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Abstract

Given two planar polylines T and P with n and m edges,

respectively, we present an O(m2
n
2) time, O(mn) space

algorithm to �nd portions of the \text" T which are similar

in shape to the \pattern" P . In the common case of a simple

pattern, such as a line segment or corner, m = O(1) and our

algorithm requires O(n2) time and O(n) space. We use the

well-known arclength versus cumulative turning angle graph

to judge how well a scaled, rotated, and translated version of

the pattern matches a piece of the text. Our match scoring

function balances the length of a match against the mean

squared error in the match; given two matches with the same

mean squared error (length), the longer (lower mean squared

error) match will have a higher score. The match score is

a function of the pattern scale, orientation, and position

within the text, and our algorithm seeks to �nd local maxima

of the scoring function. An analytic formula for the highest

scoring pattern orientation in terms of scale and position

leaves us with a search problem in scale-position space. This

space is divided by a set of lines into combinatorially distinct

regions in each of which we have an analytic formula for the

scoring function. Our algorithm discovers local maxima of

the scoring function by performing a topological line sweep

over this scale-position space line arrangement.

1 Introduction

Shape comparison is a fundamental problem in com-
puter vision because of the importance of shape infor-
mation in performing recognition tasks. For example,
many model-based object recognition algorithms work
by matching boundary contours of imaged objects to
boundary contours of models ([11][13][3][15]). In addi-
tion to this traditional application, shape information
is also one of the major components in some content-
based image retrieval systems ([14][8]). The goal in such
a system is to �nd database images that look similar to
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a given query image or drawing. Images and queries are
usually summarized by their color, shape, and texture
content. For example, in the illustration retrieval sys-
tem described in [4], we suggest a shape index which
records what basic shapes (such as line segments, cor-
ners, and circular arcs) �t where in the drawing. The
method in this paper can be used to index shape infor-
mation in images once contours have been extracted.

In this paper, a shape is a polyline in the plane.
We consider the following problem: Given two planar
polylines, referred to as the text and the pattern, �nd
all approximate occurrences of the pattern within the
text, where such occurrences may be scaled and rotated
versions of the pattern. We call this problem of locating
a polyline pattern shape within a polyline text shape
the polyline shape search problem, or PSSP for short.
The PSSP is di�cult because we allow both scaling and
partial matching.

Two closely related problems to the PSSP are
the segment matching problem ([12]) and the polyline

simpli�cation problem ([2][7][9]). The segment matching
problem is to �nd approximatematches between a short
polygonal arc and pieces of a longer polygonal arc. In
searching for these matches, the short arc is allowed
to rotate, but its length/scale remains constant. The
PSSP generalizes the segment matching problem by
allowing scaling. In the polyline simpli�cation problem,
a polyline and error bound are given, and we seek
an approximation polyline with the fewest number of
segments whose distance to the given polyline is within
the error bound. (This problem is also known in the
literature as the min-# problem.) For a polyline with
n vertices, the planar polyline simpli�cation problem
can be solved in O(n2) time if the vertices of the
approximation are required to be a subsequence of the
vertices of the given polyline ([2]), and in O(n) time
if the vertices of the approximation can be arbitrary
points in the plane ([16]). For a text polyline with n
vertices, our algorithm for the PSSP requires O(n2) time



for any constant size pattern.
This paper is organized as follows. In section 2 we

describe the framework for our solution to the PSSP,
including the match score for a given scale, orientation,
and position of the pattern within the text. In section 3
we derive the orientation of the pattern which gives the
best match for a �xed pattern scale and position. This
leaves us with a 2D search problem in scale-position
space (the position is the text arclength at which to
begin the comparsion of the pattern with the text). In
section 4 we show how a certain set of lines divides up
the scale-position plane into regions in each of which we
have an analytic formula for our scoring function. In
section 5 we fully describe our line sweep algorithm for
the PSSP. Some results of this algorithm are shown in
section 6. Finally, in section 7 we give some concluding
remarks.

2 Problem Setup

Let T and P denote the text and pattern polylines,
respectively. We will use the familiar arclength versus
cumulative turning angle graph in judging the quality
of a match. We denote these summary graphs for
the text and pattern as �(s) and 	(s), respectively.
Figure 1 shows an example. If T consists of n segments
and P consists of m segments, then �(s) and 	(s)
are piecewise constant functions with n and m pieces,
respectively. We denote the text arclength breakpoints
as 0 = c0 < c1 < � � � < cn = L, where L is the length of
the text. The value of �(s) over the interval (ci; ci+1)
is denoted by �i, i = 0; : : : ; n� 1. Similarly, we denote
the pattern arclength breakpoints as 0 = a0 < a1 <
� � � < am = l, where l is the length of the pattern,
and the value of 	(s) over the interval (aj; aj+1) is  j ,
j = 0; : : : ;m � 1.

Rotating the pattern by angle 
 simply shifts its
summary graph by 
 along the turning angle axis,
while scaling the pattern by a factor � stretches its
summary graph by a factor of � along the arclength
axis. Hereafter, a scaled, rotated version of the input
pattern will be referred to as the transformed pattern.
The comparison between the transformed pattern and
the text will be done in the summary coordinate system.
The text arclength at which to begin the comparison will
be denoted by �. Since the length of the transformed
pattern is �l, the transformed pattern summary graph
is compared to the text summary graph from � to
� + �l. Finding the pattern within the text means
�nding a stretching, right shift, and up shift of the
pattern summary graph 	(s) that makes it closely
resemble the corresponding piece of the text summary
graph. Figure 2 illustrates this intuition. The stretching
(�), up shifting (
), and right shifting (�) of the pattern

summary graph 	(s) correspond to scaling, rotating,
and sliding the pattern along the text, respectively. The
problem of �nding the pattern within the text is thus
a search problem in the scale-position-rotation space
(�; �; 
).

The preceeding discussion tacitly assumes that the
pattern and text are both open polylines. If, for
example, the text is closed (i.e. the text is a polygon),
we can repeat the underlying text summary to ensure
that a pattern match that crosses the arbitrary start
and �nish text arclengths s = 0 and s = L will not
be missed. In what follows, however, we simply assume
that our pattern and text are open polylines.

In judging the quality of a match at a given scale,
orientation, and position, we need to consider both the
error of the match and the length of the match. When
the mean squared error (length) of two matches is equal,
the longer (lower mean squared error) match will have
a higher score than the shorter (higher mean squared
error) match. Of course, there is still the issue of how
to compare a match to a shorter (longer), lower mean
squared error (higher mean squared error) match. There
is no one correct answer to this balancing question { the
answer depends, for example, on the underlying input
noise model. Here we opt for a simple balancing of
match length versus match error which, as we shall see,
yields very good results and is amenable to analysis via
standard calculus optimization techniques. Obviously,
other match score functions are possible.

In moving toward our scoring metric, we de�ne the
mean squared error e(�; �; 
) as

e(�; �; 
) =

R �+�l
s=�

�
�(s) �

�
	
�
s��

�

�
+ 

��2

ds

�l
:

Note that 	
�
s��

�

�
+ 
, s 2 [�; � +�l], is the summary

graph of the transformed pattern, starting at text
arclength �. The score S(�; �; 
) of a match is de�ned
in terms of the mean squared error e as

S(�; �; 
) =
�l

L(1 + e(�; �; 
))
:

The product �l is the length of the match (�; �; 
). Our
goal is to �nd local maxima of the score function S over
a suitable domain D (in which S 2 [0; 1]). This domain
is de�ned by restricting the values of � and � so that
the domain of de�nition of the stretched, shifted pattern
summary graph is completely contained in [0; L] (the
domain of de�nition of the text summary graph):

D = f (�; �) j � > 0; � � 0; and �l + � � L g:
Although the range of the mean squared error e is
[0;1), the range of the score S over the domain D is
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Figure 1: (a) Text T above the corner pattern P . (b) Arclength versus cumulative turning angle functions �(s)
and 	(s) for T and P , respectively (s in points, � in radians).
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Figure 2: (a) �(s) and 	(s) from �gure 1b. (b) Rotating the pattern by 
 shifts its summary graph up by 
.
(c) Scaling the rotated pattern by � stretches the summary graph by a factor of �. (d) Finally, we slide the
transformed pattern summary graph over by an amount � to obtain a good match.
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Text T Pattern P Matches

(a)

(b)

Figure 3: Match error versus match length. In both examples, the pattern is a line segment and the maximum
absolute error input parameter maemax = 9�. To help make individual matches clear, we show a darker, smaller
scale version of the pattern slightly o�set from each match. (a) One match over the length of the entire \noisy"
straight line text is found. (b) Twelve matches, one for each of the sides of the \mountain range", are found.

[0; 1]. A match of length L with zero mean squared error
receives the highest score of one. Instead of trying to
locate local maxima of S in D, we will try to �nd local
minima of its reciprocal

R(�; �; 
) � 1

S(�; �; 
)
=

L

�l
(1 + e(�; �; 
)):

Note that the rotation 
 a�ects only the mean squared
error portion of the score.

At a local maximum location (��; ��; 
�) of S, a
small change in pattern scale, orientation, or position
within the text decreases the match score. We do
not, however, want to report all local maxima because
two very similar matches may be reported. In a
sense, we want to report a complete set of independent
matches. By independent matches, we mean that
any two reported matches should di�er signi�cantly
in scale, orientation, or position. The matches shown
for the two inputs in �gure 3 are complete sets of
independent matches. These results also illustrate the
balancing of match error versus match length. Our
matching algorithm and the user-supplied input error
bound maemax are described in section 5.

3 The Best Rotation

In this section we �x (�; �) and derive the rotation an-
gle 
 = 
�(�; �) which minimizes the mean squared
error e(�; �; 
) and, hence, the reciprocal match score
R(�; �; 
). This is straightforward because e is di�eren-
tiable with respect to 
. The derivative @e=@
 is equal
to zero exactly when


 = 
�(�; �) =

R �+�l
s=�

�
�(s) �	

�
s��
�

��
ds

�l
;

the mean value of the di�erence ��	 (more precisely,

�(s) � 	
�
s��

�

�
) over the arclength interval of the

match. Since @2e=@
2(�; �; 
) � 2 > 0, we conclude

that for �xed � and �, the value that minimizes the
mean squared error is 
 = 
�(�; �) given above. If we
de�ne e�(�; �) � e(�; �; 
�(�; �)), then

e�(�; �) =

R �+�l
s=�

�
�(s) �	

�
s��

�

��2
ds

�l
�0

@
R �+�l
s=�

�
�(s) � 	

�
s��
�

��
ds

�l

1
A
2

:

The function e�(�; �) is the variance of ��	 over the
arclength interval of the match.

4 The 2D Search Problem

The result of the previous section allows us to eliminate
the rotation parameter from consideration in our score
and reciprocal score functions. We de�ne R�(�; �) �
R(�; �; 
�(�; �)). Our goal now is to �nd local minima
in the domain D of

R�(�; �) =
L

�l

 
1 +

I2(�; �)

�l
�
�
I1(�; �)

�l

�2!
;(4.1)

where

I2(�; �) =

Z �+�l

s=�

�
�(s) �	

�
s � �

�

��2
ds;(4.2)

I1(�; �) =

Z �+�l

s=�

�
�(s) �	

�
s � �

�

��
ds:(4.3)

Consider the evaluation of the integral I1(�; �) for a
�xed pair (�; �). Since � and 	 are piecewise constant
functions, this integral can be reduced to a �nite
summation of terms such as the product of (�i �  j)
with the length of the overlap of the ith arclength
interval (ci; ci+1) of �(s) and the jth arclength interval
(aj�+�; aj+1�+�) of 	(

s��

�
). In precise mathematical
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terms, we have

I1(�; �) =
n�1X
i=0

m�1X
j=0

(�i �  j)�Xij ;

where Xij = j(ci; ci+1) \ (aj� + �; aj+1� + �)j and
j(a; b)j = minfb�a; 0g is the length of the interval (a; b).

Let lij denote the line aj� + � = ci, i = 0; : : : ; n,
j = 0; : : : ;m, in the (�; �) plane. The four lines
lij ; li+1;j; li;j+1, and li+1;j+1 divide the (�; �) plane into
regions in which we may write down an explicit analytic
formula for Xij. In each region, the formula for the size
of the intersection is (at worst) a degree one polynomial
in � and �. For example, in the region where aj�+� <
ci, aj�+� < ci+1, aj+1�+� > ci, and aj+1�+� < ci+1,
it is easy to check that Xij = aj+1� + � � ci. Now
let L denote the set of (n + 1)(m + 1) lines lij and let
A = A(L) denote the arrangement ([5]) in (�; �) space
of the lines in L. In each face f of A, we have a degree
one polynomial formula for Xij, X

f
ij = ufij�+v

f
ij�+w

f
ij .

As explained above, the formula for Xij = Xij(�; �) is
determined by the above{below relationship of (�; �)
and each of the four lines lij; li+1;j; li;j+1, and li+1;j+1.
From this fact, it is easy to see that the above{below
relationship between (�; �) and the line lij a�ects only
the four intersection formulae Xij ; Xi�1;j; Xi;j�1, and
Xi�1;j�1.

An arrangement vertex vijpq is the intersection of
lij and lpq. The scaling and sliding (�; �) = vijpq of
the pattern lines up exactly two pairs of breakpoints:
aj� + � coincides with ci and aq� + � coincides with
cp. An arrangement edge e is an open segment along
some line lij. A scaling and sliding (�; �) 2 e lines up
exactly one pair of breakpoints: aj�+ � coincides with
ci. For an open arrangement face f , any scaling and
sliding (�; �) 2 f lines up no pairs of breakpoints.

Now �x a face f of the arrangement A and let
Yij = �i �  j. Then for (�; �) in the closure �f , the
integrals (4.2), (4.3) in the formula (4.1) for R� can be
written as

I2(�; �) =
n�1X
i=0

m�1X
j=0

Xf
ij(Yij)

2(4.4)

I1(�; �) =
n�1X
i=0

m�1X
j=0

Xf
ijYij:(4.5)

Substituting Xf
ij = ufij�+v

f
ij�+w

f
ij into these formulae

and gathering like terms gives

I2(�; �) = ûf�+ v̂f � + ŵf(4.6)

I1(�; �) = ~uf�+ ~vf � + ~wf ;(4.7)

where ûf =
P

ij u
f
ij(Yij)

2, ~uf =
P

ij u
f
ijYij, and

similarly for v̂f ; ~vf ; ŵf , and ~wf . Combining (4.1), (4.6),
and (4.7), we can write R� in the closed region �f as

Rf
�
(�; �) =(4.8)

L

�3l3
(Af�2 +Bf�� +Cf�2 +Df�+ Ef� + F f )

for constants Af , Bf , Cf , Df , Ef , F f .
Our 2D search problem is to �nd pairs (�; �) 2 D

at which R�(�; �) is a local minimum. It turns out

that there are no local minima of Rf
� in the interior

of face f (see theorem A.1 in appendix A). So now
consider an edge e that bounds face f . We want to know
whether R� has a local minimum at some (�; �) 2 e
in the direction of e. The edge e is part of a line
lij : aj� + � = ci. Combining this line equation with

the equation (4.8) for Rf
� , we get a function Re

�
(R�

restricted to the edge e) which is a rational cubic in
� (the numerator is quadratic, but the denominator is
cubic). A few simple manipulations show that there are
at most two local minimum points (��; ��) 2 e for the
function Re

�
, and these locations can be determined in

constant time. Local minima of R� will also commonly
occur at arrangement vertices.

5 The Algorithm

The user speci�es a minimum and maximum match
length matchlenmin and matchlenmax (default maxi-
mum is L), along with a bound on the maximummean
absolute error maemax of a reported match. The bound
maemax can be guaranteed as long as we require the re-
ported match to have a mean squared error which is less
than or equal to msemax = mae2max (see theorem B.1 in
appendix B). We say that (�; �) is admissible if the
match length �l 2 [matchlenmin;matchlenmax] and the
mean squared error e�(�; �) � msemax. Of all admis-
sible locations (�; �), we report only those which are
locally the best. An admissible vertex is reported i� its
reciprocal score is less than the reciprocal scores of all
adjacent admissible vertices and of all admissible edge
minima locations on adjacent edges. An admissible edge
minimum is reported i� its reciprocal score is less than
the reciprocal scores of its at most two admissible ver-
tices and the other admissible edge minimum (if one
exists) on the same edge. Using topological closeness
instead of geometric closeness is only a heuristic for re-
porting independent matches.

Our algorithmoutputs matches during a topological
sweep ([6]) over the O(mn) lines lij in the arrangement
A. During an elementary step, the topological sweep
line moves from a face f1 into a face f2 through an
elementary step vertex v. Please refer to �gure 4.
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Figure 4: Elementary step notation.

During this step, we decide whether or not to report
the vertex v and the local edge minima (if any) on e3
and e4. The former decision requires the values R�(v),
R�(w1), R�(w2), R�(w3), R�(w4), as well as the values
of R� at all local edge minima of e1, e2, e3, and e4. The
latter decision requires R� at the local edge minimaof e3
and e4, and the values R�(v), R�(w3), and R�(w4). The
values of R� at local edge minima on e1 and e2 follow
in constant time from the formulae for Re1

�
and Re2

�
.

These formulae, as well as the valuesR�(v), R�(w1), and
R�(w2) are obtained in constant time from the (already

known) formula for Rf1
� . Similarly, the values R�(w3),

R�(w4), and R� at local edge minima of e3 and e4 follow

in constant time from the formula for Rf2
� . Next, we

argue that this formula can be computed in O(1) time

from the formula for Rf1
� .

Computing the formula for Rf2
� (�; �) requires com-

puting the coe�cients in the formulae (4.6) and (4.7)
for the integrals I2(�; �) and I1(�; �), (�; �) 2 �f2.
Note that computing and summing the O(mn) terms
in (4.4) and (4.5) during each elementary step would
require total time O(m3n3) because there are O(m2n2)
elementary steps. Fortunately, only a constant num-
ber of terms in (4.4) and (4.5) change when we move
from face f1 to face f2. This is because only a con-
stant number (at most eight) of intersection formulae

Xf
ij are a�ected by above{below relationships involving

L1 and L2. Hence, the values û
f2 ; ~uf2 ; v̂f2 ; ~vf2 ; ŵf2 ; ~wf2

in (4.6) and (4.7) can be computed in constant time
from the values ûf1 ; ~uf1; v̂f1 ; ~vf1 ; ŵf1 ; ~wf1 , and the for-
mula for Rf2

� (�; �) can be computed in O(1) time from

the formula for Rf1
� (�; �). The latter formula was com-

puted when the sweep line �rst entered face f1.
The above discussion shows that the elementary

step work speci�c to our setting may be performed
in O(1) time. Thus, the total time to perform the

topological sweep over the O(mn) lines lij is O(m
2n2).

The total space required by our algorithm is the O(mn)
storage required by a generic topological line sweep
which does not store the discovered arrangement. In the
common case of a simple pattern, such as a line segment
or corner, m = O(1) and our algorithm requires O(n2)
time and O(n) space.

At the moment when we decide to report a location
(�; �), we compute in O(1) time 
 = 
�(�; �) =
I1(�; �)=�l and actually report the triple (�; �; 
). The
� and 
 components give the scaling and rotation
parameters of a similarity transformation of the pattern
which makes it look like a piece of the text. The �
component tells us where along the text this similar
piece is located. To get the translation parameters of the
similarity transformation, we sample the transformed
pattern and the corresponding similar piece of the text,
and �nd the translation parameters which minimize
the mean squared error between the translated pattern
point set and the text point set.

6 Results

In practice, local edge minima are very rarely reported
because there is almost always a smaller admissible
minimum at one of the two edge vertices. Essentially,
the algorithm reports admissible vertices which have a
reciprocal score which is lower than any other adjacent
admissible vertex. Recall that arrangement vertices
(�; �) give scalings and shifts of the pattern which cause
two of its arclength breakpoints to line up with two of
the text arclength breakpoints. Our experimentation
has thus showed that the best matches of arclength
versus turning angle graphs are usually those that line
up two pairs of breakpoints (as opposed to one pair for
points on arrangement edges and zero pairs for points
in arrangement faces).

Figure 5 shows some results of our algorithm.
An noteworthy example is �gure 5b, which clearly
shows that the order of the vertices in the pattern and
text makes a di�erence in the matches found by our
algorithm | the three left turn text corners are found,
but the right turn is missed. In the example shown in
�gure 6, we use our method to summarize the straight
line content of an image.

7 Conclusion

In this paper we developed an algorithm to �nd where
a planar \pattern" polyline �ts well into a planar
\text" polyline. By allowing the pattern to rotate
and scale, we �nd portions of the text which are
similar in shape to the pattern. All comparisons
were performed on the arclength versus cumulative
turning angle representations of the polylines. This
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Text T Pattern P Matches

(a)

(b)

(c)

(d)

(e)

Figure 5: Results. As in �gure 3, each match is accompanied by a darker, smaller scale version of the pattern
which is slightly o�set from the match. (a) maemax = 15�. Each of the �ve noisy lines gives rise to exactly one
segment match. (b) maemax = 9�. The three left turn text corners are found with the left turn corner pattern.
(c) maemax = 20�. Our algorithm �nds the two (relatively) long, straight portions of the text. (d) maemax = 9�.
Both left turn text corners are found. (e) maemax = 9�. The straight pieces of the pliers contour are found.

7



(a) (b)

(c) (d)

Figure 6: Image summary by straight segments. (a) The image to be summarized is 512� 480. (b) The result of
Canny edge detection (� = 6 pixels) and edgel linking is a set of polylines with a total of 7219 vertices. (c) The
result of subsampling each of the polylines by a factor of 6 leaves a total of 1212 vertices. (d) Finally, �tting a
straight segment to each of the subsampled polylines using our PSSP algorithm gives a set of 50 segments. As
mentioned in the text, checking only a constant number of topologically neighboring elements before reporting
a match (�; �) does not guarantee that two very similar matches (which are geometrically close) will not be
reported. This heuristic is responsible for the \double edges" in the image summary.
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allowed us to reduce the complexity of the problem:
To compare two planar polylines, we compare their
one-dimensional arclength versus turning angle graphs.
Another reduction in complexity was gained by using
the L2 norm to compare the graphs. This allowed us
to eliminate the rotation parameter from our search
space, leaving a 2D scale-position space. Thus, we
converted a four dimensional search problem in the
space of similarity transformations to a two dimensional
search problem in scale-position space.

Our line sweep strategy essentially examines all
possible pattern scales and positions within the text. If,
however, the pattern does not �t well at a certain scale
and location, then it will not �t well at nearby scales and
locations. Finding \certi�cates of dissimilarity" which
would allow us to prune our (�; �) search space is a topic
for future research.
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A The Reciprocal Score Function Rf
�(�; �)

Theorem A.1. The function Rf
� (�; �) has no local

minima.

Proof. Consider formula (4.8) for Rf
� (�; �). It is easy

to verify that Cf = �(~vf )2 � 0. If Cf = 0, then

Rf
�(�; �) is linear in � and, therefore, cannot have a

local minimum in the � direction at any (�; �). Of

course, this means that Rf
�(�; �) cannot have a local

minimum. The other possibility is Cf < 0. The �rst
and second partial derivatives of Rf

� with respect to �
are

@Rf
�

@�
=

L

�3l3
(Bf�+ 2Cf� +Ef )

@2Rf
�

@�2
=

2L

�3l3
Cf :

Since @2Rf
�=@�

2 < 0 (because Cf < 0), Rf
� (�; �) cannot

have a local minimum in the � direction at any (�; �).

Therefore, Rf
�(�; �) cannot have a local minimumwhen

Cf < 0.
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B Mean Absolute Error Versus Mean Squared

Error

Theorem B.1. Let mae(�; �; 
) and mse(�; �; 
) de-

note the mean absolute error and mean squared

error, respectively, for a match (�; �; 
). Then

mae2(�; �; 
) � mse(�; �; 
).

Proof. It is easy to check that

< f; g >=

Z �+�l

s=�

f(s)g(s) ds

de�nes an inner product on R[�; � + �l], the set of
functions which are integrable on [�; � + �l], with the
minor exception that < f; f >= 0 only implies that
f = 0 almost everywhere in [�; �+�l] ([10]). Even with
this modi�cation, we still have Cauchy's inequality:

j < f; g > j � jjf jj jjgjj;

where jjf jj = p
< f; f >. Applying Cauchy's inequality

with f(s) = j�(s)�
�
	
�
s��

�

�
+ 

�
j and g(s) � 1 gives

Z �+�l

s=�

�����(s) �
�
	

�
s � �

�

�
+ 


����� ds �sZ �+�l

s=�

�
�(s) �

�
	

�
s� �

�

�
+ 


��2
ds �

p
�l:

Squaring both sides of the previous inequality and then
dividing by �2l2 gives the desired result:

0
@
R �+�l
s=�

����(s) � �	� s��

�

�
+ 

���� ds

�l

1
A
2

�

R �+�l
s=�

�
�(s) �

�
	
�
s��

�

�
+ 

��2

ds

�l
:
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