(D) to be the set of rowsinD. The description length
of a default table is quite simple. We start by encoding
the number £ = |Rows(D)| — 1 of rows in the table that
explicitly represent specific values for X's parents values.

Then, we encode which of the (”sz”) sets of rows ac-
tually appear in the table. Finally we need to encode the
parameters in the k& rows and in the default row. Thus the
description length of a CPT using default table D:

i)
log|| IZx || + log (“ kX”)

1
+351k+ 1(|1Xi]] - 1) log V.

DLoet( X, IIx,D) =

Note that in the extreme case when all the rows in the con-
ditional probability table have distinct values, the second
term in this equation is equal to zero and the last term is
equal to the original encoding presentedin the previous sec-
tion. Thefirst term in this equation log || IT x. ||, encoding
the actual number of rows in the table, represents a book-
keeping penalty that we pay for the additional flexibility of
using default tables. Note however, that this term does not
depend on the size N of the training data and will be of
little influence as N grows.

We now turn to examine how the assumption that the
CPT is represented by a default table D affects how well
the modél fits the data. We start by defining I'p to be the
characteristic random variable of the table D, which takes
valuesin Rows(D). Theevent I'p = r corresponds to the
value(s) of parents associated with the row r. We now can
refer to parametersin thetable D as O x|, .

Proposition 3.1: If ®X|HX is represented as a default
table D, then we can rewrite DLdata(9X|HX , D) as.

—-N E ZPD(JJZ';FD IT’)|Oggxl|,-.

reRows(D) i

Moreover, the parameter values for D that minimize
DLdata(®X|HX , D) are

9x,|r = PD(-Tzer = T‘).

As in the case of a regular CPT representation, DLgat, IS
minimized when the parameters correspond to the appro-
priate frequencies in the training data. As consequence
of this result, we get that for a fixed default table struc-
ture D, the minimal representation length of the data is
simply N - H(X|I'p). Thus, once again we get the in-
formation theoretic interpretation of DLgata(© X I . D)
that measures how many bits are needed to represeﬁt X.
This interpretation shows that the encoding of X depends
only on the values of I'p. From the well known data pro-
cessing inequality [Cover and Thomas 1991] we get that
H(X|T'p) > H(X|Hx). Thisimpliesthat a default table
cannot fit the data better than aregular CPT. Nevertheless,

the reduction in the number of parameters may compensate
for the potential loss in information.
To summarize, the MDL score for a graph structure aug-
mented with default table D; for each X; is:
DLyet(G, D1, ...,Dn, D) =
DLgraph(G) + 3_; (DLaet(Xi, I x,, D;) + N - H(X|'p,)) .

3.2 Decision Trees

In this context, a decision treeis atree in which each inter-
nal nodeisannotated with aparent variable, outgoing edges
from a particular node are annotated with the different val-
ues that the variable represented by that node can take, and
leaves are annotated with a probability distribution over
X. The process for retrieving the probability of X givena
value of its parentsis as follows. We start at the root node
and traverse the tree until we reach aleaf. At each internal
node, we choose which subtree to traverse by testing the
value of the parent annotating that node, and following the
outgoing edgethat correspondsto that value. Thus, suppose
we would liketo know Pr(S = 1|A=1,B=0,E = 1)
in the tree shown in Figure 2(b). We follow the edge to
theright subtree at A, since this edge is annotated with the
value 1 for A. Similarly we follow the |left edge on B (an-
notated with 0) and again the right edge on E' till we reach
the appropriate leaf .

Note that decision trees are more flexible than default
tablesin the sensethat we can represent simpler interactions
inamorecompact manner. Ingeneral, adefault tablegroups
one set of values the parents can take (the ones that are not
explicitly listed in the table) into a partition. A tree, on the
other hand, can group several sets of such values, each one
corresponding to aleaf in the tree. In our example, the leaf
that correspondsto A = 0 groups 4 values of the parents of
S, while the leaf that correspondsto A = 1, B = 1 groups
two values of the parents (the other two leaves correspond
each to a particular value of the parents).

For the formal definition of the description length, we
will denote a tree as an object 7 which can either be a
leaf or acomposite tree. We introduce afunction Label(7)
that returns the variable that is the root of 7', and afunction
Sub(7, v) that returnsthe sub-tree associated with the value
v of Label(7). Given atree 7 we define Leaves(7 ) to be
the set of leavesin7 .

The description length of adecision tree is composed of
two parts: the description of the tree structure, and the de-
scription of the parametersintheleaves. For the description
of thetree wefollow the encoding proposed by Quinlan and
Rivest [1989]. A treeisencoded recursively as follows: a
leaf is encoded by a single bit with value equal to 0. The
encoding of acompositetree startswith abit set to thevalue
1, to differentiate it from aleaf, followed by a description
of the associated test variable and the description of all the
immediate sub-trees. The encoding of the test variable de-
pends on the position of the node in the tree. At the root,
the test variable can be any of X'sparents. However, since
along a single path we test each variable at most once, we
have smaller set of possibilities in deeper nodes. In gen-
era a node that is k levels deep in the tree, would have
|IT x | — k possible candidates for the test variable. Thus,
we need to storeonly log(|II x | — k) bitsin encoding. The



total description length of the tree structureisthe following
recurring formula:

o If T isaledf, thenDLy (7, k, I x) = 1.

o If 7 is a composite tree with sub-trees 73, ..., 7.,
then
DLy (7,k,Ix) = 1+log(|[Ix|—k)+

> DLy (T k+1, ).

The description length of the parameters at the leaves is
simply the number of leaves multiplied by 3(||(X;) —
1j|)log N. As noted in [Quinlan and Rivest 1989; Wal-
lace and Patrick 1993] this encoding of the tree structureis
suboptimal, especially when the tree has a high branching
factor. Inthis paper, however, we usethis simpler encoding
sincethedescriptionlengthis, in any case, dominated by the
length of the parameters stored in the leaves (which depend
onthesamplesize N).® Similar tothe case of adefault table
there is abookkeeping penalty for encoding the structure of
the tree when compared with the naive encoding of a CPT.
Once more, this penalty can be disregarded since it will be
of little influence as vV grows, and it will only be relevant
asthe tree grows near afull tree.
Finally, the total encoding length of the CPT is:

DlLyee( X, IIx,7) = DLy (7,0,IIx)+

1
o |Leaves( ) (|| i]| - 1) log .

For the description length of the data, we define the
characteristic random variable '+ that takes as values
Leaves(7). The event I'y = [ correspond to the state
of the parents as represented by the labels on the edges that
appear on the path from the root of 7 to the leaf . We get
an analogous result to the one we had for default tables.

Proposition 3.2: If ®X|HX is represented by a decision
tree 7, then we can rewrite DLdata(®X|HX , D) as.

N Z ZPD(él‘i;FT:l)logglel

l€Leaves(T ) «:

Moreover, the parameter values that minimize
DlLuata(O x 17, D) are

91,1“ = PD(@Z|FT = l)

We again get the expected information theoretic term for
the encoding of the data using the best parameter valuesfor
afixedtreestructure7: N - H(X|T'r).

To summarize, the MDL score for a graph structure G
augmented with trees 7; for each X; is:

DlLyee(G, T, ..., Tn, D) =

DLgraph(G) + EZ (DLtree(Xi; HX,;Z’) + N - H(Xi|FT,)) .

3The more complex representation length of [Wallace and
Patrick 1993] can be easily incorporated into our MDL score.

Table 1: Description of the three networks used to generate
the sample data.

Name | Description NU] e

3

Alarm | A network by medical experts for monitor- | 37 2% 509
ing patients in intensive care.
CTS A network developed by medical expertsfor | 66 278 525
diagnosing carpal tunnel syndrome.
TJ A network developed by domainexpertsfor | 34  2%%0% 385
testing performance in Jet turbines

4 Learning Local Structures

In this section we describe an approach for learning thelocal
structures (default tables or decision trees) given aparticular
global structure for the network. These procedures are
applied independently to each CPT. Thus, in describing
them we assume that we are given avariable X and a set
of parents IT x, and the objective is to induce the local
structure for this CPT. During the global learning process,
these procedures will be called to find local structures for
each new network candidate.

Animportant aspect of the scoring metricswe derived in
the previous section is that they are decomposable. Thus,
for example, the representation length of a tree is a sum
of the representation lengths of the subtrees. Similarly, the
scoring of the data using entropy is also decomposable.
This was shown for the case of CPTs in Section 2, and it
follows easily for the cases of default tables and decision
trees. The decomposability property iscrucial for devel op-
ing incremental algorithms for learning the local structures.

For the learning of default tables we propose a smple
minded greedy algorithm. We start with atrivial table with
only the default row. Then, we iteratively add the row that
minimizes the description length of the table and the data.
This greedy expansion is repeated until no improvement in
the score can be gained by adding another row.

We now turntolearning of decision trees. Aspointed out
by Quinlan and Rivest [1989], finding an optimal decision
tree is apparently an intractable problem. There isalarge
body of work on proceduresfor the construction of decision
trees (see for example [Quinlan 1993]). Here we adopt a
straightforward approach outlined by Quinlan and Rivest.

The approach consists of two phases. In the first phase
we “grow” the tree in a top-down fashion. We start with
the trivial tree consisting of one leaf, and add branches to
it until a maximal tree is learned. In the second phase we
“trim” the tree in a bottom-up fashion.

To grow the tree we repeatedly replace a leaf with a
subtree that has as root some parent of X, Y, and whose
children are leaves; one for each value of Y. In order
to decide on which parent Y we should perform this split
we compute the MDL score, i.e., DLyee defined above, of
the tree associated with each parent, and select the parent
which induces the best scoring tree. (The score can be
computed in alocal fashion by evaluating H (X|Y") on the
instances in the training data that are compatible with the
path from the root of the treeto the nodethat is being split.)
This procedure stops when either the node has no training
instances associated with it, the value of X is constant in



the associated training set, or al the parentsof X have been
tested along the path leading to that node.

The second phase is done by scanning the tree in a
bottom-up manner. At each node we consider whether
the representation length of the sub-tree rooted at that node
is bigger or equal to the representation length of a leaf. If
this is the case, then the sub-tree is trimmed and replaced
with aleaf.

5 Experimental Results

The purpose of the experiments described in this section is
to assess how the bias embodied by the different represen-
tations of conditional probability tables affects thelearning
behavior, and the quality of theinduced models. To thisend
we collected data in the form of learning curves measur-
ing the quality of the learned network as a function of the
number of training samples, as well as different statistics
regarding the number of parametersin the learned models.

We compared three different learning procedures which
differ in the use of the local representation of conditional
probabilities.

Ghap Usesthestandard MDL score, asdescribedin Section 2.

Gae Uses the MDL score based on default tables, as de-
scribed in Section 3.1.

Gee Uses the MDL score based on decision trees, as de-
scribed in Section 3.2.

All three learning procedures use the same simple greedy
search method for finding acandidate network. Thestarting
point of the search is the empty network. We consider
three possible types of operations on the candidate network:
edge addition, edge removal and edge reversal. At each
step, the procedure chooses the best operation among these,
and applies it to the current candidate. (IN Gger and Giree
this includes a search for the best local structure for the
CPTs modified by each possible operation.) This process
isrepeated until the best modification does not improve the
candidate’s score. As expected, this hill-climbing search
method is most likely to find a local minima instead of
a global one. However, it has a reasonable behavior in
practice (see [Heckerman, Geiger, and Chickering 1995]).

Wetested the threelearning procedures on datagenerated
by three Bayesian networks described in Table 1.4 From
each of these networkswe sampled training setsof 8 sizes—
500, 1000, 2000, 4000, 6000, 8000, 12000, and 16000
instances—and run the learning procedures on them. In
order to increase the accuracy of the results, we repeated
the experiment with ten sets of training data.

5.1 Resaults

We are interested in comparing the use of structured repre-
sentationsin thelearning procedures onthree characteristics
of the induced networks: number of instances needed ver-
sus overall quality, number of parameters learned (which

4The Alarm network iswell known and describedin [Beinlich,
Suermondt, Chavez, and Cooper 1989]. CTS and TJ were pro-
vided by Mark Peot of Knowledge Industries, after the variable
names where appropriately sanitized.

indicates a measure of the robustness of these parameters),
and the complexity of the network. We describe our results
in turn.

To evaluate the overall quality of the network we com-
pute the cross-entropy from the target distribution, that is,
the one represented by the generating network, to the dis-
tribution represented by the learned network. This measure
is defined as follows. Let P be the target distribution and
@ thelearned distribution. The cross entropy from P to @

is: (@)
Pz
P(z)lo .
2 P00
This measure is the standard measure of distance in the
Bayesian network learning literature [Cooper and Her-
skovits 1992; Heckerman, Geiger, and Chickering 1995;
Lam and Bacchus 1994]. See[Friedman and Yakhini 1996]
for a detailed discussion of this measure.

Figure 3 plots the learning curves for the three pro-
cedures described above. The figure displays the cross-
entropy between the induced models and the generating
model (vertical axis) versus the number of samples in the
training data (horizontal axis). It was noted by [Friedman
and Yakhini 1996], that, as a genera rule, learning curves
for these learning problems behave as alinear function of

'OQTN. Thus, to facilitate comparisons we plot the learning

errorsscaled by |ngV ~ - Indeed, we observethat the resulting
graphs are roughly constant. The dotted diagonal linesrep-
resent boundaries of constant error. All methods appear to
converge to the target distribution (eventually they would
intersect the dotted line of ¢ cross-entropy for al ¢ > 0).
However, both Gge and Giree CONverge faster than Gy AS
agenera rule we see a gap of O('%X) between the error
measure of Giay, and Gger and Gyee. The lines of constant
error clearly indicate that asas N growslarger, the number
of samples G Needsto reach an approximation compatible
with Ger (OF Giree) grows larger.

One surprising aspect of these results isthe performance
of default tables as compared to decision trees. In particu-
lar they are clearly better in small to medium (up to 8000)
sample sizes. We suspect that thisis due both to the low
bookkeeping penalty in their encoding, and the fact that the
greedy learning algorithm for default tables performs well.
We note however, that decision treesperform better inlarger
sample sizes. For example, Gyee performance improves as
thesample sizegrowsin CTSand TJ. Thisis dueto the fact
that many of the CPTs in CTS and TJ are represented us-
ing noisy-or and noisy-max [Heckerman and Breese 1994],
which can be better approximated by trees (rather than by
default tables). Another possible factor might be the way
our trees handle multi-valued attributes. Whenever such an
attribute is tested in a decision tree we must create many
subtrees that fragment the sample into small groups. De-
fault tables, on the other hand, can effectively group several
valuesof multi-attributevariablesinto the“default” row. In
future work we plan to address issue.

The next two experiments help in illustrating why the
faster convergence of the methods using structured local
representation. The first experiment is concerned with the
number of parameters in the learned model, while the sec-
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Figure 3: Learning curves comparing the cross-entropy of net-
workslearned using standard MDL (solidline) to networks|earned
withwithtrees (dashed line) and default tables (dot-dash line). The
horizontal axis measures the number of samples, N. The vertical
axis measures the error multiplied by 7. The dotted diagonal

lines are lines of constant error.

ond is concerned with the complexity of these models. Re-
sults are depicted in Figure 4.

Generally, we say that a parameter isrobust if it has low
variance. The number of parameters can be used as adirect
estimate of robustness of the learned parameters: For each
random variable X, the parameters in ®X|HX are of the

form Pp(X|E1),..., Pp(X|Ey), where By, ..., B, are
mutually digoint and exhaustive events. The exact nature
of F; depends on the representation of © XIT they can
correspond to values of IT x (in the usual table representa-
tion), to leaves in the decision tree, or to rows in a default
table. Since £y, . .., Ey are mutually digoint and exhaus-
tive, ) ; Pp(E;) = 1. Thus, ask grows larger, parameters
are evaluated in smaller populations of instances, and thus
run the risk of being less robust. Hence, as a general rule,
for a fixed training data size, the fewer parameters in a
model, the morereliable istheir estimated values.

With respect to the complexity of the learned networks,

2000 4000 6000 8000 12000 16000

Alarm

2000 4000 6000 8000 12000 16000

CTS

2000 4000 6000 8000 12000 16000

TJ

Figure 4: Curves comparing the number of parameters and the
complexity of the networkslearned by standard MDL (solid line),
using trees (dashed line) and using default tables (dot-dash line).
The two measures are identical for standard MDL. Curves below
thesolid line measure thethe actual number of parameterslearned,
and curves above the solid lines measure the number of param-
eters required had the learned network used tables to represent
conditional probabilities.

we have that as a general rule, more complex networks
make less assumptions of independence. A misguided as-
sumption of independence introduces errors in the learned
distribution that persist even if we can somehow obtain
the optimal parameter values. Thus, we want to learn net-
works that are not much simpler than the target distribution
requires.

Complexity of networks can be measured in various
ways. We have chosen to measure it using the number
of parameters we would have been required had we used
the usual table representation of © x|IT .- Since the num-

ber of parameters is exponential in the size of the family,
this measure estimates how many “big families’ are in the
network. This measure is more exact than say counting
edges, since it also takes into account the cardinality of
parent variables. For example, if we take avariable X in
the network and add an edge directed to it from a variable



Table 2: Approximation error for mixed structure/parameter
learning methods. Rows describe the method used in learning
the network structure, and columns describes the method used
in learning the parameters. Results in part (a) of the table were
learned from 10 sample sets of size 1000 from the CTS network
and those in part (b) were learned from sample sets of size 4000
from the TJ network.

Parameter Estimation Method

G  Gre Gag | G Guee  Guet
G | 0954 0.903 0.890 || 0.161 0.134 0.127
Gree | 0992 0.855 0.848 || 0.176 0.108 0.092
Gges | 0973 0.820 0.778 || 0.204 0.110 0.073
@ (b)

with k& values, then the number of parameters needed for
representing ®X|HX is multiplied by k. Thus, an edge
from a variable with larger cardinality incurs in a higher
cost in terms of complexity.

Figure 4 describes the number of parameters and the
complexity of the networks learned by the various meth-
ods. Note that Gy, the procedure that learns default ta-
bles, usualy learns the smallest number of parameters, and
at the same time induces models that are most complex.
This combination reduces the variance of the estimated pa-
rameters, produces a more accurate representation of the
(in)dependencies in the real distribution, and undoubtedly
improvesthe cross-entropy of these networks. Asexpected,
Glree l€arns less parameters than G, and produces more
complex networks. However, it usualy learns more pa
rameters then Gy

In in attempt to isolate the improvement gained from
learning a more complex structure and the improvement
fromlearning fewer parameterswe performed thefollowing
experiment. We took the structures learned by one method
and learned the best parameters, holding the structure fixed,
using the other methods. The results of this experiment
can be found in Tables 2(a) and 2(b).> Note that once
the global structure of the network is fixed, we can till
obtain better approximations by learning local structures
for the CPTs. Thisis evident by observing that the cross-
entropy in these tables decreases aswetraverse any row. In
addition, both Gyee and Giay learn better structures which
lead to additional improvementsin the approximations. Itis
interesting to observe that when welearn full CPTsfor these
larger (more complex) structures the error increases, since
the parameters become unreliable. Thus, Giap's choice of
small networksis, in this sense, justified.

In summary, these results validate our stated hypothesis.
They suggest that the methods we propose find better (in
terms of cross-entropy) modelsfor two main reasons. First,
they learn more complex structures. These structures do
not make independence assumptions that do not hold in the
underlying domain and thus, they reduce the error. Sec-
ondly, the learned networks contain fewer parameters. The

SWe only show the results for a couple of such experiments.
Similar qualitative behavior appears in al other experiments we
generated.

estimation of these parametersisthen morerobust sinceitis
based on a frequency over larger samples. They are closer
to the actual probabilitiesin the underlying distribution. In
thisrespect, both default tablesand treesare flexible enough
to regulate the number of learned parameters. If there are
many instances, then more complex local structures can be
learned (with more parameters). On the other hand, if there
are few instances, then the local structure will be simpler
and fewer parameters will be assessed.

6 Discussion

The main contribution of this paper is the introduction of
structured representations for the CPTs in the learning pro-
cess, the identification of the benefits of using these repre-
sentations and the empirical validation of our hypothesis.
Asmentioned intheintroduction, we are not thefirst to con-
sider efficient representations for the CPTsin the context of
learning. Yet, to the best of our knowledge we are the first
to consider and demonstrate the effects that these represen-
tations may have on the learning of the global structure of
the network.

In addition, it isimportant to distinguish between the lo-
cal representations we examine in this paper and the noisy-
or and logistic regression models that have been examined
in the literature. Both noisy-or and logistic regression (as
applied in the Bayesian network literature) attempt to es-
timate the CPT with a fixed number of parameters. This
number is usually linear in the number of parents in the
CPT. In cases where the target distributi on does not satisfy
the assumptions embodied by these models, the estimates
of CPTs produced by these methods can arbitrarily diverge
from the target distribution. On the other hand, our local
representations involve learning the structure of the CPT,
which can range between alean structure with few param-
eters to a full structure with an exponential number of pa
rameters. Thus, our representations can scale up according
to the complexity of the training data. This ensures that,
in theory, they are asymptotically correct: given enough
samples they will construct a close approximation of the
target distribution.

We have focused our investigations on two fairly smple
structured representations—trees and default tables. There
are certainly many other possible representation of CPTs
based for example on decision graphs, rules, CNF formu-
las, etc. (see [Boutilier, Friedman, Goldszmidt, and Koller
1996]). Our choice here was mainly due to the availability
of efficient computational tools for learning the represen-
tations we use. The refinement of these methods deserves
further attention. There are various approaches for learn-
ing trees in the Machine Learning literature, al of which
can be easily incorporated in the learning procedures for
Bayesian networks. In addition, there are possible inter-
actions among the search procedures for global and local
structures. These interactions can be exploited to reduce
the computational cost of the learning process. We leave
these issues for future research.

In conclusion, we have shown that the induction of local
structured representation for CPTs significantly improves
the performance of learning Bayesian networks. In essence,



this is due to the fact that we have changed the bias of
the scoring metric in the learning procedure to reflect the
nature of the distribution in the data more accurately. Our
experimental results show that networkslearned using these
local structured representations encode parameters that are
more robust, and the induced distributions converge faster
to the original distribution.
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A Bayesian Learning of Local Structured
Representations

The MDL principle provided a straightforward framework
for adjusting the metric to account for the additional struc-
ture in the representation of the CPTs. Another popu-
lar scoring metric for learning Bayesian networks is the
Bayesian based metric described by Heckerman, Geiger
and Chickering (HGC) [Heckerman, Geiger, and Chicker-
ing 1995] (which is based on earlier work of [Cooper and
Herskovits 1992; Buntine 1991b]). We now proceed to
sketch a similar modification of this metric deferring an
in-depth treatment to the full version of the paper.

The Bayesian metric estimates the posterior probability
of each network structure given the data. L earning amounts
to searching for the network(s) that maximizes this proba-
bility. Let G” denote the hypothesis that the network struc-
tureis GG, and let © 4 represent the vector of parameters for
structure G. The posterior probability we are interested in
isPr(G"|D). Using Bayes rule we write this term as:

Pr(G"|D) = a Pr(D|G") Pr(G")

where « is a normalization constant. The term Pr(G")
is the prior probability on the network structure, and the
term Pr(D|G") is the probability of the data given that the
network structureis G*. To evaluate the later term we must
consider al possible parameter assignmentsto G. Thus:

Pr(D|G"):/Pr(D|(9g,Gh)Pr(®G|Gh)dG)G (3)

where Pr(D|Og, Gh) is defined by Equation 1, and

Pr(©¢|G") istheprior density over parameter assignments
to G. HGC (following [Cooper and Herskovits 1992])
identify a set of assumptions that justify decomposing this
integral. Roughly speaking, they assume that each dis-
tribution x|IT, can be learned independently of all other

d| str| butions. Given thisassumption they rewrite Pr( D|G")

HH/H%EW
(4)

Pr(@Xll 1., |GM)doy 1.,

(This decomposition is anal ogous to the decomposition in
Equation 2.) When the prior on each multinomial distri-
bution eleﬂz is assumed to be a Dirichlet prior, the

integralsin Equé\tion 4 have a closed form solution [Heck-
erman 1995]). Roughly speaking, the prior density of the
form Dirichlet(#, k) isdefined by two parameters, ¢ the ex-
pected value of the distribution of X, and & the equivalent
sample size which representsthe confidencein the estimate.

There till remains a problem with the direct application
of this method. For each possible network structure we
would have to assign a prior on the parameter values. This
isclearly infeasible since the number of possible structures
is extremely large. HGC propose a set of assumptions that
justify amethod by which given a prior network B? and an
equivalent samplesize N/, we can assign prior probabilities
to parametersin every possible network structure. Roughly
speaking, the prior assignedto © ., inastructure G is

computed from the prior distribution represented in BP:
Pr(©y, 1., |G") ~ Dmchlet(@Xlle N )

where @X ., = = Pp»(X;|I,,) and Nh = N

Pp:(I1;,). (Note that II x, are the parents of X; in G,
but not nec&&arlly in BP.) Thus their proposal essentially
uses the conditional probability of X; given II,, in the
prior network BP as the expected probability. Similarly,
the equivalent sample size istaken to be proportional to the
expected number of occurances of the values of 17,

We now sketch a proposal for a similar machinery that
will enable the proper scoring of local structured represen-
tations. We denote by L% the hypothesisthat G hasalocal
structure L (which can be trees, default tables, or any other
possible representations [Boutilier, Friedman, Goldszmidt,
and Koller 1996]). Wewill also denote by FL the random
variable associated with thelocal representatlon of the CPT
of X;.

We now write;

PI(G", L |D) = a Pr(D| L, G") Pr(LE|G") PH(G")
Specification of priorsonlocal structuresisarelatively sim-
ple problem, with no more complications than the specifica-
tion of priors for the structure of the network G*. Buntine
[1991a, 1993], for example, suggests severa possible pri-
ors on decision trees. A natural prior over local structures
is defined using the MDL description length we described
above, by setting Pr(Lg |G) = a2~ PHLa),

For the term Pr(D|L%, G"), we make an assumption
similar to the one made by HGC (and by Buntine [1991b]):
the parameter values for each possible value of the charac-
teristic variable are independent. Thus, each multinomial
sample isindependent of the others, and we can derive the
analogue of Equation 4 for Pr(D|LL , G"):

H H /HGN Po(a:v) (©x.0lLl,

[ UEVal(FL)

G")dOx,),

(5)
(This decomposition is analogous to the ones described in
Propositions 3.1 and 3.2.) Again we assume that the priors
Pr(©x,s|L, G") areDirichlet, and thustheintegrals have
aclosed form.



Once more we are faced with the problem of specifying
amultitude of priors, that is, specifying Pr(©x, . |L%, G")
for each combination of possiblelocal and global structures.
Our objective, asin the case where the CPT is represented
by a naive tabular form, is to set these priors from a prior
distribution represented by a specific network B”. We
make two assumptions.

First, the prior for an instantiation of the characteristic
variable does not depend on the structure of the represen-
tation. That is, a partition of the values of the parents of a
node X in the network only depends on the event that cor-
responds to this instantiation. For example, consider two
possible trees for the same CPT, one that tests first on Y
and then on Z, and another that testsfirst on 2 and then on
Y. Our assumption requiresthat the leaves that correspond
toY =y, Z = z, be assigned the same prior in both trees.

Second, we assume that the prior for a (larger) partition
that corresponds to a union of several smaller partitions in
another local structure is simply the weighted average of
the smaller partitions. Once more consider two trees, one
that consists of asingleleaf, and another that has onetest at
the root. This assumption requires that the expected value
of the parametersfor the leaf in thefirst treeisthe weighted
avaerge of the expected values in the leaves of the second
tree.

These assumptions follow directly from the assumption
of equivalent sample size, which in the case of a naive
unstructured representations follows from the HGC set of
assumptions:® The assessement provided on the priors is
equivalent to having started from complete ignorance, and
seeing N’ cases of samples D' = {uf,...,ufy,}. More-
over, Pg», the probability represented in the prior network,
describestherelative frequency of eventsamong these sam-
ples, i.e., Pg» = Pp,. This assumption (combined with
the appropriate assumptionsfrom HGC) can be now used to
derive the prior for © x|, from a prior network as follows:

Pr(©x,s|LE, G") ~ Dirichlet(Ox,,, N.),

where Ox,, = Pps(X;|IF = v) and N] = N’
PBP (FZL = 'U).

It remains to be seen how this Bayesian scoring metric
for learning local structures performs in practice. We sus-
pect that it would lead to improvements similar to those
we observed for in MDL score. This intuition is based
on the result by Schwarz [1978] which establishes that
the two are essentially the same for sufficiently large V.
Thus, if we set the priors for the structures such that
logPr(G) = —DLgapn(G) (prior of the network struc-
ture is equal to its description length) and logPr(L}) =
—DLz(L;) whereDL, isthe appropriate description length
function (e.g., DL7), then Schwarz'sresult impliesthat that
logPr(G, L|D) = —DL(G, L, D)+ O(1). That is, for suf-
ficiently large NV the two scores are essentially the same.
Somewhat more complex arguments show that even for
small samples, the scores are close when we start with the
uninformative prior, i.e., onewhere N’ = 0.

SWe are grateful to David Heckerman for suggesting this sim-
plifying assumption.
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