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Abstract. Recent work in supervised learning has shown that a surprisingly simple Bayesian
classifier with strong assumptions of independence among features, called naive Bayes, is com-
petitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a
classifier with less restrictive assumptions can perform even better. In this paper we evaluate
approaches for inducing classifiers from data, based on the theory of learning Bayesian networks.
These networks are factored representations of probability distributions that generalize the naive
Bayesian classifier and explicitly represent statements about independence. Among these ap-
proaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms
naive Bayes, yet at the same time maintains the computational simplicity (no search involved)
and robustness that characterize naive Bayes. We experimentally tested these approaches, using
problems from the University of California at Irvine repository, and compared them to C4.5, naive
Bayes, and wrapper methods for feature selection.

1. Introduction

Classification is a basic task in data analysis and pattern recognition that requires
the construction of a classifier, that i1s, a function that assigns a class label to
instances described by a set of attributes. The induction of classifiers from data
sets of preclassified instances is a central problem in machine learning. Numerous
approaches to this problem are based on various functional representations such as
decision trees, decision lists, neural networks, decision graphs, and rules.

One of the most effective classifiers, in the sense that its predictive performance is
competitive with state-of-the-art classifiers, is the so-called naive Bayesian classifier
described, for example, by Duda and Hart (1973) and by Langley et al. (1992). This
classifier learns from training data the conditional probability of each attribute A;
given the class label C'. Classification is then done by applying Bayes rule to
compute the probability of C' given the particular instance of A1,..., A,, and then
predicting the class with the highest posterior probability. This computation is
rendered feasible by making a strong independence assumption: all the attributes
A; are conditionally independent given the value of the class C. By independence we

* This paper is an extended version of Geiger (1992) and Friedman and Goldszmidt (1996a).
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Figure 1. The structure of the naive Bayes network.

mean probabilistic independence, that is, A is independent of B given C' whenever
Pr(A|B,C) = Pr(A|C) for all possible values of A, B and C', whenever Pr(C) > 0.

The performance of naive Bayes is somewhat surprising, since the above assump-
tion is clearly unrealistic. Consider, for example, a classifier for assessing the risk
in loan applications: it seems counterintuitive to ignore the correlations between
age, education level, and income. This example raises the following question: can
we improve the performance of naive Bayesian classifiers by avoiding unwarranted
(by the data) assumptions about independence?

In order to tackle this problem effectively, we need an appropriate language and
efficient machinery to represent and manipulate independence assertions. Both are
provided by Bayesian networks (Pearl, 1988). These networks are directed acyclic
graphs that allow efficient and effective representation of the joint probability dis-
tribution over a set of random variables. Each vertex in the graph represents a ran-
dom variable, and edges represent direct correlations between the variables. More
precisely, the network encodes the following conditional independence statements:
each variable is independent of its nondescendants in the graph given the state of its
parents. These independencies are then exploited to reduce the number of param-
eters needed to characterize a probability distribution, and to efficiently compute
posterior probabilities given evidence. Probabilistic parameters are encoded in a
set of tables, one for each variable, in the form of local conditional distributions
of a variable given its parents. Using the independence statements encoded in the
network, the joint distribution is uniquely determined by these local conditional
distributions.

When represented as a Bayesian network, a naive Bayesian classifier has the
simple structure depicted in Figure 1. This network captures the main assumption
behind the naive Bayesian classifier, namely, that every attribute (every leaf in
the network) is independent from the rest of the attributes, given the state of the
class variable (the root in the network). Since we have the means to represent and
manipulate independence assertions, the obvious question follows: can we induce
better classifiers by learning unrestricted Bayesian networks?

Learning Bayesian networks from data is a rapidly growing field of research that
has seen a great deal of activity in recent years, including work by Buntine (1991,

1996), Cooper and Herskovits (1992), Friedman and Goldszmidt (1996¢), Lam and
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Bacchus (1994), Heckerman (1995), and Heckerman, Geiger, and Chickering (1995).
This is a form of unsupervised learning, in the sense that the learner does not
distinguish the class variable from the attribute variables in the data. The objective
is to induce a network (or a set of networks) that “best describes” the probability
distribution over the training data. This optimization process is implemented in
practice by using heuristic search techniques to find the best candidate over the
space of possible networks. The search process relies on a scoring function that
assesses the merits of each candidate network.

We start by examining a straightforward application of current Bayesian networks
techniques. We learn networks using the score based on the minimum description
length (MDL) principle (Lam & Bacchus, 1994; Suzuki, 1993), and use them for
classification. The results, which are analyzed in Section 3, are mixed: although
the learned networks perform significantly better than naive Bayes on some data
sets, they perform worse on others. We trace the reasons for these results to the
definition of the MDL scoring function. Roughly speaking, the problem is that the
MDL score measures the error of the learned Bayesian network over all the variables
in the domain. Minimizing this error, however, does not necessarily minimize the
local error in predicting the class variable given the attributes. We argue that
similar problems will occur with other scoring functions in the literature.

Accordingly, we limit our attention to a class of network structures that are
based on the structure of naive Bayes, requiring that the class variable be a par-
ent of every attribute. This ensures that, in the learned network, the probability
Pr(C|A1, ..., Ap), the main term determining the classification, will take every
attribute into account. Unlike the naive Bayesian classifier, however, our clas-
sifier allows additional edges between attributes that capture correlations among
them. This extension incurs additional computational costs. While the induction
of the naive Bayesian classifier requires only simple bookkeeping, the induction of
Bayesian networks requires searching the space of all possible networks—that is, the
space of all possible combinations of edges. To address this problem, we examine
a restricted form of correlation edges. The resulting method, which we call Tree
Augmented Naive Bayes (TAN), approximates the interactions between attributes
by using a tree structure imposed on the naive Bayesian structure. As we show,
this approximation is optimal, in a precise sense; moreover, we can learn TAN clas-
sifiers in polynomial time. This result extends a well-known result by Chow and
Liu (1968) (see also Pearl (1988)) for learning tree-structured Bayesian networks.
Finally, we also examine a generalization of these models based on the idea that
correlations among attributes may vary according to the specific instance of the
class variable. Thus, instead of one TAN model we have a collection of networks as
the classifier. Interestingly enough, Chow and Liu already investigated classifiers
of this type for recognition of handwritten characters.

After describing these methods, we report the results of an empirical evaluation
comparing them with state-of-the-art machine learning methods. Our experiments
show that TAN maintains the robustness and computational complexity of naive
Bayes, and at the same time displays better accuracy. We compared TAN with
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C4.5, naive Bayes, and selective naive Bayes (a wrapper approach to feature sub-
set selection method combined with naive Bayes), on a set of problems from the
University of California at Irvine (UCI) repository (see Section 4.1). These experi-
ments show that TAN is a significant improvement over the other three approaches.
We obtained similar results with a modified version of Chow’s and Liu’s original
method, which eliminates errors due to variance in the parameters. It is interesting
that this method, originally proposed three decades ago, is still competitive with
state-of-the-art methods developed since then by the machine learning community.

This paper is organized as follows. In Section 2 we review Bayesian networks
and how to learn them. In Section 3 we examine a straightforward application of
learning Bayesian networks for classification, and show why this approach might
yield classifiers that exhibit poor performance. In Section 4 we examine how to
address this problem using extensions to the naive Bayesian classifier. In Section 5
we describe in detail the experimental setup and results. In Section 6 we discuss
related work and alternative solutions to the problems we point out in previous
sections. We conclude in Section 7. Finally, Appendix A reviews several concepts
from information theory that are relevant to the contents of this paper.

2. Learning Bayesian networks

Consider a finite set U = {X1,..., X} of discrete random variables where each
variable X; may take on values from a finite set, denoted by Val(X;). We use
capital letters such as XY, 7 for variable names, and lower-case letters such as
z,y,z to denote specific values taken by those variables. Sets of variables are
denoted by boldface capital letters such as X,Y,Z, and assignments of values to
the variables in these sets are denoted by boldface lowercase letters x,y,z (we use
Val(X) in the obvious way). Finally, let P be a joint probability distribution over
the variables in U, and let X,Y,Z be subsets of U. We say that X and Y are
conditionally independent given Z, if for all x € Val(X), y € Val(Y), z € Val(Z),
P(x|z,y) = P(x | z) whenever P(y,z) > 0.

A Bayesian network is an annotated directed acyclic graph that encodes a joint
probability distribution over a set of random variables U. Formally, a Bayesian
network for U is a pair B = (G, ©). The first component, G, is a directed acyclic
graph whose vertices correspond to the random variables X, ..., X,, and whose
edges represent direct dependencies between the variables. The graph G encodes
independence assumptions: each variable X; is independent of its nondescendants
given its parents in G. The second component of the pair, namely ©, represents the
set of parameters that quantifies the network. It contains a parameter 5I1|Hrl =
Pp(z;|T;,) for each possible value z; of X;, and T, of TIx,, where TTx, denotes the
set of parents of X; in G. A Bayesian network B defines a unique joint probability
distribution over U given by

n

Py(X1,.... Xa) = [[ Pe(Xillx,) = [] 0xns, - (1)
i=1

i=1
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We note that one may associate a notion of minimality with the definition of a
Bayesian network, as done by Pearl (1988), yet this association is irrelevant to the
material in this paper.

As an example, let U* = {A4;,...  A,,C}, where the variables Aq,... 4, are
the attributes and C' is the class variable. Consider a graph structure where the
class variable is the root, that is, Iz = @, and each attribute has the class vari-
able as its unique parent, namely, T4, = {C} for all 1 < ¢ < n. This is the
structure depicted in Figure 1. For this type of graph structure, Equation 1 yields
Pr(Ay,...,A,,C) = Pr(C) - T]i_, Pr(4;|C). From the definition of conditional
probability, we get Pr(C|A1, ..., A,) = a-Pr(C)-[[;_, Pr(A4;|C), where «a is a nor-
malization constant. This is in fact the definition of naive Bayes commonly found
in the literature (Langley et al., 1992).

The problem of learning a Bayesian network can be informally stated as: Given a
training set D = {uy, ..., un} of instances of U, find a network B that best matches
D. The common approach to this problem is to introduce a scoring function that
evaluates each network with respect to the training data, and then to search for
the best network according to this function. In general, this optimization problem
is intractable. Yet, for certain restricted classes of networks, there are efficient
algorithms requiring polynomial time in the number of variables in the network.
We indeed take advantage of these efficient algorithms in Section 4.1, where we
propose a particular extension to naive Bayes.

The two main scoring functions commonly used to learn Bayesian networks are
the Bayesian scoring function (Cooper & Herskovits, 1992; Heckerman et al., 1995),
and the function based on the principle of minimal description length (MDL) (Lam
& Bacchus, 1994; Suzuki, 1993); see also Friedman and Goldszmidt (1996¢) for a
more recent account of this scoring function. These scoring functions are asymptot-
ically equivalent as the sample size increases; furthermore, they are both asymptot-
ically correct: with probability equal to one the learned distribution converges to
the underlying distribution as the number of samples increases (Heckerman, 1995;
Bouckaert, 1994; Geiger et al., 1996). An in-depth discussion of the pros and cons of
each scoring function is beyond the scope of this paper. Henceforth, we concentrate
on the MDL scoring function.

The MDL principle (Rissanen, 1978) casts learning in terms of data compression.
Roughly speaking, the goal of the learner is to find a model that facilitates the
shortest description of the original data. The length of this description takes into
account the description of the model itself and the description of the data using the
model. In the context of learning Bayesian networks, the model is a network. Such
a network B describes a probability distribution Pp over the instances appearing
in the data. Using this distribution, we can build an encoding scheme that assigns
shorter code words to more probable instances. According to the MDL principle, we
should choose a network B such that the combined length of the network description
and the encoded data (with respect to Pp) is minimized.

Let B = (G, 0) be a Bayesian network, and let D = {uy,...,uy} be a training
set, where each wu; assigns a value to all the variables in U. The MDL scoring



6 N. FRIEDMAN, D. GEIGER, AND M. GOLDSZMIDT

function of a network B given a training data set D, written MDL(B]|D), is given
by

log N

mpL(BID) = 2N B~ LiBID) 2)
where |B| is the number of parameters in the network. The first term represents
the length of describing the network B, in that, it counts the bits needed to encode
the specific network B, where 1/2 - log N bits are used for each parameter in ©.
The second term is the negation of the log likelithood of B given D:

L(B|D) = ZlogPB (w)), (3)

which measures how many bits are needed to describe D based on the probability
distribution Pp (see Appendix A). The log likelihood also has a statistical inter-
pretation: the higher the log likelihood, the closer B is to modeling the probability
distribution in the data D. Let pp(~) be the empirical distribution defined by fre-
quencies of events in D, namely, Pp (A) = % Zj 14(u;) for each event A C Val(U),
where 14(u) =1ifu e Aand 14(u) =0ifu g A. Applying Equation 1 to the log
likelihood and changing the order of summation yields the well-known decomposi-
tion of the log likelihood according to the structure of B:

L(B|D) = NZ 3 Pp (i, 1) log (611, ) - (4)
=tz € val(X;)
I, € va(lly,)

It is easy to show that this expression 1s maximized when
9131|HT,1 = pD(IZ|Hxl) . (5)

Consequently, if we have two Bayesian networks, B = (G,0) and B’ = (G, 0'),
that share the same structure G, and if © satisfies Equation 5, then LL(B|D) >
LL(B'|D). Thus, given a network structure, there is a closed form solution for the
parameters that maximize the log likelihood score, namely, Equation 5. Moreover,
since the first term of Equation 2 does not depend on the choice of parameters, this
solution minimizes the MDL score. This is a crucial observation since it relieves
us of searching in the space of Bayesian networks, and lets us search only in the
smaller space of network structures, and then fill in the parameters by computing
the appropriate frequencies from the data. Henceforth, unless we state otherwise,
we will assume that the choice of parameters satisfies Equation 5.

The log likelihood score by itself is not suitable for learning the structure of the
network, since it tends to favor complete graph structures in which every variable is
connected to every other variable. This is highly undesirable, since such networks
do not provide any useful representation of the independence assertions in the
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learned distributions. Moreover, these networks require an exponential number of
parameters, most of which will have extremely high variance and will lead to poor
predictions. Thus, the learned parameters in a maximal network will perfectly
match the training data, but will have poor performance on test data. This problem,
called overfitting, is avoided by the MDL score. The first term of the MDL score
(Equation 2), regulates the complexity of networks by penalizing those that contain
many parameters. Thus, the MDL score of a larger network might be worse (larger)
than that of a smaller network, even though the former might match the data better.
In practice, the MDL score regulates the number of parameters learned and helps
avoid overfitting of the training data.

We stress that the MDL score 1s asymptotically correct. Given a sufficient number
of independent samples, the best MDL-scoring networks will be arbitrarily close to
the sampled distribution.

Regarding the search process, in this paper we will rely on a greedy strategy for
the obvious computational reasons. This procedure starts with the empty network
and successively applies local operations that maximally improve the score until a
local minima is found. The operations applied by the search procedure include arc
addition, arc deletion, and arc reversal.

3. Bayesian networks as classifiers

Using the method just described, one can induce a Bayesian network B, that en-
codes a distribution Pg(Ay,..., A,, C), from a given training set. We can then use
the resulting model so that given a set of attributes ay, ..., a,, the classifier based
on B returns the label ¢ that maximizes the posterior probability Pg(c|ai, ..., a,).
Note that, by inducing classifiers in this manner, we are addressing the main concern
expressed in the introduction: we remove the bias introduced by the independence
assumptions embedded in the naive Bayesian classifier.

This approach is justified by the asymptotic correctness of the Bayesian learning
procedure. Given a large data set, the learned network will be a close approximation
for the probability distribution governing the domain (assuming that instances are
sampled independently from a fixed distribution). Although this argument provides
us with a sound theoretical basis, in practice we may encounter cases where the
learning process returns a network with a relatively good MDL score that performs
poorly as a classifier.

To understand the possible discrepancy between good predictive accuracy and
good MDL score, we must re-examine the MDL score. Recall that the log likelihood
term in Equation 2 is the one that measures the quality of the learned model, and
that D = {uy,...,uy} denotes the training set. In a classification task, each u; is
a tuple of the form <aé, .. .,af“ ci> that assigns values to the attributes Ay,..., A,
and to the class variable C'. We can rewrite the log likelihood function (Equation 3)
as
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N N
LL(B|D) = log Pg(c'lai,...,a}) + > log Pp(ai,...,ai) . (6)
i=1 i=1

The first term in this equation measures how well B estimates the probability of
the class given the attributes. The second term measures how well B estimates
the joint distribution of the attributes. Since the classification is determined by
Pp(C|Ay, ..., Ay), only the first term is related to the score of the network as a
classifier (i.e., its predictive accuracy). Unfortunately, this term is dominated by
the second term when there are many attributes; as n grows larger, the prob-
ability of each particular assignment to Aj,..., A, becomes smaller, since the
number of possible assignments grows exponentially in n. Thus, we expect the
terms of the form Pp(A1,..., Ap) to yield values closer to zero, and consequently
—log Pp(Ay, ..., An) will grow larger. However, at the same time, the conditional
probability of the class will remain more or less the same. This implies that a
relatively large error in the conditional term in Equation 6 may not be reflected
in the MDL score. Thus, using MDL (or other nonspecialized scoring functions)
for learning unrestricted Bayesian networks may result in a poor classifier in cases
where there are many attributes. We use the phrase “unrestricted networks” in the
sense that the structure of the graph is not constrained, as in the case of a naive
Bayesian classifier.

To confirm this hypothesis, we conducted an experiment comparing the classifi-
cation accuracy of Bayesian networks learned using the MDL score (i.e., classifiers
based on unrestricted networks) to that of the naive Bayesian classifier. We ran
this experiment on 25 data sets, 23 of which were from the UCI repository (Mur-
phy & Aha, 1995). Section 5 describes in detail the experimental setup, evaluation
methods, and results. As the results in Figure 2 show, the classifier based on unre-
stricted networks performed significantly better than naive Bayes on six data sets,
but performed significantly worse on six data sets. A quick examination of the data
sets reveals that all the data sets on which unrestricted networks performed poorly
contain more than 15 attributes.

A closer inspection of the networks induced on the two data sets where the unre-
stricted networks performed substantially worse reveals that in these networks the
number of relevant attributes influencing the classification is rather small. While
these data sets (“soybean-large” and “satimage”) contain 35 and 36 attributes, re-
spectively, the classifiers induced relied only on five attributes for the class predic-
tion. We base our definition of relevant attributes on the notion of a Markov blanket
of a variable X, which consists of X’s parents, X’s children, and the parents of X’s
children in a given network structure G (Pearl, 1988). This set has the property
that, conditioned on X’s Markov blanket, X is independent of all other variables in
the network. In particular, given an assignment to all the attributes in the Markov
blanket of the class variable C', the class variable is independent of the rest of the
attributes. Hence, prediction using a classifier based on a Bayesian network exam-
ines only the values of attributes in the Markov blanket of C'. (Note that in the
naive Bayesian classifier, the Markov blanket of C includes all the attributes, since
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Figure 2. Error curves (top) and scatter plot (bottom) comparing unsupervised Bayesian networks
(solid line, z axis) to naive Bayes (dashed line, y axis). In the error curves, the horizontal axis
lists the data sets, which are sorted so that the curves cross only once, and the vertical axis
measures the percentage of test instances that were misclassified (i.e., prediction errors). Thus,
the smaller the value, the better the accuracy. Each data point is annotated by a 90% confidence
interval. In the scatter plot, each point represents a data set, where the z coordinate of a point
is the percentage of misclassifications according to unsupervised Bayesian networks and the y
coordinate is the percentage of misclassifications according to naive Bayes. Thus, points above
the diagonal line correspond to data sets on which unrestricted Bayesian networks perform better,
and points below the diagonal line correspond to data sets on which naive Bayes performs better.

all of the attributes are children of C' in the graph.) Thus, in learning the struc-
ture of the network, the learning algorithm chooses the attributes that are relevant
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for predicting the class. In other words, the learning procedure performs a feature
selection. Often, this selection is useful and discards truly irrelevant attributes.
However, as these two examples show, the procedure might discard attributes that
are crucial for classification. The choices made by the learning procedure reflect
the bias of the MDL score, which penalizes the addition of these crucial attributes
to the class variable’s Markov blanket. As our analysis suggests, the root of the
problem is the scoring function—a network with a better score i1s not necessarily a
better classifier.

A straightforward approach to this problem would be to specialize the scoring
function (MDL in this case) to the classification task. We can do so by restrict-
ing the log likelihood to the first term of Equation 6. Formally, let the cond:-
tional log likelihood of a Bayesian network B given data set D be CLL(B|D) =
Zf\il log Pp(C* A%, ... AL). The problem associated with the application of this
conditional scoring function in practice is of a computational nature. The function
does not decompose over the structure of the network; that is, we do not have
an analogue of Equation 4. As a consequence, setting the parameters axllﬂrl =

f’D(:L‘Z-|Hxl) no longer maximizes the score for a fixed network structure. Thus,
we would need to implement, in addition, a procedure to maximize this new func-
tion over the space of parameters. We discuss this issue further in Section 6.2.
Alternative approaches are discussed in the next section.

4. Extensions to the naive Bayesian classifier

In this section we examine approaches that maintain the basic structure of a naive
Bayes classifier, and thus ensure that all attributes are part of the class variable
Markov blanket. These approaches, however, remove the strong assumptions of
independence in naive Bayes by finding correlations among attributes that are war-
ranted by the training data.

4.1. Augmented naive Bayesian networks as classifiers

We argued above that the performance of a Bayesian network as a classifier may
improve if the learning procedure takes into account the special status of the class
variable. An easy way to ensure this is to bias the structure of the network, as
in the naive Bayesian classifier, such that there is an edge from the class vari-
able to each attribute. This ensures that, in the learned network, the probability
P(C|A, ..., Ap) will take all attributes into account. In order to improve the per-
formance of a classifier based on this bias, we propose to augment the naive Bayes
structure with edges among the attributes, when needed, thus dispensing with its
strong assumptions about independence. We call these structures augmented naive
Bayesian networks and these edges augmenting edges.

In an augmented structure, an edge from A; to A; implies that the influence
of A; on the assessment of the class variable also depends on the value of Aj;.
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Figure 3. A TAN model learned for the data set “pima.” The dashed lines are those edges required
by the naive Bayesian classifier. The solid lines are correlation edges between attributes.

For example, in Figure 3, the influence of the attribute “Glucose” on the class C'
depends on the value of “Insulin,” while in the naive Bayesian classifier the influence
of each attribute on the class variable is independent of other attributes. These
edges affect the classification process in that a value of “Glucose” that is typically
surprising (i.e., P(g|e) is low) may be unsurprising if the value of its correlated
attribute, “Insulin,” is also unlikely (i.e., P(glc,¢) is high). In this situation, the
naive Bayesian classifier will overpenalize the probability of the class variable by
considering two unlikely observations, while the augmented network of Figure 3 will
not.

Adding the best set of augmenting edges is an intractable problem, since it is
equivalent to learning the best Bayesian network among those in which C is a
root. Thus, even if we could improve the performance of a naive Bayes classifier
in this way, the computational effort required may not be worthwhile. However,
by imposing acceptable restrictions on the form of the allowed interactions, we can
actually learn the optimal set of augmenting edges in polynomial time.

Our proposal is to learn a tree-augmented naive Bayesian (TAN) network in which
the class variable has no parents and each attribute has as parents the class variable
and at most one other attribute.! Thus, each attribute can have one augmenting
edge pointing to it. The network in Figure 3 is in fact an TAN model. As we now
show, we can take advantage of this restriction to learn a TAN model efficiently.
The procedure for learning these edges is based on a well-known method reported
by Chow and Liu (CL from now on) (1968), for learning tree-like Bayesian networks
(see also (Pearl, 1988, pp. 387-390)). We start by reviewing CL’s result.

A directed acyclic graph on {Xy,..., X, } is a tree if IIx, contains exactly one
parent for all X;, except for one variable that has no parents (this variable is
referred to as the root). A tree network can be described by identifying the parent
of each variable. A function = : {1,...,n} — {0,...,n} is said to define a tree
over Xi,..., Xy, if there is exactly one i such that 7({) = 0 (namely the root of
the tree), and there is no sequence 1, ..., i such that m(i;) = 4;41 for i < j < k
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and 7(i) = 41 (i.e., no cycles). Such a function defines a tree network where
x, = {Xr@} if 7(2) > 0, and Ix, = 0 if 7(3) = 0.

Chow and Liu (1968) describe a procedure for constructing a tree Bayesian net-
work from data. This procedure reduces the problem of constructing a maximum
likelihood tree to finding a mazimal weighted spanning tree in a graph. The prob-
lem of finding such a tree is to select a subset of arcs from a graph such that the
selected arcs constitute a tree and the sum of weights attached to the selected arcs
is maximized. There are well-known algorithms for solving this problem of time
complexity O(n?logn), where n is the number of vertices in the graph (Cormen
et al., 1990).

The Construct-Tree procedure of CL consists of four steps:

L. Compute I (Xs; X;) between each pair of variables, ¢ # j, where

Y) = x o 7P(x,y)
106 = 32 Pl o 0

is the mutual information function. Roughly speaking, this function measures
how much information Y provides about X. See Appendix A for a more detailed
description of this function.

2. Build a complete undirected graph in which the vertices are the variables in X.
Annotate the weight of an edge connecting X; to X; by 15 (Xi; X;).

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root
variable and setting the direction of all edges to be outward from it.

CL prove that this procedure finds the tree that maximizes the likelihood given the
data D.

THEOREM 1 (Chow & Liu, 1968) Let D be a collection of N instances of X1,...,X,.
The Construct-Tree procedure constructs a tree By that marimizes LL(Br|D) and
has time complexity O(n? - N).

This result can now be adapted to learn the maximum likelithood TAN structure.
Let Ay, ..., A, be a set of attribute variables and C' be the class variable. We say
that B is a TAN model if [T = @ and there is a function 7 that defines a tree over
A, ..., Ap such that T4, = {C, Agy} if (i) > 0, and T4, = {C} if 7(i) = 0. The
optimization problem consists on finding a tree defining function 7 over Ay,..., A,
such that the log likelihood is maximized.

As we prove below, the procedure we call Construct—TAN solves this optimization
problem. This procedure follows the general outline of CL’s procedure, except that
instead of using the mutual information between two attributes, it uses conditional
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mutual information between attributes given the class variable. This function is

defined as

O = 3 Pl s

XYz (
Roughly speaking, this function measures the information that Y provides about X
when the value of Z is known. Again, Appendix A gives a more detailed description
of this function.
The Construct-TAN procedure consists of five main steps:

1. Compute Ip_(Ai; A; | C) between each pair of attributes, i # j.

2. Build a complete undirected graph in which the vertices are the attributes
A1, ..., Ay, Annotate the weight of an edge connecting A; to A; by I (Ai; Aj |
).

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root
variable and setting the direction of all edges to be outward from it.

5. Construct a TAN model by adding a vertex labeled by C' and adding an arc
from C to each A;.

THEOREM 2 Let D be a collection of N wnstances of C,Ay,..., A,. The proce-
dure Construct-TAN builds a TAN By that mazimizes LL(Br|D) and has time
complerity O(n? - N).

Proof: We start with a reformulation of the log likelihood:

LL(Br|D) =N - EI (X;;Tx,) + constant term, (7)

which we derive in Appendix A. Thus, maximizing the log likelihood is equivalent
to maximizing the term
Z Iy (X;;1M0y,)

We now specialize this term for TAN models. Let Br be a TAN defined by =(-).
Since C has no parents, we have /5 (C;T¢) = 0. Since the parents of A; are defined
by m, we set Ip (Ai;Ta,) = Ip (Ai; Argiy, C) if m(i) > 0 and Ip (A;;Ta,) =

Ip, (Ai; C) if m(i) = 0. Hence, we need to maximize the term

’Z Ipy (Ais Ar(@), O+ D 15, (A55C) (8)

,m(i)>0 i,m(i)=0
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We simplify this term by using the identity known as the chain law for mutual in-
formation (Cover & Thomas, 1991): Ip(X;Y,Z) = Ip(X;Z)+ Ip(X;Y|Z). Hence,
we can rewrite expression (8) as

ZIPD(A“C) + > Ip (Aii Arp|C)

i,m(i)>0

Note that the first term is not affected by the choice of 7(7). Therefore, it suffices to
maximize the second term. Note also that the TAN model found by Construct-TAN
is guaranteed to maximize this term, and thus maximizes the log likelihood.

The first step of Construct-TAN has complexity of O(n? - N) and the third step
has complexity of O(n?logn). Since usually N > logn, we get the stated time
complexity. [ |

Our initial experiments showed that the TAN model works well in that it yields
good classifiers compared to naive Bayes, as shown in Tables 2 and 3). Tts per-
formance was further improved by the introduction of an additional smoothing
operation. Recall that to learn the parameters of a network we estimate condi-
tional frequencies of the form Pp (X|TTx). We do this by partitioning the training
data according to the possible values of IIx and then computing the frequency of
X in each partition. When some of these partitions contain very few instances,
however, the estimate of the conditional probability is unreliable. This problem
is not as acute in the case of a naive Bayesian classifier, since it partitions the
data according to the class variable, and usually all values of the class variables are
adequately represented in the training data. In TAN networks, however, for each
attribute we assess the conditional probability given the class variable and another
attribute. This means that the number of partitions is at least twice as large. Thus,
it 1s not surprising to encounter unreliable estimates, especially in small data sets.

To deal with this problem, we introduce a smoothing operation on the parameters
learned in TAN models that is motivated by Bayesian considerations. In Bayesian
learning of a multinomial distribution P(X = v;) for ¢ = 1,..., k, we start with
a prior probability measure over the possible settings of parameters © = {6; :
i=1,...,k}, where #; = P(X = v;), and then compute the posterior probability
Pr(© | D). The predicted probability for a new instance of X is the weighted
average of the predictions of all possible setting of ©, weighted by their posterior
probability. Thus, Pr(X = v|D) = [Pr(X; = v | ©)Pr(© | D)dO. For a
particular family of priors, called Dirichlet priors, there is a known closed-form
solution for this integral. A Dirichlet prior is specified by two hyperparameters:
©Y an initial estimate of ©, and N°, a number that summarizes our confidence in
this initial estimate. One can think of N° as the number of samples we have seen
in our lifetime prior to making the estimate ©°. Given hyperparameters ©° = {6?}
and N° and a data set D of length N, the prediction for P(X = v;) has the form

N . N
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Figure 4. Error curves and scatter plot comparing smoothed TAN (solid, z axis) with naive Bayes
(dashed, y axis). In the error curves, the smaller the value, the better the accuracy. In the scatter
plot, points above the diagonal line correspond to data sets where smoothed TAN performs better,
and points below the diagonal line correspond to data sets where naive Bayes performs better.
See the caption of Figure 2 for a more detailed description.
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In the scatter plot, points above the diagonal line correspond to data sets where smoothed TAN

performs better, and points below the diagonal line correspond to data sets where selective naive

Bayes performs better. See the caption of Figure 2 for a more detailed description.
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(dashed, y axis). In the error curves, the smaller the value, the better the accuracy. In the scatter
plot, points above the diagonal line correspond to data sets where smoothed TAN performs better,
and points below the diagonal line correspond to data set where C4.5 performs better. See the
caption of Figure 2 for a more detailed description.
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We refer the interested reader to DeGroot (1970). It is easy to see that this pre-
diction biases the learned parameters in a manner that depends on the confidence
in the prior and the number of new instances in the data: the more instances we
have in the training data, the less bias is applied. If the number of instances N is
large relative to NC, than the bias essentially disappears. On the other hand, if the
number of instances is small, then the prior dominates.

In the context of learning Bayesian networks, we can use a different Dirichlet
prior for each distribution of X; given a particular value of its parents (Heckerman,
1995). This results in choosing the parameters

N,
N - Pp(II,;) + N?

B N - Pp(11,)
- N Pp(IL,) + N?

0" (z[Tz) Pp (2/T1;) + 0% (x|1,) |

[T T

where °(z|TL,;) is the prior estimate of P(z|Il;) and Na(r)ll'lr is the confidence as-
sociated with that prior. Note that this application of Dirichlet priors biases the
estimation of the parameters depending on the number of instances in the data
with particular values of X’s parents. Thus, it mainly affects the estimation in
those parts of the conditional probability table that are rarely seen in the training
data.

To use this method, we must therefore choose the prior parameters. One rea-
sonable choice of prior is the uniform distribution with some small N°. Another
reasonable choice uses the marginal probability of X in the data as the prior prob-
ability. This choice is based on the assumption that most conditional probabilities
are close to the observed marginal. Thus, we set §%(z | II,;) = PD(:E). After initial
trials we choose the value of N to be 5 in all of our experiments. (More precisely,
we tried the values 1,5, and 10 on a few data sets, and N° = 5 was slightly better
than the others.) We note that this smoothing is performed after determining the
structure of the TAN model. Thus, the smoothed model has the same qualitative
structure as the original model but has different numerical parameters. This form
of smoothing is standard practice in Bayesian statistics.?

In our experiments comparing the prediction error of smoothed TAN to that
of unsmoothed TAN, we observed that smoothed TAN performs at least as well
as TAN, and occasionally outperforms TAN significantly (e.g., see the results for
“soybean-large,” “segment,” and “lymphography” in Table 3). Henceforth, we
will assume that the version of TAN uses the smoothing operator, unless noted
otherwise.

Figure 4 compares the prediction error of the TAN classifier to that of naive Bayes.
As can be seen, the the TAN classifier dominates naive Bayes. This result supports
our hypothesis that, by relaxing the strong independence assumptions made by
naive Bayes, one can indeed learn better classifiers. We also tried a smoothed
version of naive Bayes. This, however, did not lead to significant improvement
over the unsmoothed naive Bayes. The only data set where there was a noticeable
improvement is “lymphography,” where the smoothed version had 81.73% accuracy
compared to 79.72% without smoothing. Note that for this particular data set,
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the smoothed version of TAN has 85.03% accuracy compared to 66.87% without
smoothing. The complete results for the smoothed version of naive Bayes are
reported in Table 3.

Given that TAN performs better than naive Bayes and that naive Bayes is com-
parable to C4.5 (Quinlan, 1993), a state-of-the-art decision tree learner, we may
infer that TAN should perform rather well in comparison to C4.5. To confirm this
prediction, we performed experiments comparing TAN to C4.5, and also to the
selective naive Bayesian classifier (Langley & Sage, 1994; John & Kohavi, 1997).
The latter approach searches for the subset of attributes over which naive Bayes
has the best performance. The results, displayed in Figures 5 and 6 and in Table 2,
show that TAN is competitive with both approaches and can lead to significant
improvements in many cases.

4.2. Bayesian multinets as classifiers

The TAN approach forces the relations among attributes to be the same for all the
different instances of the class variable C'. An immediate generalization would have
different augmenting edges (tree structures in the case of TAN) for each class, and
a collection of networks as the classifier.

To implement this idea, we partition the training data set by classes. Then,
for each class ¢; in Val(C'), we construct a Bayesian network B; for the attribute
variables {A1, ..., Ap}. The resulting probability distribution Pp,(A1,..., An) ap-
proximates the joint distribution of the attributes, given a specific class, that is,
Pp (A1,...,An | C = ¢;). The Bayesian network for ¢; is called a local network for
¢;. The set of local networks combined with a prior on C, P(C'), is called a Bayesian
multinet (Heckerman, 1991; Geiger & Heckerman, 1996). Formally, a multinet is a
tuple M = (P¢, By, ..., Bi) where P¢ is a distribution on €', and B; is a Bayesian
network over Aj,..., A, for 1 < i < k = |Val(C)|. A multinet M defines a joint
distribution:

PM(C,AL...,A”) = Pc(C) . PBL(AL . ,An) when C' = C;.

When learning a multinet, we set Pc(C') to be the frequency of the class variable
in the training data, that is, pD(C'), and learn the networks B; in the manner
just described. Once again, we classify by choosing the class that maximizes the
posterior probability Py(C|A4,..., A,). By partitioning the data according to
the class variable, this methodology ensures that the interactions between the class
variable and the attributes are taken into account. The multinet proposal is strictly
a generalization of the augmented naive Bayes, in the sense that that an augmented
naive Bayesian network can be easily simulated by a multinet where all the local
networks have the same structure. Note that the computational complexity of
finding unrestricted augmenting edges for the attributes is aggravated by the need
to learn a different network for each for each value of the class variable. Thus,
the search for learning the Bayesian network structure must be carried out several
times, each time on a different data set.



20 N. FRIEDMAN, D. GEIGER, AND M. GOLDSZMIDT

As in the case of augmented naive Bayes, we can address this problem by con-
straining the class of local networks we might learn to be treelike. Indeed, the con-
struction of a set of trees that minimizes the log likelihood score was the original
method used by Chow and Liu (1968) to build classifiers for recognizing handwrit-
ten characters. They reported that, in their experiments, the error rate of this
method was less than half that of naive Bayes.

We can use the algorithm in Theorem 1 separately to the attributes that corre-
spond to each value of the class variable. This results in a multinet in which each
network is a tree.

CoROLLARY 1 (Chow & Liu, 1968) Let D be a collection of N instances of C,
Ay, ..., An. There is a procedure of time complexity O(n? - N) which constructs a
multinet consisting of trees that maximizes log likelthood.

Proof: The procedure is as follows:

1. Split D into k = | Val(C)| partitions, Dy, ..., Dy, such that D; contains all the
instances in D where C' = ¢;.

2. Set Pc(ci) = PD(CZ').
3. Apply the procedure Construct-Tree of Theorem 1 on D; to construct B;.

Steps 1 and 2 take linear time. Theorem 1 states that step 3 has time complexity
O(n?|D;]) for each i. Since Y, |D;| = N, we conclude that the whole procedure
has time complexity O(n%N). ]

As with TAN models, we apply smoothing to avoid unreliable estimation of pa-
rameters. Note also that we partition the data further, and therefore run a higher
risk of missing the accurate weight of some edge (in contrast to TAN). On the other
hand, TAN forces the model to show the same augmenting edges for all classes. As
can be expected, our experiments (see Figure 7) show that Chow and Liu (CL)
multinets perform as well as TAN, and that neither approach clearly dominates.

4.3. Beyond tree-like networks

In the previous two sections we concentrated our attention on tree-like augmented
naive Bayesian networks and Bayesian multinets, respectively. This restriction was
motivated mainly by computational considerations: these networks can be induced
in a provably effective manner. This raises the question whether we can achieve
better performance at the cost of computational efficiency. One straightforward
approach to this question is to search the space of all augmented naive Bayesian
networks (or the larger space of Bayesian multinets) and select the one that mini-
mizes the MDL score.

This approach presents two problems. First, we cannot examine all possible
network structures; therefore we must resort to heuristic search. In this paper we
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Figure 7. Error curves and scatter plot comparing smoothed TAN (solid line, z axis) with
smoothed CL multinet classifier (dashed line, y axis). In the error curves, the smaller the value,
the better the accuracy. In the scatter plot, points above the diagonal line corresponds to data
sets where smoothed TAN performs better and points below the diagonal line corresponds to data
sets where smoothed CL multinets classifier performs better. See the caption of Figure 2 for a
more detailed description.
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have examined a greedy search procedure. Such a procedure usually finds a good
approximation to the minimal MDL scoring network. Occasionally, however, it will
stop at a “poor” local minimum. To illustrate this point, we ran this procedure
on a data set generated from a parity function. This concept can be captured
by augmenting the naive Bayes structure with a complete subgraph. However,
the greedy procedure returned the naive Bayes structure, which resulted in a poor
classification rate. The greedy procedure learns this network because attributes are
independent of each other given the class. As a consequence, the addition of any
single edge did not improve the score, and thus, the greedy procedure terminated
without adding any edges.

The second problem involves the MDL score. Recall that the MDL score penalizes
larger networks. The relative size of the penalty grows larger for smaller data sets,
so that the score is heavily biased for simple networks. As a result, the procedure
we just described might learn too few augmenting edges. This problem is especially
acute when there are many classes. In this case, the naive Bayesian structure by
itself requires many parameters, and the addition of an augmenting edge involves
adding at least as many parameters as the number of classes. In contrast, we
note that both the TAN and CL multinet classifier learn a spanning tree over all
attributes.

As shown by our experimental results, see Table 4, both unrestricted augmented
naive Bayesian networks and unrestricted multinets lead to improved performance
over that of the unrestricted Bayesian networks of Section 3. Moreover, on some
data sets they have better accuracy than TAN and CL multinets.

5. Experimental methodology and results

We ran our experiments on the 25 data sets listed in Table 1. All of the data
sets come from the UCT repository (Murphy & Aha, 1995), with the exception of
“mofn-3-7-10” and “corral”. These two artificial data sets were designed by John
and Kohavi (1997) to evaluate methods for feature subset selection.

The accuracy of each classifier is based on the percentage of successful predictions
on the test sets of each data set. We used the MLC++ system (Kohavi et al., 1994)
to estimate the prediction accuracy for each classifier, as well as the variance of this
accuracy. Accuracy was measured via the holdout method for the larger data sets
(that is, the learning procedures were given a subset of the instances and were
evaluated on the remaining instances), and via five-fold cross validation, using the
methods described by Kohavi (1995), for the smaller ones.? Since we do not deal, at
present, with missing data, we removed instances with missing values from the data
sets. Currently, we also do not handle continuous attributes. Instead, we applied
a pre-discretization step in the manner described by Dougherty et al. (1995). This
pre-discretization is based on a variant of Fayyad and Trani’s (1993) discretization
method. These preprocessing stages were carried out by the MLC++ system. Runs
with the various learning procedures were carried out on the same training sets and
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Table 1. Description of data sets used in the experiments.

Dataset # Attributes # Classes # Instances
Train Test
1 australian 14 2 690 CV-5
2 breast 10 2 683 CV-5
3 chess 36 2 2130 1066
4 cleve 13 2 296 CV-5
5 corral 6 2 128 CV-5
6 crx 15 2 653 CV-5
7  diabetes 8 2 768 CV-5
8 flare 10 2 1066 CV-5
9  german 20 2 1000 CV-5
10 glass 9 7 214 CV-5
11 glass2 9 2 163 CV-5
12 heart 13 2 270 CV-5
13  hepatitis 19 2 80 CV-5
14 iris 4 3 150 CV-5
15 letter 16 26 15000 5000
16 lymphography 18 4 148 CV-5
17 mofn-3-7-10 10 2 300 1024
18 pima 8 2 768 CV-5
19 satimage 36 6 4435 2000
20  segment 19 7 1540 770
21 shuttle-small 9 7 3866 1934
22  soybean-large 35 19 562 CV-5
23 vehicle 18 4 846 CV-5
24 vote 16 2 435 CV-5
25 waveform-21 21 3 300 4700

evaluated on the same test sets. In particular, the cross-validation folds were the
same for all the experiments on each data set.

Table 2 displays the accuracies of the main classification approaches we have
discussed throughout the paper using the abbreviations:

NB: the naive Bayesian classifier
BN: unrestricted Bayesian networks learned with the MDL score
TAN?®: TAN networks learned according to Theorem 2, with smoothed parameters

CL*: CL multinet classifier—Bayesian multinets learned according to Theorem 1—
with smoothed parameters

C4.5: the decision-tree induction method developed by Quinlan (1993)

SNB: the selective naive Bayesian classifier, a wrapper-based feature selection
applied to naive Bayes, using the implementation of John and Kohavi (1997)

In the previous sections we discussed these results in some detail. We now sum-
marize the highlights. The results displayed in Table 2 show that although unre-
stricted Bayesian networks can often lead to significant improvement over the naive
Bayesian classifier, they can also result in poor classifiers in the presence of multiple
attributes. These results also show that both TAN and the CL multinet classifier
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are roughly equivalent in terms of accuracy, dominate the naive Bayesian classifier,
and compare favorably with both C4.5 and the selective naive Bayesian classifier.

Table 3 displays the accuracies of the naive Bayesian classifier, the TAN classifier,
and CL multinet classifier with and without smoothing. The columns labeled NB,
TAN, and CL present the accuracies without smoothing, and the columns labeled
NB?®, TAN?, and CL?® describe the accuracies with smoothing. These results
show that smoothing can significantly improve the accuracy both of TAN and of
CL multinet classifier and does not significantly degrade the accuracy of results
from other data sets. Improvement is noticed mainly in small data sets and in
data sets with large numbers of classes. On the other hand, smoothing does not
significantly improve the accuracy of the naive Bayesian classifier.

Finally, in Table 4 we summarize the accuracies of learning unrestricted aug-
mented naive Bayes networks (ANB) and multinets (MN) using the MDL score.
The table also contains the corresponding tree-like classifiers for comparison. These
results show that learning unrestricted networks can improve the accuracy in data
sets that contain strong interactions between attributes and that are large enough
for the MDL score to add edges. On other data sets, the MDL score is reluctant to
add edges giving structures that are similar to the naive Bayesian classifier. Con-
sequently, in these data sets, the predictive accuracy will be poor when compared
with TAN and CL multinet classifier.

6. Discussion

In this section, we review related work and expand on the issue of a conditional log
likelihood scoring function. Additionally, we discuss how to extend the methods
presented here to deal with complicating factors such as numeric attributes and
missing values.

6.1. Related work on naive Bayes

There has been recent interest in explaining the surprisingly good performance of
the naive Bayesian classifier (Domingos & Pazzani, 1996; Friedman, 1997a). The
analysis provided by Friedman (1997a) is particularly illustrative, in that it focuses
on characterizing how the bias and variance components of the estimation error
combine to influence classification performance. For the naive Bayesian classifier, he
shows that, under certain conditions, the low variance associated with this classifier
can dramatically mitigate the effect of the high bias that results from the strong
independence assumptions.

One goal of the work described in this paper has been to improve the performance
of the naive Bayesian classifier by relaxing these independence assumptions. Indeed,
our empirical results indicate that a more accurate modeling of the dependencies
amongst features leads to improved classification. Previous extensions to the naive
Bayesian classifier also identified the strong independence assumptions as the source
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of classification errors, but differ in how they address this problem. These works
fall into two categories.

Work in the first category, such as that of Langley and Sage (1994) and of John
and Kohavi (1997), has attempted to improve prediction accuracy by rendering
some of the attributes irrelevant. The rationale is as follows. As we explained
in Section 4.1, if two attributes, say A; and A;, are correlated, then the naive
Bayesian classifier may overamplify the weight of the evidence of these two at-
tributes on the class. The proposed solution in this category is simply to ignore
one of these two attributes. (Removing attributes is also useful if some attributes
are irrelevant, since they only introduce noise in the classification problem.) This
is a straightforward application of feature subset selection. The usual approach to
this problem is to search for a good subset of the attributes, using an estimation
scheme, such as cross validation, to repeatedly evaluate the predictive accuracy of
the naive Bayesian classifier on various subsets. The resulting classifier is called the
selective naive Bayesian classifier, following Langley and Sage (1994).

It is clear that, if two attributes are perfectly correlated, then the removal of one
can only improve the performance of the naive Bayesian classifier. Problems arise,
however, if two attributes are only partially correlated. In these cases the removal
of an attribute may lead to the loss of useful information, and the selective naive
Bayesian classifier may still retain both attributes. In addition, this wrapper-based
approach is, in general, computationally expensive. Our experimental results (see
Figure 6) show that the methods we examine here are usually more accurate than
the selective naive Bayesian classifier as used by John and Kohavi (1997).

Work in the second category (Kononenko, 1991; Pazzani, 1995; Ezawa & Schuer-
mann, 1995) are closer in spirit to our proposal, since they attempt to improve
the predictive accuracy by removing some of the independence assumptions. The
semi-nawe Bayesian classifier (Kononenko, 1991) is a model of the form

P(C, As,..., An) = P(C) - P(A1]C) - - P(A|C) (9)

where Ay, ..., Ay are pairwise disjoint groups of attributes. Such a model assumes
that A; is conditionally independent of A; if, and only if, they are in different
groups. Thus, no assumption of independence is made about attributes that are
in the same group. Kononenko’s method uses statistical tests of independence to
partition the attributes into groups. This procedure, however, tends to select large
groups, which can lead to overfitting problems. The number of parameters needed
to estimate P(A;|C) is | Val(C)|- (HA]'E-Al Val(A;)|—1), which grows exponentially
with the number of attributes in the group. Thus, the parameters assessed for
P(A;|C) may quickly become unreliable if 4; contains more than two or three
attributes.

Pazzani suggests that this problem can be solved by using a cross-validation
scheme to evaluate the accuracy of a classifier. His procedure starts with singleton
groups (i.e., A1 = {A1},...,Ap = {4,}) and then combines, in a greedy manner,
pairs of groups. (He also examines a procedure that performs feature subset selec-
tion after the stage of joining attributes.) This procedure does not, in general, select
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large groups, since these lead to poor prediction accuracy in the cross-validation
test. Thus, Pazzani’s procedure learns classifiers that partition the attributes in to
many small groups. Since each group of attributes is considered independent of the
rest given the class, these classifiers can capture only small number of correlations
among the attributes.

Both Kononenko and Pazzani essentially assume that all of the attributes in each
group A; can be arbitrarily correlated. To understand the implications of this as-
sumption, we use a Bayesian network representation. If we let A; = {A;,, ..., 4;,},
then, using the chain rule, we get

P('AZ|C) = P(A21|C) ' P(Ai2|Ai,1a C) o 'P(AillAi,la - 'aAil—laC)'

Applying this decomposition to each of the terms in Equation 9, we get a product
form from which a Bayesian network can be built. Indeed, this is an augmented
naive Bayes network, in which there is a complete subgraph—that is, one to which
we cannot add arcs without introducing a cycle—on the variables of each group
A;. In contrast, in a TAN network there is a tree that spans over all attributes;
thus, these models retain conditional independencies among correlated attributes.
For example, consider a data set where the two attributes, A; and A,, are each
correlated with another attribute, As, but are independent of each other given As.
These correlations are captured by the semi-naive Bayesian classifier only if all three
attributes are in the same group. In contrast, a TAN classifier can place an edge
from A3 to A; and another to A;. These edges capture the correlations between the
attributes. Moreover, if the attributes and the class variable are boolean, then the
TAN model would require 11 parameters, while the semi-naive Bayesian classifier
would require 14 parameters. Thus, the representational tools of Bayesian networks
let us relax the independence assumptions between attributes in a gradual and
flexible manner, and study and characterize these tradeoffs with the possibility of
selecting the right compromise for the application at hand.

Ezawa and Schuermann (1995) describe a method that use correlations between
attributes in a different manner. First, it computes all pairwise mutual information
between attributes and sorts them in descending order. Then, the method adds
edges among attributes going in the computed order until it reaches some predefined
threshold T'. This approach presents a problem. Consider three attributes that are
correlated as in the above example: A; and Az are correlated, A; and Az are
correlated, but A; is probabilistically independent of A, given Asz. When this
method is used, the pairwise mutual information of all combinations will appear to
be high, and the algorithm will propose an edge between every pair of attributes.
Nonetheless, the edge between A; and As is superfluous, since their relation is
mediated through As. This problem is aggravated if we consider a fourth attribute,
Ay, that is strongly correlated to As. Then, either more superfluous edges will
be added, or, if the threshold 7' is reached, this genuine edge will be ignored in
favor of a superfluous one. Even though the TAN approach also relies on pairwise
computation of the mutual information, it avoids this problem by restricting the
types of interactions to the form of a tree. We reiterate, that under this restriction,
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the TAN approach finds an optimal tree (see Theorem 2). This example also shows
why learning structures that are not trees—that is, where some attributes have
more than one parent—requires us to examine higher-order interactions such as
the mutual information of A; with A given C' and As.

Finally, another related effort that is somewhere between the categories mentioned
above is reported by Singh and Provan (1995, 1996). They combine several feature
subset selection strategies with an unsupervised Bayesian network learning routine.
This procedure, however, can be computationally intensive (e.g., some of their
strategies (Singh & Provan, 1995) involve repeated calls to a the Bayesian network
learning routine).

6.2. The conditional log likelihood

Even though the use of log likelihood is warranted by an asymptotic argument, as
we have seen, it may not work well when we have a limited number of samples. In
Section 3 we suggested an approach based on the decomposition of Equation 6
that evaluates the predictive error of a model by restricting the log likelihood
to the first term of the equation. This approach is an example of a node mon-
itor, in the terminology of Spiegelhalter, Dawid, Lauritzen, and Cowell (1993).
Let the conditional log likelithood of a Bayesian network B, given data set D, be
CLL(B|D) = Zf\;l log Pp(C* A%, ... AL). Maximizing this term amounts to max-
imizing the ability to correctly predict C' for each assignment to A4, ..., A,. Using
manipulations analogous to the one described in Appendix A, it is easy to show
that maximizing the conditional log likelihood is equivalent to minimizing the con-
ditional cross-entropy:

D(Pp(C|As ..., An)|PB(ClA; ..., Ay)) =
> Pplar...,an)D(Pp(Clas ..., a,)|Ps(Clas ..., an)) (10)

ai,...,0n

This equation shows that by maximizing the conditional log likelihood we are learn-
ing the model that best approximates the conditional probability of C' given the
attribute values. Consequently, the model that maximizes this scoring function
should yield the best classifier.

We can easily derive a conditional MDL score that is based on the conditional
log likelihood. In this variant, the learning task is stated as an attempt to effi-
ciently describe the class values for a fixed collection of attribute records. The term
describing the length of the encoding of the Bayesian network model remains as
before, while the second term is equal to N - CLL(B|D). Unfortunately, we do not
have an effective way to maximize the term CLL(B|D), and thus the computation
of the network that minimizes the overall score becomes infeasible.

Recall that, as discussed in Section 3, once the structure of the network is fixed,
the MDL score is minimized by simply substituting the frequencies in the data as
the parameters of the network (see Equation 5). Once we change the score to the
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CLL(B|D), this is true only for a very restricted class of structures. If C is a leaf
in the network—that is, if C' does not have any outgoing arcs—then it is easy to
prove that setting parameters according to Equation 5 maximizes CLL(B|D) for
a fixed network structure. However, if C' has outgoing arcs, we cannot describe
Pp(C|Ay,...,A,) as a product of parameters in O, since Pg(C|A1,..., Ay) also
involves a normalization constant that requires us to sum over all values of C'. As a
consequence, CLL(B|D) does not decompose, and we cannot maximize the choice
of each conditional probability table independently of the others. Hence, we do not
have a closed-form equation for choosing the optimal parameters for the conditional
log likelihood score. This implies that, to maximize the choice of parameters for a
fixed network structure, we must resort to search methods such as gradient descent
over the space of parameters (e.g., using the techniques of (Binder et al., 1997)).
When learning the network structure, this search must be repeated for each struc-
ture candidate, rendering the method computationally expensive. Whether we can
find heuristic approaches that will allow effective learning using the conditional log
likelihood remains an open question.

The difference between procedures that maximize log likelihood and ones that
maximize conditional log likelihood is similar to a standard distinction made in
the statistics literature. Dawid (1976) describes two paradigms for estimating
P(C, Ay,..., Ay). These paradigmsdiffer in how they decompose P(C, Ay, ..., An).
In the sampling paradigm, we assume that P(C, Ay, ..., Ay) = P(C)-P(Aq, ..., An|C)
and assess both terms. In the diagnostic paradigm, we assume that P(C, Ay,..., Ap) =
P(Ay,...,A,)-P(C|Ay, ..., A,) and assess only the second term, since it is the only
one relevant to the classification process. In general, neither of these approaches
dominates the other (Ripley, 1996).

The naive Bayesian classifier and the extensions we have evaluated belong to the
sampling paradigm. Although the unrestricted Bayesian networks (described in
Section 3) do not strictly belong in either paradigm, they are closer in spirit to the
sampling paradigm.

6.3. Numerical attributes and missing values

Throughout this paper we have made two assumptions: that all attributes have
finite numbers of values, and that the training data are complete, in that each
instance assigns values to all the variables of interest. We now briefly discuss how
to move beyond both these restrictions.

One approach to dealing with numerical attributes is to discretize them prior to
learning a model. This is done using a discretization procedure such as the one
suggested by Fayyad and Trani (1993), to partition the range of each numerical
attribute. Then we can invoke our learning method treating all variables as hav-
ing discrete values. As shown by Dougherty, et al. (1995), this approach is quite
effective in practice. An alternative is to discretize numerical attributes during the
learning process, which lets the procedure adjust the discretization of each vari-
able so that it contains just enough partitions to capture interactions with adjacent
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variables in the network. Friedman and Goldszmidt (1996b) propose a principled
method for performing such discretization.

Finally, there is no conceptual difficulty in representing hybrid Bayesian networks
that contain both discrete and continuous variables. This approach involves choos-
ing an appropriate representation for the conditional density of a numerical vari-
able given its parents; for example, Heckerman and Geiger (1995) examine learning
networks with Gaussian distributions. It is straightforward to combine such repre-
sentations in the classes of Bayesian networks described in this paper. For example,
a Gaussian variant of the naive Bayesian classifier appears in Duda and Hart (1973)
and a variant based on kernel estimators appears in John and Langley (1995). We
suspect that there exist analogues to Theorem 2 for such hybrid networks but we
leave this issue for future work.

Regarding the problem of missing values, in theory probabilistic methods provide
a principled solution. If we assume that values are missing at random (Rubin,
1976), then we can use the marginal likelihood (the probability assigned to the
parts of the instance that were observed) as the basis for scoring models. TIf the
values are not missing at random, then more careful modeling must be exercised in
order to include the mechanism responsible for the missing data.

The source of difficulty in learning from incomplete data, however, is that the
marginal likelihood does not decompose. That is, the score cannot be written as
the sum of local terms (as in Equation 4). Moreover, to evaluate the optimal
choice of parameters for a candidate network structure, we must perform nonlinear
optimization using either EM (Lauritzen, 1995) or gradient descent (Binder et al.,
1997).

The problem of selecting the best structure is usually intractable in the presence
of missing values. Several recent efforts (Geiger et al., 1996; Chickering & Heck-
erman, 1996) have examined approximations to the marginal score that can be
evaluated efficiently. Additionally, Friedman (1997b) has proposed a variant of EM
for selecting the graph structure that can efficiently search over many candidates.
The computational cost associated with all of these methods is directly related to
the problem of inference in the learned networks. Fortunately, inference in TAN
models can be performed efficiently. For example, Friedman’s method can be effi-
ciently applied to learning TAN models in the presence of missing values. We plan
to examine the effectiveness of this and other methods for dealing with missing
values in future work.

7. Conclusions

In this paper, we have analyzed the direct application of the MDL method to
learning unrestricted Bayesian networks for classification tasks. We showed that,
although the MDL method presents strong asymptotic guarantees, it does not nec-
essarily optimize the classification accuracy of the learned networks. Our analysis
suggests a class of scoring functions that may be better suited to this task. These
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scoring functions appear to be computationally intractable, and we therefore plan
to explore effective approaches based on approximations of these scoring functions.

The main contribution of our work is the experimental evaluation of the tree-
augmented naive Bayesian classifiers, TAN, and the Chow and Liu multinet clas-
sifier. It 1s clear that in some situations, it would be useful to model correlations
among attributes that cannot be captured by a tree structure (or collections of
tree structures). Such models will be preferable when there are enough training in-
stances to robustly estimate higher-order conditional probabilities. Still, both TAN
and CL multinets embody a good tradeoff between the quality of the approximation
of correlations among attributes and the computational complexity in the learning
stage. The learning procedures are guaranteed to find the optimal tree structure,
and, as our experimental results show, they approaches perform well in practice
against state-of-the-art classification methods in machine learning. We therefore
propose them as worthwhile tools for the machine learning community.
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Appendix A

Information-theoretic interpretation of the log likelihood

Here we review several information-theoretic notions and how they let us represent
the log likelihood score. We will concentrate on the essentials and refer the inter-
ested reader to Cover and Thomas (1991) for a comprehensive treatment of these
notions.

Let P be a joint probability distribution over U. The entropy of X (given P)
is defined as Hp(X) = — )« P(x)log P(x). The function Hp(X) is the optimal
number of bits needed to store the value of X, which roughly measures the amount of
information carried by X. More precisely, suppose that x1,...,X,, 1s a sequence of
independent samples of X according to P(X), then we cannot represent x1,...,Xm
with less than m- Hp(X) bits (assuming that m is known). With this interpretation
in mind, it is easy to understand the properties of the entropy. First, the entropy
is always nonnegative, since the encoding length cannot be negative. Second, the
entropy 1s zero if and only if X is perfectly predictable, i.e., if one value of X has
probability 1. In this case, we can reconstruct x1,...,x,, without looking at the
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encoding. Finally, the entropy is maximal when P(X) is totally uninformative,
i.e., assigns a uniform probability to X.

Suppose that B is a Bayesian network over U that was learned from D, i.e., ©
satisfies Equation 5. The entropy associated with B is simply Hp, (U). Applying
Equation 1 to log Pg(u), moving the product out of the logarithm, and changing
the order of summation, we derive the equation

Hp,(U)==>" 3" Pp(a;,1;,)log(0s,m,,) |

i oI,

from which it immediately follows that Hp, (U) = —4 LL(B|D), using Equation 4.
This equality has several consequences. First, it implies that —LL(B|D) is the
optimal number of bits needed to describe D, assuming that Pp is the distribution
from which D is sampled. This observation justifies the use of the term —LL(B|D)
for measuring the representation of D in the MDL encoding scheme. Second, this
equality implies that maximizing the log likelihood is equivalent to searching for a
model that minimizes the entropy, as shown by Lewis (1959).

This reading suggests that by maximizing the log likelihood we are minimizing
the description of D. Another way of viewing this optimization process is to use
cross entropy, which is also known as the Kullback-Leibler divergence (Kullback
& Leibler, 1951). Cross entropy is a measure of distance between two probability
distributions. Formally,

DPX)QX) = ) Px)logs—~

xe Val(X)

(A1)

One information-theoretic interpretation of cross entropy is the average redundancy
incurred in encoding when we use a wrong probability measure. Roughly speaking,
we will incur an overhead of D(P(X)|@(X)) per instance in the encoding of samples
of P(X) when we assume that X is distributed according to ). That is, an encoding
of X1, ..., xm will be m(Hp(x)+D(P(X)|Q(X))) bits long, mD(P(X)|Q(X)) more
than the optimal. Given this interpretation of cross entropy, it is not surprising
that minimizing D(Pp (U)|Pp(U)) is equivalent to minimizing Hp,(U), and thus
is also equivalent to maximizing LL(B|D).

We now turn our attention to the structure of the log likelihood term. A measure
related to entropy is the conditional entropy, which measures the entropy of X
when we know the value of Y: Hp(X|Y) = —ZyP(y) > x P(x]y)log P(x|y).
In terms of encoding, Hp(X|Y) measures the optimal number of bits needed to
encode the value X when the value of Y is given. Intuitively, knowing the value of
Y can only be useful for encoding X more compactly. Indeed, Hp(X|Y) < Hp(X).
The difference between these two values, called the mutual information between X
and Y, measures how much information Y bears on X. Formally, the mutual
information is defined as

Ip(X;Y) = Hp(X) — Hp(X|Y) = ) P(x,y)log

P(x,y)
Xy )

P(x)P(y)
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Applying these definitions to Equation 4 we immediately derive the equation

LL(B|D)=—N> Hp (Xillix,) = N> Ip (Xi;lx,)—NY Hp (X;) .
Z Z Z (A.2)

Several observations are in order. First, notice that Hp_ (X;) is independent of the
choice of B. Thus, to maximize LL(G|D) we must maximize only the first term.
This representation provides an appealing intuition, since it amounts to maximizing
the correlation between each X; and its parents. Second, the representation lets
us easily prove that complete networks maximize the log likelihood: if B’ has a
superset of the arcs in B, then Tlx, C Iy for all i; since I(X;Y) < I(X;YUZ),
we immediately derive LL(B|D) < LL(B'|D).

Notes

1. TAN structures were called “Bayesian conditional trees” by Geiger (1992).

2. An alternative notion of smoothing was investigated by Cestnik (1990) in the context of learning
naive Bayesian classifiers.

3. The choice of & = 5 in our k-fold cross validation is based on the recommendations of Ko-
havi (1995).
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