
CVODE, A STIFF/NONSTIFF ODE SOLVER IN C�

SCOTT D. COHENy AND ALAN C. HINDMARSHz

Abstract. CVODE is a package written in C for solving initial value problems for ordinary di�erential equations.
It provides the capabilities of two older Fortran packages, VODE and VODPK. CVODE solves both sti� and nonsti�
systems, using variable-coe�cient Adams and BDF methods. In the sti� case, options for treating the Jacobian of the
system include dense and band matrix solvers, and a preconditioned Krylov (iterative) solver. In the highly modular
organization of CVODE, the core integrator module is independent of the linear system solvers, and all operations
on N -vectors are isolated in a module of vector kernels. A set of parallel extenstions of CVODE, called PVODE, is
being developed. CVODE is available from Netlib, and comes with an extensive user guide.

1. Introduction. CVODE is a general-purpose solver for the initial value problem (IVP) for
ordinary di�erential equation (ODE) systems. We write such an IVP abstractly as

_y = f(t; y); y(t0) = y0; y 2 RN ;(1)

where _y denotes the derivative dy=dt. CVODE is written in ANSI standard C, and is based on two
older packages written in Fortran, VODE and VODPK.

The basic methods represented in CVODE are summarized as follows. Two linear multistep
methods are available, namely

� Adams (Adams-Moulton) methods in variable-order, variable-step form, and
� BDF (Backward Di�erentiation Formula) methods, in variable-order, variable-step, �xed-
leading-coe�cient form.

Both linear multistep methods can be written in the form

K1X

i=0

�n;iyn�i + hn

K2X

i=0

�n;i _yn�i = 0:(2)

Here the yn are computed approximations to y(tn), hn = tn � tn�1 is the step size, and �n;0 = �1.
For use on nonsti� problems, the Adams-Moulton formula is characterized by K1 = 1 and K2 = q,
and the order q varies between 1 and 12. For sti� problems, the BDF formula has K1 = q and
K2 = 0, and the order q varies between 1 and 5. In either case, the nonlinear system

G(yn) � yn � hn�n;0f(tn; yn)� an = 0 , where an �
X

i>0

(�n;iyn�i + hn�n;i _yn�i);(3)

must be solved (approximately) at each time step. The choices available in CVODE for the solution
of the system (3) are

� Functional iteration, involving no linear systems, and
� Newton iteration, where linear systems must be solved.

� This research was supported by Lawrence Livermore National Laboratory under contract W-7405-ENG-48. This
paper was presented at SciCADE95: Scienti�c Computing and Di�erential Equations, Stanford University, March
1995 { a conference held in honor of the 60th birthday of C. W. Gear.

y Stanford University, and Center for Computational Sciences & Engineering, L-316, Lawrence Livermore National
Laboratory, Livermore, California 94551.

z Center for Computational Sciences & Engineering, L-316, Lawrence Livermore National Laboratory, Livermore,
California 94551.

1

The Newton iteration, which in some cases is a Modi�ed Newton iteration, involves the solution of
the equation

M(yn(m+1) � yn(m)) = �G(yn(m))(4)

in which

M � I �
J; J = @f=@y and
 = hn�n;0:(5)

For this the choices available in CVODE are:
� a direct method with dense treatment of J
� a direct method with banded treatment of J
� a direct method with approximate diagonal treatment of J
� a Krylov method, preconditioned GMRES (Generalized Minimal RESidual method) [5].

With scaling and preconditioning included in the GMRES method, we refer to this algorithm
as SPGMR: Scaled Preconditioned GMRES. The combination of a BDF integrator and a pre-
conditioned GMRES algorithm yields a powerful tool for large sti� systems, because it combines
established methods for sti� integration, nonlinear iteration, and Krylov (linear) iteration with a
problem-speci�c treatment of the dominant source of sti�ness, in the form of the user-supplied
preconditioner matrix [2].

Most of the algorithmic features of CVODE have their origins in the work of Bill Gear. These
include

� BDF and Adams methods in a single solver
� Nordsieck history array for BDF methods
� Modi�ed Newton iteration, with Jacobian �xed over several time steps
� User options for di�erence-quotient or analytic Jacobian
� BDF local error estimates via predictor-corrector di�erences
� BDF step size and order selection via asymptotic local error behavior.

The two Fortran solvers that together represent these methods are VODE [1] and VODPK [3].
VODE is a general purpose solver that includes methods for sti� and nonsti� systems, and in the
sti� case uses only direct methods (full or banded) for the solution of linear systems. VODPK is a
variant of VODE that uses a preconditioned GMRES method for the solution of linear systems.

2. CVODE Organization. The VODE and VODPK solvers have certain drawbacks, some
of which are inherent in the Fortran language, that have motivated the writing of CVODE. First,
there are two distinct solvers, one containing the direct linear system methods (VODE), and one
containing the Krylov methods (VODPK). In addition, there are two versions of each solver, one
in single precision, and one in double. The di�erences among the four solvers are limited primarily
to declarations and the linear solvers, with a great deal of overlap otherwise. The main driver
subroutine in each solver contains logic that is speci�c to the linear solvers as well as logic for the
time integration. In VODPK, the implementation of the preconditioned GMRES method involves
a mix of logic for the generic GMRES method and logic speci�c to the context of Newton iteration
in a time integration.

In contrast, the design of CVODE was planned to avoid these drawbacks. The modules of the
CVODE package are shown in Figure 1. The core integrator module, also referred to as CVode,
deals strictly with the time integration issues, and is completely independent of the method used
to solve the linear systems (4) (if any). An array of linear solver modules is part of the package,
and the core integrator connects with one of those according to a user selection made in advance.
There are four linear solvers in this array at present, described in Sections 4 and 5 below, but

2

DENSE BAND

CVSPGMRCVDIAGCVBAND CVDENSE

VECTOR

LLNLMATH

LLNLTYPS

Generic Linear Solvers

 SPGMR
ITERATIV

Core Integrator CVode

Fig. 1. Overall block diagram of CVODE package.

that number is likely to expand. The addition of new linear solvers will have no e�ect on the core
integrator module.

The CVODE package includes a VECTOR module, described in Section 6 below, which contains
kernels for vector operations. All operations on N -vectors are done by calls to this module.

Two small modules handle issues of arithmetic precision and low-level mathematical operations.
The LLNLTYPS module contains declarations for the types real and integer, in a way that
makes it very easy to change from double precision to single or vice-versa. The LLNLMATH
module contains macros for operations such as MAX and MIN, power functions, and a (machine-
independent) routine to compute the unit roundo�.

3. The CVODE User Interface. To use CVODE, a user must provide certain problem-
de�ning routines and make calls to the solver, as in the case of Fortran solvers like VODE. We
give here only a summary and a small example. Complete details, including three fully annotated
examples, are given in the CVODE User Guide [4].

To start with, the user's calling program must make calls to either three or four functions in
CVODE. This contrasts with VODE etc., because we have explicitly separated the actual inte-
gration calls from the loading of �xed inputs, the allocation and deallocation of memory, and the
speci�cation of the linear solver. These user calls are summarized as follows:

1. CVodeMalloc(...) receives problem and method speci�cations, and allocates memory. Its

3

arguments include problem de�nition quantities (N; f; t0; y0), method options, error toler-
ances, and optional input/output arrays. CVodeMalloc returns a pointer to the CVODE
memory block (for CVODE state data and pointers).

2. A linear solver-speci�c routine speci�es the linear solver used in the Newton iteration. At
present, the routine called (if any) must be one of CVDense, CVBand, CVDiag, or CVSpgmr.

3. CVode(cvode mem, tout, yout, t, itask) carries out the integration, returns a com-
pletion
ag, and returns the solution vector in yout. If itask = NORMAL, it steps to tout,
overshooting it and interpolating to get the solution at tout. If itask = ONE STEP, it takes
only one step towards tout and returns to the calling routine. CVode uses the memory
allocated by CVodeMalloc to keep track of its state.

4. CVodeFree frees the memory allocated by CVodeMalloc.
The calling program must also create the dependent variable vector y and load it with the initial
values. However, CVODE's VECTOR module includes a routine N VNew for the allocation of an
N -vector, and a routine N VFree to free it.

The user-supplied routines consist of one to four functions, depending on the method options,
as summarized below. The names are dummy names; arbitrary names can be passed.

1. f de�nes the function f(t; y).
2. Jac supplies an approximate Jacobian in direct cases (CVDENSE, CVBAND). It is op-

tional, and a default di�erence quotient Jac routine is available if none is supplied.
3. Precond and PSolve supply the preconditioner in Krylov case (CVSPGMR). These rou-

tines are optional, but there is no default. Precond sets Jacobian-related data, and does
any matrix preprocessing needed. PSolve solves the preconditioner linear system.

In summary, then, a skeleton user program would typically look as follows. Here, we also
illustrate the use of optional outputs, by accessing the number of steps taken as iopt[NST].

main() {

y = N_VNew(...);

mem = CVodeMalloc(N, f, t_0, y, ..., iopt, ...);

CVDense or CVBand or CVDiag or CVSpgmr(...);

for (tout= ...)

flag = CVode(mem, tout, y, ...);

printf("nst = %d", iopt[NST]);

CVodeFree(...);

N_VFree(y);

}

f(...) { ... }

Jac(...) { ... } or

Precond(...) { ... } and PSolve(...) { ... }

4

Since, for various reasons, we have chosen not to use reverse communication in CVODE, the
user must have a way of communicating data between the calling program and the user-supplied
routines. This is accomplished with pointers that are passed into CVODE and back to the user
routines, and can point to any structure of the user's design as appropriate for the application.
There are three such pointers:

� f data. The user passes this pointer to CVodeMalloc, and CVODE passes it to the user's
f routine.

� jac data. The user passes this pointer to CVDense or CVBand, and CVODE passes it to
the user's Jac routine.

� P data. The user passes this pointer to CVSpgmr, and CVODE passes it to the user's
Precond and PSolve routines.

Of course, in the dense or band case, jac data can be identical to f data, and in the Krylov case,
P data can be identical to f data.

A complete working example is shown below, in the Appendix. It solves a 3-species sti�
chemical kinetics problem with dense di�erence-quotient treatment of the Jacobian. The output is
given following the program.

4. The CVODE Linear Solvers. The linear solvers in the CVODE package form an ex-
pandable array of code modules that play a critical role in the success of CVODE on sti� systems.
At present these modules are CVDENSE, CVBAND, CVDIAG, and CVSPGMR. Considerable
thought has been given to the design of these modules, in both their internal and external aspects.
Each linear solver module must interface with the user, with the core integrator module, with the
generic linear system solver that supports it, and with the VECTOR and other lower level modules
that support it.

As indicated in the previous section, the user speci�es which linear solver is to be used by
making a call to a routine CVxxx, the name being CVDense, CVBand, CVDiag, or CVSpgmr. This call
also supplies inputs that are speci�c to that linear solver, such as associated user-supplied routines.

Aside from the CVxxx function, each linear solver (and any that are added in the future) must
consist of the following four parts:

� Initialization function. This allocates memory for solver-speci�c data (e.g. the matrix M

and pivot array). It also initializes solver-speci�c counters.
� Matrix setup function. This handles the computation of Jacobian-related data, if called
for, in the context of the Newton iteration. It must perform any necessary preprocessing
for the operation of the system solve function (e.g. LU factorization).

� System solve function. This carries out the solution of the linear system Mx = b, within
the Newton iteration context. It uses solver-speci�c memory generated earlier, and may
call a generic solver routine (e.g. triangular back-solve).

� Free function. This frees all solver-speci�c memory.
These four functions are called from within the core CVode module. In order that this module
be independent of the particular linear solver selected, the call sequences of the four functions are
�xed. The link from the core integrator module to the proper linear solver module is made by the
CVxxx function, which sets pointers that reside in the CVODE memory block. The linear solver
functions also receive a pointer to the CVODE memory block in order to share data about the
state of the integration, and to connect with the solver-speci�c memory block.

These various connections are shown in Figure 2, in which the linear solver is CVDENSE for
the sake of illustration. The CVODE memory block, to which a pointer cvode mem is returned by
CVodeMalloc, includes quantities like N , work arrays, and a pointer to the user's f function. It also
includes pointers to the four parts of the linear solver module (cv linit pointing to the initialization

5

function, etc.) and a pointer cv lmem to the solver-speci�c memory. These �ve pointers are set by
(in this case) CVDense. The linear solver memory in this case includes the matrix M , a saved copy
of the Jacobian J , a pivot array, and a pointer d jac to the Jacobian routine. If the Jac argument
of CVDense was not NULL, d jac points to that function; otherwise it points to the di�erence
quotient routine supplied in CVDENSE, called CVDenseJacDQ.

.

.

.

.

.
.

100

.

d_pivotsd_savedJ

.d_Jac
d_M

user.c

CVDense{}

CVDenseJacDQ{}

CVDenseFree{}

CVDenseSolve{}

CVDenseSetup{}

CVDenseInit{}

cv_N

cv_f

cv_ewt

cv_linit

cv_lsetup

cv_lsolve

cv_lfree

cv_lmem

CVDENSE

...

cvode_mem

f()
{ ...

Jac()
{ ...
}

}

Fig. 2. Link between CVODE Memory and a Linear Solver.

5. Generic Solver Modules. An important criterion in the design of CVODE was that it
make use of linear system solvers that are in generic form, i.e. code modules that are suitable
as solvers in stand-alone form, with no reference to the ODE or Newton iteration context. The
package includes (at present) three generic linear solver modules, shown in Figure 1. (The CVDIAG
module requires no generic solver.) These modules can be described brie
y as follows:

� DENSE solves dense linear systems by LU factorization and back-solving with partial
pivoting. It is a rewrite in C of the LINPACK routine pair DGEFA/DGESL, augmented
by functions for memory allocation and freeing, and some auxiliary operations (scaling,

6

identity addition, etc.) The functions in DENSE operate on matrices of type DenseMat

(de�ned in DENSE), and vectors of type N Vector (de�ned in VECTOR), but in the
sequential implementation they actually call functions that operate on ordinary arrays.

� BAND solves banded linear systems by LU factorization and back-solving with partial
pivoting. It is a rewrite in C of the LINPACK routine pair DGBFA/DGBSL, augmented by
functions for memory allocation and freeing, and some auxiliary operations. The functions
in BAND operate on matrices of type BandMat (de�ned in BAND), and vectors of type
N Vector, but the sequential versions call functions that operate on ordinary arrays.

� SPGMR + ITERATIV solves arbitrary linear systems by a scaled preconditioned GMRES
algorithm. The SPGMR module contains three user-callable functions | for memory al-
location, linear system solution, and memory freeing. The ITERATIV module contains
support functions | for modi�ed and classical Gram-Schmidt procedures, and QR factor-
ization and least-squares solution of a Hessenberg system.

The generic nature of these modules is evidenced by the fact that the SPGMR/ITERATIV
module pair is being used successfully as the linear system solver in another application, a nonlinear
steady-state plasma
uid simulation problem.

6. Basic Vector Kernels. The VECTOR module in the CVODE package is an isolated
collection of kernels for all the vector operations on N -vectors performed within CVODE. This was
done for two reasons. First, on any machine, it isolates the spots where machine-optimized versions
of these operations can be incorporated. Secondly, on a parallel machine, it isolates the coding
which must be altered to accommodate distributed vectors.

This module includes some operations in the Level-1 BLAS collection, but it includes others as
well. The operations include memory allocation and freeing (with names N VNew, N VFree), vector
arithmetic (with names N VLinearSum, N VScale, N VProd, N VDiv, N VConst, etc.), and scalar
measures (with names N VDotProd, N VWrmsNorm, N VMaxNorm, N VMin).

All of the kernels in the VECTOR module operate on vectors of type N Vector, which is de�ned
in the module. For the sequential version of CVODE, this type simply consists of the length and the
initial address of a contiguous array. In order to insulate the user from the details of the N Vector

type, the module includes some macros for access to the vector data itself.

7. Parallel Extensions. A principal motivation for writing CVODE was to facilitate the
development of ODE solvers on massively parallel processors (MPPs). This development is currently
under way, in the form of (what will be) a set of parallel extensions to CVODE, called PVODE.
PVODE is to run in the SPMD model (Single Program, Multiple Data), in which all vectors of
length N are identically distributed across the processors, and all operations on vectors are done
in parallel accordingly. As a minimum, what must be rewritten in the CVODE package is the
VECTOR module, which is to have a di�erent version speci�c to each MPP targeted.

Our initial e�ort includes only a subset of three nonlinear iteration method options, namely
� Functional iteration
� Newton iteration with CVDIAG, and
� Newton iteration with CVSPGMR.

Later we plan to include the Newton/CVBAND option by incorporating a parallel band solver.
The usage of PVODE involves the same calls as with the use of CVODE, but with an additional

call at the beginning and another at the end. At the beginning, a call of the form
machEnv = PVInit<machine> (...)

is required, with machine-dependent name and functionality, to set a block of information speci�c to
machine environment, as needed by the VECTOR module. This block will include characteristics of
the MPP, information about the vector distribution, and communication workspaces. The pointer

7

machEnv is part of the N Vector type, to allow access by the VECTOR kernels to this information.
A �nal additional call will free the memory pointed to by machEnv.

At this time, versions of PVODE have been written for two machines, namely
� the Cray-T3D 256-processor MPP at LLNL, with its Shared Memory (SHMEM) program-
ming model, and

� the IBM-SP2 128-node MPP at Argonne National Laboratory, using the MPI (Message
Passing Interface) library MPICH.

In the T3D-SHMEM version, the VECTOR module uses e�cient machine-speci�c communication
routines from the SHMEM library. In contrast, the MPI version has no machine dependence, and
assumes only that the MPI system (or at least a certain basic subset of it) has been implemented
on the target machine. Since MPI is rapidly becoming a standard interface for message-passing
on parallel machines, the MPI version of PVODE is highly portable to many MPP machines. (On
any given machine, however, there may be di�erence in e�ciency between a machine-speci�c and
an MPI version.) Testing of these packages is still in progress.

REFERENCES

[1] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coe�cient ODE Solver, SIAM J. Sci.
Stat. Comput., 10 (1989), pp. 1038{1051.

[2] P. N. Brown and A. C. Hindmarsh, Reduced Storage Matrix Methods in Sti� ODE Systems, J. Appl. Math. &
Comp. 31 (1989), pp. 40{91.

[3] George D. Byrne, Pragmatic Experiments with Krylov Methods in the Sti� ODE Setting, in Computational

Ordinary Di�erential Equations, J. R. Cash and I. Gladwell (Eds.), Oxford University Press, Oxford, 1992,
pp. 323{356.

[4] S. D. Cohen and A. C. Hindmarsh, CVODE User Guide, Lawrence Livermore National Laboratory report
UCRL-MA-118618, September 1994.

[5] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric

Linear Systems, SIAM J. Sci. Stat. Comp. 7 (1986), pp. 856{869.

8

Appendix.

/* Example. This chemical kinetics problem consists of three rate equations:

dy1/dt = -.04*y1 + 1.e4*y2*y3

dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2

dy3/dt = 3.e7*(y2)^2

on the interval from t = 0.0 to t = 4.e10, with initial conditions

y1 = 1.0, y2 = y3 = 0. The problem is stiff.

This program solves the problem with the BDF method, Newton

iteration with the CVODE dense linear solver, and an internally

generated (difference-quotient) Jacobian routine.

It uses a scalar relative tolerance and a vector absolute tolerance.

Output is printed in decades from t = .4 to t = 4.e10, and

run statistics (optional outputs) are printed at the end. */

#include <stdio.h>

#include "llnltyps.h" /* definitions of types real and integer */

#include "cvode.h" /* prototypes for CVODE routines, and constants */

#include "cvdense.h" /* prototype for CVDense, constant DENSE_NJE */

#include "vector.h" /* definitions of type N_Vector and macro N_VIth, */

#include "dense.h" /* definitions of type DenseMat, macro DENSE_ELEM */

#define NEQ 3 /* number of equations */

static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data);

main()

{

real ropt[OPT_SIZE], reltol, t, tout;

long int iopt[OPT_SIZE];

N_Vector y, abstol;

void *cvode_mem;

int iout, flag;

y = N_VNew(NEQ, NULL); /* Allocate vectors y and abstol */

abstol = N_VNew(NEQ, NULL);

N_VIth(y,0) = 1.0; N_VIth(y,1) = 0.0; N_VIth(y,2) = 0.0; /* Set initial y */

reltol = 1.0e-4; /* Set the tolerances */

N_VIth(abstol,0) = 1e-8; N_VIth(abstol,1) = 1e-14; N_VIth(abstol,2) = 1e-6;

/* Call CVodeMalloc to initialize CVODE */

cvode_mem = CVodeMalloc(NEQ, f, 0.0, y, BDF, NEWTON, SV, &reltol, abstol,

NULL, NULL, FALSE, iopt, ropt, NULL);

if (cvode_mem == NULL) { printf("CVodeMalloc failed.\n"); return(1); }

/* Call CVDense to specify the dense linear solver with internal Jacobian. */

CVDense(cvode_mem, NULL, NULL);

9

/* In loop over output times, call CVode, print results, test for error */

printf(" \n3-species kinetics problem\n\n");

for (iout=1, tout=0.4; iout <= 12; iout++, tout *= 10.0) {

flag = CVode(cvode_mem, tout, y, &t, NORMAL);

printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n",

t, N_VIth(y,0), N_VIth(y,1), N_VIth(y,2));

if (flag != SUCCESS) { printf("CVode failed, flag=%d.\n", flag); break; }

}

N_VFree(y); N_VFree(abstol); /* Free the y and abstol vectors */

CVodeFree(cvode_mem); /* Free the CVODE problem memory */

printf("\nFinal Statistics.. \n\n"); /* Print some final statistics */

printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",

iopt[NST], iopt[NFE], iopt[NSETUPS], iopt[DENSE_NJE]);

printf("nni = %-6ld ncfn = %-6ld netf = %ld\n \n",

iopt[NNI], iopt[NCFN], iopt[NETF]);

}

static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data)

{

real y1, y2, y3, yd1, yd3;

y1 = N_VIth(y,0); y2 = N_VIth(y,1); y3 = N_VIth(y,2);

yd1 = N_VIth(ydot,0) = -0.04*y1 + 1e4*y2*y3;

yd3 = N_VIth(ydot,2) = 3e7*y2*y2;

N_VIth(ydot,1) = -yd1 - yd3;

}

3-species kinetics problem

At t = 4.0000e-01 y = 9.851641e-01 3.386242e-05 1.480205e-02

At t = 4.0000e+00 y = 9.055097e-01 2.240338e-05 9.446793e-02

At t = 4.0000e+01 y = 7.158016e-01 9.185043e-06 2.841892e-01

At t = 4.0000e+02 y = 4.505209e-01 3.222829e-06 5.494759e-01

At t = 4.0000e+03 y = 1.832118e-01 8.942573e-07 8.167873e-01

At t = 4.0000e+04 y = 3.898201e-02 1.621690e-07 9.610178e-01

At t = 4.0000e+05 y = 4.938094e-03 1.984922e-08 9.950619e-01

At t = 4.0000e+06 y = 5.172663e-04 2.070134e-09 9.994827e-01

At t = 4.0000e+07 y = 5.202999e-05 2.081305e-10 9.999480e-01

At t = 4.0000e+08 y = 5.213911e-06 2.085575e-11 9.999948e-01

At t = 4.0000e+09 y = 5.213453e-07 2.085382e-12 9.999995e-01

At t = 4.0000e+10 y = 5.653959e-08 2.261584e-13 9.999999e-01

Final Statistics..

nst = 529 nfe = 774 nsetups = 102 nje = 11

nni = 738 ncfn = 0 netf = 19

10

