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Abstract

Genomic datasets, spanning many organisms and data types, are rapidly being pro-

duced, creating new opportunities for understanding the molecular mechanisms un-

derlying human disease, and for studying complex biological processes on a global

scale. Transforming these immense amounts of data into biological information is a

challenging task. In this thesis, we address this challenge by presenting a statisti-

cal modeling language, based on Bayesian networks, for representing heterogeneous

biological entities and modeling the mechanism by which they interact. We use sta-

tistical learning approaches in order to learn the details of these models (structure

and parameters) automatically from raw genomic data. The biological insights are

then derived directly from the learned model. We describe three applications of this

framework to the study of gene regulation:

• Understanding the process by which DNA patterns (motifs) in the control re-

gions of genes play a role in controlling their activity. Using only DNA sequence

and gene expression data as input, these models recovered many of the known

motifs in yeast and several known motif combinations in human.

• Finding regulatory modules and their actual regulator genes directly from gene

expression data. Some of the predictions from this analysis were tested success-

fully in the wet-lab, suggesting regulatory roles for three previously uncharac-

terized proteins.

• Combining gene expression profiles from several organisms for a more robust

prediction of gene function and regulatory pathways, and for studying the degree

to which regulatory relationships have been conserved across evolution.
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Chapter 1

Introduction

The complex functions of a living cell are carried out through the concerted activity

of many genes and gene products. This activity is coordinated through molecular

networks involving interacting proteins, RNA, and DNA molecules. Discovering the

structure of these networks, the conditions under which they operate, and the molec-

ular mechanisms they employ is a major goal of molecular cell biology.

Recent technological advances have led to an explosion in the availability of data

on a genome-wide scale, including complete genome sequences, measurements of

mRNA levels of entire genomes under various conditions, and genome-wide measure-

ments of protein-protein and protein-DNA interactions. Such heterogeneous data

provide important information about cellular processes and their underlying molecu-

lar networks. However, transforming these immense amounts of data into biological

information is a challenging task, and the key to success lies in our ability to combine

theoretically-founded algorithms and techniques from computer science, statistics,

and machine learning, with deep understanding of the biological domain. Biology is

transitioning into an information science and as such, the forthcoming years will be

crucial for laying out the foundations and methodologies that will be employed.

In this dissertation, we address this challenge by developing a statistical modeling

language that can represent complex interactions in biological domains. The models

are based on the language of relational Bayesian networks (Koller and Pfeffer, 1998,

Friedman et al., 1999a, Getoor, 2001), which represents a probability distribution

1
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over various entities in a relational domain. In the biological domain, we typically

model several classes of objects, such as genes, experiments, biological processes, and

activity levels of genes. With each class, we also associate a set of observed attributes,

such as the sequence of a gene or the condition of an experiment, and a set of hidden

attributes, such as the process a gene participates in, whose value we wish to infer.

Such a modeling language has several advantages. First, it allows us to explicitly

represent and reason about biological entities in a modular way, as well as model

the mechanistic details of the underlying biological system. Second, we can build on

the sound foundation of statistical learning methods to develop algorithms that learn

the models directly from data. Finally, by designing models that directly match the

biological phenomena we wish to study, we can use this general framework to solve

a wide range of problems, and obtain biological insights directly from the model.

In this thesis, we formulate a number of such models, develop algorithms to learn

their structure automatically from the input genomic data and provide a systematic

statistical and biological analysis of our results, including wet lab experiments for

testing several of our novel computational predictions.

1.1 Biological Background

We begin with a brief overview of the basic concepts of molecular biology that are

relevant to this thesis. The interested reader is referred to molecular biology textbooks

(e.g., Alberts et al. (2002)) for more information.

Cells are the fundamental working units of every living system. The nucleus of all

cells contains a large DNA (Deoxyribonucleic acid; see Figure 1.1) molecule, which

carries the genetic instructions for making living organisms. A DNA molecule consists

of two strands that wrap around each other to resemble a twisted ladder. The sides

are made of sugar and phosphate molecules. The “rungs” are made of nitrogen-

containing chemicals called bases. Each strand consists of a sequence of nucleotides,

where each nucleotide is composed of one sugar molecule, one phosphate molecule,

and a base. Four different bases are present in DNA — adenine (A), thymine (T),

cytosine (C), and guanine (G). The particular order of the bases arranged along
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Figure 1.1: Illustration of a DNA molecule (image taken from
http://blairgenealogy.com/dna/dna101.html).

the sugar-phosphate backbone is called the DNA sequence; the sequence specifies

the exact genetic instructions required to create a particular organism with its own

unique traits.

The two strands of the DNA molecule are held together by weak hydrogen bonds

between opposite bases. The four bases pair in a particular manner: Adenine (A) pairs

with thymine (T), while cytosine (C) pairs with guanine (G). These pairs of bases

are known as Base Pairs (bp). The DNA is organized into separate long segments

called chromosomes, where the number of chromosomes differs across organisms. For

example, in humans there are 46 chromosomes or 23 pairs of chromosomes (each

parent contributes 23 chromosomes).
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The DNA molecule serves as the blueprint of an organism: It contains the in-

structions for the synthesis and regulation of proteins — large molecules composed

of one or more chains of amino acids, that determine the shape and structure of

the cell. The synthesis instructions and composition of a particular protein is coded

on a segment of DNA called a gene. The central dogma of molecular biology states

that information flows from DNA through RNA to protein (see Figure 1.2). Thus, a

protein is synthesized from DNA in the following two-step process:

1. DNA→ RNA: Transcription is the process by which a macromolecular machine

called RNA polymerase produces a messenger RNA (mRNA) sequence of a

gene using the DNA sequence as a template. The process by which genes are

transcribed into the mRNA structures present and operating in the cell is termed

gene expression.

2. RNA → Protein: In the subsequent process, called translation, another macro-

molecule called the ribosome serves as a protein factory and synthesizes the

protein according the information coded in the mRNA.

A key observation is that, while each cell contains the same copy of the organ-

ism’s DNA, different cells express different genes in different conditions. To control

gene expression, specialized proteins called transcription factors recognize and bind

specific sequences on the DNA, called cis-regulatory sequences. Through this binding

process, transcription factors can enhance or inhibit transcription of nearby genes.

The cis-regulatory sequences are typically short sequences, 5-25 DNA base pairs in

length, and are typically located in regions upstream of the site on the DNA in

which transcription of a gene starts. These upstream regions are termed promoter

regions. An organism typically has hundreds of different transcription factors, each

capable of recognizing different cis-regulatory sequences. We typically represent the

cis-regulatory sequences recognized by a transcription factor using sequence motifs.

Transcription factors often work in combination with other transcription factors to

ensure that the required amount of each gene is being transcribed. We note that

transcription factors are themselves proteins and are thus subject to transcriptional

control. A 3D model of a transcription factor binding DNA is shown in Figure 1.3.
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Figure 1.2: The central dogma of molecular biology: information flows
from DNA through RNA in a process called transcription, and from
RNA to proteins in a process called translation (image taken from
http://cats.med.uvm.edu/cats teachingmod/microbiology/courses/genomics/
introduction/1 2 bgd gen pro dog.html.

Transcription factors are by no means the only control over gene expression. Bi-

ological regulation is extremely diverse and involves different mechanisms at many

layers: Before transcription occurs, another class of proteins regulate the structure of

the DNA itself and determine whether specific regions in the DNA are even accessible

to binding by transcription factors. Once the mRNA molecule is transcribed, other

mechanisms regulate its editing and transport to the ribosome, thereby controlling

whether or not the mRNA will be translated into its protein product. In addition,

the total mRNA level of a given gene in the cell is regulated not only by transcription

(creation) of its mRNA, but also by the degradation of its mRNA. Finally, regulation

continues even after the protein is translated: a large part of biological regulation is
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Figure 1.3: Three dimensional model of the zinc-finger transcription factor
Gal4 binding DNA. Through this binding process, transcription factors can
regulate the expression of nearby genes (image taken from http://www.web-
books.com/MoBio/Free/Ch4F2.htm).

via post-translational modifications that alter the structure of the protein and deter-

mine its activity.

In recent years, technological breakthroughs in spotting hybridization probes and

advances in genome sequencing led to the development of DNA microarrays, which

consist of many types of probes, either oligonucleotides or complementary DNA

(cDNA), that are immobilized in a predefined organization to a solid surface. By us-

ing DNA microarrays researchers can measure the abundance of thousands of mRNA

targets simultaneously (DeRisi et al., 1997, Lockhart et al., 1996), providing us for

the first time with a genome-scale view of gene expression.

Microarray technology is based on DNA hybridization: a process in which a DNA

strand binds to its unique complementary strand. A set of known sequence probes

are fixed to a surface and placed in interaction with a set of fluorescently tagged

targets of various sequences. After hybridization, the fluorescently lit spots indicate

the identity of the targets and the intensity of the fluorescence signal is in correlation

to the quantitative amount of each target. Due to different hybridization affinities

between clones and the fact that an unknown amount of complementary DNA (cDNA)

is fixed for each probe, we cannot directly associate the hybridization level with a
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quantitative amount of transcript. Instead, cDNA microarray experiments compare

a reference pool and a target pool. Typically, green is used to label the reference

pool, representing the baseline level of expression and red is used to label the target

sample of interest (e.g., the target samples may be cells of different types or cells

that were treated with some condition of interest). We hybridize the mixture of

reference and target pools and read a green signal in cases where the expression

level is reduced compared to the reference pool and a red signal in cases where the

expression level is increased compared to the reference pool. When applying DNA

microarray technology to measure mRNA levels, the mRNA are reverse-transcribed

into cDNA which is then hybridized to the DNA sequence probes on the microarray.

The reason that the mRNA levels are not measured directly is that the environment

is full of RNA-digesting enzymes so free RNA is quickly degraded. In contrast, the

DNA form is more stable and is therefore used for the hybridization. An example of

a DNA microarray is shown in Figure 1.4. We note that there are several microarray

technologies (e.g., the oligonucleotide arrays of Affymetrix) that differ by what is

printed on the chips and the protocols employed for using them.

A genome wide measurement of transcription is called an expression profile and

consists of measurements of the mRNA levels of genes in the cell. Biologically speak-

ing, what we measure is how the gene expression of each gene changes to perform

complex coordinated tasks in adaptation to a changing environment. We note that

while DNA microarrays can measure changes in mRNA levels that are a direct conse-

quence of transcriptional regulation, there are many important cellular aspects that

are not observed by microarrays (e.g., protein expression and protein activity). Fur-

thermore, due to biological variation and a multi-step experimental protocol, the data

measured by microarrays are noisy, and may fluctuate significantly, even between re-

peated experiments.

In order to obtain a wide range of expression profiles, various perturbations (e.g.,

mutations (Hughes et al., 2000) or heat shock (Gasch et al., 2000)) are employed

and different cell types are measured. The outcome is a matrix that associates an

expression level with each gene (row) and each microarray (column). In our setting,

this expression matrix may contain thousands of genes and hundreds of arrays. Our
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Target DNAReference DNA

Label

Hybridize

Figure 1.4: An image of a DNA microarray. Each spot represents a different gene

goal is to uncover molecular interactions, most notably regulation, from these data.

We note that other technologies have been developed for probing different at-

tributes of the cell at a genome-wide scale and more technologies are underway. These

include assays for measuring protein-protein interactions, protein complexes, protein

abundance levels, and protein-DNA interactions. Similar to gene expression data,

such measurements are useful for the study of gene regulation.

1.2 Our Approach

In this thesis we study the problem of gene regulation, including: detecting the DNA

sequence motifs through which regulation occurs; discovering which regulatory pro-

teins regulate which target genes; understanding how this regulation changes in re-

sponse to different environmental conditions; and identifying which genes are regu-

lated together, or what are the modules of regulation within the cell. While available
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genomic datasets provide an informative view of the gene regulation process, they do

not provide direct answers to the questions above. For this reason, computational

tools for analyzing genomic data are very much needed.

As many human diseases are caused by defects in regulatory mechanisms, under-

standing gene regulation is very important. For example, if the mechanism responsible

for stopping cells from dividing is not working properly, uncontrolled cell proliferation

may occur and can lead to cancerous tumors. Thus, by unraveling the details of gene

regulation, we might be able to better diagnose and better treat human diseases.

Several approaches for studying gene regulation have been suggested. One popular

class of approaches starts with gene expression data measured via DNA microarrays,

and first applies a clustering algorithm that attempts to cluster together genes that

have similar patterns of expression across the given set of microarrays. As genes with

similar patterns of expression may be regulated by the same mechanism, the next

step is to search for common DNA sequence motifs in the promoter regions of genes

that ended up in the same cluster. Common motifs that are found in the second step

can then be suggested as candidate sequences through which regulation, of genes in

the cluster where this motif was found, occurs. A schematic diagram of this approach

is shown in Figure 1.5.

Note that this approach to gene regulation is procedural in nature: One method

(clustering) is applied to the expression data, and a different method (motif discovery)

is then applied to the sequence data, using the output of the first method as its input.

Thus, the clustering and the motif discovery tasks are decoupled in this approach,

and are often developed by different research groups. As neither of these tasks can be

solved optimally, this decoupling leads to several serious limitations. For example, a

mistake in the clustering algorithm that places co-regulated genes in different clusters

will make it difficult for even the best motif discovery tool to detect the underlying

sequence motifs. Nevertheless, to date, procedural architectures are perhaps the most

popular class of approaches, and provide the basis for many of the methods applied

to genomic datasets.

In contrast to procedural methods, our approach is model-based. By a model we

mean a simplified description of the biological process that could have generated the
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AGCTAGCTGAGACTGCACAC
TTCGGACTGCGCTATATAGA
GACTGCAGCTAGTAGAGCTC
CTAGAGCTCTATGACTGCCG
ATTGCGGGGCGTCTGAGCTC
TTTGCTCTTGACTGCCGCTT
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Gene I
Gene II
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Gene IV
Gene V
Gene VI

AGCTAGCTGAGACTGCACAC
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Figure 1.5: Schematic diagram of a popular procedural approach to gene regulation.
In this approach, gene expression data (left) is first clustered, such that genes with
similar patterns of expression are placed next to each other (middle). The promoter
regions of genes in the same cluster are then searched for common DNA sequence
motifs (right). As genes in the same cluster have similar mRNA expression profiles,
common motifs (e.g., the red GACTGC sequence in this example) can be suggested
as potential candidate sequences involved in regulating the genes in the cluster.

observed data. Due to the stochastic nature of the biological system and due to

the noise in the technology for measuring its properties, our model must be able to

handle uncertainty in a principled way. Recently there has been significant advances in

modeling frameworks, most notably Bayesian networks (Pearl, 1988), that can handle

and represent such uncertainty. Thus, we base our models on Bayesian networks

and more specifically on Probabilistic Relational Models (PRMs) (Koller and Pfeffer,

1998, Friedman et al., 1999a, Getoor, 2001), which extend the flat Bayesian network

representation to relational domains.

Such model based approaches have several advantages. First, they allows us to

explicitly represent and reason about biological entities in a modular way, as well as

model the mechanistic details of the underlying biological system. Second, we can

build on the sound foundation of statistical learning methods to develop algorithms

that learn the models directly from data. Finally, by designing each model separately,

depending on the biological phenomena we wish to study, we can use this general

framework to solve a wide range of problems, and obtain biological insights directly

from the model.
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Based on the PRM framework, this thesis presents a statistical modeling language

that we developed for representing complex interactions in biological domains, and

several applications of this framework for studying key problems in gene regulation.

Our modeling language can represent different classes of objects, such as genes, arrays,

and expression. With each object, we can then associate a set of observed properties,

such as the DNA promoter sequence of a gene, or the condition under which a given

array was measured. In addition, we can also associate objects with hidden proper-

ties, such as the functional unit, module, or biological process that to which a gene

belongs. Finally, the language also represents probabilistic dependencies between the

properties of different objects. For example, the expression of a gene in a particular

microarray experiment can depend probabilistically on the sequence of the gene and

the condition of the array. A schematic diagram of our modeling language for an

example model of gene regulation is shown in Figure 1.6.

Our models always define a joint probability distribution over all the properties

in the domain. Each property (hidden and observed) of every object is represented

by a random variable. Together, these random variables and the probabilistic de-

pendencies among them define a Bayesian network. As a Bayesian network defines a

joint probability distribution over the space represented by its random variables, we

use the Bayesian network induced by our models to represent the joint distribution

defined by our models in a compact way. Using the Bayesian network representation,

this joint distribution can be factored as a product of terms, to which each random

variable in the Bayesian network contributes exactly one factor.

We learn the details (dependency structure and parameters) of the models au-

tomatically from the data, where the goal is to find a model that maximizes the

probability of the model given the observed data. This learning task is challenging,

as it involves several steps, some of which are computationally intractable. One step

involves learning the form and details of the various local probability distributions

associated with each random variable. Another step is to learn the dependency struc-

ture among the random variables of the various objects we have. As we typically

have thousands of such variables, and as the number of possible network structures

may be exponential in the number of these variables, this learning problem is often
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Figure 1.6: Schematic diagram of our statistical modeling language for an example
model of gene regulation. The language can represent classes of objects (Gene, Array,
and Expression). Objects can have observed properties (DNA sequence for Gene, Con-
dition and Tumor for Array, and mRNA levels for Expression) and hidden properties
(Module for Gene). In addition, probabilistic dependencies between the properties
of different objects can be represented (e.g., the mRNA level of Expression objects
depends probabilistically on the module of Gene objects, and the condition of Array

objects).

intractable. Finally, the models we consider have many hidden properties whose val-

ues we need to infer. For this task, we need to perform probabilistic inference in

the underlying Bayesian network. As the network may contain thousands of highly

dependent hidden variable, this inference task is often intractable as well.

Although the learning task is intractable, in some cases we can identify biological

structure specific to the problem we are studying, and develop learning algorithms

that exploit this structure, leading to efficient and scalable algorithms. From a techni-

cal perspective, identifying these structures and representing them within our model

is the major modeling challenge, and exploiting these structures in the learning algo-

rithms is the major computational challenge we had to face.

The general scheme of our approach in this thesis is as follows. We start with
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Figure 1.7: Overview of the general scheme of our approach.

genomic data and a biological problem we wish to solve. Next, we design an appro-

priate model that approximates the corresponding biological process, trading off the

accuracy and level of detail of the model with the type and nature of the available

data. In the following step, we develop algorithms that learn the details of the model

automatically from the observed data, and apply them to the input data. Finally, we

derive the biological insights and results directly from the learned models and evalu-

ate them using statistics and the biological literature. An illustration of our general

scheme is shown in Figure 1.7.

1.3 Contributions

In this thesis, our contributions include:

• A statistical modeling language, based on Probabilistic Relational Models, for

representing complex interactions in biological domains. We show how our lan-

guage can integrate heterogeneous types of genomic data in a joint probabilistic
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model, including gene expression, DNA sequence, and protein-DNA binding

data.

• A unified model over gene expression and DNA sequence data, aimed at provid-

ing a genome-wide explanation of the observed expression patterns as a function

of combinations of DNA sequence motifs. We present an algorithm for learn-

ing the details of this model automatically from raw expression profiles and

sequence data, including ab-initio discovery of the sequence motifs involved,

their combinations, and the sets of genes they regulate.

• Module Networks, a new probabilistic framework for discovering regulatory mod-

ules using only gene expression data. Our procedure identifies modules of co-

regulated genes, their regulators, and the conditions under which regulation

occurs, generating testable hypotheses in the form “regulator ‘X’ regulates mod-

ule ‘Y’ under conditions ‘W’”. We also present wet lab experiments supporting

three of our novel computational predictions, allowing us to suggest regulatory

roles for three previously uncharacterized proteins in yeast. This demonstrates

one of the first approaches that completes an entire discovery cycle that starts

from publicly available data, then applies a computational method to analyze

the data, generates testable hypotheses, and finally tests these hypotheses in

the wet lab, ending with new insights into the biological system.

• A model that combines gene expression profiles from several organisms for im-

proved discovery of regulatory modules and for detection of regulatory modules

that have been conserved across evolution. We present an application of this

model to expression profiles from human and mouse brain tumors, and show

that the combined model learns better regulatory modules compared to models

that use the data from each organism in isolation.

• New model evaluation methods. As our methods are aimed at knowledge dis-

covery in the biological domain where very little is known, it is often hard to

evaluate their performance. We present new types of statistical evaluations and
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new types of formal evaluations relative to the biological literature that objec-

tively report on our performance and can easily be adapted for evaluating the

results of other approaches.

• GeneXPress, a software environment for visualization and statistical analysis

of genomic data, including gene expression, sequence data, and protein-protein

interactions. For computational tools to have a broad impact, they must be

accompanied by visualization and browsing tools that are easily accessible to

biologists. To support this effort we developed GeneXPress, which can visualize

the output of our algorithms. Many of the figures in this thesis were generated

directly from this tool. Currently, GeneXPress has been downloaded by over

800 researchers from more than 50 countries.

1.4 Outline

The outline of this thesis is as follows. In Chapter 2 we present the basics of the

probabilistic framework that underlie our models. The framework is based on the

language of probabilistic relational models (PRMs), as introduced by Koller and Pf-

effer (1998) and Getoor (2001). This chapter is intended to give an overview of the

basic probabilistic framework.

In Chapter 3, we describe a probabilistic model for understanding transcriptional

regulation using both gene expression and promoter sequence data. We aim to identify

cis-regulatory modules — sets of genes that are co-regulated in a set of microarray

experiments, through a common combination of motifs, which we term a motif profile.

That is, given a gene expression data set as input, and promoter sequences of genes,

we aim to identify modules of co-regulated genes and explain the observed expression

patterns of each module via a motif profile that is common to genes in the same

module. Our goal is to provide a genome-wide explanation of the expression data.

This chapter is based on the work of Segal et al. (2002) and Segal et al. (2003e).

In Chapter 4, we attempt to reveal another aspect of the gene regulation pro-

cess, by presenting module networks, a probabilistic model for discovering regulatory
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modules from gene expression data. Our procedure identifies modules of co-regulated

genes, their regulators, and the conditions under which regulation occurs, generating

testable hypotheses in the form “regulator ‘X’ regulates module ‘Y’ under conditions

‘W’”. We demonstrate the ability of the method to identify functionally coherent

modules and their correct regulators. However, as knowledge in the biological litera-

ture is limited, some hypotheses can neither be confirmed nor refuted. Thus, we have

carried out microarray experiments in the wet lab to test the validity of three of these

novel hypotheses. We show how these tests support our computational predictions,

allowing us to suggest novel regulatory roles for three previously uncharacterized pro-

teins in yeast. This chapter is based on the work of Segal et al. (2003c) and Segal et

al. (2003b).

In Chapter 5 we present an extension to the module network framework of Chap-

ter 4 that combines expression data from multiple organisms for the task of discov-

ering regulatory modules that have been conserved across evolution. As in module

networks, our procedure identifies modules of co-regulated genes, their regulators,

and the conditions under which this regulation occurs. The key difference is that

the regulatory modules in our extended procedure are jointly learned from expres-

sion profiles of several organisms. As we show in an application of the method to

expression measurements of brain tumors from human and mouse, this joint learning

allows us to improve our regulatory predictions compared to models learned from

each organism’s data in isolation. Moreover, we show that by combining expression

data from human and mouse, we can gain insights into the evolution of the regulatory

relationships in brain tumors between these organisms.

Finally, Chapter 6 contains concluding remarks as well as discussion of some of

the aspects that are missing in our framework and presents the future challenges that

need to be addressed.



Chapter 2

Probabilistic Framework

In this chapter, we present the basics of the probabilistic framework that underlie our

models. The framework is based on the language of probabilistic relational models

(PRMs), as introduced by Koller and Pfeffer (1998) and Getoor (2001), although we

have extended the language to be applicable to the biological domain. This chapter

is intended to give an overview of the basic probabilistic framework. Our extensions

to the framework, which allow us to model interactions in the biological domain, are

presented in subsequent chapters.

The probabilistic models that we study exploit conditional independence rela-

tionships that hold between properties in the biological system, and we thus start

with a discussion of conditional independence. Then, since Bayesian networks pro-

vide the foundation for PRMs, we give a brief overview of them, before introducing

probabilistic relational models.

2.1 Conditional Independence

Consider a simple biological system with only two genes, an activator gene and a

target gene, that may or may not be under stress conditions. Formally, we can

represent this system with three attributes, where the value domain of each attribute

is shown in parentheses: Activator (low, basal, high), Target (low, basal, high), and

Stress (false, true), where the Activator and Target attributes correspond to the levels

17
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of expression of the activator and target gene, respectively. Note that for simplicity

we assumed here that each gene is either over expressed (high), under expressed (low),

or is expressed at some baseline expression level (basal). In practice the expression

measurements that come from the microarray data are real valued measurements and

we do not usually discretize them. As shorthand, we will use the first letter in each of

the names to denote the attribute, using capital letters for the attributes and lower

case letters for the particular values of the attributes. We use P (A) to denote a

probability distribution over the possible values of attribute A, and P (a) to denote

the probability of the event A = a.

Assume that the joint distribution of attribute values in measurements of our

biological system is as shown in Figure 2.1(a). Using this joint distribution, we can

compute the probability of any instantiation of A, T , and S, P (a, t, s). However, to

explicitly represent the joint distribution we need to store 18 numbers, one for each

possible combination of values for the attributes. (In fact, we can get away with 17

numbers because we know that the entries in the joint distribution must sum to 1)

In many cases, however, our data will exhibit a certain structure that allows us to

(perhaps approximately) represent the distribution using a much more compact form.

The intuition is that some of the correlations between attributes might be indirect

ones, mediated by other attributes. For example, the effect of whether the cell is

under stress or not on the expression level of the target gene might be mediated by

the expression level of the activator: if the activator is present, regardless of whether

the cell is under stress or not, it will bind the DNA of the target gene and increase its

expression. Thus, the dominant factor influencing the expression of the target gene

is the expression of its activator and not the condition of the cell. This assertion is

formalized by the statement that Target is conditionally independent of Stress given

Activator, i.e., for every combination of values t, a, and s, we have that:

P (T = t | A = a, S = s) = P (T = t | A = a)

This assumption holds for the distribution of Figure 2.1.
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Figure 2.1: (a) The joint probability distribution for a simple example. (b) A rep-
resentation of the joint distribution that exploits conditional independence. (c) The
single-attribute probabilities.

The conditional independence assumption allows us to represent the joint distri-

bution more compactly in a factored form. Rather than representing P (S,A, T ), we

will represent: the marginal distribution over Stress — P (S); a conditional distribu-

tion of Activator given Stress — P (A | S); and a conditional distribution of Target

given Activator — P (T | A). It is easy to verify that this representation contains all

of the information in the original joint distribution, if the conditional independence
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assumption holds:

P (S,A, T ) = P (S)P (A | S)P (T | A, S) = P (S)P (A | S)P (T | A)

where the last equality follows from the conditional independence of T and S given

A. In our example, the joint distribution can be represented using the three tables

shown in Figure 2.1(b). It is easy to verify that they do encode precisely the same

joint distribution as in Figure 2.1(a).

The number of independent parameters for the factored representation is now

1 + 4 + 6 = 11, as compared to the 17 we had in the full joint distribution. While

the savings in this case may not seem particularly impressive, the savings grow ex-

ponentially as the number of attributes increases, as long as the number of direct

dependencies remains small.

Note that the conditional independence assumption is very different from assum-

ing complete attribute independence. For example, the marginal distributions for the

three attributes are shown in Figure 2.1(c). It is easy to see that the joint distribu-

tion that we would obtain from this strong attribute independence assumption in this

case is very different from the true underlying joint distribution. It is also important

to note that our conditional independence assumption is compatible with the strong

correlation that exists between Target and Stress in this distribution. Thus, condi-

tional independence is a much weaker and more flexible assumption than standard

(marginal) independence.

Context Specific Independence

As described above, we can exploit conditional independence to more compactly rep-

resent distributions and thereby considerably reduce the total number of parameters

required. In biological domains, which typically contain a large number of attributes,

conditional independence can be crucial. However, often the conditional independen-

cies that we encounter are more subtle, and they hold under certain contexts and not

in general.
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For example, assume that our simple biological system described above also con-

tains a repressor gene, in addition to the activator. Furthermore, assume that the

repressor requires the presence of the activator in order to bind the DNA of the target

gene, and when it does so, it blocks (represses) the expression of the target gene. In

this case, the expression of the target gene thus depends on the expression of both

the activator and the repressor and there are no apparent conditional independence

relationships that hold. However, since the repressor requires the presence of the ac-

tivator in order to bind the DNA of the target gene, it implies that if the activator is

not present, then the repressor has no effect on the target gene. Thus, in the absence

of the activator, the target and the repressor are conditionally independent, although

they are not conditionally independent in the presence of the activator. Such a con-

ditional independence relationship is termed context specific independence. In our

example, denoting the expression level of the repressor with the attribute Repressor,

the context specific independence implies that:

P (Target | Repressor,Activator = low) = P (Target | Activator = low).

That is, given that the activator is not expressed, the repressor exerts no effect on

the expression of the Target gene.

In the biological domain, it is well known that many relationships hold only under

certain contexts. For example, even though the expression of a gene depends on

many influencing factors, it is very likely that it does not depend on all factors in

all contexts. Thus, the ability to represent and exploit context specific independence

relationships is crucial in order to achieve realistic models of biological processes. In

fact, in many cases, discovering which factors play a role in which biological contexts,

i.e., identifying the context specific independence relationships themselves, is a major

part of our goal. We consider several different representations of context specific

independence throughout this thesis.
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2.2 Bayesian Networks

Bayesian networks (Pearl, 1988) (BNs) are compact graphical representations for

high-dimensional joint distributions. They exploit the underlying conditional inde-

pendencies in the domain — the fact that only a few aspects of the domain affect each

other directly. We define our probability space as the set of possible assignments to

the set of random variables A1, . . . , An. BNs can compactly represent a joint distribu-

tion over A1, . . . , An by utilizing a structure that captures conditional independencies

among attributes, thereby taking advantage of the “locality” of probabilistic influ-

ences.

A Bayesian network B consists of two components. The first component, G, is

a directed acyclic graph whose nodes correspond to the attributes A1, . . . , An. The

edges in the graph denote a direct dependence of an attribute Ai on its parents PaAi
.

The graphical structure encodes a set of conditional independence assumptions: each

node Ai is conditionally independent of its non-descendants given its parents.

Figure 2.2 shows a simple Bayesian network for the simple biological system de-

scribed above. In this case, there are four attributes: Stress, Activator, Repressor,

and Target. We see, for example, that the expression of the target gene depends on

whether the cell is under stress or not only via the expression of the activator and

repressor genes. Thus, Target is conditionally independent of Stress given Activator

and Repressor.

The second component of a BN describes the statistical relationship between each

node and its parents. It consists of a conditional probability distribution (CPD),

PB(Ai | PaAi
) for each attribute, which specifies the distribution over the values of Ai

given any possible assignment of values to its parents. Let Val(Ai) denote the space

of possible values for Ai and Val(PaAi
) denote the space of possible values for the

parents of Ai. In a CPD, all of the conditional probabilities are positive, and for any

particular instantiation of Ai, ai ∈ Val(Ai), the sum over all possible instantiations

of Ai, for any particular instantiation, u, of Ai’s parents is 1, i.e.,

∑

ai∈Val(Ai)

PB(Ai = ai | PaAi
= u) = 1
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Target

Stress

Target

Activator Repressor

Figure 2.2: A Bayesian network for a simple biological system with three genes: an
Activator, a Repressor, and a Target, where the system can either be under stress
or not. Note that this network encodes the independence assumption that given the
expression of the activator and the repressor, the expression of the target gene does
not depend on whether the system is under stress or not.

In the biological domain we also have many real valued measurements which we

may wish to model using continuous valued attributes. In this case, we associate a

density function over Ai for each instantiation of Ai’s parents, and require that it is

a non-negative integrable function such that its integral over the space of possible

values that Ai can take, is 1, i.e.,

∫

ai∈Val(Ai)
PB(Ai = ai | PaAi

= u)dai = 1

where PB(Ai | PaAi
= u) denotes the density function over Ai given that PaAi

= u.

The conditional independence assumptions associated with the BN B, together

with the CPDs associated with the nodes, uniquely determine a joint probability

distribution over the attributes via the chain rule:

PB(A1, . . . , An) =
n
∏

i=1

PB(Ai | PaAi
). (2.1)

Thus, from our compact model, we can recover the joint distribution; we do not need

to represent it explicitly.
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2.2.1 Conditional Probability Distributions

As discussed above, CPDs may be represented in a number of ways. Obviously, dif-

ferent CPDs are needed for different types (discrete or continuous) of attributes and

different types of attribute parents modeled. However, even within the same config-

uration of attribute and attribute parent types, there is a range of different CPDs.

This representation choice is critical as it specifies the nature of the dependency of

an attribute on its parents as well as the number of parameters needed to represent

this dependency.

In particular, variables in the biological domain may depend on a large number

of influencing factors but in a structured way, and in many cases representing and

learning this structure is a major part of our overall task. For example, the expression

of a target gene may be regulated by a large number of activator and repressor genes,

but in a given biological condition, only a small number of these regulators may

be active. Such a target gene is thus regulated in a condition-specific manner, and

identifying which regulators control its expression in which conditions is an important

part of the overall discovery task. As we shall see, such context-specific dependencies

can be explicitly modeled by the appropriate choice of CPD representation.

We now describe the different types of CPDs that we use throughout this thesis.

We note that this is by no means an exhaustive overview of CPD types, and that

many other CPDs have been explored in the literature.

Table CPDs

For attributes that depend only on discrete parent attributes, the most general CPD

representation is a table CPD. This CPD specifies a probability distribution over the

possible values of A (or density function if A is continuous) for each instantiation of

A’s parents. Note that the number of parameters needed to describe this CPD is equal

to the number of joint assignments to the parents of A, PaA. This number grows

exponentially with the number of parents. Thus, even if we have 5 binary parents of a

binary variable A, we need to specify 25 = 32 values; if we have 10 parents, we need to

specify 210 = 1024 values. Clearly, the tabular representation rapidly becomes large
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and unsuited for modeling the complex dependencies we encounter in the biological

domain.

Tree CPDs

As discussed above, even if a variable depends directly on a large number of parent

variables, this dependency may be structured in a context-specific manner, such that

the distribution over the values of A does not depend on the value of some subset

of A’s parents given the value of the other parents. A natural way to represent such

context specific independence is to use a tree (Boutilier et al., 1996), where the interior

vertices represent splits on the value of some parent attribute of A, and the leaves

contain distributions over the values of A (or density function if A is continuous).

In this representation, we find the conditional distribution over A given a particular

choice of values PaA[1] = paA[1], . . . ,PaA[k] = paA[k] for its parent attributes by

following the appropriate path in the tree down to a leaf: When we encounter a split

on some attribute PaA[i], we go down the branch corresponding to the value of paA[i];

we then use the distribution stored at the leaf.

For example, for the simple biological system with context specific independence

described above, the tree CPD for the Target attribute given the Activator and

Repressor attributes that represents the joint distribution of Figure 2.3 is shown in

Figure 2.4. Note that even though this tree CPD has only 6 parameters compared to

the 8 parameters in the corresponding table CPD, the two representations define the

same conditional probability distribution over Target given Activator and Repressor.

Thus, using the tree CPD we can explicitly represent the context specific indepen-

dencies that hold and reduce the total number of required parameters. Again, even

though the savings in this case do not seem significant, they grow exponentially as

the number of attributes increases, as long as the number of distinct contexts remains

small.

When the parent attributes, PaA, are continuous, we use a regression tree (Breiman

et al., 1984). A regression tree is identical to the tree described above except that

the tests on each interior nodes are of the form PaA[i] < paA[i], where paA[i] ∈ IR.
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Figure 2.3: A simple example of a conditional distribution for the Target attribute
given the Activator and Repressor attributes.

Softmax CPDs

In some cases, the dependence of a discrete attribute A on its parent attributes, PaA,

can be approximated as a linear threshold function. In this case, each parent attribute

contributes differently to A taking on each of its values, and the value of A is then

determined based on the sum of the contributions of each of A’s parents to each of

its values.
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Figure 2.4: A tree CPD for representing the conditional distribution of the Target
attribute given the Activator and Repressor attributes shown in Figure 2.3. Note
that this tree CPD reduces the number of parameters as compared to a full table
CPD, by exploiting context specific conditional independencies (e.g., the fact that
P (Target | Repressor,Activator = low) = P (Target | Activator = low).

As a motivating example, assume that a target gene can be in several modes of

regulation, where each potential regulator of the target gene (e.g., a transcription

factor can be a potential regulator of the target gene if the upstream region of the

target gene contains the DNA binding site that the transcription factor binds to)

influences the regulation mode that the target gene will be in. If we make the as-

sumption that each potential regulator exerts its influence on the regulation mode of

the target gene independently of which other potential regulators are exerting their

influence, and that these independent influences are additive, then we can model the

regulation mode of the target gene as a linear threshold function. Thus, for binary

parent attributes PaA, we assume that the effect of PaA on A taking on the value

a ∈ Val(A) can be summarized via a linear function:

fa(PaA[1] = paA[1], . . . ,PaA[k] = paA[k]) =
k
∑

i=1

waipaA[i],

where each paA[i] ∈ {0, 1}. In our example, PaA[i] takes on the value 1 if regulator
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PaA[i] can potentially regulate the target gene A, and each weight wai represents the

contribution of regulator PaA[i] to the target gene A being in regulation mode a.

The next question is how the probability of A depends on fa(PaA[1], . . . ,PaA[k]).

A common choice in this case is the softmax distribution, which is the standard

extension of the binary logistic conditional distribution to the multi-class case:

P (A = a | PaA[1] = paA[1], . . . ,PaA[k] = paA[k]) =

exp{fa(PaA[1] = paA[1], . . . ,PaA[k] = paA[k])}
∑

a′∈Val(A) exp{fa′(PaA[1] = paA[1], . . . ,PaA[k] = paA[k])} .

where each paA[i] ∈ {0, 1}. In some cases, we might put additional constraints on the

weights of the softmax distribution. For instance, in our gene regulation example, we

may require that the weight matrix be sparse, so that each regulator can only affect

the assignment of the target gene for a small number of regulation modes.

Gaussian CPDs

As discussed above, in the biological domain we often encounter real valued mea-

surements that we wish to represent using continuous valued attributes. With such

attributes, we associate a density function. A common choice for the density function

over a real valued attribute A is the Gaussian distribution parameterized by a mean

µ and variance σ2. The attribute A is then said to have a Gaussian distribution with

mean µ and variance σ2, denoted A ∼ N(µ; σ2), if it has the density function:

P (A = a) =
1√
2πσ

exp

{

(a− µ)2

2σ2

}

.

We typically incorporate this Gaussian distribution within table or tree CPDs. For

example, in the case of a table CPD for a real valued attribute A with discrete

parents PaA, we would associate a separate Gaussian distribution N(µu, σ
2
u) with

each possible instantiation u ∈ PaA to the parents of A.
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2.3 Probabilistic Relational Models

Over the last decade, Bayesian networks have been used with great success in a

wide variety of real-world and research applications. However, despite their success,

Bayesian networks are often inadequate for representing large domains and complex

interactions, as those we encounter in the biological domain. A Bayesian network

involves a pre-specified set of random variables, whose relationship to each other

is fixed in advance. Hence, a Bayesian network cannot be used to deal with the

biological domain, where we encounter a varying number of entities in a variety of

configurations. This limitation of Bayesian networks is a direct consequence of the

fact that they lack the concept of an “object” (or domain entity). Hence, they cannot

represent general principles about multiple similar objects which can then be applied

in multiple contexts.

Probabilistic relational models (PRMs) (Koller and Pfeffer, 1998, Getoor, 2001)

extend Bayesian networks with the concepts of objects, their properties, and relations

between them. In a way, they are to Bayesian networks as relational logic is to

propositional logic. A PRM specifies a template for a probability distribution over a

database. The template includes a relational component, that describes the relational

schema for our domain, and a probabilistic component, that describes the probabilistic

dependencies that hold in our domain. A PRM has a coherent formal semantics in

terms of probability distributions over sets of relational logic interpretations. Given

a set of ground objects, a PRM specifies a probability distribution over a set of

interpretations involving these objects. A PRM, together with a particular database

of objects and relations, defines a probability distribution over the attributes of the

objects.

2.3.1 Relational language

The relational language allows us to describe the kinds of objects in our domain. For

example, Figure 2.5 shows the schema for a simple gene expression domain that we

will be using as our running example in this chapter. This domain clearly contains

genes, arrays, and expression measurements. The classes in the schema are thus Gene,
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Array, and Expression.

More formally, a schema for a relational model describes a set of classes, C =

{C1, . . . , Cn}. Each class is associated with a set of descriptive attributes. For ex-

ample, genes may have descriptive attributes such as the cellular location in which

they perform their function and the functional unit or module to which they belong;

arrays may have descriptive attributes such as whether they are measuring samples

from tumor cells and the cluster of arrays to which they belong. Note that in reality,

some attributes, such as the cellular location of a gene or whether the array represents

tumor samples, may be observed, while others, such as the module of a gene or the

cluster of an array, may be hidden.

The set of descriptive attributes of a class C is denoted A[C]. Attribute A of class

C is denoted C.A, and its space of values is denoted Val(C.A). For example, the

value space for Array.Tumor in this example is {false, true}, while the value space

for Array.Cluster is {1, 2, 3} if we assume that there are 3 possible array clusters.

In addition, we need a method for allowing an object to refer to another object.

For example, we want an expression measurement to refer both to the gene it is

measuring and to the associated array. We achieve this effect using reference slots.

Specifically, each class is associated with a set of reference slots. The set of reference

slots of a class C is denoted R[C]. We use C.ρ to denote the reference slot ρ of C.

Each reference slot ρ is typed, i.e., the schema specifies the range type of object that

may be referenced. More formally, for each ρ in C, the domain type Dom[ρ] is C and

the range type Range[ρ] is Y for some class Y in C. For example, the class Expression

has reference slots Gene (with range type Gene) and Array (with range type Array).

In Figure 2.5(a) the reference slots are underlined.

There is a direct mapping between our representation and that of relational

databases. Each class corresponds to a single table and each attribute corresponds

to a column. Our descriptive attributes correspond to standard attributes in the

table (though some of these attributes may be hidden and thus no values stored in

the table), and our reference slots correspond to attributes that are foreign keys (key

attributes of another table).

For each reference slot ρ, we can define an inverse slot ρ−1, which is interpreted
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as the inverse function of ρ. For example, we can define an inverse slot for the Gene

slot of Expression and call it Expressed-In. Note that this is not a one-to-one relation,

but returns a set of Expression objects. More formally, if Dom[ρ] is C and Range[ρ] is

Y, then Dom[ρ−1] is Y and Range[ρ−1] is C.

Finally, we define the notion of a slot chain, which allows us to compose slots,

defining functions from objects to other objects to which they are indirectly re-

lated. More precisely, we define a slot chain ρ1, . . . , ρk to be a sequence of slots

(inverse or otherwise) such that for all i, Range[ρi] = Dom[ρi+1]. For example,

Gene.Expressed-In.Array can be used to denote the arrays in which a gene’s ex-

pression was measured. Note that a slot chain describes a set of objects from a

class.

The relational framework we have just described is motivated primarily by the

concepts of relational databases, although some of the notation is derived from frame-

based and object-oriented systems. However, the framework is a fully general one,

and is equivalent to the standard vocabulary and semantics of relational logic.

2.3.2 Schema Instantiation

An instance I of a schema is simply a standard relational logic interpretation of this

vocabulary. It specifies: for each class C, the set of objects in the class, I[C]; a value

for each observed attribute c.A (in the appropriate domain) for each object c; and a

value y for each reference slot c.ρ, which is an object in the appropriate range type,

i.e., y ∈ Range[ρ]. We use A[c] as shorthand for A[C], where c is of class C. For each

object c in the instance and each of its attributes A, we use I[c.A] to denote the value

of c.A in I. For example, Figure 2.5(b) shows an instance of the schema from our

running example. In this (simple) instance there are two Genes, three Arrays, and five

Expressions. The relations between them show that one gene (“p53”) was measured

only in two of the three arrays, while the other gene was measured in all three arrays.
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Figure 2.5: (a) A relational schema for a simple gene expression domain. The under-
lined attributes are reference slots of the class and the dashed line indicates the types
of objects referenced. (b) An example instance of the relational schema of (a). Here
we do not show the reference slots and used dashed lines to indicate the relationships
that hold between objects.

2.3.3 Probabilistic Model

A PRM defines a probability distribution over a set of instances of a schema. Most

simply, we assume that the set of objects and the relations between them are fixed,

i.e., external to the probabilistic model. Then, the PRM defines only a probability

distribution over the attributes of the objects in the model. The relational skeleton

defines the possible instantiations that we consider; the PRM defines a distribution

over the possible worlds consistent with the relational skeleton.

Definition 2.3.1: A relational skeleton σr of a relational schema is a partial spec-

ification of an instance of the schema. It specifies the set of objects σr[Ci] for each

class Ci and the relations that hold between the objects. However, it leaves the values
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Figure 2.6: (a) The relational skeleton for the gene expression domain. (b) The PRM
dependency structure for our gene expression domain.

of the attributes unspecified.

Figure 2.6(a) shows a relational skeleton for our running example. The relational

skeleton defines the random variables in our domain; we have a random variable for

each attribute of each object in the skeleton. A PRM then specifies a probability

distribution over completions I of the skeleton.

A PRM consists of two components: the qualitative dependency structure, S,

and the parameters associated with it, θS . The dependency structure is defined by

associating with each attribute C.A a set of parents PaC.A. These correspond to

formal parents; they will be instantiated in different ways for different objects in

C. Intuitively, the parents are attributes that are “direct influences” on C.A. In

Figure 2.6(b), the arrows define the dependency structure.
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We distinguish between two types of formal parents. The attribute C.A can depend

on another probabilistic attribute B of C. This formal dependence induces a corre-

sponding dependency for individual objects: for any object c in σr[C], c.A will depend

probabilistically on c.B. For example, in Figure 2.6(b), the cellular location of a gene

depends on the module to which it belongs. The attribute C.A can also depend on

attributes of related objects C.P.B, where P is a slot chain. In Figure 2.6(b), the ex-

pression level depends on Expression.Gene.Module, Expression.Gene.Cellular-location,

Expression.Array.Cluster, and Expression.Array.Tumor.

Given a set of parents PaC.A for C.A, we can define a local probability model for

C.A. We associate C.A with a CPD that specifies P (C.A | PaC.A). Let U be the set

of parents of C.A, U = PaC.A. Each of these parents Ui — whether a simple attribute

in the same relation or an attribute of a related object C.P.B — has a set of value

Val(Ui) in some ground type. For each tuple of values u ∈ Val(U), we specify a

distribution P (C.A | u) over Val(C.A). This entire set of parameters comprises θS .

Figure 2.7 shows an example for the CPD of the expression level.

Definition 2.3.2: A probabilistic relational model (PRM) Π for a relational schema

Σ is defined as follows. For each class C ∈ C and each descriptive attribute A ∈ A[C],

we have:

• a set of parents PaC.A = {U1, . . . , Ul}, where each Ui has the form C.B or C.P.B

where P is a slot chain.

• a conditional probability distribution (CPD), P (C.A | PaC.A).

2.3.4 PRM semantics

As mentioned above, given a relational skeleton, σr, a PRM defines a distribution

over possible worlds: The instantiations of the database that are consistent with σr.

Given any σr, we have a set of random variables of interest: the attributes c.A of the

objects in the skeleton. Formally, let σr[C] denote the set of objects in skeleton σr

whose class is C. The set of random variables for σr is the set of attributes of the

form c.A where c ∈ σr[Ci] and A ∈ A[Ci] for some class Ci. The PRM specifies a
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Figure 2.7: The CPD for Expression.Level given Gene.Module, Gene.Cellular-location,
Array.Cluster, and Array.Tumor. We represent this CPD as a tree CPD. Since
Expression.Level is a continuous random variable, its distribution given any assign-
ment to its parents will be a density function. In this example, we chose the Normal
distribution as the density function, shown pictorially for each leaf in the tree CPD.

probability distribution over the possible joint assignments of values to all of these

random variables. This joint distribution is specified by a ground Bayesian network

over the random variables c.A, where the ground Bayesian network is induced from

the given skeleton σr and PRM structure:

Definition 2.3.3 : A PRM Π together with a skeleton σr defines the following

ground Bayesian network :

• There is a node c.A for every attribute of every object c ∈ σr[C].

• Each attribute c.A depends probabilistically on its parents PaC.A where each

parent is of the form c.B or c.P.B where P is a slot chain.
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• The CPD for c.A is P (C.A | PaC.A).

Figure 2.8 shows the ground Bayesian network for the PRM skeleton of Fig-

ure 2.6(a). As with Bayesian networks, the joint distribution over these assignments

is factored. That is, we take the product, over all c.A, of the probability in the CPD

of the specific value assigned by the instance to the attribute given the values assigned

to its parents. Formally, this is written as follows:

P (I | σr,S, θS) =
∏

Ci

∏

A∈A[Ci]

∏

c∈σr [Ci]

P (I[c.A] | I[Pac.A])

This expression is very similar to the chain rule for Bayesian networks that we

presented in Equation 2.1. There are three primary differences. First, our random

variables are the attributes of a set of objects. Second, the set of parents of a random

variable can vary according to the relational context of the object — the set of objects

to which it is related. Third, the parameters of the local probability models for

attributes of objects in the same class are identical.

2.4 The Difference between PRMs and BNs

The PRM specifies the probability distribution using the same underlying principles

used in specifying Bayesian networks. The assumption is that each of the random

variables in the PRM — in this case the attributes c.A of the individual objects c —

is directly influenced by only a few others. The PRM therefore defines for each c.A

a set of parents, which are the direct influences on it, and a local probabilistic model

that specifies the dependence on these parents. In this way, the PRM is like a BN.

However, there are two primary differences between PRMs and Bayesian networks.

First, a PRM defines the dependency model at the class level, allowing it to be used

for any object in the class. In some sense, it is analogous to a universally quantified

statement over all objects of the same class. Second, the PRM explicitly uses the

relational structure of the model, in that it allows the probabilistic model of an

attribute of an object to depend also on attributes of related objects. The specific set
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Figure 2.8: The ground Bayesian network for the PRM skeleton of Figure 2.6(a).
This skeleton has two Gene objects, three Array objects, and five Expression objects.
Note that the measurement of the expression for one of the genes (p53) in one of the
arrays (‘Array #2’) is missing.

of related objects can vary with the skeleton σr; the PRM specifies the dependency

in a generic enough way that it can apply to an arbitrary relational structure.

One can understand the semantics of a PRM together with a particular relational

skeleton σr by examining the ground Bayesian network defined earlier. The network

has a node for each attribute of the objects in the skeleton. The local probability

models for attributes of objects in the same class are identical (we can view the

parameters as being shared); however, the distribution over the values of a particular

node in the network will depend on the values of its parents in the network, which in

turn are determined by the skeleton.
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2.5 Inference in PRMs

An important aspect of probabilistic models in general, and of PRMs in particular, is

that by representing a joint probability distribution over the attributes of all objects,

they can support many types of inferences about our domain. As PRMs represent

distributions over relational domains, they support many interesting patterns of rea-

soning. In the biological domain, we typically have many hidden variables. Given

a PRM, we can infer their values. For example, in our gene expression domain, the

module that a gene participates in and the cluster that an array belongs to are typi-

cally unknown. For a PRM with a skeleton σr, we can infer the posterior distribution

over the module assignment of a gene g by computing:

P (g.Module | Gene.Cellular-location,Array.Tumor,Expression.Level),

and the posterior distribution over the cluster assignment of an array object a by

computing:

P (a.Cluster | Gene.Cellular-location,Array.Tumor,Expression.Level),

where Ci.A represents the set of all A attributes from all objects of class Ci (e.g.,

Array.Tumor = {a.Tumor | a ∈ σr[Array]}). Thus, given a PRM we can infer the

gene modules in the cell, and identify arrays in which these modules have similar

patterns of expression.

Importantly, we can also use a PRM for making predictions. For example, given

a new experiment, we can predict whether it was taken from a tumor sample or a

healthy sample, and given a newly identified gene, we can attempt to predict its

cellular location.

All such inferences can be computed by performing probabilistic inference on the

ground BN. Thus, we present the inference algorithms on general BNs, where in our

case these BNs will correspond to the ground BN produced by a PRM. Inference in

BNs is an active area of research and many general purpose inference methods have

been developed. These methods can be divided into two categories: those that are



2.5. INFERENCE IN PRMS 39

exact, and those that only compute an approximation to the inference query. Unfor-

tunately, as we describe below, exact inference algorithms will rarely be tractable in

our setting, due to the large ground BNs generated by our models, and the many de-

pendencies that exist between their attributes. Thus, we only provide a brief overview

of exact inference methods and show where they break down in our case. Since most

approximate inference algorithms are applicable in our setting, we outline some of

them below. However, as these algorithms are general purpose, often we can design

better approximate algorithms by exploiting structure specific to the model we are

dealing with. Thus, in practice, we apply approximate algorithms that are tailored to

our specific network. These algorithms are described in the respective chapters that

describe each model.

2.5.1 Exact inference

As mentioned above, in the most general case we can perform inference on the ground

BN, where the inference task is to compute the posterior distribution over a subset of

variables of interest X ⊆ Z, given an assignment to another subset E ⊆ Z, where Z

is the set of all variables in the BN. That is, we wish to compute P (X | E = e), where

e is the assignment to the observed variables. In the PRM setting, these subsets of

variables correspond to attributes of objects.

Variable elimination

Several general purpose exact inference methods on BNs have been proposed. One

method is variable elimination. In short, this method computes P (X,E = e), which

can then be normalized to obtain P (X | E = e). The computation starts from:

P (X,E = e) =
∑

z∈Z

P (X,E = e,Z = z)

Note that we can write the full joint distribution in its factorized form, according to

the chain rule for Bayesian networks that we presented in Equation 2.1. Let a factor

over a set of variables D be a function from Val(D) to <+. We can then represent the
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joint distribution as a product of factors, one for each variable given its parents in the

BN, where each factor initially corresponds to the conditional probability distribution

of a variable given its parents.. In each step of the variable elimination algorithm,

we then eliminate one of the variables Zi ∈ Z, by taking all the factors in the joint

distribution in which Zi appears, and replacing them with a single factor over all the

other variables that appear with Zi in any of the factors. Formally, let J(Zi,Y ) =
∏k
j=1 fj(Zi,Y j) be the product of all k factors fj(Zi,Y j) that involve Zi, where

Y =
⋃k
j=1 Yj. We replace J(Zi,Y ) with a single new factor over Y , f(Y ), such that

for each assignment y to Y , we have f(Y = y) =
∑

z∈Zi
J(Zi = z,Y ). That is, the

new factor over Y assigns a real value to each possible assignment y to Y , which is

equal to the number we would get in the product of all factors that involve Zi and

variables in Y , when summing over all the possible values of Zi.

Since each step of the variable elimination algorithm creates a new factor whose

representation is exponential in Y , the key to an efficient application of this algorithm

lies in selecting the ordering of variables to eliminate. By exploiting the form of the

joint distribution induced by the structure of the Bayesian network it represents,

variable elimination can be efficient for certain network topologies.

Unfortunately, we cannot generally apply variable elimination in our setting. To

see why, consider as an example the ground BN of our gene expression domain. An

instance of this ground BN for two genes, three arrays, and five expression measure-

ments is shown in Figure 2.8. Assume that we wish to infer the posterior distribution

over the module assignment of some gene g. That is, we wish to compute:

P (g.M | g.C = c,G.C = c,A.T = t,E.L = l) =
∑

m∈M ,c∈C

P (g.C = c, g.M,G.M = m,A.C = c | G.C = c,A.T = t,E.L = l)

where we used one letter abbreviations for class and attribute names (i.e., G = Gene,

A = Array, E = Expression, M = Module, L = Level, T = Tumor, and C =

Cellular-location or C = Cluster), and G represents all gene objects except for the

gene g over which we wish to perform the inference.

Following the variable elimination algorithm, we need to start by eliminating one
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of the summed out variables, which in our case means eliminating one of the Module

variable for one of the genes, or one of the Cluster variable for one of the arrays. If

every gene has an expression measurement in every array, then the Module variable

of every gene is involved in a factor with the Cluster variable of each of the array

objects. Similarly, the Cluster variable of every array is involved in a factor with the

Module variable of each of the gene objects. Thus, it is easy to see that the first

step in the variable elimination algorithm will either create a joint factor over all

the Cluster variables of all array objects (if we choose to first eliminate the Module

variable for one of the genes), or a joint factor over all the Module variables of all gene

objects (if we choose to first eliminate the Cluster variable for one of the arrays). In

a typical application we may have thousands of genes and hundreds of arrays, and

thus variable elimination will be intractable in our setting.

Clique trees

Another popular exact inference method (whose end result is equivalent to that of the

variable elimination algorithm) is called the Clique Tree or Joint Tree algorithm. As

implied by its name, this algorithm first transforms the network into a tree structure,

in which nodes correspond to sets of variables from the original network. In this tree,

inference then proceeds by iterations, where in each iteration every node performs a

local computation in which it sends a message or belief to each of its neighboring

nodes in the network. This procedure is also termed belief propagation and it can

be shown to converge on a tree structure after at most k iterations, where k is the

diameter of the tree.

Each local computation for a node requires time exponential in the number of

variables assigned to the node. Thus, the key to an efficient application of the clique

tree algorithm lies in the creation of the tree structure, where this tree must obey

two properties. The first, called family preserving, requires that for each CPD in the

original network, there is at least one node in the tree that contains all nodes in the

CPD. The second property, called running intersection, requires that whenever there

is a variable X such that X ∈ Ni and X ∈ Nj (Ni and Nj are two nodes in the clique

tree), then X is also in every node in the (unique) path in the tree between Ni and
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Nj.

Again, in our gene expression domain, it is easy to see that if we want to apply

the clique tree algorithm for inferring the module assignment of one of the genes (or

for inferring the cluster assignment of one of the arrays), then the clique tree needs

to have one node containing the cluster variables of all arrays, or one node containing

the module variables of all the genes. As the local computation performed by each

node is exponential in the number of variables it contains, the clique tree algorithm

is intractable for any realistic setting in the gene expression domain.

Structured exact inference

The exact inference algorithms we discussed thus far are general purpose algorithms

that were designed for inference in BNs. Thus, they do not exploit any structure

that may exist in our setting. Even though the networks produced by PRMs for the

biological domain are large, their connectivity is not arbitrary, but rather follows cer-

tain structural properties as it was generated by a compact template representation.

Thus, it might be possible to exploit regularities in this network structure in order to

make inference tractable. Previous work on inference in structured probabilistic mod-

els (Koller and Pfeffer, 1997, Pfeffer et al., 1999, Pfeffer, 2000) shows how effective

inference can be done for a number of different structured probabilistic models. The

algorithms make use of the structure imposed by the class hierarchy to decompose

the distribution and effectively reuse the computation.

There are two ways in which aspects of the structure can be used to make inference

more efficient. The first structural aspect is the natural encapsulation of objects that

occurs in a well-designed class hierarchy. Ideally, the interactions between objects

will occur via a small number of object attributes, and the majority of interactions

between attributes will be encapsulated within the class. This can provide a natural

decomposition of the model for suitable inference. The complexity of the inference

will depend on the ‘width’ of the connections between objects; if the width is small,

we are guaranteed an efficient procedure.

The second structural aspect that is used to make inference efficient is the fact

that similar objects occur many times in the model (Pfeffer et al., 1999, Poole, 2003).
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Pfeffer et al. (1999) describe a recursive inference algorithm that caches the computa-

tions that are done for fragments of the model; these computations the need only be

performed once, and we can then reuse them for another object recurring in the same

context. We can think of this object as a generic object, which occurs repeatedly

in the model. Exploiting these structural aspects of the model allow Pfeffer et al.

(1999) to achieve impressive speedups; in a military battlespace domain the struc-

tured inference was orders of magnitudes faster than the standard BN exact inference

algorithm.

While it is good to keep in mind that such exact inference algorithms are possible,

the structural properties mentioned above hardly occur in the models we present in

this thesis: the individual classes of the objects we consider do not encapsulate many

interactions. Rather, the complexity most often stems from the complex interactions

across objects. Moreover, even though some objects may repeatedly appear, their

connectivity within the network will differ, making it hard to reuse the computations

performed for one object to reason about other objects.

2.5.2 Approximate inference

As mentioned above, exact inference methods are generally not applicable in our

setting, so we must resort to approximate inference. Approximate inference is an

active area of research and many general purpose algorithms have been developed for

this task. We provide a brief overview of some of these methods below. Since these

methods were developed for the general case, it is plausible that in certain cases we

might be able to design more efficient approximations by exploiting the structure of

the particular model we consider. Indeed, a major algorithmic challenge is to design

such algorithms. For many of the models we explore in subsequent chapters, we

present such algorithms. However, for classes of models for which it is not clear how

to design tailored algorithms, the approximate inference algorithms described below

can be used.

Roughly, we can divide the approximate inference algorithms into three classes:

particle-based, variational, and belief propagation. We provide a brief overview of
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these methods.

Particle-based approximate inference

Recall that in the general inference problem, we observe an assignment, e, to a set of

variables E ⊆ Z, and we wish to compute the posterior distribution P (X | E = e)

for another set X ⊆ Z. In particle-based methods, we generate a set of instantiations,

often called particles, to all or some of the variables in the network, and then use these

instantiations to approximate P (X | E = e). Numerous variants of particle-based

methods have been proposed, where one of the major aspects in which methods differ

is in the process by which they generate the particles.

The simplest particle-based method is rejection sampling. In this method, we

use the ground BN to sample instantiations to all of the variables from the joint

distribution represented by the BN, PB(Z). We then reject those instantiations that

are not consistent with the assignment to E (i.e., instantiations in which E 6= e). It

is easy to see that this process generates instantiations from the posterior distribution

P (X | E = e). After sampling M such instantiations, we can then approximate the

probability of each assignment x to X given the assignment to the observed variables,

as:

P (X = x | E = e) =
1

M

M
∑

m=1

η{X[m] = x},

where η{X[m] = x} is an indicator function that is equal to 1 if and only if the

assignment to the set of variables X was x in the m-th sample. To generate a single

sample from the joint distribution PB(Z), we sample values for each node in some

order consistent with the partial order of the ground BN. This ensures that by the

time we sample a node we have values for all its parents. We can then sample a value

for a node from the distribution defined by its CPD and by the values chosen for the

node’s parents.

An obvious problem with the above approach is that if the probability of observing

the assignment e to the set of observed nodes E is small, then we will rarely generate

samples that are consistent with it, and we will end up rejecting most of the samples
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generated. To address this problem, we can generate samples using likelihood weight-

ing. In this method, we generate samples as before, except that when our sampling

process achieves an observed node Ei ∈ E, we set its value to its observed assignment

ei in e. To compensate for setting the value of Ei, we assign a weight to the m-th

sample, equal to P (Ei = ei | PaEi
= PaEi

[m]), where PaEi
[m] is the assignment to

the parents of Ei in the m-th sample. This is the probability of observing the value ei

for the variable Ei, had it been sampled using the standard sampling process. Since

we have multiple nodes in E for which we set their values to be consistent with our

evidence, the total weight assigned to the m-th sample will be the product of the

probability of observing the value of each of the observed nodes given the assignment

sampled for their parents:

w[m] =
∏

Ei∈E

P (Ei = ei | PaEi
= PaEi

[m])

We can now use these weighted samples to approximate the probability of each as-

signment x to X given the assignment to the observed variables, as:

P (X = x | E = e) =

∑M
m=1 w[m]1{X[m] = x}

∑M
m=1 w[m]

.

One of the limitations of likelihood weighting is that an observed node affects

the sampling only for nodes that are its descendants. The effect on nodes that are

non-descendants is accounted for only by the weights. In cases where much of the

evidence is at the leaves of the network, we are essentially sampling from the prior

distribution, which is often very far from the desired posterior.

Markov Chain Monte Carlo (MCMC) is an approach for generating samples

from the posterior distribution. An example of a general MCMC algorithm is the

Metropolis-Hastings algorithm. In this algorithm, we draw sample from a proposal

distribution Q(x → x′), which is a distribution over the possible assignments x′ to

X given the current assignment x to X. We then either accept or reject the the new
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assignment x′ proposed by the proposal distribution with an acceptance probability :

A(x→ x′) = min

[

1,
P (x′)Q(x′ → x)

P (x)Q(x→ x′)

]

Thus, the algorithm starts from a random initial assignment x0 to X , and repeatedly

uses Q(x → x′) to propose a new assignment xt+1 given the current assignment xt.

Each new assignment is then accepted with probability A(xt → xt+1). Note that this

is indeed a Markov Chain since each assignment xt+1 is proposed based only on the

previous assignment xt. The algorithm is typically run for many iterations so that the

initial assignment x0 is “forgotten”. These discarded samples are known as burn-in

samples. It can be shown that this algorithm generates samples from the posterior

distribution P (X | E = e) which we can then use to compute the probability of a

query of interest as described above.

A special case of the Metropolis-Hastings algorithm is Gibbs-sampling, which can

be especially effective for probabilistic graphical models. In this algorithm, we propose

the next assignment x′ to X through a series of |X| sequential steps, where in each

step we select one of the variables Xi ∈ X and sample a value for it from the

distribution P (Xi | {X−Xi} = x[{X−Xi}],E = e), where x[{X−Xi}] represents

the assignment to all the variables except Xi. Having sampled a value xi for Xi,

we set Xi to xi in the assignment x so that the next variable sampled uses this

new assignment for sampling its own value. It can be shown that if we use this

proposal distribution, then the acceptance probability is 1, making the algorithm

very efficient as samples are not wasted. Moreover, a value for a variable Xi can

be sampled efficiently. To see why, recall that the Markov blanket of a variable is

defined to be the set of variables that are its parents, children, and parents of its

children in the ground Bayesian network. As a variable in a Bayesian network is

conditionally independent of all other variables given its Markov blanket, we can

usually sample a value for a variable Xi efficiently, by computing the distribution

P (Xi | PaXi
= x[PaXi

],ChXi
= x[ChXi

],PaChX
i

= x[PaChX
i

],E = e), where ChXi

correspond to the children variables of Xi in the ground Bayesian network.



2.5. INFERENCE IN PRMS 47

Although MCMC generates samples from the posterior distribution, its appli-

cability in practice depends on many factors which are hard to assess in advance.

Specifically, it depends on the mixing-time of the Markov chain, which is a measure

of the number of samples that we need to collect before we can use the samples to

get a good estimate of the desired query. In certain cases, the mixing time can be

extremely long, requiring us to take many samples before computing the probability

of our query of interest.

Structured variational approximations

Another class of approximate inference algorithms are called structured variational

approximations (Jordan et al., 1998). These algorithms define a class of distributions

Q that are simplifications of the original distribution PB, and then search for a par-

ticular Q within that class that is a good approximation to PB. Queries of the form

P (X = x | E = e) are then answered using inference on Q rather than PB.

For a given class of distributions Q, we search for one that minimizes the relative

entropy between a particular choice Q ∈ Q and PB, ID(PB ‖ Q), where the relative

entropy is a common distance measure between two distributions, defined as:

ID(PB ‖ Q) =
∑

x∈Val(X)

PB(X = x) log
PB(X = x)

Q(X = x)

Thus, the variational approximations require us to find Q = argminQ′∈QID(PB ‖
Q′). For classes of distributions Q that are simple, we can usually find a local mini-

mum of this optimization task by solving a set of fixed point equations.

In general there is a trade off in selecting the class of distributions Q: simple

choices can allow us to solve the above optimization problem as well as compute

answers to the original query more efficiently; however, if the class Q is too simple

then it cannot capture many of the dependencies in the original distribution PB and

will consequently result in poor approximations. For example, in the commonly used

mean-field approximation, the class Q is selected to be a product of marginals over

all variables Xi ∈X , so that Q factorizes as: Q(X) =
∏

Xi∈X Q(Xi). This is perhaps

the simplest choice of distributions Q. Other approximations use the structure of the
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original ground Bayesian network and select Q so that it captures as many of the

dependencies in PB as possible, while still resulting in distributions Q that are easy

to perform inference with. However, in general it is quite difficult to select Q and

assess the quality of the approximation for a given choice of Q.

Belief propagation

Another approximate inference method is belief propagation, a local message passing

algorithm, introduced by Pearl (1988). The idea is simple: We convert the original

Bayesian network into an undirected graph (described below) and then perform local

message passing between neighboring nodes in this graph, in the same way as we pass

messages in a clique tree that is used for exact inference. This algorithm is guaranteed

to converge to the exact marginal probabilities only if the original Bayesian network is

singly connected (i.e., it is a tree). If the Bayesian network is not singly connected, the

converted undirected graph will have cycles and the message passing scheme might

double count messages (essentially, some of the information from a message passed

by a node will be returned to it as a supposedly independent message after several

iterations in which the message completes a cycle back to the node that generated the

message). However, empirical results (Murphy and Weiss, 1999) show that BP often

converges even when applied to graphs with cycles, and when it does, the marginals

are in many cases a reasonable approximation to the correct posterior.

Several variants of the BP algorithm have been proposed, where the main differ-

ence between the variants is in the scheduling of the messages or the construction of

the undirected graph on which BP is applied. We provide a brief outline of one vari-

ant of BP, referring the reader to Weiss (2000), Murphy and Weiss (1999), MacKay et

al. (1997), and Wainwright et al. (2001) for additional details. Consider a Bayesian

network over some set of nodes Z. We first convert the graph into a family graph,

with a node Fi for each variable Zi in the BN, containing Zi and its parents. Two

nodes are connected if they have some variable in common. The CPD of Zi is asso-

ciated with Fi. Let φi represent the factor defined by the CPD; i.e., if Fi contains

the variables Zi,PaZi
, then φi is a function from the domains of these variables to

[0, 1]. We also define ψi to be a factor over Zi that encompasses our evidence about
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Zi : ψi(Zi) ≡ 1 if Zi is not observed. If we observe Zi = z (i.e., Zi ∈ E), we have that

ψi(z) ≡ 1 and 0 elsewhere. Our posterior distribution is then α
∏

i φi
∏

i ψi, where α

is a normalizing constant.

The belief propagation algorithm is now very simple. The entries of all messages

are initialized to 1. At each iteration, all the family nodes simultaneously send mes-

sages to all others, as follows:

mij(Fi
⋂

Fj)← α
∑

Fi−Fj

φiψi ·
∏

k∈N(i)−{j}

mki,

where α is a (different) normalizing constant and N(i) is the set of families that

are neighbors of Fi in the family graph. This process is repeated until the beliefs

converge. At any point in the algorithm, our marginal distribution about any family

Fi is bi = αφiψi
∏

k∈N(i) mki. Each iteration is linear in the number of edges in the BN.

While the algorithm is not guaranteed to converge, it typically converges after just a

few iterations. After convergence, the bi give us approximate marginal distributions

of the families in the ground BN.

2.6 Parameter Estimation

In the previous sections, we defined the PRM language and its semantics, and pre-

sented a simple example of how PRMs can be applied to the biological domain. How-

ever, we have not yet shown where a PRM comes from. One option is to have a domain

expert construct the model by hand. This can be a laborious and time-consuming

process. It involves first determining the dependencies between the object attributes.

In general this task is challenging, but for some well understood domains the domain

expert may be able to provide the model structure. Even for experts though, the elic-

itation of probabilities can be a very difficult task. Thus, this knowledge-engineering

approach has limited applicability. It will only be successful in domains in which

there is an expert who thoroughly understands the domain. Clearly, in the biological

domain, where we wish to study thousands of genes, many of which are not even

characterized, this approach is currently infeasible.
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Thus, our approach in this thesis will be to learn the details of a PRM, including

the structure of the dependencies between the object attributes, and the parameters

of the different CPDs automatically from the input data. In the next two sections we

review the general algorithms developed for these tasks by Friedman et al. (1999a) and

Getoor (2001). These algorithms provide the basis for our approach to learn PRMs

from data, but we have extended them in important ways to address the specific

models we consider in the biological domain. Specifically, the algorithms proposed by

Friedman et al. (1999a) and Getoor (2001) assumed that all attributes are observed

in the training data, an assumption that is clearly too restrictive for the biological

domain in which we wish to define various hidden properties and infer their values

and dependencies. Thus, one important extension we developed was to learn PRMs in

the presence of hidden attributes. We present this extension as part of the following

two general sections on learning PRMs from data. Our other extensions are presented

in the respective chapters in which we present the various models.

In the learning problem, our input contains a relational schema, that specifies

the basic vocabulary in the domain — the set of classes, the attributes associated

with the different classes, and the possible types of relations between objects in the

different classes. Our training data consists of an instance of that schema, where

the values of some of the attributes may be observed, while other attributes may

be hidden. There are two variants of the learning task: parameter estimation and

structure learning. In the parameter estimation task, we assume that the qualitative

dependency structure of the PRM is known; i.e., the input consists of the schema,

training data, and a qualitative dependency structure S. The learning task is only to

fill in the parameters that define the CPDs of the attributes. In the structure learning

task, there is no additional required input and the goal is to extract an entire PRM,

structure as well as parameters, from the training data alone.

In this section, we show how to learn the parameters for a PRM where the de-

pendency structure is known. In other words, we are given the structure S that

determines the set of parents for each attribute, and out task is to learn the parame-

ters θS that define the CPDs for this structure.
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2.6.1 The Complete Data Case

We start with the more simple setting of parameter estimation, where we assume that

the training data specifies the values for attributes of all objects (i.e., we have fully

observed data). While this task is relatively straightforward, it is of interest in and of

itself, and will be a crucial component in the structure learning algorithms described

in the next section.

The key ingredient in parameter estimation is the likelihood function: the prob-

ability of the data given the model. This function captures the response of the

probability distribution to changes in the parameters. The likelihood of a parameter

set is defined to be the probability of the data given the model. For a PRM, the

likelihood of a parameter set θS is: L(θS | I, σ,S) = P (I | σ,S, θS). As usual, we

typically work with the log of this function:

l(θS | I, σ,S) = logP (I | σ,S, θS)

=
∑

Ci

∑

A∈A[Ci]





∑

c∈σ[Ci]

logP (I[c.A] | I[Pac.A], θS)





The key insight is that this equation is very similar to the log-likelihood of data

given a Bayesian network (Heckerman, 1998). In fact, it is the likelihood function of

the Bayesian network induced by the PRM given the skeleton (the ground BN). The

main difference from standard Bayesian network parameter learning is that param-

eters for different nodes in the network are forced to be identical — the parameters

are tied.

Maximum Likelihood Parameter Estimation

We can still use the well-understood theory of learning from Bayesian networks. Con-

sider the task of performing maximum likelihood parameter estimation. Here, our goal

is to find the parameter setting θS that maximizes the likelihood L(θS | I, σ,S) for

a given I, σ, and S. In the case where the assignment to attributes of all objects

are observed, this estimation task can be simplified by the decomposition of the log-

likelihood function into a summation of terms corresponding to the various attributes
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of the different classes:

l(θS | I, σ,S) =
∑

Ci

∑

A∈A[Ci]





∑

c∈σ[Ci]

logP (I[c.A] | I[Pac.A], θS)





Thus, in the case of parameter estimation from fully observed data, we can find the

maximum likelihood setting for the parameters by finding the maximum likelihood

setting for the CPD of each attribute given its parents separately. If we are learning

CPDs from the exponential family (e.g., multinomial distributions, Gaussian distri-

butions, and many others), then the likelihood function for each attribute given its

parents can be reformulated in terms of sufficient statistics of the data. The suffi-

cient statistics summarize the relevant aspects of the data. Their use here is similar

to that in Bayesian networks (Heckerman, 1998), with one key difference. In a PRM,

all of the attributes A of the same class Ci across all objects c ∈ σ[Ci] share the

same parameters. Thus, we pool all of the data for the attribute Ci.A across all

objects, and calculate our statistics based on this pooled data. More precisely, let

SCi.A(Ci.A,PaCi.A) be a sufficient statistic function for the CPD P (Ci.A,PaCi.A). Then

the value of the statistic on the data set D is

ŜCi.A =
∑

c∈σ[Ci]

SCi.A(I[c.A], I[c.PaA]) (2.2)

For example, in the case of multinomial table CPDs, we have one sufficient statis-

tic function for each joint assignment v ∈ Val(Ci.A), u ∈ Val(PaCi.A), which is

η{I[c.A] = v, I[Pac.A] = u} — the indicator function that takes the value 1 if at-

tribute A of object c ∈ σ[Ci] in I takes on the value v and its parents take on the

value u, and 0 otherwise. The statistic on the data is

ŜCi.A[v,u] =
∑

c∈σ[Ci]

η{I[c.A] = v, I[Pac.A] = u} (2.3)
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Given these sufficient statistics, the formula for the log-likelihood of the data is:

l(θS | I, σ,S) =
∑

Ci

∑

A∈A[Ci]

∑

v∈Val(Ci.A)

∑

u∈Val(PaCi.A
)

ŜCi.A[v,u] · log θv|u (2.4)

¿From Equation 2.4 we see that we would like to maximize the multinomial distribu-

tion:

∑

v∈Val(Ci.A)

∑

u∈Val(PaCi.A
)

ŜCi.A[v,u] · log θv|u

It is straightforward to set the derivative of this function to zero and solve for the

parameters. It is well-known that the values of the parameters that maximize this

function are simply their frequencies in the data. Thus, assuming multinomial table

CPDs, the maximum likelihood parameter setting of P (Ci.A = v | PaCi.A = u) is:

P (Ci.A = v | PaCi.A = u) =
ŜCi.A[v,u]

∑

v′∈Val(Ci.A) ŜCi.A[v′,u]

As a consequence, parameter estimation in PRMs in the case of fully observed data

with multinomial table CPDs is reduced to counting. The counts are the sufficient

statistics, and we need to count one vector of sufficient statistics for each CPD. We

note that in the fully observed case, parameter estimation in PRMs for many other

types of CPDs for which we have sufficient statistics (e.g., Gaussian distributions)

also reduces to simply collecting statistics from the data, although these summaries

might be different than simple counting.

The derivation above also shows that parameter estimation in PRMs is very similar

to parameter estimation in Bayesian networks. In fact, we can view this as learning

parameters for the ground Bayesian network with tied parameters that the PRM

induces given the skeleton. However, the learned parameters can then be used for

reasoning about other skeletons, which induce completely different Bayesian networks.
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Bayesian Parameter Estimation

In many cases, maximum likelihood parameter estimation is not robust, as it overfits

the training data. The Bayesian approach uses a prior distribution over the param-

eters to smooth the irregularities in the training data, and is therefore significantly

more robust. As we will see in the next section, the Bayesian framework also gives

us a good metric for evaluating the quality of different candidate structures.

Roughly speaking, the Bayesian approach introduces a prior over the unknown

parameters, and performs Bayesian conditioning, using the data as evidence, to com-

pute a posterior distribution over these parameters. Under the assumption that the

prior distribution is independent of the skeleton σ, this posterior distribution can be

written as:

P (θS | I, σ,S) =
1

Z
P (I | σ,S, θS)P (θS | S)

where Z is a normalization constant such that Z = P (I | σ,S). Thus, we see that the

posterior probability over parameters is proportional to a product of the log likelihood

of the PRM instance and a prior distribution over parameters. As we saw in the

previous section, the likelihood decomposes by terms that correspond to the various

attributes of the different classes. By making an assumption on the form of the prior

distribution, we can get a similar decomposition for the posterior distribution. This

assumption is called global parameter independence and is a standard assumption on

the form of the prior commonly used in learning Bayesian networks (Heckerman et

al., 1995). The assumption states that the prior over the parameters for the different

attributes Ci.A are independent:

P (θS | S) =
∏

Ci

∏

A∈A[A]

P (θCi.A|PaCi.A
| S) (2.5)

Using Equation 2.5, the posterior distribution over parameters decomposes as:

P (θS | I, σ,S) ∝
∏

Ci

∏

A∈A[A]



P (θCi.A|PaCi.A
| S)

∏

c∈σ[Ci]

P (I[c.A] | I[Pac.A], θCi.A|PaCi.A
)




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We can further decompose this posterior distribution if we also assume local parameter

independence, also a common assumption in Bayesian network learning (Heckerman

et al., 1995), which states that the prior distribution for the different values of the

parents are independent:

P (θCi.A|PaCi.A
| S) =

∏

u∈Val(PaCi.A
)

P (θCi.A|u | S) (2.6)

Using both the global and local parameter independence assumptions, we can now

decompose the posterior distribution as follows:

P (θS | I, σ,S) ∝
∏

Ci

∏

A∈A[A]

∏

u∈Val(PaCi.A
)



P (θCi.A|u | S)
∏

c∈σ[Ci]:I[Pac.A]=u

P (I[c.A] | θCi.A|u)





Thus, we see that using the above assumptions, the posterior distribution over param-

eters decomposes as a product of the posterior distributions of each attribute given a

particular assignment to its parents.

As for the choice of priors, it is convenient to select conjugate priors, which are

parametric distributions defined by hyperparameters such that the posterior distribu-

tion can also be parameterized by (different) hyperparameters. For discrete attributes

Ci.A, a common choice for the prior distribution, θCi.A, is a Dirichlet distribution,

which is specified by a set of hyperparameters {α[v] : v ∈ Val(Ci.A)}. A distribution

on the parameters of P (Ci.A) is Dirichlet if

P (θCi.A) =
Γ(
∑

v∈Val(Ci.A) α[v])
∏

v∈Val(Ci.A) Γ(α[v])

∏

v∈Val(Ci.A)

θα[v]−1
v

where Γ(x) is the Gamma function defined as Γ(x) =
∫∞
0 tx−1e−xdt. For more details

see (DeGroot, 1970). If Ci.A can take on k values, then the prior is:

P (θCi.A|u) = Dir(θCi.A|u | α1, . . . , αk)
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Figure 2.9: Example of a Beta distribution. (a) Beta distribution for α1 = 1, α2 = 1.
(b) Beta distribution for α1 = 5, β1 = 5.

As mentioned above, the Dirichlet prior is a conjugate prior, meaning that the pos-

terior also has a Dirichlet form:

P (θCi.A|u | I, σ,S) =

Dir(θCi.A|u | αCi.A[v1,u] + ŜCi.A[v1,u], . . . , αCi.A[vk,u] + ŜCi.A[vk,u])

where ŜCi.A[v,u] is the sufficient statistics as defined in Equation 2.3. A special case

of the Dirichlet distribution is when Ci.A is binary. In this case, the Dirichlet is called

a Beta distribution and has the same form. An example of a Beta distribution is

shown in Figure 2.9.

For continuous attributes Ci.A that we believe are normally distributed with mean

µ and precision τ (precision is the inverse of the variance, i.e., τ = 1/σ2) such that

Ci.A ∼ N(µ, τ−1), a common choice for the prior distribution, P (µ, τ), over the

parameters µ and τ is the Normal-Gamma distribution. The mean µ and precision τ

are said to follow a Normal-Gamma distribution with hyperparameters 〈µ0, λ0, α0, β0〉,
if the conditional distribution of µ given τ is a normal distribution with mean µ0 and

precision λ0τ (−∞ < µ0 <∞ and λ0 > 0); and if the marginal distribution of τ is a
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Gamma distribution with parameters α0 and β0 (α0 > 0 and β0 > 0), defined as:

P (τ | α0, β0) =
β0

α0

Γ(α0)
τα0−1e−β0τ

An example of a Normal Gamma distribution is shown in Figure 2.10. The Normal-

Gamma prior is a conjugate prior to the normal distribution, so that the posterior

also follows a Normal-Gamma distribution:

P (θCi.A | I, σ,S) = NG(θCi.A | µ1, λ1, α1, β1)

where:

λ1 = λ0 + 〈ŜCi.A〉0

µ1 =
λ0µ0 + 〈ŜCi.A〉1

λ1

α1 = α0 +
〈ŜCi.A〉0

2

β1 = β0 +
1

2
〈ŜCi.A〉2 −

1

2
〈ŜCi.A〉1 +

〈ŜCi.A〉0λ0

(

〈ŜCi.A
〉1

〈ŜCi.A
〉0
− µ0

)2

2λ1

and ŜCi.A is the vector of sufficient statistics for the Gaussian distribution ŜCi.A =

{〈ŜCi.A〉0, 〈ŜCi.A〉1, 〈ŜCi.A〉2}, such that:

〈ŜCi.A〉0 =
∑

c∈σ[Ci]

1

〈ŜCi.A〉1 =
∑

c∈σ[Ci]

I[c.A]

〈ŜCi.A〉2 =
∑

c∈σ[Ci]

I[c.A]2

Now that we have the posterior, we can compute the probability of new data.

In the case where the new instance is conditionally independent of the old instances

given the parameter values (which is always the case in Bayesian network models,
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Figure 2.10: Example of a Normal-Gamma distribution. (a) Normal-Gamma dis-
tribution for µ0 = 0, λ0 = 1, α0 = 1, β0 = 1. (b) Normal-Gamma distribution for
µ0 = 0, λ0 = 10, α0 = 1, β0 = 1.

but may not be true for PRMs), then the probability of the new data case can be

conveniently rewritten using the expected parameters. We show this for the case of

multinomial CPDs:

Proposition 2.6.1: Assuming multinomial CPDs, global and local parameter inde-

pendence, and Dirichlet priors, with hyperparameters αCi.A[v,u], we have that:

Eθ[P (Ci.A = v | PaCi.A = u) | I] =
αCi.A[v,u] + ŜCi.A[v,u]

∑

v′∈Val(Ci.A) αCi.A[v′,u] + ŜCi.A[v′,u]

This suggests that the Bayesian estimate for θS should be estimated using this

formula as well. Unfortunately, the expected parameters is not the proper Bayesian

solution for computing probability of new data instance is not independent of previous

data given the parameters. For example, suppose that we want to use the posterior

to evaluate the probability of an instance I ′ of another skeleton σ′. If there are two

objects c and c′ of the class Ci such that I ′[Pac.A] = I ′[Pac′.A], then we will be relying

on the same multinomial parameter vector, θCi.A|I′[Pac.A], twice. Using the chain rule,

we see that the second probability depends on the posterior of the parameter after

seeing the training data, and the first instance. However, if the posterior is sharply

peaked (i.e., we have a strong prior, or we have seen many training instances), we can
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approximate the solution using the expected parameters of Proposition 2.6.1. We use

this approximation in our computation of the estimates for the parameters.

2.6.2 The Incomplete Data Case

Until now we have assumed that the training data is fully observed, meaning that

the PRM instance I specifies a value for the attributes of all the objects in our

skeleton. However, in the biological domain, this assumption is unrealistic, as many

key variables are never observed. Moreover, in many of our settings, inferring the

values of these hidden variables is a large part of our task. For example, the module

that a gene belongs to and the cluster of an array are both hidden. Hence, we must

address the learning problem in the presence of incomplete data. In this section we

show how to learn the parameters of a PRM in the presence of incomplete data.

In Section 2.7.2 we show how to learn both the structure and the parameters of a

PRM from incomplete data. We note that the issues that arise from incomplete

data in PRMs are similar to those that arise when learning Bayesian networks from

incomplete data and the solutions we present here are similar to those that were

devised in the Bayesian networks context.

Unfortunately, parameter estimation in the presence of incomplete data is a hard

problem. To see why, recall that the key to our ability to efficiently estimate the

parameters of a PRM was the decomposition of the log-likelihood function as a sum

of terms corresponding to the various attributes of the different classes, as in Equa-

tion 2.4. However, when the values for some of the attributes are unobserved, we no

longer get this decomposition. Rather, the likelihood function becomes the sum of

likelihood functions, one for each possible completion of the missing values for the

attributes, and hence, the log-likelihood function does not decompose by terms that

correspond to the different attributes. Moreover, the number of possible completions

is exponential in the total number of missing values and in the worst case, each of

these completions can contribute to a different peak in the likelihood function. The

total likelihood function can therefore be very complex, with multiple local maxima,

as opposed to the likelihood function for the fully observed case, which has a single
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global maximum.

In fact, even evaluating the likelihood function for a given set of parameters, θS , is

hard. If we denote the set of missing attributes by H, then to evaluate the likelihood

function, we need to compute:

P (I | σ,S, θS) =
∑

h∈H

P (I | σ,S, θS,H = h)P (H = h | σ,S, θS)

which in the general case requires that we perform probabilistic inferences on the

ground Bayesian network to compute P (H = h | σ,S, θS). As we discussed earlier,

such inferences may be intractable.

Due to this nature of the likelihood function in the incomplete data case, we

cannot devise a general procedure for finding the parameter setting that will globally

maximize the likelihood function. We thus resort to approaches that attempt to

find a local maximum of this likelihood function. One approach is to use a general-

purpose function optimization algorithm such as gradient ascent. An alternative

approach, tailored specifically to the task of optimizing likelihood functions, is the

Expectation Maximization (EM ) algorithm (Dempster et al., 1977). Starting with an

initial setting to the parameters, θ
(0)
S , the EM algorithm iterates between two steps,

an E-step, and an M-step. In the E-step, we compute the posterior distribution over

the unobserved attributes given the observed attributes and the current setting of

the parameters, θ
(t)
S . Thus, we compute P (H | I, σ,S, θ(t)

S ). This computation can

be done by performing inference in the ground Bayesian network. From the E-step,

we can compute the expected sufficient statistics for each attribute. For example, in

the case of multinomial table CPDs, the expected sufficient statistics for each joint

assignment v ∈ Val(Ci.A),u ∈ Val(PaCi.A) is:

ŜCi.A[v,u] =
∑

c∈σ[Ci]

P (c.A = v,Pac.A = u | I, σ,S, θ(t)
S )

In the M-step, we then find the setting of the parameters that maximize the likelihood

function relative to the distribution computed in the E-step. This step is identical to

finding the optimal setting of the parameters for the case of fully observed data, except
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that we now use the expected sufficient statistics for this maximization problem.

It is possible to define an energy function that is a lower bound on the log-

likelihood function (Neal and Hinton, 1998), and show that each step of the EM

algorithm maximizes this energy function. Thus, the EM algorithm converges to a

local maximum of the log-likelihood function.

To apply the EM algorithm, we need to perform probabilistic inference in the

E-step on the ground Bayesian network. When exact inference is possible, we can

use one of the algorithms described in Section 2.5.1. However, as we discussed, in

our setting exact inference is intractable. In these cases, we will resort to using one

of the approximate inference algorithms described in Section 2.5.2, or use a tailored

approximate inference algorithm that we design for a particular model we consider.

Note that, if we resort to approximate inference, then from a theoretical perspective,

we lose the convergence guarantees of the EM algorithm. However, in practice, as we

shall see in subsequent chapters, when using the EM algorithm with an approximate

inference for the E-step in our models, we do indeed converge to reasonably good

points of the log-likelihood function. One explanation might have to do with the fact

that the M-step only relies on the expected sufficient statistics and therefore, even

though the approximate inference algorithm we use might compute wrong marginals

for individual variables, on average these errors might cancel out in the expected

sufficient statistics.

For some models, it is easier to design approximate inference algorithms for finding

the maximal assignment to the unobserved attributes, rather than for finding their

posterior distribution. In these cases, it is convenient to use the hard assignment

variant of the EM algorithm. In this variant, rather than computing the posterior

distribution over the hidden variables in the E-step, we attempt to find their maximal

assignment:

h∗ = argmaxh∈HP (H = h | I, σ,S, θ(t)
S )

We then treat this assignment to the missing attributes as if it were observed data,

and proceed with computing the sufficient statistics and parameter estimation as
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in the case of fully observed data. It can be shown that this hard assignment EM

algorithm is guaranteed to converge to a local maximum of the log-likelihood of the

completed data, P (I,H = h | σ,S, θS), where h represents a complete assignment

to the missing attributes H.

Finally, a practical consideration when applying the EM algorithm has to do with

the initial setting of the parameters. As with many algorithms that find only local

maxima, EM is also sensitive to this choice of starting point. We therefore take care

in choosing this starting point, and try to use clever heuristics for this initialization.

Rather than choosing the parameters directly, our approach will usually be to select

a heuristic that somehow complete the assignment to the hidden variables. We then

initialize the parameters to the setting that maximizes the log-likelihood function

relative to this completion in the heuristic phase.

2.7 Structure Learning

We now move to the more challenging problem of learning a dependency structure

automatically, as opposed to having it be given by the user. There are three important

issues that need to be addressed. We must determine which dependency structures

are legal; we need to evaluate the “goodness” of different candidate structures; and

we need to define an effective search procedure that finds a good structure. By legal

structures, we mean structures that given any instantiation of the schema, will always

induce a coherent probability distribution. This will always be the case if the induced

ground Bayesian network is acyclic. While in general determining whether a schema

induces a legal structure must be handled with care (Getoor, 2001), in our setting

we will limit the possible structures we can consider such that we do not need to

worry about acyclicity. We therefore focus our discussion on evaluating structures

and searching for a good structure.
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2.7.1 The Complete Data Case

We start with the problem of learning dependency structures for the case of fully

observed data.

Evaluating different structures

We use the Bayesian model selection methods to evaluate structures. That is, we

would like to find the MAP (maximum a posteriori) structure. Formally, we want to

compute the posterior probability of a structure S given an instantiation I. Using

Bayes rule we have that

P (S | I, σ) ∝ P (I | S, σ)P (S | σ)

This score is composed of two parts: the prior probability of the structure, and the

probability of the data assuming that structure.

The first component is P (S | σ), which defines a prior over structures. We assume

that the choice of structure is independent of the skeleton, and thus P (S | σ) = P (S).

In the context of Bayesian networks, we often use a simple uniform prior over possible

dependency structures. In the case of general PRMs, this assumption may not work,

as there may be infinitely many possible structures (Getoor, 2001). However, in the

models we consider, the number of possible models is finite and we can usually utilize

such a uniform prior over structures. Thus, P (S) will usually not influence our choice

of structures and we can ignore this term in evaluating structures.

The second component is the marginal likelihood :

P (I | S, σ) =
∫

P (I | S, θS, σ)P (θS | S)dθS

If we use a prior P (θS | S) that satisfies global and local parameter independence, as

defined in Equation 2.5 and Equation 2.6, respectively, then the marginal likelihood

decomposes into a product of integrals:

P (I | S, σ) =
∏

Ci

∏

A∈A[Ci]

∏

u∈Val(PaCi
)
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∫

P (θCi.A|u | S)
∏

c∈σ[Ci]:I[PaCi
]=u

P (I[c.A] | I[Pac.A], θCi.A|u)dθCi.A|u

For discrete variables Ci.A with multinomial table CPDs, and Dirichlet priors, with

hyperparameters αCi.A[v,u], the corresponding integral in the decomposed marginal

likelihood can be computed as:

∫

P (θCi.A|u | S)
∏

c∈σ[Ci]:I[PaCi
]=u

P (I[c.A] | I[Pac.A], θCi.A|u)dθCi.A|u =

Γ(
∑

v∈Val(Ci.A) αCi.A[v,u])
∏

v∈Val(Ci.A) Γ(αCi.A[v,u])

∏

v∈Val(Ci.A) Γ(Ŝ[v,u] + αCi.A[v,u])

Γ(
∑

v∈Val(Ci.A) Ŝ[v,u] + αCi.A[v,u])

where Ŝ[v,u] is the sufficient statistics for the joint assignment v and u, as defined

in Equation 2.3. We show the full derivation of this formula in Appendix A.

For continuous variables Ci.A with Gaussian CPDs and Normal-Gamma prior

distributions, the corresponding integral also has a simple closed form formula. We

show this formula and its derivation in Appendix B.

The marginal likelihood term is the dominant term in the probability of a struc-

ture. It balances the complexity of the structure with its fit to the data. This balance

can be seen explicitly in the asymptotic relation of the marginal likelihood to explicit

penalization, such as the MDL score (see, e.g., Heckerman (1998)).

Structure search

Having defined a scoring function for evaluating different structures, we need only

provide a procedure for finding high scoring structures. For Bayesian networks, we

know that finding the highest scoring structure is NP-hard (Chickering, 1996). As

PRM learning is at least as hard as Bayesian network learning (a Bayesian network

is simply a PRM with one class and no relations), we cannot hope to find an efficient

procedure that always finds the highest scoring structure. Thus, we must resort to

heuristic search.

As is standard in Bayesian network learning (Heckerman, 1998), we use a greedy
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Figure 2.11: An example of the split operator in learning tree CPDs, for a tree CPD
representing the conditional distribution of the Target attribute given the Activator
and Repressor attributes. (a) The tree CPD before performing the split operator on
the Repressor attribute. (b) The tree CPD after splitting on the Repressor attribute.

local search procedure that maintains a “current” candidate structure and iteratively

modifies it to increase the score. At each iteration, we consider a set of simple local

transformations to the current structure, score all of them, and pick the one with

the highest score. When learning multinomial or Gaussian table CPDs, the three

operators we use are: add edge, delete edge and reverse edge. When learning tree

CPDs, following (Chickering et al., 1997), our operators consider only transformations

to the CPD-trees. The tree structure induces the dependency structure, as the parents

of Ci.A are simply those attributes that appear in its CPD-tree. In this case, the two

operators we use are: split — replaces a leaf in a CPD tree by an internal node with

two leaves; and trim — replaces the subtree at an internal nodes by a single leaf. A

simple example of the split operator is shown in Figure 2.11.

The simplest heuristic search algorithm over this set of operators is a greedy hill-

climbing search, using the Bayesian score as the evaluation metric. We maintain our

current candidate structure and iteratively improve it. At each iteration, we consider

the appropriate set of local transformations to that structure, score all of them, and
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pick the one with the highest score.

We refer to this simple algorithm as the greedy algorithm. There are several

common variants to improve the robustness of the hill-climbing methods. One is to

make use of random restarts to deal with local maxima. In this algorithm, when we

reach a maximum, we take some fixed number of random steps, and then we restart

our search process. Another common approach is to make use of a tabu-list, which

keeps track of the most recent operators applied, and allows only steps which do not

reverse the effect of recently applied operators. A more sophisticated approach is to

employ a simulated annealing type of algorithm which uses the following procedure:

in early phases of the search we are likely to take random steps (rather than the best

step), but as the search proceeds (i.e., the temperature cools) we are less likely to

take random steps and more likely to take the best greedy step. Another common

search strategy is beam search, which always maintains k structures in parallel. In

each step, we then select the k highest scoring structures when considering local

transformations to any of the k current structures. Finally, rather than scoring each

structure by evaluating its score after applying a single local transformation step

to it, the lookahead search strategy scores each model by considering the score of

the structure obtained after applying the proposed transformation and ` additional

transformations, where these additional transformations are usually selected by taking

the next ` best greedy steps.

Regardless of the specific heuristic search algorithm used, an important component

of the search is the scoring of candidate structures. As in Bayesian networks, the

decomposability property of the score has significant impact on the computational

efficiency of the search algorithm. First, we decompose the score into a sum of local

scores corresponding to individual attributes and their parents. Now, if our search

algorithm considers a modification to our current structure where the parent set of

a single attribute Ci.A is different, only the component of the score associated with

Ci.A will change. Thus, we need only reevaluate this particular component, leaving

the others unchanged; this results in major computational savings.

We note that when performing a general search for PRM structures (Getoor,

2001), one issue that needs to be addressed is the selection of the set of potential
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candidate parents, since in theory this number can be very large for long slot chains.

However, in the models we consider, we will usually restrict the length of the slot

chains, which limits the potential candidate parents and avoids this issue. We refer

the reader to Getoor (2001) for details on addressing this issue for the general case

of structure learning in PRMs.

2.7.2 The Incomplete Data Case

As in the parameter estimation problem, we also need to address the structure learn-

ing problem in the context of incomplete data. This problem is hard, as when the

values for some attributes is missing, the structure score no longer decomposes as a

product of separate integrals for each attribute and its parents. Thus, we lose the

decomposability property and with that our ability to provide a simple closed form

solution for evaluating a candidate structure.

To address these computational issues when learning Bayesian networks from in-

complete data, Friedman (1998) suggested the Structural EM algorithm. The idea

behind this approach is that rather than applying the EM algorithm to each can-

didate structure and use the parameters it finds to compute the expected sufficient

statistics, we use the current structure to compute the expected sufficient statistics

for all candidate structures we wish to consider. The key insight is that during our

search for structures, we typically only consider local transformations to the current

structure. Thus, our current structure and parameters might be good enough for ap-

proximating the expected sufficient statistics of a candidate structure we consider. In

fact, we can use the same structure to compute sufficient statistics for several search

steps, thereby incurring additional computational savings. After several such steps,

we can apply the EM algorithm to the current structure we arrived at, and use the

parameters it finds for computing the expected sufficient statistics needed for the fol-

lowing search steps. It can be shown that the structural EM algorithm is guaranteed

to converge to a local maximum (Friedman, 1998).

We also consider a hard assignment structural EM variant. Similar to the hard

assignment EM algorithm for parameter estimation described in Section 2.6.2, in the
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hard assignment structural EM variant, we use the current structure to compute a

hard assignment to all missing attributes:

h∗ = argmaxh∈HP (H = h | I, σ,S)

where h∗ is the set of unobserved attributes and S represents the current structure.

We then treat this completion as if it were observed data, and use it for the structure

search, which can now be performed efficiently relative to the completed data. It

can be shown that this algorithm is guaranteed to converge to a local maximum of

P (S,H = h | σ, I). To see why this is true, note that

P (S,H = h | I, σ) = P (S |H = h, I, σ)P (H = h | I, σ)

= P (H = h | S, I, σ)P (S | I, σ)

The data completion step improves P (S,H = h | I, σ) by optimizing P (H = h |
S, I, σ), while leaving P (S | I, σ) unchanged (since the structure S is fixed during the

data completion step). The structure search step also improves P (S,H = h | I, σ)

by optimizing P (S | H = h, I, σ), while leaving P (H = h | I, σ) unchanged (since

the completion of the data H = h is fixed during the structure search).

Note, however, that in general it is hard to find the assignment h to H that

globally maximizes P (H = h | S, I, σ), since the various assignments are dependent

through the unknown parameters. In this case, we can break the data completion

into several steps, where in each step we fix a subset of the variables in H and

optimize the assignment to the remaining variables given this fixed assignment. Since

each such step still optimizes P (S,H = h), this procedure also has convergence

guarantees, though it may converge to a weaker local maximum as compared to the

local maximum obtained by finding the jointly optimal assignment to all the missing

attributes.

An advantage of this hard assignment structural EM variant is that for some

models it is easier to find a hard assignment to the missing attributes, as this entire

problem can be viewed as a discrete search space in which we are searching for an
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optimal structure and assignment. In some models, we can exploit certain struc-

tural properties for efficiently traversing this search space. A disadvantage is that

the hard assignment approach loses information relative to the soft assignments and

might make arbitrary choices in those cases in which several completions have similar

probabilities.

2.8 Conclusions

In this chapter, we have reviewed the definition of probabilistic relational models

(PRMs), originally introduced by Koller and Pfeffer Koller and Pfeffer (1998). PRMs

exploit both the compact representation of a probability distribution by a Bayesian

network with the expanded representational power of relational logic. Together, these

allow us to define compact representations for joint distributions over objects in struc-

tured domains in general and in the biological domain in particular. Here we defined

the major components of the PRM model: the relational schema, the probabilistic

dependency structure and parameterization, and the relational skeleton. We also

outlined several approaches for performing inference in PRMs and discussed the com-

putational challenges involved. Finally, we showed how to estimate the parameters

and induce the structure of a PRM automatically from data, both in the case of

fully observed data, and in the more realistic case of incomplete data. In the next

chapters we show the utility of PRMs for solving several problems in gene regulation,

and present extensions to the basic framework presented here, both on the represen-

tational level and on the algorithmic level of learning parameters and structure of a

PRM automatically from data.



Chapter 3

Discovering cis-Regulatory

Modules

A central goal of molecular biology is the discovery of the regulatory mechanisms

governing the expression of genes in the cell. The expression of a gene is controlled

by many mechanisms. A key junction in these mechanisms is mRNA transcription

regulation by various proteins, known as transcription factors (TFs), that bind to

specific sites in the promoter region of a gene and activate or inhibit transcription.

Loosely speaking, we can view the promoter region as an encoding of a “program”,

whose “execution” leads to the expression of different genes at different points in time

and in different conditions. To a first-order approximation, this “program” is encoded

by the presence or absence of TF binding sites within the promoter.

In this chapter, we attempt to reveal precisely this aspect of the gene regulation

story. We describe a probabilistic model for understanding transcriptional regula-

tion using both gene expression and promoter sequence data. We aim to identify

transcriptional modules — sets of genes that are co-regulated in a set of microarray

experiments, through a common combination of motifs, which we term a motif profile.

That is, given a gene expression data set as input, and promoter sequences of genes,

we aim to identify modules of co-regulated genes and explain the observed expression

patterns of each module via a motif profile that is common to genes in the same

module (see Figure 3.1). Our goal is to provide a genome-wide explanation of the

70
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Figure 3.1: Overall goal of our approach: given an expression data set and promoter
regions of genes, our goal is to identify modules of co-regulated genes (each module is
depicted as a horizontal strip in the expression matrix on the right). For each module,
we also wish to identify the combination of motifs that play a role in controlling the
expression of the module genes. In this example, the motif profile consists of two
motifs, and their hypothetical appearances along the promoter of genes is shown.

expression data.

We start with an overview of the key ideas underlying our approach, followed by

a formal presentation of the probabilistic model and our algorithm for automatically

learning the model from the input gene expression and promoter sequence data. We

then present detailed statistical and biological evaluation of the results we obtained

when applying the method to two yeast (S. Cerevisiae) expression datasets, demon-

strating that our approach is better than a standard one at recovering known motifs

and at generating biologically coherent modules. Finally, we also combine our results

with binding location data to obtain regulatory relationships with known transcrip-

tion factors, and show that many of the inferred relationships have support in the

literature.
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3.1 Model Overview

Many cellular processes are regulated at the transcriptional level, by one or more

transcription factors that bind to short DNA sequence motifs in the upstream re-

gions of the process genes. These co-regulated genes then exhibit similar patterns

of expression. Given the upstream regions of all genes, and measurements of their

expression under various conditions, we could hope to “reverse engineer” the underly-

ing regulatory mechanisms and identify transcriptional modules — sets of genes that

are co-regulated under these conditions through a common motif or combination of

motifs.

We take a genome-wide approach for discovering this modular organization, based

on the premise that transcriptional elements should “explain” the observed expression

patterns as much as possible. We define a probabilistic model which integrates both

the gene expression measurements and the DNA sequence data into a unified model.

The model assumes that genes are partitioned into modules, which determine the

gene’s expression profile. Each module is characterized by a motif profile, which

specifies the relevance of different sequence motifs to the module. A gene’s module

assignment is a function of the sequence motifs in its promoter region. This motif

profile is designed such that it can represent the various promoter architectures that

are known to be involved in gene regulation. These include regulation through a single

binding site for a single transcription factor (see Figure 3.2(a)), regulation through

multiple sites for a single transcription factor (see Figure 3.2(b)), and combinatorial

regulation through multiple sites for multiple transcription factors (see Figure 3.2(c)).

Our model thus defines a “recipe” for how genes are expressed: the combination

of motifs that appear in the promoter of a gene define its motif profile, which in turn

defines an expression profile across all experiments. A potential problem with this

recipe is that motifs, by being short sequences, may be randomly present in promoters

of some genes without playing a role in modulating the expression of the gene (e.g.,

because the DNA in the region is not accessible to binding by transcription factors).

To address this problem, our model does not assume that all motifs are necessarily

active in all the genes in which they appear. Furthermore, our goal is to discover
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Figure 3.2: Shown are possible promoter architectures of co-regulated genes. For
each case, also shown is the worst case scenario, from a computational perspective,
of promoter architectures that can be present in promoters of background genes. (a)
Single motif. (b) Single motif with multiple binding sites. (c) Motif combinations.

motifs that play a regulatory role in some particular set of experiments; a motif

that is active in some settings may be completely irrelevant in others. Our model

thus identifies motif targets — genes where the motif plays an active role in affecting

regulation in a particular expression data set. These motif targets are genes that have

the motif and that are assigned to modules containing the motif in their profile.

Our algorithm is outlined in Figure 3.3. It begins by clustering the expression

data, creating one module from each of the resulting clusters. As the first attempt

towards explaining these expression patterns, it searches for a common motif in the

upstream regions of genes assigned to the same module. It then iteratively refines the

model, trying to optimize the extent to which the expression profile can be predicted

transcriptionally. For example, we might want to move a gene g whose promoter

region does not match its current module’s motif profile, to another module whose

expression profile is still a good match, and whose motif profile is much closer. Given

these assignments, we could then learn better motif models and motif profiles for

each module. This refinement process arises naturally within our algorithm, as a

byproduct of the expectation maximization (EM) algorithm for estimating the model

parameters.

In general, the motifs learned will not suffice to characterize all of the modules.
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Figure 3.3: Schematic flow diagram of our proposed method. The pre-processing step
includes selecting the input gene expression and upstream sequence data. The model
is then trained using EM, and our algorithm for dynamically adding and deleting
motifs. It is then evaluated on additional data sets.

As our goal is to provide a genome-wide explanation of the expression behavior, our

algorithm identifies poorly explained genes in modules and searches for new motifs

in their upstream regions. The new motifs are then added to the model and subse-

quently refined using EM. As part of this dynamic learning procedure, some motifs

may become obsolete and are removed from the model. The algorithm iterates un-

til convergence, adding and deleting motifs, and refining motif models and module

assignments.

The probabilistic model we develop provides a unified framework that models both

the expression and the sequence data. The model consists of three main components:

a motif model, which describes how individual motifs are defined as patterns in the

promoter sequences; a regulation model, which describes how the individual motifs

assemble into motif profiles that we associate with each module; and a gene expression

model, which describes the unique expression profile that we associate with each

module or motif profile. A schematic diagram of our unified model is shown in

Figure 3.4.

A key property of our approach is that these three components are part of a sin-

gle probabilistic model, and are trained together, to achieve maximum predictiveness.



3.1. MODEL OVERVIEW 75

�������������	���
�����
���
���	�����������	�
���������������
�
�������
�
�������������������	���������������	�������	���
���	�������
�����	�������	���������	�����	���	�����������������	���������������	���������������������������
�����������������
�
���	�����
�
�����
�����	�������
�������
�
�����������������
�	�������������
�������������
�������������������
�������
���������������������������
�����
���������������������������	�������	�������	�������	�
���������
���������������������������������������
�
�����	�
���	�
���������������
���	�������������������������
�������������	�
���������
���������
�����
���
�������	�������	���
�����	�	�����	���������	�����	���������
�����������	�
�����	�
�����������������
�����
�������������������
���
���������������
�����	�
�������
�
�����������������������������
�������	�������
���
�����������	�������	�������
�����������������������������������
�����������
�
�������	���������������
�������
�����
���������������������
�
���
���	�������	���������������
�������
�������
���
�������	�
���������
�������������������
�������������������

Promoter 
s eq u en c es ���������	�
������������	�
���

���������	�
������������	�
���

���������	�
������������	�
���

���������	��������������	�����
������������������

������������������

������������������
������������������

������������������
������������������

������������������

������������������

�������
�	�
����������
�	�
���

������������������
������������������

������������������
�������
����������
���

���������	����������	�

�������
����������
���

TCGACTGC CCAATGATAC GCAGTTM oti f s

TCGACTGC

GATAC
+

CCAAT
+

GCAGTT
CCAATM oti f  

Prof i l es

E x p res s i on  
Prof i l es

Mo
tif 
mo

de
l

Re
gu
lat
ion

 
mo

de
l

Ex
pre

ssi
on
 

mo
de
l

Figure 3.4: Schematic diagram of our unified model, consisting of three components:
a binding component describes individual motifs; a regulation component describes
motif profiles that are associated with modules; and an expression component de-
scribes a unique pattern of expression for each module across all experiments. The
example shows four distinct motifs that assemble into three motif profiles, two of
which have two motifs each and one with a single motif.

Our algorithm thereby simultaneously discovers motifs that are predictive of gene ex-

pression, and discovers clusters of genes whose behavior is well-explained by putative

regulation events.

We note that the binding component uses a novel discriminative approach for

finding motifs, unlike most other generative approaches which try to build a model

of the promoter region sequence that gives a high probability to the given sequences.

Such approaches can often be confused by repetitive motifs that occur in many pro-

moter sequences (e.g., TATA boxes which appear in the promoter region of many

genes). These motifs have to be filtered out by using an appropriate background

distribution (Tavazoie et al., 1999). In contrast, our discriminative formulation of
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the motif finding task avoids many of the problems associated with modeling of the

background sequence distribution. These are key problems that arise in many of the

generative motif finding approaches. Thus, this part of the model, described in detail

in Section 3.2.1, is interesting in and of itself as it can be used as an alternative to

existing motif finding programs.

3.2 Probabilistic Model

We now provide a formal definition of our probabilistic model within the PRM frame-

work outlined in Chapter 2. Recall that to specify a PRM, we first need to specify a

relational schema that includes the classes of objects in our domain and the descrip-

tive attributes associated with each class. In our gene regulation model, our basic

entities are clearly genes, their corresponding promoter sequences, arrays, and ex-

pression measurements. Consequently, the set of classes we define are Gene,Promoter,

Array, and Expression.

The descriptive attributes for the Promoter class include N random variables,

S1, . . . , SN , that represent the nucleotides in each position of the promoter sequence.

Each of these Si variables can take on values that correspond to the four possible

nucleotides and thus its domain is Val(Si) = {A,C,G, T}. We assume that there is a

total of L motifs through which regulation is achieved in the cell and associate a set

of binary-valued Regulates variables R = {R1, . . . , RL}, where g.Ri takes the value

true if motif i appears in the promoter region of gene g, allowing the motif to play a

regulatory role in controlling g’s expression.

We also assume that the genes are partitioned into a set of K mutually exclusive

and exhaustive cis-regulatory modules. Thus, each gene is associated with an attribute

M ∈ {1, . . . , K} whose value represents the module to which the gene belongs. In the

Expression class, we represent its real-valued mRNA expression level measurement by

a continuous variable Level. Finally, since we want to represent the expression profile

for each module by an expression pattern across all arrays, we associate a variable ID

with each Array class. The full PRM relational schema is shown in Figure 3.5.

The second component in a PRM includes the reference slots R[C] for each class
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Figure 3.5: PRM relational schema for the cis-regulation model, including the classes,
descriptive attributes and Reference slots (underlined). Each Si variable in the
Promoter class represents the nucleotide in position i of the promoter sequence; each
Ri variable in the Gene class represents whether motif i appears in the promoter of the
gene; the M variable in the Gene class represents the module assignment of the gene;
the Level variable in the Expression class represents the real-valued mRNA expression
measured for the corresponding gene and array; and the ID variable of the Array class
represents a unique identifier for each array.

C. These allows an object to refer to other objects. Recall that each reference slot is

typed, i.e., we also specify the type of object that may be referenced. In our model,

the class Gene has a reference slot Promoter (with range type Promoter); the class

Expression has reference slots Gene (with range type Gene) and Array (with range type

Array). In Figure 3.5 the reference slots are underlined. Recall that we also defined

the notion of a slot chain, which allows us to compose slots, defining functions from

objects to other objects to which they are indirectly related. For example, in our

model it may be useful to define the slot chain Expression.Gene.Promoter to refer to

the promoter sequence of the gene from which the expression measurement was taken.

To complete the PRM specification, we also need to specify the qualitative struc-

ture S and the parameters θS associated with the CPD of each of the descriptive

attributes. As we mentioned above, the structure consists of three main components.
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We now present the details of each of these components, and then show how they

assemble together into our unified probabilistic model over sequence and expression.

3.2.1 Motif Model: A Discriminative Motif Finder

The first part of our model relates the promoter region sequence data to the Regulates

variables, R. We note that this part of the model can be applied independently, as

an alternative to existing motif finding programs.

Experimental biology has shown that transcription factors bind to relatively short

sequences and that there can be some variability in the binding site sequences. Thus,

most standard approaches to uncovering transcription factor binding sites (e.g., Bailey

and Elkan (1994), Roth et al. (1998), Sinha and Tompa (2000)), search for relatively

short sequence motifs in the bound promoter sequences.

A common way of representing the variability within the binding site is by using a

position specific scoring matrix (PSSM). Suppose we are searching for motifs of length

k (or less). A PSSM ~w is a k× 4 matrix, assigning for each position i = 1, . . . , k and

letter l ∈ {A,C,G, T} a weight wi[l]. We can then score a putative k-mer binding

site S = S1, . . . , Sk by computing PSSM(S, ~w) =
∑

iwi[Si].

The question is how to learn these PSSM weights. We first define the model more

carefully. Recall that our model associates with each gene g, a binary variable g.Ri ∈
{false, true} which denotes whether motif i regulates the gene or not. Furthermore,

recall that each gene g has a promoter sequence g.Promoter.S1, . . . , g.Promoter.SN ,

where each Si variable takes values from {A,C,G, T}. To simplify notation in this

section, we focus attention on the regulation for a particular motif, and drop the

explicit reference to i from our notation. As the motif model we present in this

section deals only with Gene objects, we also omit explicit references to gene and

promoters. Thus, our notation in this section simply refers to the various variables

as S1, . . . , SN , and R.

The standard approaches to learning PSSMs is by training a probabilistic model

of binding sites that maximizes the likelihood of sequences (given the assignment

of the regulates variables; see Bailey and Elkan (1994), Roth et al. (1998)). These
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approaches rely on a clear probabilistic semantics of PSSM scores. We denote by θ0

the probability distribution over nucleotides according to the background model. For

simplicity, we use a Markov process of order zero for the background distribution.

(As we will see, the choice of background model is not crucial in the discriminative

model we develop.) We use ψj to denote the distribution of characters in the j-th

position of the binding site. The model then assumes that if the motif regulates g,

then g’s promoter sequence has the background distribution for every position in the

promoter sequence, except for a specific k-mer, i, . . . , i+ k− 1, where a transcription

factor binds the motif. If the motif does not regulate g, we have the background

distribution for all positions in the sequence. If we assume a uniform prior over the

binding position within the promoter in the case of regulation, then we get:

P (S1, . . . , SN | R = false) =
N
∏

i=1

θ0[Si]

P (S1, . . . , SN | R = true)

=
N−k+1
∑

i=1

1

N − k + 1





i−1
∏

j=1

θ0[Sj]









k
∏

j=1

ψj[Sj+i−1]









N
∏

j=i+k

θ0[Sj]





=
1

N − k + 1

N−k+1
∑

i=1





N
∏

j=1

θ0[Sj]









k
∏

j=1

ψj[Sj+i−1]

θ0[Sj+i−1]





=

∏N
j=1 θ0[Sj]

N − k + 1

N−k+1
∑

i=1

k
∏

j=1

ψj[Sj+i−1]

θ0[Sj+i−1]

The probabilistic approaches estimate the θ0 parameters from the sequence data

and train the parameters ψi[l] so as to maximize the probability of the training se-

quences, using for example iterative methods such as EM. Once these parameters are

found, they set the PSSM weights to wi[l] = log ψi[l]
θ0[l]

. Such approaches are generative,

in the sense that they try to build a model of the promoter region sequence, and

training succeeds when the model gives the given sequences high probability. How-

ever, these approaches can often be confused by repetitive motifs that occur in many

promoter sequences. These motifs have to be filtered out by using an appropriate

background distribution (Tavazoie et al. (1999)). Selecting this background distribu-

tion is difficult and it was shown (e.g., by Liu et al. (2001)) that the results obtained
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are highly dependent upon this choice.

We take an entirely different approach. Recall that our aim is to model the

dependence of the gene’s genomic expression profile on its promoter sequence. For

this task, we do not need to model the sequence; we need only estimate the probability

that the motif regulates the gene given the promoter region. Thus, it suffices to find

motifs that discriminate between promoter regions where the transcription factor

binds the motif and those where it does not. As we show, this more directed goal

allows us to avoid the problem of learning background distribution of promoters and

to focus on the classification task at hand.

More formally, we are only interested in the conditional probability of R given

the sequence S1, . . . , SN . If we have a model of the form described above, then by

applying Bayes rule, we obtain:

P (R = true | S1, . . . , SN) =
P (S1, . . . , SN | R = true)P (R = true)

P (S1, . . . , SN)

=
P (S1, . . . , SN | R = true)P (R = true)

P (S1, . . . , SN | R = true)P (R = true) + P (S1, . . . , SN | R = false)P (R = false)

=
1

1 + P (S1,...,SN |R=false)P (R=false)

P (S1,...,SN |R=true)P (R=true)

=
1

1 + exp
{

− log
(

P (R=true)

P (R=false)

1
N−k+1

∑N−k+1
i=1

∏k
j=1

ψj [Sj+i−1]

θ0[Sj+i−1]

)}

= logit(x)

where logit(x) = 1
1+exp{−x}

is the logistic function, and

x = log





P (R = true)

P (R = false)

1

N − k + 1

N−k+1
∑

i=1

k
∏

j=1

ψj[Sj+i−1]

θ0[Sj+i−1]





We now note that for the goal of predicting the probability ofR given the sequence,

the background probabilities are irrelevant as separate parameters. Instead, we can

parameterize the above model simply using k position-specific weights wj[l] = log ψj [l]

θ0[l]
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Figure 3.6: Example of the motif model for a single motif of length 3 on a promoter
sequence with four nucleotides. In this example, the weights are such that the con-
sensus sequence of the motif is ATG. That is, the largest weight in the first position
is w1[A], the largest weight in the second position is w2[T ], and the largest weight in
the third position is w3[G].

and a threshold w0 = log P (R=true)

P (R=false)
. Thus, we write

P (R = true | S1, . . . , SN)

= logit



w0 + log





1

N − k + 1

N−k+1
∑

i=1

k
∏

j=1

exp{wj[Sj+i−1]}








= logit



w0 − log(N − k + 1) + log





N−k+1
∑

i=1

exp{
k
∑

j=1

wj[Sj+i−1]}








An example of the motif model is shown in Figure 3.6. As we discuss in Sec-

tion 3.3.2, we can train these parameters directly, so as to best predict the R variables,

thereby avoiding the need for defining an explicit background distribution. If we do

assume a background model of order zero, then we can recover the ψi[l] probability,
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of observing nucleotide l in position i in the motif as:

ψi[l] =
exp{wi[l]}θ0[l]

∑

l∈{A,C,G,T} exp{wi[l]}θ0[l]

and the log-odds ratio as:

log
ψi[l]

θ0[l]
= wi[l]− log





∑

l∈{A,C,G,T}

exp{wi[l]}θ0[l]




3.2.2 Regulation Model: Motif Profiles

The second component of our model describes how the individual motifs assemble

into motif combinations, which we termed motif profiles. Our goal is to associate a

motif profile with each module, such that the motif profile represents a combination

of motifs. Genes that have this combination of motifs will then be more likely to be

assigned to the module. To achieve this, we define the motif profile of a transcriptional

module to be a set of weights umi, one for each motif, such that umi specifies the

extent to which motif i plays a regulatory role in module m. Roughly speaking, the

strength of the association of a gene g with a module m is
∑L
i=1 umi g.Ri. The stronger

the association of a gene with a module, the more likely it is to be assigned to it.

We use the softmax conditional distribution to model this association. The softmax

distribution is the standard extension of the binary logistic conditional distribution

to the multi-class case:

P (g.M = m̄ | g.R1 = r1, . . . , RL = rL) =
exp{∑L

i=1 um̄iri}
∑K
m′=1 exp{∑L

i=1 um′iri}
.

where each ri variable is either false or true depending on whether motif i regulates

gene g. An example of the regulation model is shown in Figure 3.7.

As we expect a motif to be active in regulating only a small set of modules in

a given setting, we limit the number of weights u1i, . . . , uKi that are non-zero to

some h � K. This restriction results in a sparse weight matrix for P (M | R), and

ensures that each regulator affects at most h modules. In addition, for interpretability
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considerations, we require all weights to be non-negative. Intuitively, this means that

a gene’s assignment to specific transcriptional modules can only depend on features

that correspond to the presence of certain motifs and not on the absence of motifs.

For a module m, the set of motifs umi that are non-zero are called the motif profile

of m.

3.2.3 Gene Expression Model

The third and last component of our model includes a model for the unique expression

profile, across all arrays, that we associate with each of the K modules. For each

module, we specify its expression profile with a separate distribution over the mRNA

expression measurements of the genes in the module in each of the arrays.

More formally, the expression level variable Level in the Expression class depends on

the module assignment Expression.Gene.M and on the unique identifier of the array,

Expression.Array.ID. The CPD of Level is a table conditional probability distribution

which specifies a different for each combination of values of M and ID. This model

assumes that genes in the same module exhibit the same gene expression behavior,

and is equivalent to the simple yet powerful Naive Bayes model (Duda and Hart,

1973, Cheeseman et al., 1988). As the expression measurements are real-valued,

we model each conditional probability distribution P (Level | Expression.Gene.M =

m,Expression.Array.ID = i) using a Gaussian distribution N (µmi; σ
2
mi). The expres-

sion model is depicted in Figure 3.8.

3.2.4 Joint Probabilistic Model

The three model components presented above are put together into our unified model

over sequence and expression data, as shown in Figure 3.9: individual motifs are

patterns in the promoter sequence; these motifs assemble into motif profiles, where

each motif profile is associated with one of the K modules; and each motif profile

specifies a unique expression pattern across all arrays.

Given an instance I of the PRM of Figure 3.9, the joint distribution induced by
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Figure 3.7: Example of the regulation model for a model with three motifs and three
modules. (a) Dependency model of the regulation model and an illustration of the
weight matrix for the softmax distribution. Weights are indicated with blue bars,
where the height of the bar corresponds to the actual weight. (b) The probability
distribution over module assignments for each possible instantiation to the R vari-
ables, in the case of the softmax weights equal to: u11 = 5, u12 = 2, u22 = 6, u31 = 3,
and u33 = 4. For example, if only R2 = 1, then most of the probability mass is in
module 2, as expected since only module 1 and 2 have a positive weight for motif 2,
and module 2 places a higher weight than module 1 on motif 2.
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Figure 3.8: Example of the expression model for a model with three arrays and
three modules. Each Gaussian distribution is depicted in the corresponding entry in
the CPD of the Level variable. The Gaussian distribution is colored according to the
mean of the distribution (red for means above zero; green for means below zero; black
for means close to zero). These Gaussian distributions define an expression profile
for each module across all arrays. For example, the expression profile for module
3 is down-regulated in all three arrays, while the expression profile for module 2 is
up-regulated across all three arrays.

the model is given by:

P (I | σ,S, θS) =
∏

p∈σ[Promoter]

P (I[p.S])

∏

a∈σ[Array]

P (I[a.ID])

∏

g∈σ[Gene]

P (I[g.M] | I[g.R])
L
∏

i=1

P (I[g.Ri] | I[g.Promoter.S])

∏

e∈σ[Expression]

P (I[e.Level] | I[e.Gene.M], I[e.Array.ID])

where each of the above conditional probability distributions is parameterized as

described in the previous sections. As usual in the PRM framework, this distribution

is equivalent to the distribution specified by the ground Bayesian network induced

from the PRM. For simplicity of notation, in the remainder of this chapter we omit
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Figure 3.9: Example of the unified model for a model with three arrays, three modules,
three motifs, and promoter sequences with a length of four nucleotides. The model
consists of the three components described in the previous sections: a motif model; a
regulation model; and an expression model.

the explicit mention of I for referring to values of attributes (e.g., we use g.M as

shorthand for I[g.M]).

An example of the induced ground Bayesian network for the unified model is given

in Figure 3.10. We note that as the promoter sequence data and the unique identifier

of each array are always observed, the distribution over their values is irrelevant when

learning the parameters of the model. Thus, we will usually be interested only in the

probability P (I[Gene], I[Expression] | σ,S, θS , I[Array], I[Promoter]).
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Figure 3.10: Example of the ground Bayesian network for the unified model of Fig-
ure 3.9, for a skeleton consisting of two genes, three arrays, and five corresponding
expression measurements for these genes and arrays.

3.3 Learning the Model

In the previous section, we described the different components of our unified prob-

abilistic model. We now turn to the task of learning this model from the input

promoter sequences and gene expression data. A critical part of our approach is that

our algorithm does not learn each part of the model in isolation. Rather, our model is

trained as a unified whole, allowing information and (probabilistic) conclusions from

one type of data to propagate and influence our conclusions about another type.

The input to our learning problem consists of an instance I of the PRM model

which specifies: a set of gene objects, I[Gene]; a set of promoter sequence objects,
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I[Promoter], such that each gene object has a corresponding promoter sequence ob-

ject; a set of array objects, I[Array]; and a set of expression measurement objects,

I[Expression]. The PRM instance also specifies: for each promoter object, p, a value

for each nucleotide variable Si; for each array object, a, its unique identifier a.ID; and

for each expression object, e, its real-valued mRNA expression level measured, e.Level

(expression measurements for some genes in some arrays may be missing). Note that

the module variable, g.M, and the Regulates variables, g.R, of each gene object, g,

are not specified by the PRM instance and are thus hidden. In this section we restrict

our attention to a model with a fixed number of L motif variables per gene. In the

next section we show how to dynamically add and remove motif variables from the

model.

We note that the dependency structure of the model, S, is fixed as specified in

Figure 3.9. Thus, for simplicity of notation, we omit references to the dependency

structure. Since the structure is fixed, our learning problem consists of estimating

the model parameters so as to maximize their fit to the data. The model parame-

ters to be estimated are: the PSSM weights for each sequence motif i, P (Gene.Ri |
Gene.Promoter.S); the softmax weights and structure of the module assignments

(i.e., which sequence motifs each module depends on), P (Gene.M | Gene.R); and

the means and variances of the Gaussian distributions of the expression model,

P (Expression.Level | Expression.Gene.M,Expression.Array.ID). Note that since the

promoter sequence data and the unique identifier of each array are always observed,

we do not estimate their parameters, P (Promoter.S), P (Array.ID), as they will be

fixed for all models we consider (for a given PRM instance).

We follow the standard approach of maximum likelihood estimation: we find the

parameters θ that maximize P (I | θ). Our learning task is made considerably more

difficult by the fact that both the module assignment g.M and the Regulates variables

g.R are unobserved in the training data. As we discussed in Section 2.6.2, in this

case the likelihood function has multiple local maxima, and no general method exists

for finding the global maximum. We thus use the Expectation Maximization (EM)

algorithm (Dempster et al., 1977), which provides an approach for finding a local

maximum of the likelihood function.
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Starting from an initial guess θ(0) for the parameters, EM iterates the following two

steps. The E-step computes the distribution over the unobserved variables given the

observed data and the current estimate of the parameters. We use the hard assignment

version of the EM algorithm, outlined in Section 2.6.2, where this distribution is used

to select a likely completion of the hidden variables. The M-step then re-estimates the

parameters by maximizing the likelihood with respect to the completion computed

in the E-step. Usually, the estimation task in the M-step is simple and can be done

in closed form. However, as we show next (following a presentation of the E-step),

this is not the case for our choice of CPDs, where this estimation task differs for the

different parts of the model.

3.3.1 E-step: Inferring Modules and Regulation

Our task in the E-step is to compute the distribution over the unobserved data,

which in our setting means computing P (g.M, g.R | I[Array], I[Promoter], θ). Note

that, as the unique identifiers of each array are always observed, all gene objects

are in fact independent (see Figure 3.10). Thus, we can perform the computation

P (g.M, g.R | I[Array], I[Promoter], θ) separately for each gene g. Moreover, as

the promoter sequence variables are observed as well, the local Bayesian network

structure for each gene is effectively a tree, for which there exists efficient algorithms

for performing the inference task. However, although the softmax distribution for

P (g.M | g.R) has a compact parameterization, inference using this distribution is

still exponential in the number of Regulates variables. Even if only a small number

of these variables are associated with any single module, for the purpose of module

assignment, we need to consider all of the variables associated with any module; this

number can be quite large, rendering exact inference intractable.

We devise a simple approximate algorithm for doing this computation, which is

particularly well suited for our setting. It exploits our expectation that, while a large

number of sequence motifs determine the module assignment, only a small number of

motifs regulate a particular transcriptional module. Consequently, given the module

assignment for a gene, we expect a small number of Regulates variables for that gene



90 CHAPTER 3. DISCOVERING CIS-REGULATORY MODULES

For each gene g ∈ I[Gene]
Set g.M = 1
Set g.Ri = false for 1 ≤ i ≤ L
Set p = P (g.M, g.R, g.Expressed-In.Level | g.S, g.Expressed-In.Array.ID)
For m = 1 to K // for all modules

Repeat // Find g.Ri that increases p
Set pbest = p
For i = 1 to L // for all regulates variables

Set g.Ri = true
p′ = P (g.M = m, g.R, g.Expressed-In.Level | g.S, g.Expressed-In.Array.ID)
if p′ > p

Set g.M = m
Set p = p′

else
Set g.Ri = false

Until pbest = p

Figure 3.11: Pseudo code for the search procedure of the E-step of EM

to take the value true. Our approximate algorithm therefore searches greedily for a

small number of Regulates variables to activate for each module assignment. For each

gene g, it considers every possible module assignment m, and finds a good assignment

to the Regulates variables given that g.M = m. This assignment is constructed in

a greedy way, by setting each of the g.R variables to true one at a time, as long as

P (g.M, g.R, g.Expressed-In.Level | g.S, g.Expressed-In.Array.ID), the probability of

g’s expression level and assignment to the Module and Regulates variables given g’s

sequence, improves, where g.Expressed-In.Level represents all expression level vari-

ables Level measured for gene g, and g.Expressed-In.Array.ID represents the unique

identifiers of all the arrays in which the expression of g was measured. The joint

setting for g.M and g.R which gives the overall best likelihood is then selected as

the (approximate) most likely assignment. Pseudo-code of the algorithm are given in

Figure 3.11. For the remainder of this section, let g.m̄ and g.r̄1, . . . , g.r̄L represent

the values selected for g.M and g.R1, . . . , g.RL respectively by the E-step.



3.3. LEARNING THE MODEL 91

3.3.2 M-step: Motif Model

We want the motif model to be a good predictor of the assignment r̄ to the Regulates

variables computed in the E-step. Thus, for each Ri, we aim to find the values of the

parameters w0, wj[`] for 1 ≤ j ≤ k that maximize the conditional log probability:

f(~w) =
∑

g∈I[Gene]

logP (g.Ri = g.r̄i | g.S1, . . . , g.SN) (3.1)

=
∑

g∈I[Gene]:g.r̄i=true

log logit(x) +
∑

g∈I[Gene]:g.r̄i=false

log(1− logit(x))

where as above, logit(x) = 1
1+exp{−x}

is the logistic function, and

x = w0 − log(N − k + 1) + log





N−k+1
∑

i=1

exp{
k
∑

j=1

wj[Sj+i−1]}


 (3.2)

Unfortunately, this optimization problem has no closed form solution, and there

are many local maxima. We therefore use a conjugate gradient ascent to find a local

optimum in the parameter space. Conjugate gradient starts from an initial guess of

the weights ~w(0), and then uses conjugate directions (instead of the local gradient

as in steepest gradient ascent) for going uphill in the function space, until arriving

at a local maximum. We use a standard implementation of the conjugate gradient

method. This requires us to compute the value of the function we are maximizing and

its derivative at various points of the parameter space ~w. The value of the function,

f(~w), can be computed according to Equation 3.1. We now show how to compute

the derivative, ∂f
∂ ~w

, for w0:

∂
∑

g∈I[Gene] logP (g.Ri = g.r̄i | g.S1, . . . , g.SN)

∂w0

=
∑

g∈I[Gene]:g.r̄i=true

logit(x)(1− logit(x))

logit(x)
+

∑

g∈I[Gene]:g.r̄i=false

−logit(x)(1− logit(x))

(1− logit(x))

=
∑

g∈I[Gene]:g.r̄i=true

logit(−x)−
∑

g∈I[Gene]:g.r̄i=false

logit(x)

where x is defined as in Equation 3.2. For all other weights wp[l], the derivative can
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be computed as:

∂
∑

g∈I[Gene] logP (g.Ri = g.r̄i | g.S1, . . . , g.SN)

∂wp[l]
=

∑

g∈I[Gene]:g.r̄i=true

logit(−x)
∑N−k+1
i=1 η{g.Si+p−1 = l} exp{∑k

j=1wj[g.Sj+i−1]}
∑N−k+1
i=1 exp{∑k

j=1wj[g.Sj+i−1]}
−

∑

g∈I[Gene]:g.r̄i=false

logit(x)

∑N−k+1
i=1 η{g.Si+p−1 = l} exp{∑k

j=1 wj[g.Sj+i−1]}
∑N−k+1
i=1 exp{∑k

j=1wj[g.Sj+i−1]}

where η{g.Si+p−1 = l} is the indicator function which is equal to 1 if and only if

the nucleotide at position i + p − 1 of the promoter sequence of gene g is l. This

corresponds to the case when the parameter wp[l] is used when the motif binds the

promoter sequence starting at position i.

Motif Model Initialization

Conjugate gradient starts from an initial guess of the weights ~w(0). As for all local

hill climbing methods, the quality of the starting point has a large impact on the

quality of the local optimum found by the algorithm. In principle, we can use any

motif learning algorithm to initialize the model. We use the method of Barash et al.

(2001), which efficiently scores many motif “signatures” for significant over-abundance

in the promoter sequences p1, in which we expect to find the motif, compared to all

other promoter sequences p0. It uses the random projection approach of Buhler and

Tompa (2001) to generate motif seeds of length 6–15. The over-abundance of each

motif seed is then scored by the hypergeometric significance test, using the following

equation:

P (X ≥ k) =
n
∑

i=k

(

K
i

)(

N−K
n−i

)

(

N
n

)

where k is the number of promoters from p1 that contain the seed, n is the number

of promoters in p1, K is the number of promoters from p0 and p1 that contain the
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seed, N = p0 + p1 is the total number of promoters, and P (X ≥ k) represents the

probability that a set of n randomly selected promoters from all N promoters will

have k or more promoters that contain the seed, given that a total of K promoters

contain the seed. The use of the hypergeometric test allows efficient detection of

potential initialization points that are discriminative in nature. Each seed produced

by this method is then expanded to produce a PSSM of the desired length, whose

weights serve as an initialization point for the conjugate gradient procedure.

3.3.3 M-step: Regulation Model

Next, we consider the task of estimating the parameters for the softmax distribution

P (g.M | g.R). Our goal is to find a setting for the softmax weights {umi}1≤m≤K,1≤i≤L

so as to maximize the conditional log probability:

∑

g∈I[Gene]

logP (g.M = g.m̄ | g.R = g.r̄) =
∑

g∈I[Gene]

log
exp{∑L

i=1 um̄ig.r̄i}
∑K
m′=1 exp{∑L

i=1 um′ig.r̄i}
(3.3)

Although this optimization does not have a closed form solution, the function is

convex in the weights of the softmax. Thus, a unique global maximum exists, which

we can find using the conjugate gradient method where the function is computed as

in Equation 3.3, and the derivative for each weight, ∂f
∂umi

, is computed as:

∂
∑

g∈I[Gene] logP (g.M = g.m̄ | g.R = g.r̄)

∂umi

=
∑

g∈I[Gene]:g.r̄i=true

∑K
m′=1 exp{∑L

i=1 um′ig.r̄i}
exp{∑L

i=1 um̄ig.r̄i}
·

η{g.m̄ = m} exp{∑L
i=1 um̄ig.r̄i}

∑K
m′=1 exp{∑L

i=1 um′ig.r̄i} −
(

exp{∑L
i=1 um̄ig.r̄i}

)2

(

∑K
m′=1 exp{∑L

i=1 um′ig.r̄i}
)2

=
∑

g∈I[Gene]:g.r̄i=true

η{g.m̄ = m}∑K
m′=1 exp{∑L

i=1 um′ig.r̄i} − exp{∑L
i=1 um̄ig.r̄i}

∑K
m′=1 exp{∑L

i=1 um′ig.r̄i}

=
∑

g∈I[Gene]:g.r̄i=true

η{g.m̄ = m} − exp{∑L
i=1 um̄ig.r̄i}

∑K
m′=1 exp{∑L

i=1 um′ig.r̄i}
(3.4)
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where η{g.m̄ = m} is the indicator function which is equal to 1 if and only if the

value assigned to gene g in the E-step, g.m̄, is equal to the module of the parameter

for which we are computing the derivative, umi.

However, while we can find the optimal setting to the weight matrix of the softmax

distribution P (g.M | g.R), we would like to place certain constraints on this weight

matrix. More specifically, as discussed in Section 3.2.2, we constrain the weight

matrix to be sparse and each weight to be non-negative. These constraints lead to

more desirable models from a biological standpoint, but also turn our task into a hard

combinatorial optimization problem. We use a greedy selection algorithm, that tries

to include non-zero weights for the most predictive motifs for each Regulates variable

Ri. The algorithm, shown in Figure 3.12, first finds the optimal setting to the full

weight matrix; as we discussed, the optimal setting can be found using gradient

ascent with Equation 3.3 and Equation 3.4. For each variable Ri, it then selects the

most predictive motif — the one whose weight is largest — and adds it to the motif

profile U , which contains motifs that have non-zero weight. The optimal setting for

the weights in U is then found by optimizing these weights, under the constraint that

each weight in U is non-negative and the weights not in U must be zero. This problem

is also convex, and can be solved using the same gradient methods with a reduced

set of parameters. The algorithm then continues to search for additional motifs to

include in the profile U : It finds the optimal setting to all weights while holding the

weights in U fixed; it then selects the highest weight motifs not in U , adds them to

U , and repeats. Weights are added to U until the sparseness limit is reached, or until

the addition of motifs to U does not improve the overall score.

3.3.4 M-step: Expression Model

Given the assignments of genes to modules as computed in the E-step, and the unique

identifiers for all arrays, our goal is to find the parameter setting for the Gaussian

distribution associated with each combination of module and identifier that maximize
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Set U = {}
Set iteration = 0
Let V = {vmi}1≤m≤K,1≤i≤L

Set MaxScore = maxV Score[V ] // MaxScore = score of unconstrained fit
Set T = Threshold for closeness to MaxScore
Repeat

Set iteration = iteration + 1
Let U ′ = {u′mi}1≤m≤K,1≤i≤L − U
Set U ′ = argmaxU ′≥0Score[U ′, U ]

// Optimize weights not in U ; weights in U are held fixed
For i = 1 to L // for all regulates variables

Let m = argmaxm{u′mi}1≤m≤K

Set U = U
⋃{u′mi} // Add new non-zero weight

Set U = argmaxU≥0Score[U, 0]
// Reoptimize weights in U ; other weights = 0

Until iteration = max iteration or Score[U ] >= MaxScore− T

Figure 3.12: Learning the softmax distribution for P (g.M | g.R) in the M-step. Score
is computed using Equation 3.3.

the conditional log probability:

∑

e∈I[Expression]

logP (e.Level | e.Gene.M, e.Array.ID) =

∑

e∈I[Expression]

−(e.Level− µ[e.Gene.M, e.Array.ID])2

2σ2[e.Gene.M, e.Array.ID]

−1

2
log 2πσ[e.Gene.M, e.Array.ID]

where µ[e.Gene.M, e.Array.ID] and σ[e.Gene.M, e.Array.ID] represent the mean and

standard deviation, respectively, of the Gaussian distribution for module M and array

identifier ID. Fortunately, the maximum likelihood setting for the parameters of the

expression model Gaussian distributions has a closed form solution. It can easily be

shown that the maximum likelihood parameter setting for the mean and variance of
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the Gaussian distribution associated with module m and array identifier i are:

µmi =

∑

e∈I[Expression] η{e.Gene.M = m}η{e.Array.ID = i}e.Level
∑

e∈I[Expression] η{e.Gene.M = m}η{e.Array.ID = i}1

σ2
mi =

∑

e∈I[Expression] η{e.Gene.M = m}η{e.Array.ID = i}e.Level2
∑

e∈I[Expression] η{e.Gene.M = m}η{e.Array.ID = i}1 − µ2
mi

3.3.5 Dynamically Adding and Removing Motifs

In the previous section, we showed how to optimize the model parameters given a

fixed set of motifs. We now wish to devise a dynamic learning algorithm, capable of

both removing and adding sequence motifs as part of the learning process. As we

learn the models, some motifs may not turn out to be predictive, or redundant given

the newly discovered motifs. Conversely, some modules may not be well explained

by sequence motifs. This means that the model is not fully explaining the expression

data as a function of motif profiles. By dynamically removing and adding motifs as

necessary during the model learning phase, we wish to improve this situation and

arrive as close as possible to a genome-wide explanation of the expression data.

We add and remove motifs after each completion of the EM algorithm. (Note

that EM itself iterates several times between the E-step and the M-step.) To de-

termine whether Ri should be deleted, we compute the conditional log probability
∑

g∈I[Gene] logP (g.M | g.R) both with and without g.Ri, leaving the values of the

other Regulates variables fixed. This computation tells us the contribution that Ri

makes towards the overall fit of the model. Variables that contribute below a certain

threshold are subsequently removed from the model.

We try to add motifs when the current set of motifs does not provide a satisfactory

explanation of the expression data: when there are genes for which the sequence

predictions do not match the expression profile. More precisely, we define the residual

for a transcriptional module m to be the set of genes that are assigned to module

m in the E-step, but would not be assigned to m based on the sequence alone. An

example of these residuals for two modules is shown in Figure 3.13. We determine
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Motif profile E x pression profile

R egu latory Modu le 1

Motif profile E x pression profile

R egu latory Modu le 2

A ll genes match motif profile Many genes do not match motif profile

A dd motif C C A A T

Motif profile E x pression profile

N ew  R egu latory Modu le 2
A dd motif 
to model

Figure 3.13: Scheme of our algorithm for identifying modules for which adding a motif
variable can potentially increase their score. After each EM iteration, we examine all
modules and compute their residual: the set of genes assigned to the module by the
E-step but not based on the sequence alone. Modules with many residual genes are
candidates for adding motifs, initialized to find a motif in the residual genes. Once a
motif variable has been added, it is added to the model so that it can get refined in
subsequent iterations of the learning algorithm.

the sequence-only assignment of each gene by computing

g.r = argmaxr′P (g.R = g.r′ | g.Promoter.S)

and the resulting module assignment will then be:

g.m′ = argmaxmP (g.M = m | g.R = g.r).

We then attempt to provide a better prediction for the residual genes by adding a

sequence motif that is trained to match these genes. To this end, we use our algorithm

for learning motifs from Section 3.3.2 to search for a motif that is over-abundant in
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Dynamically delete motif variables:

For i = 1 to L // for all regulates variables
Set U ′ = U
Set u′mi = 0 for 1 ≤ m ≤ K
If Score[U ]− Score[U ′] ≤ threshold

Delete Ri

Set U = U ′

Dynamically add motif variables:

For m = 1 to K // for all modules
Let G′ = {}
For each g ∈ I[Gene] such that g.m̄ = m

Set g.r = argmax
r′
P (g.R = g.r′ | g.S)

Set g.m′ = argmaxmP (g.M = m | g.R = g.r)
If m′ 6= m

Set G′ = G′ ⋃{g}
Learn motif with positive set G′

Add new Regulates variable with learned PSSM

Figure 3.14: Procedure for dynamically adding and deleting regulates variables.

the promoters of the residual genes of module m compared to the promoters of all

other genes that are not assigned to module m (the non-residual genes from module

m are not used in training the motif). This newly learned motif is then used to

initialize a new Regulates variable that we add to the model.

Once a new Regulates variable is added, it becomes part of the model and its

assignment and parameterization are adapted as part of the next EM iteration, as

described in the previous section. This process tests whether a new motif contributes

to the overall model fit, and may assign it a non-zero weight. Importantly, a motif

that was trained for the residuals of one module often gets non-zero weights for other

modules as well, allowing the same motif to participate in multiple modules. Pseudo

code of the algorithm is given in Figure 3.14.
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AGCTAGCTGAGACTGCACAC
TTCGGACTGCGCTATATAGA
GACTGCAGCTAGTAGAGCTC
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Figure 3.15: General scheme of common clustering-based approaches for finding mo-
tifs from gene expression and sequence data. In this approach, the input expression
data is first clustered into clusters of genes with coherent expression patterns. A motif
finding algorithm is then applied to the promoters of genes in the same cluster, with
the goal of finding a common motif in such genes.

3.4 Related Work

Many researchers have studied the problem of identifying cis-regulatory motifs and

many automated procedures have been proposed for this purpose. Broadly, these can

be classified as being of one of two types. Approaches of the first and more common

type use gene expression measurements to define groups of genes that are potentially

co-regulated. They then attempt to identify regulatory elements by searching for

commonality (e.g., a commonly occurring motif) in the promoter regions of the genes

in the group (see for example Brazma et al. (1998), Liu et al. (2001), Roth et al. (1998),

Sinha and Tompa (2000), Tavazoie et al. (1999)). An illustration of this approach is

shown in Figure 3.15. Approaches of the second type work in the opposite direction.

They first reduce the sequence data into some predefined features of the gene, e.g.,

the presence or absence of various potential transcription factor binding sites. These

features are derived using either an exhaustive approach, say, all DNA-words of length

6-7, or a knowledge-based approach, say, all TRANSFAC sites (Wingender et al.,

2001). These approaches then try and exploit this feature set as well as the expression

data in a combined way. Some build models that characterize the expression profiles
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GATACCACGACT

AAATGC

TCGACTACGAGA
TTCGCA

C
G

ATG
G

AAATT
A

TCGACT

GATACC

Figure 3.16: General scheme of common sequence-based approaches for finding motifs
from gene expression and sequence data. In this approach, all sequences of length k
are traversed. For each such sequence, all the genes containing it are first identified.
For each such group of genes, the expression data is then used to evaluate whether
the group of genes have coherent expression patterns. The green sequence in this
example is a good motif candidate.

of groups or clusters of genes (e.g., Barash and Friedman (2001), Segal et al. (2001)).

An illustration of this approach is shown in Figure 3.16.

A key advantage of our algorithm over these approaches lies in our ability to relate

upstream sequences and expression data in a single unified probabilistic framework,

which allows us to refine both the cluster assignments and motifs within the same

algorithm. However, there have also been other approaches that tried to provide a

unified probabilistic framework for both sequence and expression data. Holmes and

Bruno (2000) describe a simple Naive Bayes model for promoter sequence and ex-

pression, where the genes are partitioned into disjoint clusters using a hidden Cluster

variable, whose value probabilistically determines both the sequence (and presence

of motifs) of the promoter region and the expression profile. However, this model

is much simpler than ours, and fails to capture important aspects such as combina-

torial effects between transcription factors, or the effect of array properties on the

expression data.

Also related is the work of Pilpel et al. (2001), which uses standard techniques

to discover motifs in the genome, and then tries to discover significant combinatorial

interactions between pairs of these putative transcription factors by comparing the
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expression of genes containing one, the other, or both. This approach is based on

some of the same insights as ours, but it does not build a unified framework, and

hence cannot use results from one part of the analysis to improve the models of the

other; in particular, it does not use expression data to refine the transcription factor

motifs and perhaps get better discrimination.

The work of Bussemaker et al. (2001) also related expression and sequence by

modeling the expression of each gene as a weighted linear combination of the number

of occurrences of individual k-mers. However, their motifs are fixed DNA-words and

they do not allow variation in their motifs. In their approach, variation in the motifs

can exist by selecting variants of the same word as the motifs. In contrast, we search

for the common probabilistic representation of motifs using PSSM. More importantly,

in their model, every occurrence of a motif contributes to the expression and thus the

active targets are not identified, as is achieved in our model through the use of the

regulates variables, R.

Finally, we note that subsequent to our work (Segal et al., 2002, 2003e), Beer and

Tavazoie (2004) devised a method, based on Bayesian networks, whose goal is also

to explain the expression data as a function of features in the sequence. In addition

to using motif appearances as features, their approach also constructs features from

positional information, such as the orientation of the motif, and the proximity and

order between pairs of motifs. They use a clustering approach to construct modules

of genes with similar expression profiles, and then learn a Bayesian network that

explains the expression data of genes in the same module as a probabilistic function

of the set of features above. However, in contrast to our approach, they do not

construct a unified model over the expression and sequence features, and thus their

model does not allow genes to change module assignment and for information to flow

across different modules during the learning process.

With the recent technological advances and reductions in the cost of sequencing,

new approaches have been proposed for the motif discovery task, based on the incor-

poration of other types of genomic data. For example, Lee et al. (2002) designed a

genome-wide assay for experimentally measuring the target promoters that are bound

by every transcription factor in yeast. They then searched for common motifs in the
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promoters of genes that are bound by the same transcription factor, resulting in a

large collection of both novel and previously known motifs.

Another parallel approach which is gaining in popularity uses sequences from

multiple related organisms. The underlying idea is that motifs, by being functionally

important elements, are more likely to be selected for during evolution. Thus, by

searching for short DNA sequences that have been conserved in promoters of genes

that evolved from a common ancestral gene, we might be able to identify functional

motif elements. This was the approach of Cliften et al. (2004) and Kellis et al. (2004),

who sequenced several species of yeast and then searched for motifs based on the idea

above, resulting in a large compendium of conserved motifs.

3.5 Biological Evaluation

We evaluated our method separately on two different yeast (S. Cerevisiae) gene ex-

pression datasets, one consisting of 173 microarrays, measuring the responses to var-

ious stress conditions (Gasch et al., 2000), and another consisting of 77 microarrays,

measuring expression during the cell cycle (Spellman et al., 1998). We also obtained

the 500bp upstream region of each gene (sequences were retrieved from SGD (Cherry

et al., 1998)).

The EM algorithm requires an initial setting to all parameters. We use the stan-

dard procedure for learning motifs from expression data to initialize the model pa-

rameters: we first cluster the expression profiles, resulting in a partition of genes

to clusters, and then learn a motif for each of the resulting clusters. For clustering

the expression, we use the probabilistic hierarchical clustering algorithm developed

by Friedman (first applied in Segal et al. (2001)). For learning motifs, we use the

discriminative motif finder described in Section 3.2.1. To specify the initial parame-

terization of our model, we treat these clusters and motifs as if they were the result of

an E-step, assigning a value to all of the variables g.M and g.R, and learn the model

parameters as described in Section 3.3.

For the stress data, we use 1010 genes which showed a significant change in expres-

sion, excluding members of the generic stress response cluster (Gasch et al., 2000).
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Figure 3.17: Predicting expression from sequence: Number of genes whose module
assignment can be correctly predicted based on sequence alone, where a correct pre-
diction is one that matches the module assignment when the expression is included.
Predictions are shown for each iteration of the learning procedure.

We initialized 20 modules using standard clustering, and learned the associated 20

sequence motifs. ¿From this starting point, the algorithm converged after 5 itera-

tions, each consisting of an EM phase followed by a motif addition/deletion phase,

resulting in a total of 49 motifs. For the cell cycle data, we learned a model with 15

clusters over the 795 cell cycle genes defined in Spellman et al. (1998). The algorithm

converged after 6 iterations, ending with 27 motifs.

We generally compared our results to the standard approach reviewed in Sec-

tion 3.4, which first clusters the expression data into clusters of genes with similar

patterns of expression, and then searches for motifs that are common in the promoter

sequences of genes in the same cluster (see for example Brazma et al. (1998), Liu et

al. (2001), Roth et al. (1998), Sinha and Tompa (2000), Tavazoie et al. (1999)).

3.5.1 Predicting Expression From Sequence

Our approach aims to explain expression data as a function of sequence motifs. Hence,

one metric for evaluating a model is its ability to associate genes with modules based

on their promoter sequence alone. Specifically, we compare the module assignment
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of each gene when we consider only the sequence data to its module assignment

considering both expression and sequence data. The assignment of gene g based on

sequence alone can be computed as:

g.r = argmax
r′
P (g.R = g.r′ | g.S)

g.m′ = argmax′
mP (g.M = m′ | g.R = g.r)

which we can then compare to the assignment g.m̄, which was computed in the E-step

using both the sequence and the expression data (see Section 3.3.1).

Figure 3.17 shows the total number of genes whose expression-based module as-

signment is correctly predicted using only the sequence (i.e., genes for which g.m′ =

g.m̄), as the algorithm progresses through the learning iterations and sequence motifs

are added. As can be seen, the predictions improve across the learning iterations,

converging to 340 (out of 795; 42.7%) and 296 (out of 1010; 29.3%) genes correctly

predicted in the cell cycle and stress models, respectively. Moreover, recall that we

initialize our models by first clustering the expression data and then learning a single

motif for each cluster. Thus, the first iteration in our learning algorithm is precisely

equivalent to one of the standard common approaches to finding cis-regulatory mo-

tifs. As can be seen in Figure 3.17, the standard approach correctly predicted only

158 (out of 795; 19.8%) and 152 (out of 1010; 15%) genes in the cell cycle and stress

models, respectively, significantly lower than the number of corresponding correct

predictions made by our method.

While these results are encouraging, they were measured on the genes in our

training set and thus we cannot interpret them as a true measure of our ability

to predict expression patterns from sequence data. To obtain such a measure, we

extracted 1345 additional genes that showed a significant change in expression in the

stress data (together with the 1010 genes on which we trained, these 2355 genes are

the same ones to which we applied the module network procedure in Section 4.6). For

these genes, we performed the same test as described above. That is, for each gene, we

computed its predicted module assignment using only its sequence data and compared

that to its module assignment as inferred by applying an E-step computation to this
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Figure 3.18: Comparison of the expression coherence for each inferred module (or
cluster in the standard clustering model). (a) For the cell cycle dataset (Spellman et
al., 1998). (b) For the stress expression dataset (Gasch et al., 2000).

held out gene using the learned model. Of these 1345 held out genes, 309 (23%)

were correctly predicted compared to only 172 (12.8%) correct predictions using the

standard approach (the first iteration of our model). These results show that, with an

accuracy of 23%, our model can correctly predict the expression pattern of a gene by

selecting from among 20 expression patterns. Moreover, this accuracy is significantly

better than that achieved by a standard approach for finding motifs.

3.5.2 Gene Expression Coherence

These results indicate that our model assigns genes to modules such that genes as-

signed to the same module are generally enriched for the same set of motifs. However,

we can achieve such an organization by simply assigning genes to modules based

only on their sequence, while entirely ignoring the expression data. To verify the

quality of our modules relative to gene expression data, we define the expression

coherence of a module m to be the average Pearson correlation between the expres-

sion vectors of each pair of genes gi and gj assigned to it, gi.Expressed-In.Level and

gj.Expressed-In.Level. The Pearson correlation between two vectors ~v1 and ~v2, each
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of length k, is computed as:

Pearson(~v1, ~v2) =
1

k

k
∑

i=1

(~v1[i]− µ ~v1)
σ ~v1

(~v2[i]− µ ~v2)
σ ~v2

where µ~v and σ~v are the mean and standard deviation of the entries in ~v, respectively.

Figure 3.18 compares the expression coherence of our modules to those built from

standard clustering (the resulting clusters after the first iteration of our learning

algorithm) for the cell cycle and stress data, showing identical coherence of expression

profiles. For the cell cycle data, there was even a slight increase in the coherence of

the expression profiles for our model. Thus, our model results in clusters that are

more enriched for motifs, while achieving the same quality of expression patterns as

a standard clustering which only tries to optimize the expression score. This result

indicates that the integration of expression and sequence data into the same unified

framework allows us to achieve an organization of genes to modules comparable in

terms of expression coherence to that of standard clustering, but one that corresponds

much better to motifs found in the promoter sequences.

3.5.3 Coherence of Motif Targets

As we discussed, the motif profile characterizing a module allows us to define a notion

of motif targets — genes that contain the motif, and where the motif plays a role in its

expression profile, i.e., those genes assigned to a module whose motif profile contains

the motif. In the standard clustering model, we can define the targets of a motif to

be those genes that have the motif and belong to the cluster from which the motif

was learned.

We tested whether our motif targets correspond to functional groups, by measur-

ing their enrichment for genes in the same functional category according to the gene

annotation database of Gene Ontology (GO, (Ashburner et al., 2000)). We used only

GO categories with 5 or more genes associated with them, resulting in 537 categories.

For each annotation and each motif, we computed the fraction of genes in the targets
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Figure 3.19: Comparison of enrichment of the targets of each motif for functional
annotations from the GO database. For each annotation, the largest negative log
p-value obtained from analyzing the targets of all motifs is shown. (a) is for the
cell cycle dataset (Spellman et al., 1998) and (b) is for the stress expression dataset
(Gasch et al., 2000).

of that motif associated with that annotation and used the hypergeometric distribu-

tion to calculate a p-value for this fraction. For a set of motif targets with n genes, of

which k are annotated with a certain GO annotation that exists in K of the N genes

in the GO database, the hypergeometric p-value is given by:

P (X ≥ k) =
n
∑

i=k

(

K
i

)(

N−K
n−i

)

(

N
n

)

where P (X ≥ k) represents the probability that the motif targets has k or more genes

with the annotation. We performed a Bonferroni correction for multiple independent

hypotheses and took p-values < 0.05/537 = 9.3 · 10−9 to be significant.

We compared, for both expression data sets, the enrichment of the motif targets

for GO annotations between our model and standard clustering. We found many

annotations that were enriched in both models. However, there were 24 and 29
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Figure 3.20: Comparison of enrichment of the targets of each motif for protein com-
plexes. For each protein complex, shown is the largest negative log p-value obtained
from any of the motifs. (a) is for the cell cycle dataset (Spellman et al., 1998) and
(b) is for the stress expression dataset (Gasch et al., 2000).

annotations that were significantly enriched in our cell cycle and stress models, re-

spectively, that were not enriched at all in the standard clustering model, compared

to only 4 and 14 annotations only enriched in the standard clustering model for these

respective models. Among those annotations enriched only in our model were carbo-

hydrate catabolism, cell wall organization and galactose metabolism, all of which are

processes known to be active in response to various stress conditions that we can now

characterize by sequence motifs. A full comparison of the GO enrichment for both

datasets is shown in Figure 3.19.

Since functional categories do not necessarily correspond to co-regulation groups,

we also tested the enrichment of our motif targets for protein complexes, as compiled

experimentally in the assays of Gavin and et al. (2002) and Ho and et al. (2002),

consisting of 590 and 493 complexes, respectively. The member genes of protein com-

plexes are often co-regulated and we thus expect to find enrichment for them in our

motif targets. We associated each gene with the complexes in which it is part of

according to the assays of Gavin and et al. (2002) and Ho and et al. (2002), and

computed the p-value of the enrichment of the targets of each motif for each complex
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using the hypergeometric distribution, as we did above for the GO annotations. The

results for the cell cycle and stress datasets are summarized in Figure 3.20, showing

much greater enrichment of our motif targets compared to the targets of the motifs

identified using the standard approach, with 63 and 10 complexes significantly en-

riched only in our model, and no complexes only enriched in the standard approach,

for the stress and cell cycle models, respectively.

3.5.4 Motifs and Motif Profiles

Next, we compared the motifs we identified to motifs from the literature, published

in the TRANSFAC database (Wingender et al., 2001). Of the 49 motifs learned for

the stress model, 22 are known, compared to only 10 known motifs learned using the

standard approach. For the cell cycle model, 15 of the 27 learned motifs are known,

compared to only 8 known motifs learned using the standard approach. Many of the

known motifs identified, such as the stress element STRE, the heat shock motif HSF

and the cell cycle motif MCM1, are also known to be active in the respective datasets.

Interestingly, 30 of the 49 motifs were among those motifs dynamically added as part

of our learning procedure.

To examine some global characteristics of the motifs we learned, we also examined

the distribution of the number of targets per motif, shown in Figure 3.21. When com-

paring this distribution to the distribution obtained if we randomized the association

of each motif with its targets, we find that the true motif target distribution is highly

non-random, with two classes of motifs emerging: one class represents general motifs,

i.e., motifs that have a much larger number of target genes than would be expected

by chance); the other class represents highly specific motifs, i.e., motifs with much

fewer targets than would be expected by chance. We note that these two classes of

motifs are consistent with the results reported by Lee et al. (2002) using independent

data sources.

A powerful feature of our approach is its ability to characterize modules by motif

profiles. This ability is particularly important for higher eukaryotes, in which regu-

lation often occurs through multiple distinct motifs. To illustrate the motif profiles
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Figure 3.21: Distribution of the number of targets per motif, sorted by the number
of targets (blue points). Also shown is the motif target distribution obtained for a
similar number of total motif-gene pairs, but where we randomized the true motif-
gene associations. The two classes of general and specific motifs are indicated by red
arrows and red ovals.

found by our approach, we found for each motif all modules enriched for the presence

of that motif. This was done by associating each gene with the motifs in its upstream

region, and then computing the p-value of the enrichment of the member genes of

each module (using the hypergeometric distribution as described above for the case

of enrichment for GO annotations). Figure 3.22 shows all the module-motif pairs in

which the module was enriched for the motif with p-value < 0.05. In addition, the

figure indicates (by red circles) all pairs in which the motif appears in the module’s

motif profile. As can be seen, many profiles contain multiple motifs, and many mo-

tifs were used by more than one module. Even though modules share motifs, each

module is characterized by a unique combination of motifs. Note that there are sev-

eral enriched module-motif pairs where the motif was not chosen as part of the motif

profile of the module (indicated by those colored entries in Figure 3.22 which are not

circled). We return to this issue in Section 3.6.

Motifs that appear in the same motif profile are predicted by our method to
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Figure 3.22: Matrix of motifs vs. modules for the stress data, where a module-motif
entry is colored if the member genes of that module were enriched for that motif with
p-value < 0.05. The intensity corresponds to the fraction of genes in the module
that had the motif. Entries in the module’s motif profile are circled in red. Modules
were assigned names based on a summary of their gene content. Motifs that were
dynamically added as part of the learning algorithm are named “Added Motif X”.

participate together in the regulation of genes in the module for this shared motif

profile. Thus, each co-appearance of two motifs is a prediction of a combinatorial

interaction. Since some motifs appear in multiple motif profiles, we obtained a global

view of all such combinatorial interactions, by creating a motif interaction network,

where nodes correspond to motifs and two motifs are connected if they appear in

the same motif profile. Interestingly, as shown in Figure 3.23, the resulting network

is highly non-random: some motifs are connected to a large number of other motifs,

while others are connected to very few. Moreover, these hub motifs, that are connected

to many other motifs and thus are predicted by our method to participate in multiple

processes, are in fact motifs that are known in the literature as general motifs whose

binding transcription factor regulates a large number of genes. These hub motifs

included, for example, the general stress related motifs STRE, YAP1, XBP1, and

ADR1, as well as the general cell cycle motif MCM1 (these motifs are indicated by a

blue arrow in Figure 3.23. We note that with the exception of STRE, the hub motifs

are not part of the class of general motifs with many targets shown in Figure 3.21.
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Figure 3.23: Shown is a motif interaction network, in which we connected every pair
of motifs that appeared together in at least one motif profile. Motifs that are known in
the literature are colored orange. The hub motifs, discussed in the text, are indicated
by blue arrows.

3.5.5 Inferring Regulatory Networks

Identifying the active motifs and motif profiles is a significant step towards under-

standing the regulatory mechanisms governing gene expression. However, we would

also want to know the identity of the transcription factor (TF) molecules that bind
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Figure 3.24: Regulatory network inferred from our model using the DNA binding
assays of Lee et al.. Ovals correspond to transcription factors and rectangles to
modules (see Figure 3.22 for module names). Edge thickness and color represent
various levels of literature support for the association.

to these sequence motifs. We used the DNA binding assays of Lee et al. (2002),

that directly detect to which promoter regions a particular TF binds in vivo, and

associated TFs with the motifs we learned. For each motif, we computed the frac-

tion, among the motif targets, of genes bound by each TF, as measured in the data

of Lee et al.. We used the hypergeometric distribution to assign a p-value to each

such fraction and took p-value < 0.05 (Bonferroni corrected for multiple hypothesis

testing) to be significant. Inspection of the significant associations showed that, in

most cases, there was a unique motif that was significant for the TF and that a high

fraction (> 0.5) of the TF’s binding targets were among the motif target genes.

Based on this strong association between TFs and motifs, for each such TF-motif

pair, we predicted that the TF regulates all the modules that are characterized by

the motif. By combining all associations, we arrived at the regulatory network shown
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in Figure 3.24. Of the 106 transcription factors measured in Lee et al., 28 were

enriched in the targets of at least one motif and were thus included in the resulting

network. Of the 20 modules, 16 were associated with at least one TF. To validate

the quality of the network, we searched the biological literature and compiled a list of

experimentally verified targets for each of the 28 TFs in our network. We then marked

each association between a TF and a module as supported if the module contains

at least one gene that the TF is known to regulate from biological experiments.

As current knowledge is limited, there are very few known targets for most TFs.

Nevertheless, we found support for 21 of the 64 associations. We also computed the p-

value for each supported association between a TF and a module, using the binomial

distribution with probability of success p = t/N , where K is the total number of

known targets for the TF and N is the total number of genes (1010). The p-value

is then P (X ≥ ` | X ∼ B(p, n)), where ` is the total number of known targets of

the regulator in the supported module and n is the number of genes in the supported

module. The resulting p-values are shown in Figure 3.24 by edge thickness and color.

We assigned a name to each module based on a concise summary of its gene con-

tent (compiled from gene annotations and the literature). The regulatory network

thus contains predictions for the processes regulated by each TF, where for each as-

sociation the prediction includes the motif through which the regulation occurs. In

many cases, our approach recovered coherent biological processes along with their

known regulators. Examples of such associations include: Hap4, the known activator

of oxidative phosphorylation, with the oxidative phosphorylation module (13); Gcr2,

a known positive regulator of glycolysis, with the glycolysis module (19); Mig1, a

glucose repressor, with the galactose metabolism module (1); Ste12, involved in regu-

lation of pheromone pathways, with the pheromone response module (4); and Met4,

a positive regulator of sulfur amino acid metabolism, with the amino acid metabolism

module (0).
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3.6 Discussion

A central goal of molecular biology is the discovery of the regulatory mechanisms

governing the expression of genes in the cell. In this chapter, we attempt to reveal

one aspect of this regulation process, by using a unified probabilistic model over

both gene expression and sequence data, whose goal is to identify transcriptional

modules and the regulatory motif binding sites that control their regulation within

a given set of experiments. Our results indicate that our method discovers modules

that are both highly coherent in their expression profiles and significantly enriched

for common motif binding sites in upstream regions of genes assigned to the same

module. A comparison to the common approach of constructing clusters based only on

expression and then learning a motif for each cluster shows that our method recovers

modules that have a much higher correspondence to external biological knowledge of

gene annotations and protein complex data.

As our results show, much can be gained by integrating data from multiple sources

into a single unified model. In particular, the high correspondence between motif tar-

gets and protein complexes motivates an integration of the protein complex data

together with the expression and sequence data that we used here into a single frame-

work. Such integration can lead to constructing models with even higher consistency

across different biological datasets.

We also showed how we can make use of the recent binding assays of Lee et al.

(2002) to relate the actual transcription factors to the modules they regulate, resulting

in a regulatory network; we show that many of the regulatory relationships discovered

have support in the literature. Similar to the protein complex data, it is reasonable to

assume that integrating this genome-wide location data into the model can actually

improve our ability to learn biologically relevant regulatory relationships. Such an

integration is very natural within our model: the regulates variable g.Ri represents

whether motif i is active (regulates) in gene g, and the genome-wide location data

measures whether transcription factor i binds gene g anywhere in its promoter. Thus,

we can view the location data as a noisy sensor to g.Ri and connect it in such a

way to our model, as shown in Figure 3.25. This demonstrates the power of the
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Figure 3.25: Shown is the PRM model that integrates genome-wide location data, in
addition to the gene expression and sequence data, into a single unified probabilistic
framework. Each Pi variable represents whether transcription factor i is bound any-
where in the promoter of the corresponding gene, as measured in the location data.
This measurement is incorporated into the model as a noisy sensor to whether the
motif that corresponds to transcription factor i is active in the gene.

probabilistic model representation, in that it provides us with a formal language

for describing increasingly more detailed and complete pictures of the underlying

biological system. Indeed, in a separate project (Segal et al., 2002) we showed that

this more comprehensive model, which also includes the genome-wide location data,

performs better than models that use each data type in isolation. Moreover, this

model also leads to reconstruction of key regulatory events in the cell cycle.

Despite the successes described above, our approach has several limitations. First,

while our choice of the softmax distribution for the regulation model allows us to

represent motif profiles in a natural and compact way, there are some regulation

functions that it cannot express. For example, an exclusive or (XOR) regulation

function, where a module is activated by one of two transcription factors but not by
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both, cannot be represented using the additive softmax model. An example of a more

common regulation function that cannot be represented using the softmax distribution

is an or of and regulation function in which the two operands of the and are opposite

of each other (i.e., a regulation function that is activated by (A∩B)∪ (Ā∩C) where

A,B, and C represent transcription factors). Although such regulation functions are

either less common or more complex, it is important to be aware of the softmax

limitations.

A second and more important limitation of the regulation part of our model stems

from the restrictions we placed on the weight matrix of the softmax distribution. Re-

call that we constrained this matrix to be sparse and required that all weights be

positive. While these positivity and sparseness constraints lead to interpretable and

concise motif profiles, they do not allow us to explicitly represent the absence of

certain motifs in promoter regions of genes as part of the motif profile description.

As such features may be important for characterizing some regulatory modules, our

model may seek alternatives ways to represent them. For example, instead of rep-

resenting the importance of the absence of a motif m from promoters of genes in

some module j by a negative weight for motif m in the motif profile of module j,

our model can achieve the same effect by placing positive weights for motif m in the

motif profiles of all modules other than j. This implies that some motif weights that

we learn may be added as an artifact of the positivity constraint and we must thus

take care in their interpretation.

Given this limitation of the positivity constraint, it might be tempting to relax

this assumption and allow the model to use negative weights within motif profiles.

We note, however, that such an approach must be handled with care, as allowing for

negative weights increases the degrees of freedom that the model has and may result

in less intuitive and less interpretable models.

Recall from our analysis of the motif profiles shown in Figure 3.22, that we found

several cases in which the promoters of the genes assigned to some module j were

enriched for some motif m, yet our model did not place a positive weight for motif

m in the motif profile of module j. While some of these cases may correspond to

true biological findings regarding the activity of the involved motifs, others may be
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explained by artifacts of the softmax model. For example, consider two modules,

where the genes in one module are regulated by transcription factor A (i.e., the motif

of factor A is present in the promoter regions of these genes), and the genes in the

other module are regulated by two transcription factors A and B. A softmax model

can distinguish the assignment of genes to these two modules from the assignment

of genes to all other modules in at least two equivalent ways. One way is to add

positive weights for the motif of factor A in both modules as well as a positive weight

for the motif of factor B in the second module, such that the weight for the motif

of factor A in the first module is greater than each of the other two weights. Such

a model would indeed describe the full details of the regulation process in these two

modules. However, a mathematically equivalent model would place all the weight of

the second module on the motif of factor B. Thus, although motif A may be enriched

in the second module, our learning procedure may still set its weight to zero, thereby

missing some aspects of the regulation process.

There are several other important aspects of the gene regulation process that our

approach does not model, such as the position and orientation of the motif relative

to the site on the DNA in which transcription starts, and the proximity and relative

order among the appearances of motifs within a motif combination. There is evidence

that such features play a role in the regulation process of several modules (e.g., Pilpel

et al. (2001), Segal and Sharan (2004), Beer and Tavazoie (2004)). As our method

does not represent these features, it might fail to detect regulation in such cases. We

note, however, that due to the modular nature of our probabilistic framework such

extensions can easily be incorporated into our model by replacing the motif model

with one that takes such features into account (e.g., the model that we developed in

Segal and Sharan (2004)).

Another limitation of our model lies in the motif model, where we use PSSMs

for representing the binding site motifs of transcription factors. As PSSMs assume

independence among the positions within the binding site, they clearly represent an

over-simplified model of the process by which transcription factors bind DNA. Barash

et al. (2003) showed that better motif models can be built by relaxing this indepen-

dence assumption and modeling dependencies among the binding site positions. A



3.6. DISCUSSION 119

complementary approach for improving our motif model is to use a more detailed

quantitative model of the interaction between the transcription factor and the DNA

(e.g., see Kalir and Alon (2004)).

Finally, in eukaryotes, there are many cases where a motif appears quite far from

the promoter of the gene that it regulates (hundreds of thousands and sometimes

millions of nucleotides away). This implies that in these organisms, we need to extend

the regions in which we search for motifs beyond the 500 or 1000 base pairs upstream

of the site where transcription starts. However, extending these search regions will

introduce noise that is likely to confuse our current models. One way to address this

issue and reduce the noise is to use additional features similar to those described above

(e.g., proximity of motif appearances). Another option is to model the DNA state

and accessibility in the various regions and exclude from consideration those sequences

that are not accessible to binding by transcription factors. As new technologies for

measuring these properties of the DNA are underway, such an approach may soon be

feasible and is thus an interesting direction for future work.



Chapter 4

Module Networks: Identifying

Regulators of Biological Processes

The complex functions of a living cell are carried out through the concerted activity of

many genes and gene products. This activity is often coordinated by the organization

of the genome into regulatory modules, or sets of co-regulated genes that achieve a

common function. Such is the case for most of the metabolic pathways as well as

for members of multi-protein complexes. Revealing this organization is essential for

understanding cellular responses to internal and external signals.

In Chapter 3, we presented a method that attempts to reveal one aspect of this

organization, namely identifying the cis-regulatory motifs through which regulation

occurs and the combinations of motifs that play a role in controlling the expression of

sets of co-regulated genes. As we showed, using only the raw sequence and expression

data as input, our method identified many of the known motifs in yeast, and discov-

ered modules of co-regulated genes and the combination of motifs that play a role in

controlling their expression. However, while finding the motifs is highly informative,

it only provides a partial picture of gene regulation as the identity of the transcrip-

tion factors that bind these motifs can only be inferred indirectly. Thus, to complete

the picture, we also need to identify which regulatory proteins bind these motifs and

control the expression of the genes in the module.

120
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In this chapter, we attempt to reveal precisely this missing aspect of the gene reg-

ulation story, by presenting a probabilistic model for discovering regulatory modules

from gene expression data. Our procedure identifies modules of co-regulated genes,

their regulators, and the conditions under which regulation occurs, generating testable

hypotheses in the form ”regulator ‘X’ regulates module ‘Y’ under conditions ‘W’”.

We start with an overview of the key ideas underlying our approach, followed by a

formal presentation of the probabilistic model and our algorithm for automatically

learning the model from an input gene expression dataset. We then present detailed

statistical and biological evaluation of the results we obtained when applying the

method to an expression dataset that measured the response of yeast (S. cerevisiae)

to various environmental stress conditions, demonstrating the ability of the method

to identify functionally coherent modules and their correct regulators.

Finally, as mentioned above, our method generates testable and detailed hypothe-

ses about gene regulation. As knowledge in the biological literature is limited, some

hypotheses can neither be confirmed nor refuted. Thus, we have carried out microar-

ray experiments in the wet lab to test the validity of three of these novel hypotheses.

We close the chapter with the results from these experiments, demonstrating how

our computational framework allowed us to suggest novel regulatory roles for three

previously uncharacterized proteins in yeast.

4.1 Model Overview

Our goal in this chapter is to identify sets of co-regulated genes as well as find their

(context-specific) regulators. Genome-wide expression profiles provide important in-

formation about the gene regulation process. Yet, the regulatory mechanisms of a

cell are far from transparent in these data. Friedman et al. (2000) proposed to reveal

such mechanisms by attempting to “explain” the expression of genes in the expression

data via the expression of other genes in the data. The key idea is that if a gene’s

expression profile can be predicted as a function of the expression some set of genes,

then there might be a regulatory relationship between the gene and the gene set. To

infer such relationships, Friedman et al. (2000) learned a Bayesian network from the
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expression data, in which the expression level of each gene is represented by a ran-

dom variable. The learned network models the dependencies among the expression

levels of the various genes, and regulator-regulatee relationships can then be inferred

directly from the structure of the learned Bayesian network.

However, an organism typically has thousands of genes. Thus, if we follow the

approach of Friedman et al. (2000), we could end up with a very large and detailed

network. Unfortunately, in the gene expression domain, as in other complex domains,

the amount of data is rarely enough to robustly learn such detailed models: while

a typical gene expression dataset describes thousands of genes, there are at most a

few hundred microarray experiments from which we can learn our network. In such

situations, statistical noise is likely to lead to spurious dependencies, resulting in

models that significantly overfit the data.

Moreover, if our goal is to use the learned structure of the Bayesian network for

suggesting regulatory relationships, then we face additional challenges. First, due to

the small number of microarray experiments, we are unlikely to have much confidence

in the learned structure (Pe’er et al., 2001). Second, a Bayesian network structure

over thousands of variables is typically highly unstructured, and therefore very hard

to interpret.

In this chapter, we propose an approach to address these issues. We start by

observing that genes required for the same biological function or response are often

co-regulated in order to coordinate their joint activity. Thus, the variables corre-

sponding to the expression level of genes can be partitioned into sets so that, to a

first approximation, the variables within each set have a similar set of dependencies

and therefore exhibit a similar behavior.

We define a new representation called a module network, which explicitly parti-

tions the variables (genes) into modules. Each module represents a set of variables

that have the same statistical behavior, i.e., they share the same set of parents and lo-

cal probabilistic model. In the gene expression domain, this implies that co-regulated

genes are grouped together into a module, and the model then uses the same param-

eterization and regulators to explain the expression of all the genes that are assigned
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to the same module. By enforcing this constraint on the learned network, we signifi-

cantly reduce the complexity of our model space as well as the number of parameters.

As we show, these reductions lead to more robust estimation and better generalization

on unseen data.

A module network consists of two components. The first is a component that

defines a template probabilistic model shared by all the variables assigned to that

model. This template includes both a set of regulating parents and the conditional

probability distribution they specify over the expression of the module genes. The

second component of a module network is a module assignment function that assigns

each variable (gene) to one of the modules.

A module network can be viewed simply as a Bayesian network in which variables

in the same module share parents and parameters (see Figure 4.1). Indeed, proba-

bilistic models with shared parameters are common in a variety of applications, and

are also used in other general representation languages, such as dynamic Bayesian

networks (Dean and Kanazawa, 1989), object-oriented Bayesian Networks (Koller

and Pfeffer, 1997), and the probabilistic relational models (Koller and Pfeffer, 1998,

Friedman et al., 1999b) we presented in Chapter 2. However, there are important

differences between module networks and these other formalisms, which we further

discuss in Section 4.4. In particular, we highlight the differences between module

networks and PRMs, justifying the introduction of the new formalism of module

networks.

The key difference between most of the above alternative formalisms and module

networks worth mentioning at this point, is that in most other formalisms, the shared

structure is imposed by the designer of the model, using prior knowledge about the

domain. In contrast, we design a learning algorithm that directly searches for and

finds sets of variables with similar behavior, which are then defined to be a module.

By making the modular structure explicit, the module network representation can

also provide important insights about the domain. In the gene regulation domain,

such insights may include identifying the modular organization of genes into regula-

tory modules and the regulator genes controlling the expression of these modules. In

contrast, even if a modular structure exists in the domain, it can be obscured by a



124 CHAPTER 4. MODULE NETWORKS

Far1

B m h 1

G i c 2

H s p 10

CPD 4

P(Far1)

Bmh1

CPD 6CPD 6

CPD 3

CPD 5

CPD 1

CPD 2

U s v 1

H s p 6 0

Far1

B m h 1

G i c 2

H s p 10
Module 3

Module 2

Module 1

CPD 3

CPD 2

CPD 1

U s v 1

H s p 6 0

(a) Bayesian network (b) Module network

Figure 4.1: (a) A simple Bayesian network over gene expression variables; the ex-
pression level of Far1 is annotated with a visualization of its CPD, described as a
different multinomial distribution for each value of its regulator gene Bmh1. (b) A
simple module network; the boxes illustrate modules, where expression level variables
share CPDs and parameters.

general Bayesian network learning algorithm which does not have an explicit repre-

sentation for modules. For instance, it would be very difficult to interpret a Bayesian

network on a genome-wide scale because of its intricate circuitry over thousands of

genes.

We propose a fully automated procedure that discovers regulatory modules and

their associated template probabilistic modules, which we term regulation programs,

directly from gene expression profiles. For clarity, we now present a simplified overview

that captures the algorithm’s essence, and describe the full details in Section 4.3.

Given a gene expression data set and a precompiled set of candidate regulatory genes,

the algorithm simultaneously searches for a partition of genes into modules, and for

a regulation program for each module that explains the behavior of the genes in the

module. Our algorithm takes an iterative approach. We begin with an initial clus-

tering of the genes based on their expression profiles. For each cluster of genes, the

procedure searches for a regulation program that provides the best prediction of the

expression profiles of genes in the module as a function of the expression of a small
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number of genes from the candidate regulator set. After identifying regulation pro-

grams for all clusters, the algorithm re-assigns each gene to the cluster whose program

best predicts that gene’s behavior. The algorithm iterates until convergence, refining

both the regulation program and the gene partition in each iteration. The procedure

outputs a list of modules and associated regulation programs.

Our two-step iterative learning procedure attempts to search for the model with

the highest score, in each step optimizing one of the models components: regulation

programs or gene partition. An important property of our algorithm is that each

iteration is guaranteed to improve the likelihood of the model, until convergence to a

local maximum of the score.

4.2 Probabilistic Model

We now provide a formal definition of a module network. We assume that we are

given a domain of random variables X = {X1, . . . , Xn}. We use Val(Xi) to denote

the domain of values of the variable Xi.

As described above, a module represents a set of variables that share the same set

of parents and the same CPD. As a notation, we represent each module by a formal

variable that we use as a placeholder for the variables in the module. A module set C
is a set of such formal variables M1, . . . ,MK. As all the variables in a module share

the same CPD, they must have the same domain of values. We represent by Val(Mj)

the set of possible values of the formal variable of the j’th module.

A module network relative to C consists of two components. The first defines a

template probabilistic model for each module in C; all of the variables assigned to the

module will share this probabilistic model.

Definition 4.2.1: A module network template T = (S, θ) for C defines, for each

module Mj ∈ C:

• a set of parents PaMj
⊂ X ;

• a conditional probability distribution template P (Mj | PaMj
) which specifies a

distribution over Val(Mj) for each assignment in Val(PaMj
).
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We use S to denote the dependency structure encoded by {PaMj
: Mj ∈ C} and θ to

denote the parameters required for the CPD templates {P (Mj | PaMj
) : Mj ∈ C}.

In our example from Figure 4.1, we have three modules M1, M2, and M3, with

PaM1
= ∅, PaM2

= {Bmh1}, and PaM3
= {Usv1,Far1}.

The second component is a module assignment function that assigns each variable

Xi ∈ X to one of the K modules, M1, . . . ,MK. Clearly, we can only assign a variable

to a module that has the same domain.

Definition 4.2.2 : A module assignment function for C is a function A : X →
{1, . . . , K} such that A(Xi) = j only if Val(Xi) = Val(Mj).

In our example, we have that A(Bmh1) = 1, A(Gic2) = 2, A(Usv1) = 2, and so on.

A module network defines a probabilistic model by using the formal random vari-

ables Mj and their associated CPDs as templates that encode the behavior of all

of the variables assigned to that module. Specifically, we define the semantics of a

module network by “unrolling” a Bayesian network where all of the variables assigned

to module Mj share the parents and conditional probability template assigned to Mj

in T . For this unrolling process to produce a well-defined distribution, the result-

ing network must be acyclic. Acyclicity can be guaranteed by the following simple

condition on the module network:

Definition 4.2.3: Let M be a triple (C, T ,A), where C is a module set, T is a

module network template for C, and A is a module assignment function for C. M
defines a directed module graph GM as follows:

• the nodes in GM correspond to the modules in C;
• GM contains an edge Mj →Mk if and only if there is a variable X ∈ X so that

A(X) = j and X ∈ PaMk
.

We say thatM is a module network if the module graph GM is acyclic.

For example, for the module network of Figure 4.1(b), the module graph has the

structure M1 →M2 →M3.

We can now define the semantics of a module network:
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Definition 4.2.4 : A module network M = (C, T ,A) defines a ground Bayesian

network BM over X as follows: For each variable Xi ∈ X , where A(Xi) = j, we define

the parents of Xi in BM to be PaMj
, and its conditional probability distribution to

be P (Mj | PaMj
), as specified in T . The distribution associated with M is the one

represented by the Bayesian network BM.

Returning to our example, the Bayesian network of Figure 4.1(a) is the ground

Bayesian network of the module network of Figure 4.1(b).

Using the acyclicity of the module graph, we can now show that the semantics for

a module network is well-defined.

Proposition 4.2.5: The graph GM is acyclic if and only if the dependency graph of

BM is acyclic.

Proof: The proof follows from the direct correspondence between edges in the module

graph and edges in the ground Bayesian network. Consider some edge Xi → Xj in

BM. By definition of the module graph, we must have an edge MA(Xi) →MA(Xj ) in

the module graph. Thus, any cyclic path in BM corresponds directly to a cyclic path

in the module graph, proving one direction of the theorem. The proof in the other

direction is slightly more subtle, as modules may (in principle) be empty. Assume,

by way of contradiction, that there exists a cyclic path p = (Mk1, . . . ,Mkl
) in the

module graph, where we have Mki
→Mki+1

for each i = 1, . . . l − 1 and k1 = kl. By

definition of the module graph, Mki+1
has some parent Xki

such that A(Xki
) = Mki

for i = 1, . . . , l−1. It now follows that Xki
is a parent of Xki+1

for each i = 1, . . . , l−1,

and that Xkl
is a parent of Xk1 . Thus, we also have a cyclic path in BM, proving the

desired contradiction.

Corollary 4.2.6: For any module network M, BM defines a coherent probability

distribution over X .

As we can see, a module network provides a succinct representation of the ground

Bayesian network. A Bayesian network for the gene expression domain needs to rep-

resent thousands of CPDs. On the other hand, a module network can often represent

a good approximation of the domain using a model with only few dozen CPDs.
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4.2.1 Application to Gene Expression

In applying the module network framework to the gene expression domain, we asso-

ciate a variable with each gene, corresponding to its mRNA expression level. Genes

with similar behavior are grouped into the same module and share the same CPD

template, which specifies a distribution over the expression of the genes in the mod-

ule as a function of the expression of the module’s parents. In the gene expression

domain, we refer to the CPD template of a module as a regulation program. Thus, the

regulation program of a module specifies the set of regulatory genes that control the

mRNA expression profile of the genes in the module as a function of the expression

of the module’s regulators.

Note that our approach relies on the assumption that the regulators are them-

selves transcriptionally regulated, so that their expression profiles provide evidence

as to their activity level. Clearly, this assumption is sometimes violated, a common

instance being transcription factors that are regulated post-translationally. In some

cases, however, we can obtain additional evidence about regulation by considering the

expression levels of those signaling molecules that may have an indirect transcriptional

impact. We return to this issue in Section 4.9.

We represent each regulation program using a regression tree (Breiman et al.,

1984), as described in Section 2.2.1. We learn the structure of these regression trees

automatically from the data, thereby discovering the control program for each module,

including its set of regulators, their effect and combinatorial interactions.

We start by an example that demonstrates how a regression tree models biological

regulation. Consider a group of genes (module) that are all regulated by the same

combination of activator and repressor genes, resulting in the three distinct modes

of regulation depicted in Figure 4.2(a). In context A, the genes in the module are

not under transcriptional regulation and are thus in their basal expression level. In

context B, the activator gene is up-regulated and as a result binds the upstream

regions of the module genes, thereby inducing their transcription. In context C, a

repressor gene is also up-regulated and as a result blocks transcription of the genes in

the module, thereby decreasing their expression levels. We assume that our artificial

biological system is such that the repressor gene requires the presence of the activator
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Figure 4.2: (a) Cartoon depicting three distinct modes of regulation for a group of
genes. (b) Regulation tree that represents these modes of regulation. The expression
of the regulatory genes is shown below their respective node. Each leaf of the regula-
tion tree is a regulation context (bordered by dotted lines) as defined by the queries
leading to the leaf. The arrays are sorted each into their respective context and the
expression of the regulatory genes themselves is shown: each row corresponds to a
gene and each column to an array.

gene in order to perform its function. Under this assumption, there is no need for a

context in which only the repressor is up-regulated, as it will have no effect on the

expression of the genes in the module and will be equivalent to context A.

A regulation program can represent the module’s response to these different regu-

latory contexts. A context is a rule describing the qualitative behavior (up-regulation,

no change or down-regulation) of a small set of genes that control the expression of

the genes in the module. These rules are organized as a tree, where each path to a

leaf in the tree defines a context via the tests on the path. This tree is composed

of two basic building blocks: decision nodes and leaf nodes. Each decision node cor-

responds to one of the regulatory inputs and a query on its value (e.g., “is Hap4
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up-regulated?”). Each decision node has two child nodes: the right child node is

chosen when the answer to the corresponding query is true, the left node is chosen

when not. For a given microarray, one begins at the root node and traverses down the

tree in a path depending on the answers to the queries in that particular array, until

a leaf is reached. We use Figure 4.2(b) to illustrate the path for context B: The root

node’s query is “Is the activator up-regulated?”, which in context B is true and we

thus continue to the right child. This right child contains the query “Is the inhibitor

up-regulated?”, which in context B is false and we thus take the left child. The re-

sulting leaf corresponds to a regulation context in which the genes are over-expressed,

which is indeed the behavior of the module genes in context B.

Each leaf of the regulation tree is a context that specifies the behavior of a set of

arrays: those in which the tree traversal reaches the corresponding leaf. The response

in each context is modeled as a Gaussian distribution over the expression values of

the module’s genes in these arrays; this distribution is encoded using a mean and

variance stored at the corresponding leaf. The model semantics is: given a gene g in

the module and an array a in a context, the probability of observing some expression

value for gene g in array a is governed by the Gaussian distribution specified for

that context. For each array, all genes in the same module follow the same Gaussian

distribution. In a context where the genes are tightly co-regulated, the distribution

will have a small variance. In a context where the genes are not tightly regulated, the

distribution may have a large variance. Thus, a regression tree allows for expression

profiles with different degrees of conservation of the mean behavior of the module.

This notion of a regulatory program has several key advantages. First, it captures

combinatorial interactions; e.g., the module is strongly up-regulated if both Hap4 and

Alpha2 are up-regulated. Second, it handles context specific effects and environmental

conditions; e.g., Hap4 regulates the module only in the presence of respiratory carbon

sources. Finally, it allows modules that have a conserved signature only in certain

contexts; e.g., a module may have strong coordinated response to Gat1 up-regulation,

yet have diffuse behavior in other settings. Within our framework, such context-

specific signature is modeled through the variance of the Gaussian distribution in

each context: the variance of the Gaussian will be small in contexts where the genes
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are strongly coordinated and larger in contexts where the behavior of the genes is

more diffused.

4.3 Learning the Model

We now turn to the task of learning module networks from data. Recall that a

module network is specified by a set of modules C, an assignment function A of nodes

to modules, the parent structure S specified in T , and the parameters θ for the local

probability distributions P (Mj | PaMj
). We assume that the set of modules C is

given, and omit reference to it from now on.

One can consider several learning tasks for module networks, depending on which

of the remaining aspects of the module network specification are known. We focus on

the most general task of learning the network structure and the assignment function,

as well as a Bayesian posterior over the network parameters. The other tasks are

special cases that can be derived as a by-product of our algorithm.

Thus, we are given a training set D = {x[1], . . . ,x[M ]}, consisting of M instances

drawn independently from an unknown distribution P (X ). Our primary goal is to

learn a module network structure and assignment function for this distribution. We

take a score-based approach to this learning task. We first define a scoring function

that measures how well each candidate model fits the observed data. We adopt the

Bayesian paradigm and derive a Bayesian scoring function similar to the Bayesian

score for Bayesian networks (Cooper and Herskovits, 1992, Heckerman et al., 1995).

We then consider the algorithmic problem of finding a high scoring model.

4.3.1 Likelihood Function

We begin by examining the data likelihood function

L(M : D) = P (D | M) =
M
∏

m=1

P (x[m] | T ,A).
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This function plays a key role both in the parameter estimation task and in the

definition of the structure score.

As the semantics of a module network is defined via the ground Bayesian network,

we have that, in the case of complete data, the likelihood decomposes into a product

of local likelihood functions, one for each variable. In our setting, however, we have the

additional property that the variables in a module share the same local probabilistic

model. Hence, we can aggregate these local likelihoods, obtaining a decomposition

according to modules.

More precisely, let X j = {X ∈ X | A(X) = j}, and let θMj |PaMj
be the pa-

rameters associated with the CPD template P (Mj | PaMj
). We can decompose the

likelihood function as a product of module likelihoods, each of which can be calcu-

lated independently and depends only on the values of X j and PaMj
, and on the

parameters θMj |PaMj
:

L(M : D)

=
K
∏

j=1





M
∏

m=1

∏

Xi∈Xj

P (xi[m] | paMj
[m], θMj |PaMj

)





=
K
∏

j=1

Lj(PaMj
,Xj, θMj |PaMj

: D) (4.1)

If we are learning conditional probability distributions from the exponential family

(e.g., discrete distribution, Gaussian distributions, and many others), then the local

likelihood functions can be reformulated in terms of sufficient statistics of the data.

The sufficient statistics summarize the relevant aspects of the data. Their use here is

similar to that in Bayesian networks (Heckerman, 1998), with one key difference. In a

module network, all of the variables in the same module share the same parameters.

Thus, we pool all of the data from the variables in X j, and calculate our statistics

based on this pooled data, similar to the pooling of data described for PRMs in

Equation 2.2. More precisely, let Sj(Mj,PaMj
) be a sufficient statistic function for
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Figure 4.3: Shown is a plate model for three instances of the module network example
of Figure 4.1(b). The CPD template of each module is connected to all variables
assigned to that module (e.g., θM2|Bmh1 is connected to Usv1, Gic2, and Far1). The
sufficient statistics of each CPD template are the sum of the sufficient statistics of
each variable assigned to the module and the module parents.

the CPD P (Mj | PaMj
). Then the value of the statistic on the data set D is

Ŝj =
M
∑

m=1

∑

Xi∈Xj

Sj(xi[m],paMj
[m]). (4.2)

For example, in the case of networks that use only multinomial table CPDs, we

have one sufficient statistic function for each joint assignment x ∈ Val(Mj),u ∈
Val(PaMj

), which is η{Xi[m] = x,pa
Mj

[m] = u}— the indicator function that takes

the value 1 if the event (Xi[m] = x,PaMj
[m] = u) holds, and 0 otherwise. The

statistic on the data is

Ŝj[x,u] =
M
∑

m=1

∑

Xi∈Xj

η{Xi[m] = x,PaMj
[m] = u}
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Given these sufficient statistics, the formula for the module likelihood function is:

Lj(PaMj
,Xj, θMj |PaMj

: D) =
∏

x,u∈Val(Mj ,PaMj
)

θ
Ŝj [x,u]
x|u .

This term is precisely the one we would use in the likelihood of Bayesian networks with

multinomial table CPDs. The only difference is that the vector of sufficient statistics

for a local likelihood term is pooled over all the variables in the corresponding module.

For example, consider the likelihood function for the module network of Fig-

ure 4.1(b). In this network we have three modules. The first consists of a single vari-

able and has no parents, and so the vector of statistics Ŝ[M1] is the same as the statis-

tics of the single variable Ŝ[Bmh1]. The second module contains three variables; thus,

the sufficient statistics for the module CPD is the sum of the statistics we would collect

in the ground Bayesian network of Figure 4.1(a): Ŝ[M2,Bmh1] = Ŝ[Usv1,Bmh1] +

Ŝ[Gic2,Bmh1] + Ŝ[Far1,Bmh1]. Finally, Ŝ[M3,Usv1,Far1] = Ŝ[Hsp10,Usv1,Far1] +

Ŝ[Hsp60,Usv1,Far1]. An illustration of the decomposition of the likelihood and the

associated sufficient statistics using the plate model is shown in Figure 4.3.

As usual, the decomposition of the likelihood function allows us to perform max-

imum likelihood or MAP parameter estimation efficiently, optimizing the parameters

for each module separately.

4.3.2 Priors and the Bayesian Score

As we discussed, our approach for learning module networks is based on the use of a

Bayesian score. Specifically, we define a model score for a pair (S,A) as the posterior

probability of the pair, integrating out the possible choices for the parameters θ. We

define an assignment prior P (A), a structure prior P (S | A) and a parameter prior

P (θ | S,A). These describe our preferences over different networks before seeing the

data. By Bayes’ rule, we then have

P (S,A | D) ∝ P (A)P (S | A)P (D | S,A)
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where the last term is the marginal likelihood

P (D | S,A) =
∫

P (D | S,A, θ)P (θ | S)dθ.

We define the Bayesian score as the log of P (S,A | D), ignoring the normalization

constant

score(S,A : D) = logP (A) + logP (S | A) + logP (D | S,A) (4.3)

As with Bayesian networks, when the priors satisfy certain conditions, the Bayesian

score decomposes. This decomposition allows to efficiently evaluate a large number of

alternatives. The same general ideas carry over to module networks, but we also have

to include assumptions that take the assignment function into account. Following is

a list of conditions on the prior required for the decomposability of the Bayesian score

in the case of module networks:

Definition 4.3.1: Let P (A), P (S | A), P (θ | S,A) be assignment, structure, and

parameter priors.

• P (θ | S,A) satisfies parameter independence if

P (θ | S,A) =
K
∏

j=1

P (θMj |PaMj
| S,A).

• P (θ | S,A) satisfies parameter modularity if P (θMj |PaMj
| S1,A) = P (θMj |PaMj

|
S2,A) for all structures S1 and S2 such that PaS1

Mj
= PaS2

Mj
.

• P (θ,S | A) satisfies assignment independence if P (θ | S,A) = P (θ | S) and

P (S | A) = P (S).

• P (S) satisfies structure modularity if P (S) ∝ ∏

j ρj(Sj) where Sj denotes the

choice of parents for module Mj, and ρj is a distribution over the possible parent

sets for module Mj.

• P (A) satisfies assignment modularity if P (A) ∝ ∏

j αj(Aj), where Aj is the
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choice of variables assigned to module Mj, and {αj : j = 1, . . . , K} is a family

of functions from 2X to the positive reals.

Parameter independence, parameter modularity, and structure modularity are the

natural analogues of standard assumptions in Bayesian network learning (Heckerman

et al., 1995). Parameter independence implies that P (θ | S,A) is a product of terms

that parallels the decomposition of the likelihood in Equation 4.1, with one prior

term per local likelihood term Lj. Parameter modularity states that the prior for the

parameters of a module Mj depends only on the choice of parents for Mj and not on

other aspects of the structure. Structure modularity implies that the prior over the

structure S is a product of terms, one per each module.

Two assumptions are new to module networks. Assignment independence makes

the priors on the parents and parameters of a module independent of the exact set

of variables assigned to the module. Assignment modularity implies that the prior

on A is proportional to a product of local terms, one corresponding to each module.

Thus, the reassignment of one variable from one module Mi to another Mj does not

change our preferences on the assignment of variables in modules other than i, j.

As for the standard conditions on Bayesian network priors, the conditions we define

are not universally justified, and one can easily construct examples where we would

want to relax them. However, they simplify many of the computations significantly,

and are therefore useful even if they are only a rough approximation. Moreover,

the assumptions, although restrictive, still allow broad flexibility in our choice of

priors. For example, we can encode preference (or restrictions) on the assignments of

particular variables to specific modules. In addition, we can also encode preference

for particular module sizes.

For priors satisfying the assumptions of Definition 4.3.1, we can prove the decom-

posability property of the Bayesian score for module networks:

Theorem 4.3.2: Let P (A), P (S | A), P (θ | S,A) be assignment, structure, and

parameter priors. When the assignment prior P (A), structure prior P (S | A), and

parameter prior P (θ | S,A), satisfy the assumptions of Definition 4.3.1, the Bayesian
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score decomposes into local module scores:

score(S,A : D) =
K
∑

j=1

scoreMj
(PaMj

,A(Xj) : D)

scoreMj
(U ,X : D) = log

∫

Lj(U ,X, θMj |U : D)P (θMj
| Sj = U )dθMj |U(4.4)

+ logP (Sj = U) + logP (Aj = X)

where Sj = U denotes that we chose a structure where U are the parents of module

Mj, and Aj = X denotes that A is such that X j = X.

Proof: Recall that we defined the Bayesian score of a module network as:

score(S,A : D) = logP (D | S,A) + logP (S | A) + logP (A)

By the structure modularity and assignment independence assumptions in Defini-

tion 4.3.1, logP (S | A) decomposes by modules, resulting in the second term,

logP (Sj = U), of Equation 4.4 of the module score for module j. By the assign-

ment modularity assumption in Definition 4.3.1, logP (A) decomposes by modules,

resulting in the third term, logP (Aj = X) of Equation 4.4. For the first term of

Equation 4.4, we can write:

logP (D | S,A) = log
∫

P (D | S,A, θ)P (θ | S,A)dθ

= log
K
∏

i=1

∫

Lj(U ,X, θMj |U : D)P (θMj
| Sj = U)dθMj |U

=
K
∑

i=1

log
∫

Lj(U ,X, θMj |U : D)P (θMj
| Sj = U)dθMj |U

where in the second step we used the likelihood decomposition of Equation 4.1 and

the parameter independence, parameter modularity, and assignment independence

assumptions in Definition 4.3.1.

As we shall see below, the decomposition of the Bayesian score plays a crucial

rule in our ability to devise an efficient learning algorithm that searches the space of
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module networks for one with high score. The only question is how to evaluate the

integral over θMj
in scoreMj

(U ,X : D). This depends on the parametric forms of

the CPD and the form of the prior P (θMj
| S). As discussed in Section 2.7.1, usually

we choose priors that are conjugate to the parameter distributions. Such a choice

often leads to closed form analytic formula of the value of the integral as a function of

the sufficient statistics of Lj(PaMj
,Xj, θMj |PaMj

: D). For example, using Dirichlet

priors with multinomial table CPDs leads to the following formula for the integral

over θMj
:

log
∫

Lj(U ,X, θMj |U : D)P (θMj
| Sj = U)dθMj |U =

∑

u∈U

log
Γ(
∑

v∈Val(Mj) αMj
[v,u])

∏

v∈Val(Mj) Γ(αMj
[v,u])

∏

v∈Val(Mj) Γ(Ŝj[v,u] + αMj
[v,u])

Γ(
∑

v∈Val(Mj) Ŝj[v,u] + αMj
[v,u])

where Ŝj[v,u] is the sufficient statistics function as defined in Equation 4.2, and

αMj
[v,u] is the hyperparameter of the Dirichlet distribution given the assignment u

to the parents U of Mj. We show the full derivation of this formula in Appendix A.

We note that in the above formula we have also made use of the local parameter

independence assumption on the form of the prior (Heckerman, 1998), which states

that the prior distribution for the different values of the parents are independent:

P (θMj |PaMj
| S) =

∏

u∈Val(PaMj
)

P (θMj |u | S)

For continuous variables with Gaussian CPDs and Normal-Gamma prior distri-

butions, the corresponding integral also has a simple closed form formula. We show

this formula and its derivation in Appendix B.

4.3.3 Structure Search Step

Given a scoring function over networks, we now consider how to find a high scoring

module network. This problem is a challenging one, as it involves searching over

two combinatorial spaces simultaneously — the space of structures and the space of
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module assignments. We therefore simplify our task by using an iterative approach

that repeats two steps: In one step, we optimize a dependency structure relative to

our current assignment function, and in the other, we optimize an assignment function

relative to our current dependency structure.

The first type of step in our iterative algorithm learns the structure S, assuming

that A is fixed. This step involves a search over the space of dependency structures,

attempting to maximize the score defined in Equation 4.3. This problem is analogous

to the problem of structure learning in Bayesian networks. We use a standard heuristic

search over the combinatorial space of dependency structures. We define a search

space, where each state in the space is a legal parent structure, and a set of operators

that take us from one state to another. We traverse this space looking for high scoring

structures using a search algorithm such as greedy hill climbing.

In many cases, an obvious choice of local search operators involves steps of adding

or removing a variable Xi from a parent set PaMj
. (Note that edge reversal is not

a well-defined operator for module networks, as an edge from a variable to a module

represents a one-to-many relation between the variable and all of the variables in

the module.) When an operator causes a parent Xi to be added to the parent set

of module Mj, we need to verify that the resulting module graph remains acyclic,

relative to the current assignment A. Note that this step is quite efficient, as cyclicity

is tested on the module graph, which contains only K nodes, rather than on the

dependency graph of the ground Bayesian network, which contains n nodes (usually

n� K).

Also note that, as in Bayesian networks, the decomposition of the score provides

considerable computational savings. When updating the dependency structure for a

module Mj, the module score for another module Mk does not change, nor do the

changes in score induced by various operators applied to the dependency structure of

Mk. Hence, after applying an operator to PaMj
, we need only update the change in

score for those operators that involve Mj. Moreover, only the delta score of operators

that add or remove a parent from module Mj need to be recomputed after a change

to the dependency structure of module Mj, resulting in additional savings. This is

analogous to the case of Bayesian network learning, where after applying a step that
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changes the parents of a variable X, we only recompute the delta score of operators

that affect the parents of X.

4.3.4 Module Assignment Search Step

The second type of step in our iteration learns an assignment function A from data.

This type of step occurs in two places in our algorithm: once at the very beginning

of the algorithm, in order to initialize the modules; and once at each iteration, given

a module network structure S learned in the previous structure learning step.

Module Assignment as Clustering

In this step, our task is as follows: Given a fixed structure S we want to find A =

argmaxA′scoreM(S,A′ : D). Interestingly, we can view this task as a clustering

problem. A module consists of a set of variables that have the same probabilistic

model. Thus, for a given instance, two different variables in the same module define

the same probabilistic model, and therefore should have similar behavior. We can

therefore view the module assignment task as the task of clustering variables into

sets, so that variables in the same set have a similar behavior across all instances.

For example, in our gene expression domain, we would cluster genes based on the

similarity of their behavior over different arrays. Note that this clustering task is the

“inverse” of the standard clustering task applied to our data set: In a standard clus-

tering algorithm (e.g., AutoClass (Cheeseman et al., 1988)), we cluster data instances

(arrays) based on the similarity of the variables characterizing them. Here, we view

instances as features of variables, and try to cluster variables. (See Figure 4.4.)

However, there are several key differences between this task and a standard clus-

tering task. First, in general, the probabilistic model associated with each cluster

has structure, as defined by the CPD template associated with the cluster (module).

Moreover, our setting places certain constraints on the clustering, so that the resulting

assignment function will induce a legal (acyclic) module network.
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Figure 4.4: Relationship between the module network procedure and clustering. Find-
ing an assignment function can be viewed as a clustering of the variables whereas
standard clustering typically clusters instances. Shown is sample data for the exam-
ple of Figure 4.1, where the rows correspond to instances and the columns correspond
to variables. (a) Data. (b) Standard clustering of the data in (a). Note that x[2]
and x[3] were swapped to form the clusters. (c) Initialization of the assignment func-
tion for the module network procedure for the data in (a). Note that variables were
swapped in their location to reflect the initial assignment into three modules.

Module Assignment Initialization

In the initialization phase, we exploit the clustering perspective directly, using a

form of hierarchical agglomerative clustering that is tailored to our application. Our

clustering algorithm uses an objective function that evaluates a partition of variables

into modules by measuring the extent to which the module model is a good fit to the

features (instances) of the module variables. This algorithm can also be thought of

as performing model merging (as in (Elidan and Friedman, 2001, Cheeseman et al.,

1988)) in a simple probabilistic model.

In the initialization phase, we do not yet have a learned structure for the different

modules. Thus, from a clustering perspective, we consider a simple naive Bayes model

for each cluster, where the distributions over the different features within each cluster

are independent and have a separate parameterization. We begin by forming a cluster

for each variable, and then merge two clusters whose probabilistic models over the

features (instances) are similar.

¿From a module network perspective, the naive Bayes model can be obtained by

introducing a dummy variable U that encodes training instance identity — u[m] = m
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for all m. Throughout our clustering process, each module will have PaMi
= {U},

providing exactly the effect that, for each variable Xi, the different values xi[m] have

separate probabilistic models. We then begin by creating n modules, with A(Xi) = i.

In this module network, each instance and each variable has its own local probabilistic

model.

We then consider all possible legal module mergers (those corresponding to mod-

ules with the same domain), where we change the assignment function to replace two

modules j1 and j2 by a new module j1,2. This step corresponds to creating a cluster

containing the variables Xj1 and Xj2 . Note that, following the merger, the two vari-

ables Xj1 and Xj2 now must share parameters, but each instance still has a different

probabilistic model (enforced by the dependence on the instance ID U). We evaluate

each such merger by computing the score of the resulting module network. Thus, the

procedure will merge two modules that are similar to each other across the different

instances. We continue to do these merge steps until we construct a module network

with the desired number of modules, as specified in the original choice of C.

Module Reassignment

In the module reassignment step, the task is more complex. We now have a given

structure S, and wish to find A = argmaxA′scoreM(S,A′ : D). We thus wish to take

each variable Xi, and select the assignment A(Xi) that provides the highest score.

At first glance, we might think that we can decompose the score across vari-

ables, allowing us to determine independently the optimal assignment A(Xi) for each

variable Xi. Unfortunately, this is not the case. Most obviously, the assignments to

different variables must be constrained so that the module graph remains acyclic. For

example, if X1 ∈ PaMi
and X2 ∈ PaMj

, we cannot simultaneously assign A(X1) = j

and A(X2) = i. More subtly, the Bayesian score for each module depends non-

additively on the sufficient statistics of all the variables assigned to the module. (The

log-likelihood function is additive in the sufficient statistics of the different variables,

but the log marginal likelihood is not.) Thus, we can only compute the delta score

for moving a variable from one module to another given a fixed assignment of the

other variables to these two modules.
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Input:

D // Data set
A0 // Initial assignment function
S // Given dependency structure

Output:

A // improved assignment function
Sequential-Update

A = A0

Loop

For i = 1 to n
score∗ = score(S,A : D)
For j = 1 to K
A′ = A except that A′(Xi) = j
If 〈GM,A′〉 is cyclic, continue

If score(S,A′ : D) > score∗

A = A′

score∗ = score(S,A′ : D)
Until no reassignments to any of X1, . . .Xn

Return A

Figure 4.5: Outline of sequential algorithm for finding the module assignment function

We therefore use a sequential update algorithm that reassigns the variables to

modules one by one. The idea is simple. We start with an initial assignment function

A0, and in a “round-robin” fashion iterate over all of the variables one at a time,

and consider changing their module assignment. When considering a reassignment

for a variable Xi, we keep the assignments of all other variables fixed and find the

optimal legal (acyclic) assignment forXi relative to the fixed assignment. We continue

reassigning variables until no single reassignment can improve the score. An outline

of this algorithm appears in Figure 4.5

The key to the correctness of this algorithm is its sequential nature: Each time

a variable assignment changes, the assignment function as well as the associated

sufficient statistics are updated before evaluating another variable. Thus, each change

made to the assignment function leads to a legal assignment which improves the score.

Our algorithm terminates when it can no longer improve the score. Hence, it converges
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Input:

D // Data set
K // Number of modules

Output:

M // A module network
Learn-Module-Network

A0 = cluster X into K modules
S0 = empty structure
Loop t = 1, 2, . . . until convergence
St = Greedy-Structure-Search(At−1,St−1)
At = Sequential-Update(At−1,St);

Return M = (At,St)

Figure 4.6: Outline of the module network learning algorithm. Greedy-Structure-
Search successively applies operators that change the structure as long as each such
operator results in a legal structure and improves the module network score

to a local maximum, in the sense that no single assignment change can improve the

score.

The computation of the score is the most expensive step in the sequential algo-

rithm. Once again, the decomposition of the score plays a key role in reducing the

complexity of this computation: When reassigning a variable Xi from one module

Mold to another Mnew, only the local score of these modules changes. The module

score of all other modules remains unchanged. The rescoring of these two modules can

be accomplished efficiently by subtracting Xi’s statistics from the sufficient statistics

of Mold and adding them to those of Mnew.

4.3.5 Algorithm Summary

To summarize, our algorithm starts with an initial assignment of variables to modules.

In general, this initial assignment can come from anywhere, and may even be a random

guess. We choose to construct it using the clustering-based idea described in the

previous section. The algorithm then iteratively applies the two steps described above:

learning the module dependency structures, and reassigning variables to modules.
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These two steps are repeated until convergence. An outline of the module network

learning algorithm is shown in Figure 4.6.

Each of these two steps — structure update and assignment update — is guaran-

teed to either improve the score or leave it unchanged. We can thus prove:

Theorem 4.3.3: The iterative module network learning algorithm converges to a

local maximum of score(S,A : D).

4.3.6 Learning with Regression Trees

We now review the family of conditional distributions we use in the gene expression

domain. As gene expression data is continuous, we use a conditional probability

model represented as a regression tree (Breiman et al., 1984). We reviewed regression

trees in Section 2.2.1. For convenience, we repeat their presentation here, focusing

on the implementation details relevant to our application.

For our purposes, a regression tree T for P (X | U) is defined via a rooted binary

tree, where each node in the tree is either a leaf or an interior node. Each interior

node is labeled with a test U < u on some variable U ∈ U and u ∈ IR. Such an

interior node has two outgoing arcs to its children, corresponding to the outcomes of

the test (true or false). The tree structure T captures the local dependency structure

of the conditional distribution. The parameters of T are the distributions associated

with each leaf. In our implementation, each leaf ` is associated with a univariate

Gaussian distribution over values of X, parameterized by a mean µ` and variance σ2
` .

An example of a regression tree CPD is shown in Figure 4.7.

To learn module networks with regression-tree CPDs, we must extend our previous

discussion by adding another component to S that represents the trees T1, . . . , TK

associated with the different modules. Once we specify these components, the above

discussion applies with several small differences. These issues are similar to those

encountered when introducing decision trees to Bayesian networks (Chickering et al.,

1997, Friedman and Goldszmidt, 1998), so we discuss them only briefly.

Given a regression tree Tj for P (Mj | PaMj
), the corresponding sufficient statistics

are the statistics of the distributions at the leaves of the tree. For each leaf ` in the
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Figure 4.7: Example of a regression tree with univariate Gaussian distributions at
the leaves for representing the CPD P (M3 | Usv1,Far1), associated with M3. The
tree has internal nodes labeled with a test on the variable (e.g., Usv1 < 2.1). Each
univariate Gaussian distribution at a leaf is parameterized by a mean and a variance.
The tree structure captures the local dependency structure of the conditional distri-
butions. In the example shown, when Usv1 ≥ 2.1, then the distribution over values
of variables assigned to M3 will be Gaussian with mean 1.4 and standard deviation
0.8 regardless of the value of Far1.

tree, and for each data instance x[m], we let `j[m] denote the leaf reached in the

tree given the assignment to PaMj
in x[m]. The module likelihood decomposes as a

product of terms, one for each leaf `. Each term is the likelihood for the Gaussian

distribution N (µ`; σ
2
` ), with the sufficient statistics for a Gaussian distribution.

〈Ŝj,`〉0 =
∑

m

∑

Xi∈Xj

η{`j[m] = `}

〈Ŝj,`〉1 =
∑

m

∑

Xi∈Xj

η{`j[m] = `}xi (4.5)

〈Ŝj,`〉2 =
∑

m

∑

Xi∈Xj

η{`j[m] = `}x2
i

The local module score further decomposes into independent components, one for
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each leaf `. Here, we use a Normal-Gamma prior (DeGroot, 1970) for the distribution

at each leaf: Letting τ` = 1/σ2
` stand for the precision at leaf `, we define: P (µ`, τ`) =

P (µ` | τ`)P (τ`), where P (τ`) ∼ Γ(α0, β0) and P (µ` | τ`) ∼ N (µ0; (λ0τ`)
−1), where we

assume that all leaves are associated with the same prior. Letting 〈Ŝj,`〉i be defined as

in Equation 4.5, we have that the component of the log marginal likelihood associated

with a leaf ` of module j is given by (see Appendix B for a full derivation):

−N
2

log(2π) + 1
2
log λ0 + α0 log β0 − log Γ(α0) + log Γ(α1)− α1 log β1 − 1

2
logλ1

where

λ1 = λ0 + 〈Ŝj,`〉0

µ1 =
λ0µ0 + 〈Ŝj,`〉1

λ1

α1 = α0 +
〈Ŝj,`〉0

2

β1 = β0 +
1

2
〈Ŝj,`〉2 −

1

2
〈Ŝj,`〉1 +

〈Ŝj,`〉0λ0

(

〈Ŝj,`〉1

〈Ŝj,`〉0
− µ0

)2

2λ1

When performing structure search for module networks with regression-tree CPDs,

in addition to choosing the parents of each module, we must also choose the associated

tree structure. We use the search strategy proposed by Chickering et al. (1997), where

the search operators are leaf splits. Such a split operator replaces a leaf in a tree Tj

with an internal node with some test on a variable U . The two branches below

the newly created internal node point to two new leaves, each with its associated

Gaussian. This operator must check for acyclicity, as it implicitly adds U as a parent

of Mj. The tree is grown from the root to its leaves. Figure 4.8 illustrates the split

operation in the context of the gene expression domain, where the split partitions the

arrays into two different modes of regulation. A good partition is one that results

in two distinct distributions. In the example of Figure 4.8, the module genes are all

strongly up-regulated in arrays in which Hap4 is up-regulated.

When performing the search, we consider splitting each possible leaf on each
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Figure 4.8: Example of a search step in the regression tree learning algorithm. (a)
Before introducing a split, the arrays are in no particular order. (b) The query “is
Hap4 up-regulated” partitions the arrays into two distinct distributions. In arrays in
which Hap4 is up-regulated (right) the module genes are strongly up-regulated. The
distribution for each of the two leaves is distinctly different.

possible parent U and each value u. As always in regression-tree learning, we do

not have to consider all real values u as possible split points; it suffices to consider

values that arise in the data set. Moreover, under an appropriate choice of prior (i.e.,

an independent prior for each leaf), regression-tree learning provides another level of

score decomposition: The score of a particular tree is a sum of scores for the leaves

in the tree. Thus, a split operation on one leaf in the tree does not affect the score

component of another leaf, so that operators applied to other leaves do not need to

re-evaluated.

4.4 Related Work

¿From the gene regulation discovery perspective, module networks represent a sig-

nificant advance over existing approaches for analyzing gene expression data. These

approaches (Eisen et al., 1998, Wu et al., 2002, Ihmels et al., 2002, Halfon et al.,

2002, Tanay et al., 2002) allow the identification of groups of co-expressed genes —
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genes that have similar patterns of expression. However, the regulatory programs of

these groups can be suggested only indirectly, for example, by finding common cis-

regulatory binding sites in the upstream regions of genes within each group (Spellman

et al., 1998, Roth et al., 1998, Tavazoie et al., 1999, Pilpel et al., 2001, Segal et al.,

2002, 2003e), as discussed in Section 3.4. In contrast, our method discovers both reg-

ulatory modules and their control programs, suggesting concrete regulators for each

module, their effect and combinatorial interactions, and the experimental conditions

under which they are active.

We note that other global models for regulatory networks have been suggested,

based on the following general idea: The regulatory network is a directed graph G and

each node in G corresponds to a specific gene that behaves according to some function

of its parents in G. These approaches include: Boolean network models (Weaver et

al., 1999, D’Haeseleer et al., 1999), where each gene is either on or off depending on

some boolean function of its parents; Linear models (Akutsu et al., 1998, Somogyi et

al., 1996), where each gene is modeled as a continuous linear function of its parents;

and Bayesian networks (Friedman et al., 2000), where each gene is a modeled as a

stochastic function of its parents. Of these approaches, the one shown to produce the

best biological results and the one closest to module networks is the Bayesian network

approach. We review this approach next and discuss its relation to our models.

4.4.1 Relation to Bayesian Networks

As mentioned above, Friedman et al. (2000) suggested the use of Bayesian networks

for discovering regulatory relationships from gene expression data. However, there

are several reasons why a learned module network is a better model than a learned

Bayesian network for this task. Most obviously, parameter sharing between genes

(variables) in the same module allows each parameter to be estimated based on a

much larger sample. Moreover, this allows us to learn dependencies that are consid-

ered too weak based on statistics of single genes. These are well-known advantages

of parameter sharing; but a novel aspect of our method is that we automatically

determine which genes have shared parameters and regulatory structure.
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Furthermore, the assumption of shared structure significantly restricts the space

of possible dependency structures, allowing us to learn more robust models than those

learned in a classical Bayesian network setting. While the genes in the same module

might behave (approximately) according to the same model in the underlying distri-

bution, this will often not be the case in the empirical distribution based on a limited

number of samples. A Bayesian network learning algorithm will treat each gene sep-

arately, optimizing the parent set and CPD for each gene in an independent manner.

In the very high-dimensional domains in which we are interested, there are bound

to be spurious correlations that arise from sampling noise, inducing the algorithm to

choose parent sets that do not reflect real dependencies, and will not generalize to

unseen data. Conversely, in a module network setting, a spurious correlation would

have to arise between a possible parent and a large number of other genes before the

algorithm would find it worthwhile to introduce the dependency.

4.4.2 Relation to OOBNs

¿From the representation perspective, module networks are related both to the frame-

work of object-oriented Bayesian networks (OOBNs) (Koller and Pfeffer, 1997) and

to the framework of probabilistic relational models (PRMs) (Koller and Pfeffer, 1998,

Friedman et al., 1999b). As discussed in Chapter 2, these frameworks extend Bayesian

networks to a setting involving multiple related objects, and allow the attributes of

objects of the same class to share parameters and dependency structure. We can

view the module network framework as a restriction of these frameworks, where we

have one object for every variable Xi, with a single attribute corresponding to the

value of Xi. Each module can be viewed as a class, so that the variables in a sin-

gle module share the same probabilistic model. As the module assignments are not

known in advance, module networks correspond most closely to the variant of these

frameworks where there is type uncertainty — uncertainty about the class assignment

of objects. However, despite this high-level similarity, the module network framework

differs in certain key points from both OOBNs and PRMs, with significant impact on

the learning task.
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In OOBNs, objects in the same class must have the same internal structure and

parameterization, but can depend on different sets of variables (as specified in the

mapping of variables in an object’s interface to its actual inputs). By contrast, in a

module network, all of the variables in a module (class) must have the same specific

parents. This assumption greatly reduces the size and complexity of the hypothesis

space, leading to a more robust learning algorithm. On the other hand, this assump-

tion requires that we be careful in making certain steps in the structure search, as

they have more global effects than on just one or two variables. Due to these differ-

ences, we cannot simply apply an OOBN structure-learning algorithm, such as the

one proposed by Langseth and Nielsen (2003), to such complex, high-dimensional

domains.

4.4.3 Relation to PRMs

To see the relationship between module networks and PRMs, we first consider a special

case of module networks, in which each variable X, that is a parent of at least one

module (i.e., X ∈ PaMj
for some 1 ≤ j ≤ K), is assigned to a designated module that

contains only X and has no parents. We further assume that the module assignments

of these parent variables are fixed during the entire module network learning process.

We can represent this restricted module network using the PRM framework described

in Section 2.3. In the gene expression domain, where each variable corresponds to a

gene and the parent variables are the candidate regulatory genes, one possible PRM

model would have: a Modulej class for each of the K modules with no attributes; an

object for each gene that is not a parent of any module, whose class is Modulej if the

gene is assigned to module j; an Array class with one Regulatori attribute for each of

the regulatory genes that are parents of at least one module, representing the mRNA

expression level measured for the regulator in the array; and an Expressionj class for

each of the K modules, with reference slots Module (with range type Modulej) and

Array (with range type Array). Each Expressionj class also has a single Level attribute

representing the mRNA expression level measured for the corresponding gene in the

corresponding array. The relational schema of such a PRM for an example module
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Array
Level
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Figure 4.9: A relational schema of a PRM for a simple module network with two
modules and three regulatory genes. The underlined attributes are reference slots of
the class and the dashed line indicates the types of objects referenced.

network with two modules and three regulatory genes is shown in Figure 4.9.

To complete the mapping of this restricted module network to the PRM frame-

work, we need to specify the dependency structure of the PRM and the CPDs that we

associate with the attributes of each class. For this special case, the specification is

straightforward: the parents of the Level attribute of each Expressionj class are simply

PaMj
— the regulatory genes that are parents of module j in the module network;

the CPD for the Level attribute of each Expressionj class is simply P (Mj | PaMj
)

— the CPD template associated with module j. Finally, the CPD for the Regulatori

attribute of the Array class is also taken from the designated module that Regulatori

is assigned to in this restricted module network. An example of the resulting full

PRM dependency structure for a simple module network with two modules and three

regulatory genes is shown in Figure 4.10.

The mapping above highlights some of the key differences between module net-

works and PRMs. The first aspect has to do with the algorithm for learning the

module network or its corresponding PRM. As we discussed earlier, a key feature

of module networks is that the assignment of variables to modules is learned auto-

matically as part of the algorithm for inducing a module network automatically from
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Module1

Module2

Array

Expression1

Expression2

Regulator1

Regulator2

Regulator3

Level

Level

Figure 4.10: A PRM dependency structure for a simple module network with two
modules and three regulatory genes. Note that each module has its own set of reg-
ulatory genes controlling its expression. In this example, the expression of module
1 is regulated by regulator 1 and regulator 2, while the expression of module 2 is
regulated by regulator 2 and regulator 3.

data. In the PRM above, this means that we have uncertainty over the class type of

each variable, which in the gene expression domain translates to our uncertainty over

which of the K Modulej classes each gene as instance of. Thus, if we want the PRM

framework to be compatible with that of module networks, we also need to devise a

general algorithm for learning the types of objects automatically as part of the PRM

learning process.

Another aspect of the mapping above is that the mapped module network was

restricted to assigning each parent variable to a designated module containing only

the parent variable without any parent variables of its own. Removing this restriction

within the PRM framework implies that each regulator gene will also be an instance

of one of the Modulej classes whose type needs to be learned. However, this presents

us with another challenge: we must make sure that the ground Bayesian network

induced from this PRM is acyclic. As a simple example, a regulator cannot be a

parent of the module class that it itself is an instance of, as that would cause a
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cyclic dependency. The ability to learn probabilistic dependencies for the regulatory

genes is an important feature of the module network framework, as we can discover

compound regulatory pathways, which are often of great interest. Thus, in order to

allow the parent variables to be themselves assigned to modules, we must guarantee

that our PRM learning algorithm results in acyclic models. Adding this feature to

the learning algorithm is not trivial.

In summary, to achieve the full representation and functionality of module net-

works, the current PRM framework needs to be enhanced with two important features:

a learning algorithm capable of automatically inferring the class type of objects; and

the ability to learn PRMs that are guaranteed to produce acyclic ground Bayesian

networks, while learning the class type of objects. Due to these missing features in

PRMs, we introduced the new framework of module networks. We note that Getoor

et al. (2000) attempt to address some of the issues above within the PRM framework

using a class hierarchy. However, their approach is very different from ours, requiring

some fairly complex search steps, and is not easily applied to the gene expression

domain.

Even though the PRM framework is missing features that are key in module net-

works, its representation is rich in other aspects that may be useful to exploit within

the module networks context. For example, in module networks, each gene is mapped

to a single random variable. However, in the PRM framework, where we map each

gene to a class, we can add additional descriptive attributes (e.g., the cellular-location

of genes). These attributes can then participate in the PRM dependency structure

and if necessary, we even have the flexibility of associating a different set of descriptive

attributes for each module class. Thus, combining the module network framework

with the PRM modeling language can result in a more expressive framework with

useful applications to the gene regulation domain.

4.5 Statistical Evaluation on Synthetic Data

In all the experiments below, our data consists solely of continuous values. As all of

the variables have the same domain, the definition of the module set reduces simply to



4.5. STATISTICAL EVALUATION ON SYNTHETIC DATA 155

-800

-750

-700

-650

-600

-550

-500

-450

0 20 40 60 80 100 120 140 160 180 200

Number of Modules

T
es

t 
D

at
a 

L
o

g
 L

ik
el

ih
o

o
d

 (
p

er
 in

st
an

ce
)

25 50
100 200
500

-600

-575

-550

-525

-500

-475

-450

0 20 40 60 80 100

Number of modules

T
ra

in
n

in
g

 D
at

a 
S

co
re

 (
p

er
 in

st
an

ce
)

25 50
100 200
500

(a) (b)

Figure 4.11: Performance of learning from synthetic data as a function of the number
of modules and training set size. The x-axis corresponds to the number of modules,
each curve corresponds to a different number of training instances, and each point
shows the mean and standard deviations from the 10 sampled data sets. (a) Log-
likelihood per instance assigned to held-out data. (b) Average score per instance on
the training data.

a specification of the total number of modules. We used regression trees as the local

probability model for all modules. As our search algorithm, we used beam search,

using a lookahead of three splits to evaluate each operator (see Section 2.7.1 for a

description of these search algorithm variants). When learning Bayesian networks,

as a comparison, we used precisely the same structure learning algorithm, simply

treating each variable as its own module.

As a basic test of our procedure in a controlled setting, we used synthetic data

generated by a known module network. This gives a known ground truth to which we

can compare the learned models. To make the data realistic, we generated synthetic

data from a model that was learned from the gene expression dataset described below.

The generating model had 10 modules and a total of 35 variables that were a parent of

some module. From the learned module network, we selected 500 variables, including

the 35 parents. We tested our algorithm’s ability to reconstruct the network using

different numbers of modules; this procedure was run for training sets of various
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sizes ranging from 25 instances to 500 instances, each repeated 10 times for different

training sets.

We first evaluated the generalization to unseen test data, measuring the likelihood

ascribed by the learned model to 4500 unseen instances. The results, summarized in

Figure 4.11(a), show that, for all training set sizes, except the smallest one with

25 instances, the model with 10 modules performs the best. As expected, models

learned with larger training sets do better; but, when run using the correct number

of 10 modules, the gain of increasing the number of data instances beyond 100 samples

is small and beyond 200 samples is negligible.

To test whether we can use the score of the model to select the number of modules,

we also plotted the score of the learned model on the training data (Figure 4.11(b)).

As can be seen, when the number of instances is small (25 or 50), the model with

10 modules achieves the highest score and for a larger number of instances, the score

does not improve when increasing the number of modules beyond 10. Thus, these

results suggest that we can select the number of modules by choosing the model with

the smallest number of modules from among the highest scoring models.

A closer examination of the learned models reveals that, in many cases, they

are almost a 10-module network. As shown in Figure 4.12(a), models learned using

100, 200, or 500 instances and up to 50 modules assigned ≥ 80% of the variables

to 10 modules. Indeed, these models achieved high performance in Figure 4.11(a).

However, models learned with a larger number of modules had a wider spread for the

assignments of variables to modules and consequently achieved poor performance.

Finally, we evaluated the model’s ability to recover the correct dependencies. The

total number of parent-child relationships in the generating model was 2250. For each

model learned, we report the fraction of correct parent-child relationships it contains.

As shown in Figure 4.12(b), our procedure recovers 74% of the true relationships

when learning from a dataset with 500 instances. Once again, we see that, as the

variables begin fragmenting over a large number of modules, the learned structure

contains many spurious relationships. Thus, our results suggest that, in domains

with a modular structure, statistical noise is likely to prevent overly detailed learned

models such as Bayesian networks from extracting the commonality between different
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Figure 4.12: (a) Fraction of variables assigned to the 10 largest modules. (b) Av-
erage percentage of correct parent-child relationships recovered when learning from
synthetic data for models with various number of modules and different training set
sizes. The x-axis corresponds to the number of modules, each curve corresponds to a
different number of training instances, and each point shows the mean and standard
deviations from the 10 sampled data sets.

variables with a shared behavior.

4.6 Evaluation on Real Data

We next evaluated the performance of our method on a real world data set of gene

expression measurements. We used the expression data of Gasch et al. (Gasch et

al., 2000), which measured the response of yeast to different stress conditions. The

data consists of 6157 genes and 173 experiments. As we have prior knowledge of

which genes are likely to play a regulatory role (e.g., based on properties of their

protein sequence), we restricted the possible parents to yeast genes that may play

such a role. To this end, we compiled a set of 466 candidate regulators whose SGD

(Cherry et al., 1998) or YPD (Hodges et al., 1999) annotations suggest a potential

regulatory role in the broad sense: both transcription factors and signaling proteins

that may have transcriptional impact. We also included genes described to be similar
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Figure 4.13: (a) Score of the model (normalized by the number of variables/genes)
across the iterations of the algorithm for a module network learned with 50 modules on
the gene expression data. Iterations in which the structure was changed are indicated
by dashed vertical lines. (b) Changes in the assignment of genes to modules for
the module network learned in (a) across the iterations of the algorithm. Shown are
both the total changes compared to the initial assignment (triangles) and the changes
compared to the previous iteration (squares).

to such regulators. We excluded global regulators, whose regulation is not specific

to a small set of genes or processes. (See Segal et al. (2003c) for a complete listing

of all candidate regulators). We then selected 2355 genes that varied significantly in

the data and learned a module network over these genes. We also learned a Bayesian

network over this data set.

4.6.1 Statistical Evaluation

We first examined the behavior of the learning algorithm on the training data when

learning a module network with 50 modules. This network converged after 23 iter-

ations. To characterize the trajectory of the algorithm, we plot in Figure 4.13 its
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Figure 4.14: Score of 100 module networks (normalized by the number of vari-
ables/genes) each learned with 50 modules from a random clustering initialization,
where the runs are sorted according to their score. The score of a module network
learned using the deterministic clustering initialization described in Section 4.3.4 is
indicated by an arrow.

improvement across the iterations, measured as the score on the training data, nor-

malized by the number of genes (variables). To obtain a finer-grained picture, we

explicitly show structure learning steps, as well as each pass over the variables in the

module reassignment step. As can be seen in Figure 4.13(a), the model score improves

nicely across these steps, with the largest gains in score occurring in steps in which the

structure was changed. Figure 4.13(b) demonstrates how the algorithm changes the

assignments of genes to modules, with 1221 of the 2355 (51.8%) genes changing their

initial assignment upon convergence, and the largest assignment changes occurring

immediately after structure modification steps.

As for most local search algorithms, initialization is a key component: A bad

initialization can cause the algorithm to get trapped in a poor local maximum. As

we discussed in Section 4.3.4, we initialize the assignment function using a clustering

program. The advantage of a simple deterministic initialization procedure is that it

is computationally efficient, and results in reproducible behavior. We evaluated this
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Figure 4.15: Comparison of generalization ability of module networks learning with
different numbers of modules on the gene expression data set. The x-axis denotes
the number of modules. The y-axis denotes the difference in log-likelihood on held
out data between the learned module network and the learned Bayesian network,
averaged over 10 folds; the error bars show the standard deviation.

proposed initialization by comparing the results to module networks initialized ran-

domly. We generated 100 random assignments of variables to modules, and learned

a module network starting from each initialization. We compared the model score

of the network learned using our deterministic initialization, and the 100 networks

initialized randomly. A plot of these sorted scores is shown in Figure 4.14. Encourag-

ingly, the score for the network initialized using our procedure was better than 97/100

of the runs initialized from random clusters, and the 3/100 runs that did better are

only incrementally better.

Moreover, we found a high correspondence between the assignment of genes to

modules in the network initialized using our procedure and the assignment of genes to

modules in the 100 randomly initialized networks: between 45 and 50 of the modules

in the analyzed run could clearly be matched to a module in each of the 100 runs

initialized randomly. For this mapping between modules, at least 50% of the genes

were placed in the same module in 56 of the 100 runs.

We evaluated the generalization ability of different models, in terms of log-likelihood
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of test data, using 10-fold cross validation. In Figure 4.15, we show the difference

between module networks of different size and the baseline Bayesian network, demon-

strating that module networks generalize much better to unseen data for almost all

choices of number of modules.

4.6.2 Sample Modules

We now turn to a detailed biological evaluation of the results when learning a module

network with 50 modules. With few exceptions, each of the inferred modules (46/50)

contained a functionally coherent set of genes (see Appendix C for a description of

how a module is tested for functional coherence). Together the modules spanned a

wide variety of biological processes including metabolic pathways (e.g., glycolysis),

various stress responses (e.g., oxidative stress), cell-cycle related processes, molecular

functions (e.g., protein folding), and cellular compartments (e.g., nucleus). (See Segal

et al. (2003c) for a complete listing of modules). Most modules (30/50) included genes

previously known to be regulated by the module’s predicted regulators. Many mod-

ules (15/50) had a match between a predicted regulator and its known cis-regulatory

binding motif (i.e., a statistically significant number of the module’s genes contained

the known motif in their upstream regions). Overall, our results provide a global view

of the yeast transcriptional network, including many instances in which our method

discovered known functional modules and their correct regulators, demonstrating the

ability of our method to derive regulation from expression.

We now present in detail several of the inferred modules, selected to show the

method’s ability to recover diverse features of regulatory programs.

The Respiration Module (see Figure 4.16) provides a clear demonstration of a

predicted module and of the validation process. It consists primarily of genes en-

coding respiration proteins (39/55) and glucose metabolism regulators (6/55). The

inferred regulatory program specifies the Hap4 transcription factor as the module’s

top (activating) regulator, primarily under stationary phase (a growth phase in which

nutrients, primarily glucose, are depleted). This prediction is consistent with Hap4’s
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Figure 4.16: The Respiration and carbon regulation module (55 genes). (a) Regu-
lation program (see Figure 4.2). (b) Gene expression profiles. Genes (rows), arrays
(columns). Arrays are arranged according to the regulation tree. For example, the
rightmost leaf includes the arrays in which both Hap4 and Alpha2 are up-regulated.
Contexts that consist primarily of one or two types of experimental conditions are
labeled. (c) Significant annotations: Colored entries indicate genes with the respec-
tive annotation. The most significantly enriched annotations for this module were
selected for display (the number of annotated genes and the calculated p-value for
the enrichment of each annotation are shown in parentheses). Note the enrichment
of three annotations representing a biochemical process, cellular compartment, and
physiological process, respectively, all relating to cellular respiration. (d) Promoter
analysis. Lines represent 500bp of genomic sequence located upstream to the start
codon of each of the genes; colored boxes represent the presence of cis-regulatory
motifs located in these regions.
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Figure 4.17: The nitrogen catabolite repression module

known role in activation of respiration (DeRisi et al., 1997, Forsburg and Guar-

ente, 1989). Indeed, our post-analysis detected a Hap4-binding DNA sequence mo-

tif (bound by the Hap2/3/4/5 complex) in the upstream region of 29/55 genes in

the module (p < 2 · 10−13). Note that this motif also appears in non-respiration

genes (mitochondrial genes and glucose metabolism regulators), which together with

their matching expression profiles, supports their inclusion as part of the module.

When Hap4 is not induced, the module is activated more mildly or is repressed.

The method suggests that these changes are regulated by other regulators, such as

the protein phosphatase type 1 regulatory subunit Gac1 and the transcription factor

Msn4. Indeed, the stress response element (STRE), recognized by Msn4, appears in

the upstream region of 32/55 genes in the module (p < 10−3) as well as in those of

many of the genes containing the Hap4 motif (17/29 genes; p < 7 · 10−10), supporting

our placement of both regulators in one control program.

The Nitrogen Catabolite Repression Module (see Figure 4.17) demonstrates the

ability of our method to capture an entire cellular response whose genes participate in

diverse metabolic pathways and cellular roles (12/29 in allantoin and urea metabolism,
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Figure 4.18: The galactose metabolism module

5/29 in amino acid metabolism, and 6/29 in sulfur/methionine metabolism), all of

which relate to the process by which the yeast utilizes the best available nitrogen

source. Gat1 is suggested as the key (activating) regulator of this module, further

supported by the presence of the GATA motif, the known binding sequence for Gat1,

in the upstream region of 26/29 genes (p < 10−17). This module also demonstrates

that the method can discover context-specific regulation, as the similarity in ex-

pression of genes in the module is mostly pronounced in stationary phase (17/22

experiments; p < 10−4), amino acid starvation (5/5; p < 9 · 10−5), and nitrogen de-

pletion (10/10; p < 8 · 10−9), all of which are conditions where utilizing alternative

nitrogen sources is crucial. Note that two additional known regulators involved in

this response, Uga3 and Dal80, are incorrectly suggested as members, rather than

regulators, of the module.

The Galactose Metabolism Module (see Figure 4.18) illustrates our method’s abil-

ity to recover small expression signatures, as the module consisted of only four Gal4-

regulated genes and predicted Gal4 as a regulator, with a predicted regulatory role

that includes activation in galactose-containing medium.

The Energy, Osmolarity and cAMP Signaling Module (see Figure 4.19) demon-

strates that our method can discover regulation by proteins other than transcription



4.6. EVALUATION ON REAL DATA 165

Figure 4.19: The energy, osmolarity and cAMP signaling module

factors, as the top predicted regulator was Tpk1, a catalytic subunit of the cAMP

dependent protein kinase (PKA). This prediction is supported by a recent study

(Norbeck and Blomberg, 2000) showing that the expression of several genes in the

module (e.g., Tps1) is strongly affected by Tpk1 activity in osmotic stress, which was

among the conditions predicted by the method to be Tpk1-regulated. (A regulator



166 CHAPTER 4. MODULE NETWORKS

is predicted to regulate a module under a set of conditions C if the contexts split by

the regulator contain a large number of arrays from condition C). Further support

is given by the presence of the STRE motif, known to be bound by transcription

factors that are regulated by Tpk1 (Norbeck and Blomberg, 2000), in the upstream

region of most genes in the module (50/64; p < 3 · 10−11), often in combination with

other motifs bound by Tpk1-modulated transcription factors, such as Adr1 (37/64;

p < 6 ·10−3) and Cat8 (26/64; p < 2 ·10−3). However, our method suggests that Tpk1

is an activator of the module in contrast to its known role as a repressor (Lenssen et

al., 2002). We discuss this discrepancy below.

4.6.3 Global View

We next evaluated all 50 modules to test whether the proteins encoded by genes in

the same module had related functions. To this end, we associated each gene with

the processes it participates in. We removed all annotations associated with less than

5 genes from our gene set. This resulted in a list of: 923 GO (Ashburner et al., 2000)

categories, 208 MIPS (Mewes et al., 1997) categories, and 87 KEGG (Kanehisa et

al., 2002) pathways. We scored the functional/biological coherence of each module

(Figure 4.20, C column) by the percent of its genes covered by annotations signifi-

cantly enriched in the module (p < 0.01). We assigned a name to each module based

on the largest one or two categories of genes in the module (combining gene anno-

tations from the databases above and from the literature). Note that these concise

names are introduced to facilitate the presentation, and do not always convey the full

content of some of the more heterogeneous modules (see modules and their signifi-

cant annotations in Figure 4.21). Most modules (31/50) exhibited a coherence level

above 50% and only 4/50 had gene coherence below 30%. Note that the actual coher-

ence levels may be considerably higher, as many genes are not annotated in current

databases. Indeed, an in-depth inspection revealed many cases where genes known

to be associated with the main process of the module were simply not annotated as

such.

We obtained a global view of the modules and their function by compiling all gene
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Respective regulator known to regulate module genes or their implied process           Partial evidence

Respective regulator known to play a role under the predicted condition                     Partial evidence

Enrichment for motif known to participate in regulation by respective regulator         Partial evidence

# Modulea # Gb C (%)c Reg.d M C G Reg.d M C G Reg.d M C G Reg.d M C G Reg.d M C G Reg.d M C G
1 Respiration and carbon regulation 55 84 Hap4 HMLAlpha2 Cmk1 Gac1 Xbp1 Msn4
2 Energy, osmolarity and cAMP signaling 64 64 Tpk1 Kin82 Yer184c Cmk1 Ppt1 Kns1
3 Energy and Osmotic stress I 31 65 Xbp1 Kin82 Tpk1
4 Energy and Osmotic stress II 42 38 Ypl230w Yap6 Gac1 Wsc4
5 Glycolysis and Folding 37 86 Gcn20 Ecm22 Bmh1 Bas1
6 Galactose metabolism 4 100 Gal4 Gac1 Hir3 Ime4
7 Snf kinase regulated processes 74 47 Ypl230w Yap6 Tos8 Sip2
8 Nitrogen catabolite repression 29 66 Gat1 Plp2
9 AA metabolism I 39 95 Gat1 Ime4 Cdc20 Slt2

10 AA metabolism II 37 95 Xbp1 Hap4 Afr1 Uga3 Ppt1
11 AA and purine metabolism 53 92 Gat1 Ppz2 Rim11
12 Nuclear 47 47 HMLAlpha2 Ino2
13 Mixed I 28 50 Pph3 Ras2 Tpk1
14 Ribosomal and phosphate metabolism 32 81 Ppt1 Sip2 Cad1
15 mRNA,rRNA and tRNA processing 43 40 Lsg1 Tpk2 Ppt1
16 RNA Processing and Cell Cycle 59 36 Ypl230w Ime4 Ppt1 Tpk2 Rho2 Mcm1
17 DNA and RNA processing 77 43 Tpk1 Gis1 Ppt1
18 TFs and RNA processing 59 68 Gis1 Pph3 Tpk2 Lsg1
19 TFs and nuclear transport 48 56 Ypl230w Met18 Ppt1
20 TFs I 53 92 Cdc14 Mcm1 Ksp1
21 TFs II 50 54
22 TFs, cell wall and mating 39 59 Ptc3 Sps1
23 TFs and sporulation 43 60 Rcs1 Ypl133c
24 Sporulation and TFs 74 39 Gcn20 Gat1 Ste5
25 Sporulation and cAMP pathway 59 37 Xbp1 Ypl230w Sip2 Not3
26 Sporulation and Cell wall 78 40 Ypl230w Yap6 Msn4
27 Cell wall and transport I 23 48 Shp1 Bcy1 Gal80 Ime1 Yak1
28 Cell wall and Transport II 63 46 Ypl230w Kin82 Msn4
29 Cell differentiation 41 71 Ypl230w Ypk1 Cna1
30 Cell cycle (G2/M) 30 70 Cdc14 Clb1 Far1
31 Cell cycle, TFs and DNA metabolism 71 85 Gis1 Ste5 Clb5
32 Cell cycle and general TFs 64 72 Ime4 Ume1 Xbp1 Prr1 Cnb1 Arp9
33 Mitochondrial and Signaling 87 60 Tpk1 Cmk1 Yer184c Gis1
34 Mitochondrial and Protein fate 37 78 Ypk1 Sds22 Rsc3
35 Trafficking and Mitochondrial 87 56 Tpk1 Sds22 Etr1
36 ER and Nuclear 79 86 Gcn20 Yjl103c Not3 Tup1
37 Proteasome and Endocytosis 31 71 Ime4 Cup9 Bmh2 Hrt1
38 Protein modification and trafficking 62 79 Ypl230w Ptc3 Cdc42
39 Protein folding 23 87 Bmh1 Bcy1 Ypl230w
40 Oxidative stress I 15 80 Yap1 Sko1 Far1
41 Oxidative stress II 15 73 Tos8 Flo8
42 Unkown (sub-telomeric) 82 45 Gcn20
43 Unknown genes I 36 42
44 Unknown genes II 29 14 Apg1 Pcl10
45 Unknown genes III 39 5 Xbp1 Kar4
46 Mixed II 52 42 Gcn20 Tos8 Sip2
47 Mixed III 41 63 Gcn20 Ume1 Cnb1
48 Mixed IV 35 29 Fkh1 Sho1
49 Ty ORFs 16 6
50 Missing values 64 39

Figure 4.20: Summary of module analysis and validation. a Module name. b Number
of genes in module. c Functional/biological coherence of each module, measured as
the percent of genes in the module covered by significant gene annotations (p < 0.01).
d Regulators predicted to regulate each module are listed, along with three scores for
each regulator. Filled boxes indicate biological experiments supporting the prediction;
washed-out colored boxes indicate indirect or partial evidence. M, enrichment for a
motif known to participate in regulation by the respective regulator, in upstream
regions of genes in the module; C, experimental evidence for contribution of the
respective regulator to the transcriptional response under the predicted conditions;
G, direct experimental evidence showing that at least one of the genes in the module,
or a process significantly over-represented in the module genes, is regulated by the
respective regulator.
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annotations and motifs significantly enriched in each module into a single matrix (see

Figure 4.21(a), left matrices). For deriving significant gene annotations, we calcu-

lated, for each module and for each annotation, the fraction of genes in the module

associated with that annotation and used the hypergeometric distribution to calculate

a p-value for this fraction (see Appendix C). We performed a Bonferroni correction

for multiple independent hypotheses and took p-values < 0.05/N (N=923, 208, 87

for GO, MIPS, and KEGG annotations, respectively) to be significant for Figure 4.20

and Figure 4.21. For deriving significant motifs, we first obtained a collection of both

known motifs (Heinemeyer et al., 1999) and de novo motifs (discovered by the motif-

finding program described in Section 3.2.1 applied to the upstream regions of the

genes in each module). For each module and each motif, we then calculated the frac-

tion of genes in the module associated with that motif and used the hypergeometric

distribution to calculate a p-value for this fraction (Bonferroni corrected for multiple

hypotheses testing) as described above for deriving significant gene annotations.

This presentation enables an automatic approach for deriving rich descriptions

for modules. For example, the attributes for the respiration module shown in Fig-

ure 4.16 are immediately apparent in this representation, including the Hap4 and

Msn4 (STRE) binding sites, and the ion transport, TCA cycle, aerobic respiration,

and mitochondrion annotated genes (see Figure 4.21(a), highlighted rectangles la-

beled ‘1’). The matrix representation also provides further support for the inferred

modules. For example, it justifies the division of amino acid (AA) metabolic processes

into four modules (see Figure 4.21(b)): while the modules share certain attributes

(e.g., AA metabolism), each is characterized by a unique combination of gene anno-

tations (e.g., only module 9 is also annotated as starvation response). Furthermore,

all of the modules in this module group are associated with a common cis-regulatory

motif (Gcn4), but each has a unique signature of cis-regulatory motifs.

To obtain a global perspective on the relationships between different modules, and

the extent to which they group together, we compiled a graph of modules and cis-

regulatory motifs, and connected modules to their significantly enriched motifs (see

Figure 4.22). In this view, sets of similar but distinct modules, such as AA metabolism

modules (8-11), energy modules (1-3, 25, 33, 41), and DNA/RNA modules (13-15,
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Figure 4.21: Enrichment of annotations and motifs in modules and in predicted tar-
gets of regulators. (a) Entries represent the percentage of genes associated with
annotations in each module or in all predicted targets of each regulator. De novo
motifs are named with ’N’ and the module number from which the motif was dis-
covered). Gene annotations were compiled from Gene Ontology (G), MIPS (M), and
KEGG (K). The bottom right matrix displays significant conditions regulated by each
regulator and the entries correspond to p-values for each condition. (b) Submatrix of
significant annotations for amino acid metabolism related modules (8-11).
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17, 18) form module groups, where all modules share at least one motif. It can be

seen that different modules in a group are again characterized by partly overlapping

but distinct combinations of motifs. We also searched for pairs of motifs that are

significantly enriched (as a pair) in the upstream regions of module genes. While

different modules were characterized by distinct motif pairs, there is overlap between

the motif pairs of modules within a module group, providing further support for the

combinatorial nature of the inferred regulation programs. When we examine the

predicted regulators of modules (see Figure 4.22), we see that modules belonging to

the same module group appear to share some, but not all, of their regulators. These

results suggest a higher level of modularity of the yeast transcriptional network, in

which functionally related modules share some of their regulatory elements, yet each

module is characterized by a unique regulatory program.

We next turned to the evaluation of the inferred regulation programs. We com-

pared the known function of the inferred regulators with the method’s predictions,

where known function is based on a compiled list of literature references (see (Segal

et al., 2003c) for a list of all references used), in which direct experimental evidence

exists for the role of the predicted regulators. We note that some modules (21, 43,

49, 50) did not have regulators, as none of the candidate regulators was predictive

of the expression profile of their gene members. In most modules (35/50), the reg-

ulators were predicted to play a role under the expected conditions (Figure 4.20, C

columns). For most modules (30/50) there is direct experimental evidence showing

that at least one of the genes in the module, or a process significantly over-represented

in the module genes, is regulated by at least one of the module’s predicted regulators

(Figure 4.20, G columns). Many modules (15/50) also had an exact match between

cis-regulatory motifs enriched (p < 10−4) in upstream regions of the module’s genes

and the regulator known in the biological literature to bind to that motif (Figure 4.20,

M columns).

To identify the function of the regulators, we associated each regulator with biolog-

ical processes, experimental conditions, and possibly a binding motif. As a regulator

‘X’ may regulate more than one module, its targets consist of the union of the genes in

all modules predicted to be regulated by ‘X’. We tested the targets of each regulator
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Figure 4.22: Global view and higher order organization of modules. The graph de-
picts inferred modules (middle, numbered squares), their significantly enriched motifs
(right), and their associated regulators (left). Red edges between a regulator and a
module are supported in the literature. Module groups are defined as sets of modules
that share a single significant cis-regulatory motif. Module groups whose modules
are functionally related are labeled (right). Modules belonging to the same module
group appear to share regulators and motifs, with individual modules having different
combinations of these regulatory elements.
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for enrichment of the same motifs and gene annotations as above (see Figure 4.21(a),

two upper right matrices), using the hypergeometric p-value. We took p-values < 0.05

(Bonferroni corrected as for module annotations) to be significant.

In addition, we tested each regulator for experimental conditions that it signif-

icantly regulates by examining how conditions are split by each relevant regulation

tree. Experimental conditions were extracted from the array labels (Gasch et al.,

2000). For each occurrence of a regulator as a decision node in a regression tree,

we computed the partition of each experimental condition between the right branch

(the true answer to the query on the regulator) and the left branch (the false an-

swer), and used the binomial distribution to compute a p-value on this partition (see

Appendix D). We took p-values < 0.05 to be significant. For example, in the respi-

ration module (see Figure 4.16), Hap4 up-regulation distinguishes stationary phase

conditions from the rest (right branch; Hap4 activates the module), and would thus

be associated with regulation in stationary phase. Significant conditions for a par-

ticular regulator can thus be discovered either by visual inspection of the regulation

tree or by the automated statistical procedure described above. The results of this

procedure are summarized in Figure 4.21(a) (bottom right matrix). As an example

of the resulting associations, the matrix suggests that Gat1 regulates nitrogen and

sulfur metabolism processes, binds to the GATA motif, and works under conditions

of nitrogen depletion (Figure 4.21(a), highlighted rectangles labeled ‘2’).

When we consider uncharacterized regulators, the predicted regulator annotations

provide focused hypotheses about the processes they regulate, the conditions under

which they work, and the cis-regulatory motifs through which their regulation is

mediated. For example, we can predict that the putative transcription factor Ypl230w

regulates genes important for protein folding during stationary phase (Figure 4.21(a),

highlighted rectangles labeled ‘3’). The ability to generate detailed hypotheses, in the

form “regulator ‘X’ regulates process ‘Y’ under conditions ‘W’”, is among the most

powerful features of the module networks procedure, as it also suggests the specific

experiments that can validate these hypotheses.
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4.7 Wet Lab Experiments

A regulation program specifies that certain genes regulate certain processes under cer-

tain conditions. Our method thus generates detailed, testable hypotheses, suggesting

specific roles for a regulator and the conditions under which it acts. We tested ex-

perimentally the computational predictions for three putative regulators with as yet

unknown functions (a transcription factor and two signaling molecules). To test our

ability to predict different types of regulatory mechanisms, we selected a putative

zinc-finger transcription factor, Ypl230w, and two putative signaling molecules, the

protein kinase Kin82 and the phosphatase Ppt1. We obtained the relevant yeast dele-

tion strains (Winzeler et al., 1999). Under normal growth conditions, all three deletion

strains showed no apparent abnormalities as compared to the wild-type strain.

As discussed above, each hypothesis generated by the method provides the signif-

icant conditions under which the regulator is active, and thereby specifies the experi-

mental conditions under which the mutant should be tested. In concordance with the

method’s hypotheses (see Figure 4.21(a), highlighted rectangles labeled ‘3’ and ‘4’ in

the bottom right regulator-condition matrix), we tested 4Kin82 under severe heat

shock conditions (25◦C to 37◦C), 4Ppt1 during hypo-osmotic shift, and 4Ypl230w

during the entry to stationary phase.

In each experiment, we employed microarray analysis to compare the transcrip-

tional response in the deletion strain to that of the wild-type strain, under the same

conditions. These genome-wide experiments enable a complete evaluation of the ac-

curacy of our predictions for each regulator: whether it plays a regulatory role in

the predicted conditions; whether it regulates genes in modules that it was predicted

to regulate; and most importantly, whether it regulates processes that the method

predicted it regulates.

To test whether the mutants had any effect, we used a paired two-tailed t-test

to identify the genes that showed differential expression between wild-type and mu-

tant strains under the tested conditions. Genes with p < 0.05 from the t-test were

considered differentially expressed. Each time series was zero-transformed to enable

comparison of the response to the tested condition. For 4Kin82 and 4Ppt1, we gave
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Figure 4.23: Microarray experiments testing functional predictions for putative regu-
lators. Expression data for the differentially expressed genes (extracted using paired
t-test) for both the wild-type (wt) and mutant time series in the following experi-
ments: 4Ypl230w during stationary phase, 4Ppt1 during hypo-osmotic shift, and
4Kin82 under heat shock.

all time points as input to the t-test (5, 15, 30, and 60 minutes for 4Kin82; 7, 15,

30, and 60 minutes for 4Ppt1). For the 4Ypl230w experiment, measuring response

during stationary phase, we used only the late time points (7, 9, and 24 hours), since

the response to this growth condition starts at 7 hours. To ensure that only genes

with large differences are included, we also required that at least half the time points

compared are different by at least 2-fold change in expression. The only exception

was 4Ppt1, where we required a 1.3 fold difference, as the overall signal in these
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arrays was weaker.

The number of such genes was much higher than expected by chance (1034 for

4Kin82, 1334 for 4Ppt1, and 1014 for 4Ypl230w), thus showing that all three regu-

lators play a role in the predicted conditions, in contrast to normal growth conditions

where there were few differences between the wild-type and mutant strains. To fo-

cus on the most significant changes, we examined only genes with a significant fold

change in expression between the wild-type and mutant expression profiles, resulting

in 281 genes for 4Kin82, 602 genes for 4Ppt1, and 341 genes for 4Ypl230w (see

Figure 4.23 for expression patterns).

To test whether our method correctly predicted the targets of each regulator, we

examined the distribution of the differentially expressed genes among the modules.

For each putative regulator ‘X’, we calculated a p-value for the enrichment of differ-

entially expressed genes in each module, and ranked the modules according to these

p-values. In all three cases, the highest ranking module was predicted to be regulated

by ‘X’ (Figure 4.24(a)), with: 25% (4Ppt1, p < 9 · 10−3), 26% (4Kin82, p < 10−4),

and 30% (4Ypl230w, p < 10−4) of the genes in the highest ranking module showing

differential expression.

Finally, we tried to identify the process regulated by each regulator, by searching

for significantly enriched functional annotations in its set of differentially expressed

genes. In two cases (4Ypl230w, and 4Ppt1), the annotations matched those pre-

dicted for the regulator (Figure 4.24(b)), supporting the method’s suggestions for

the regulatory roles of the tested regulators: Ypl230w activates protein folding, cell

wall, and ATP binding genes, and Ppt1 represses phosphate metabolism and rRNA

processing.

Altogether, deletion of each of the three regulators caused a marked impairment

in the expression of a significant fraction of their computationally predicted targets,

supporting the method’s predictions and providing important insight regarding the

function of these uncharacterized regulators.
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# Module Significance

14Ribosomal and phosphate metabolism 8/32,   9e-3
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# Module Significance

39Protein folding 7/23, 1e-4

29Cell differentiation 6/41, 2e-2

5 Glycolysis and folding 5/37, 4e-2

34Mitochondrial and protein fate 5/37, 4e-2

Protein folding (G)
ATP binding (G)
Cell wall (G)
Endoplasmic reticulum (G)
Steroid metabolism (G)
Protein modification (G)
Intracellular protein transport (G)
Nucleocytoplasmic transport (G)
RNA processing (G)
ER to golgi transport (G)
mRNA splicing (G)
Peroxisome (G)
Starch and sucrose metabolism (K)

Cell organization and biogenesis  (G)
Transcription from Pol I promoter (G) 
Phosphate metabolism (M)
rRNA processing (G)
Nucleolus (G)
Intracellular protein transport (G)
Nucleocytoplasmic transport (G)
Amino acid metabolism (G)
RNA processing (G)
Carbohydrate metabolism (G)
mRNA splicing (G)
Tricarboxylic acid cycle (G)

Y
pl

23
0w

P
pt

1

Amino acid metabolism (G)
Starch and sucrose metabolism (K)
Glycogen metabolism (G)
Carbohydrate metabolism (G)
Tricarboxylic acid cycle (G)

K
in

82

Y
pl

23
0w

P
pt

1
K

in
82

(a) (b)

>40%0%

# Module Significance

3 Energy and osmotic stress I 8/31, 1e-4

2 Energy, osmolarity & cAMP signaling 9/64, 6e-3

15 mRNA, rRNA and tRNA processing 6/43, 2e-2

Pre
di

cte
d

Tes
te

d

# Module Significance

14Ribosomal and phosphate metabolism 8/32,   9e-3

11Amino acid and purine metabolism 11/53, 1e-2

15mRNA, rRNA and tRNA processing 9/43,   2e-2

39Protein folding 6/23,   2e-2

30Cell cycle 7/30,   2e-2

# Module Significance

39Protein folding 7/23, 1e-4

29Cell differentiation 6/41, 2e-2

5 Glycolysis and folding 5/37, 4e-2

34Mitochondrial and protein fate 5/37, 4e-2

Protein folding (G)
ATP binding (G)
Cell wall (G)
Endoplasmic reticulum (G)
Steroid metabolism (G)
Protein modification (G)
Intracellular protein transport (G)
Nucleocytoplasmic transport (G)
RNA processing (G)
ER to golgi transport (G)
mRNA splicing (G)
Peroxisome (G)
Starch and sucrose metabolism (K)

Cell organization and biogenesis  (G)
Transcription from Pol I promoter (G) 
Phosphate metabolism (M)
rRNA processing (G)
Nucleolus (G)
Intracellular protein transport (G)
Nucleocytoplasmic transport (G)
Amino acid metabolism (G)
RNA processing (G)
Carbohydrate metabolism (G)
mRNA splicing (G)
Tricarboxylic acid cycle (G)

Y
pl

23
0w

P
pt

1

Amino acid metabolism (G)
Starch and sucrose metabolism (K)
Glycogen metabolism (G)
Carbohydrate metabolism (G)
Tricarboxylic acid cycle (G)

K
in

82

Y
pl

23
0w

P
pt

1
K

in
82

(a) (b)

>40%0%

# Module Significance

3 Energy and osmotic stress I 8/31, 1e-4

2 Energy, osmolarity & cAMP signaling 9/64, 6e-3

15 mRNA, rRNA and tRNA processing 6/43, 2e-2

Pre
di

cte
d

Tes
te

d

Figure 4.24: (a) Ranked modules table for each tested regulator ‘X’; ranking is based
on p-value calculated for enrichment of differentially expressed genes in each module.
All modules significantly enriched for these genes (p < 0.05) are shown along with
the number of differentially expressed genes out of the total number of genes in the
module and the corresponding p-value for the enrichment. Modules predicted to be
regulated by the respective regulator ‘X’ are highlighted in red. (b) Functional predic-
tions for tested regulators. The left column (Predicted) for each regulator shows all
annotations predicted by the method to be associated with that regulator (extracted
from the corresponding column in Figure 4.21(a)). The right column (Tested) shows
which annotations were also significantly enriched in the set of differentially expressed
genes of each regulator (p < 0.05; black triangles), where the intensity of each en-
try represents the fraction of genes with the annotation from the set of differentially
expressed genes.
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4.8 From Gene Expression to Regulation

In summary of our biological evaluation, we performed a comprehensive evaluation

of the validity of the structures reconstructed by our method. By analyzing bio-

logical databases and previous experimental results in the literature, we confirmed

that many of the regulatory relations that our method automatically inferred are

indeed correct. Furthermore, our model provided focused predictions for genes of

previously uncharacterized function. We performed wet lab biological experiments

that confirmed the three novel predictions we tested. Thus, we have demonstrated

that the module network model is robust enough to learn a good approximation of

the dependency structure between 2355 genes using only 173 instances. These results

show that, by learning a structured probabilistic representation, we identify regula-

tion networks from gene expression data and successfully address one of the central

problems in analysis of gene expression data. This finding is far from trivial and it

is thus interesting to try and gain insight into the biological mechanism that makes

it possible to infer regulatory events from gene expression data. In this section we

explore this question.

Our method detects regulatory events based on the statistical association in gene

expression. In order to identify a regulatory relation in expression data, both the

regulator and its targets must be transcriptionally regulated, resulting in detectable

changes in their expression. Therefore, our approach relies on the assumption that the

gene expression profile of the regulators provides evidence as to their activity level.

This assumption is currently part of an ongoing biological debate: some researchers

do not believe that gene expression data can reveal the actual regulators themselves.

Indeed, due to the complex, often post-transcriptional nature of regulation, our as-

sumption does not always hold. However, to the contrary, recent large-scale analysis

of the regulatory networks of E. Coli (Shen-Orr et al., 2002) and S. Cerevisiae (Lee

et al., 2002, Milo et al., 2002) revealed the prevalence of cases in which the regu-

lators are themselves transcriptionally regulated, a process whose functional impor-

tance is supported both theoretically and experimentally (Hlavacek and Savageau,

1996, Rosenfeld et al., 2002). Such concordant changes in the expression of both the
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Figure 4.25: Regulator chain A→ B→ C. (a) Cartoon of the cell at two time points.
At time I, transcription factor (TF) A activates transcription factor B, raising the
levels of mRNA and protein for transcription factor B. In time II, transcription factor
B activates its target. (b) Time series plotting the protein and mRNA levels. (c)
Network motif. The gene with the dotted border is predicted as the regulator.

regulator and its targets might allow our automated procedure to detect statistical

associations between them.

When a transcription factor is transcriptionally regulated, its mRNA expression

might correlate well with its activity. Therefore, in cases where transcription factor A

activates transcription factor B, which in turn activates some target C, our approach

can possibly capture the regulatory relationship between B and C (see Figure 4.25).

Note that steady state gene expression profiles do not observe temporal changes (as

those plotted in Figure 4.25). Instead, perturbations of the cell state (mutations and

environmental treatments) create statistical associations between a regulator and its

target, which are then detected by our learning algorithm.

Figure 4.25 provides a very simplistic view of gene regulation. In many cases, gene

expression data provides only part of the story: while transcription factors directly

control transcription, the factors themselves are frequently regulated at the post-

translational level. Furthermore, many transcription factors are active at very low

levels of expression, and thus can not be detected reliably with microarrays. In such

cases, even if the transcription factor is regulated transcriptionally, current microarray

technology can not observe its change. In these cases, our basic assumption does not
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hold. While the gene expression data is inherently oblivious to regulation of this

kind, an indirect regulatory relationship can be detected. Sometimes our method

identifies the regulatory relationship between a signal transduction molecule and its

indirect targets. We attribute this ability to the presence of positive and negative

feedback loops: a signaling molecule post-transcriptionally activates a transcription

factor, which in turn activates its targets. If the signaling molecule is in turn a target

of the transcription factor, a feedback loop is formed (see Figure 4.26). In the first

step, the cell contains an inactive form of the transcription factor and its targets are

not transcribed. Small amounts of the signaling molecule activate the transcription

factor without inducing any change to its mRNA level. The activated transcription

factor induces the transcription of all its targets, including the signaling molecule.

While there is no detectable change in the expression of the transcription factor, the

expression of the signaling molecule is concordant with its indirect targets.

Shen-Orr et al. (2002) use known E. Coli regulatory relations to break down

the design of the E. Coli transcriptional network into basic building blocks. They

define network motifs as patterns of interconnections that recur in the transcriptional

network at frequencies much higher than those found in randomized networks. They

find that a number of such sub-structures include regulators that are themselves

transcriptionally regulated. Lee et al. (2002) construct a genome wide regulatory

map for S. Cerevisiae using a new high throughput experimental approach: cis-

regulatory location analysis. This technology measures the binding of transcription

factors to the promoter regions of an entire genome. Using genome-wide location

data for 106 S. Cerevisiae transcription factors they found prevalence of many of the

motifs previously detected in the E. Coli regulatory network.

We used the data of Lee et al. (2002) to test if some of our inferred regulator-

regulatee relationships participate in such network motifs. Indeed, many of the in-

ferred regulatory relations are part of such regulatory motifs. We present different

types of regulatory components and an example in which such a component is found

(these are summarized in Figure 4.27):

• Regulator chain: In this chain, a primary transcription factor activates a sec-

ondary transcription factor by enhancing its transcription. After the secondary
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Figure 4.26: Positive signaling feedback loop (a) In time I, the signaling molecule
activates the transcription factor (TF). In time II, the transcription factor activates
all its targets including the signaling gene. Therefore, the expression of the signaling
molecule correlates with its indirect targets (b) Time series plotting the protein and
mRNA levels. (c) Network motif for the positive signaling feedback loop.

transcription factor is translated into protein, it activates its own targets. In

steady state expression profiles, this can result in a statistical association be-

tween the secondary transcription factor and targets of both the primary and

secondary transcription factors. Note that in regulator chains, only the sec-

ondary transcription factor is inferred as a regulator (see Figure 4.25). For

example, the transcription factor Phd1 activates a secondary transcription fac-

tor, Hap4 (see Figure 4.27(a)). The module network procedure found twenty

one genes that are bound by Hap4 in the location dataset to be part of the

respiration module which Hap4 regulates. Note that Pet9 was also inferred to

be regulated by Hap4, while based on the location data it is regulated by Phd1.

In this case our method possibly detected co-regulation instead of regulation.

Such cases will be further discussed below.

• Auto-regulation: A transcription factor activates both its own transcription and

that of its target genes. Thus, the transcription factor is co-expressed along with

its targets. For example, Yap6 activates its own transcription and that of its

target genes (see Figure 4.27(b)). These were also inferred as part of the Snf
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Respiration module (1)

Regulator Chain

Phd1 (TF)

Hap4 (TF)

Cox4 Cox6 Atp17

Pet9

Yap6 (TF)

Hxt12 Fsp2 Kel2

Snf kinase regulated
processes module (7)

Auto-regulation

(a) (b)

Sip2 (SM)
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Sporulation and cAMP
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Figure 4.27: Network motifs: For each regulatory component, the relevant transcrip-
tion factors (TF), signal transduction molecules (SM), target genes and their relations
are shown. Cis-regulation events via transcription factors are shown in solid arrows,
post-transcriptional events via signaling molecules in dotted arrows. The gene with
dotted border is that predicted as a regulator by our method. The solid bordered
regulators are not expected to be inferred from gene expression data. The targets
included are those genes that are both predicted by our method to be regulated by
the dotted regulator and also bound by the transcription factor according to the
cis-location data (p < 0.001 in Lee et al. (2002)).

kinase regulated processes module which Yap6 regulates.

• Positive signaling loop: A signaling molecule activates (post transcriptionally)

a transcription factor which induces the transcription of various targets, pos-

sibly including the signaling molecule. The coordinated expression changes in

the signaling molecule and its indirect targets allow the signaling molecule (but



182 CHAPTER 4. MODULE NETWORKS

not the transcription factor) to be correctly inferred as a regulator (see Fig-

ure 4.26). For example, the signaling molecule Sip2 activates the transcription

factor Msn4, which in turn induces transcription of its various targets, including

Sip2 (see Figure 4.27(c)).

• Negative signaling loop: Similar to the previous example, a negative feedback

loop is also possible: a signaling molecule inhibits activity of a transcription

factor, which induces transcription of its targets and possibly of the signaling

molecule. For example, Tpk1 inhibits the activity of Msn4. Msn4 regulates

the targets: Nth1, Tps144, and Glo145 (see Figure 4.27(d)). These are part

of the Energy and osmotic stress module regulated by Tpk1. Tpk1’s upstream

region includes the Msn4 bound STRE motif, supporting Tkp1’s regulation by

Msn4. However, as both the signaling molecule (Tpk1) and the targets are up-

regulated, the method predicts that the signaling molecule’s role is activation,

in contrast to its actual inhibitory role.

Overall, our results demonstrate that regulatory events, including post-transcriptio-

nal ones, have a detectable signature in the expression of genes encoding transcription

factors and signal transduction molecules. Nevertheless, the ability of our methods

to discover regulatory events is due in part to secondary effects. The methods do

not directly detect the post-translational activation of a transcription factor. Rather,

due to a feedback loop, they identify the resulting change in the transcription of the

signaling molecule.

Despite the successes described above, our methods fails to identify regulatory

relations. These false negatives are divided between cases when the regulator’s ex-

pression does not change sufficiently to merit detection, and cases where our method

failed to identify the correct regulatory relation, despite a detectable change in the

regulator’s expression pattern. A close examination of the relationships missed by

our method reveals four categories of false negatives:

• Undetectable regulators: If the change in a regulator’s activity is attributed

exclusively (or mostly) to post-transcriptional changes, we do not expect our
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method to capture it. For example, the Dal81 gene is a known transcriptional

activator of allantoin, GABA, and urea catabolic genes, when nitrogen sources

are low (e.g., in later stationary phase). Although such conditions are included

in our data set, there is little change in the expression of the Dal81 gene itself.

Thus, our methods could not detect Dal81-mediated regulation. Furthermore,

if the regulatory event and the concomitant change in the regulator’s expression

occur primarily under very specific conditions, which are not included in our

data set, we do not expect our methods to capture it. While missed in our

current analysis, these latter relations can be captured by our methods given a

richer dataset.

• Regulator redundancy: If several regulators participate in the same regulatory

event, due to “explaining away” we expect our methods to capture only some

representatives, missing the remaining regulators. This limitation applies both

when several transcription factors work in one complex and when several signal

transduction molecules and/or transcription factors are concatenated in one

regulator chain. For example, the Hap2/3/4/5 transcription factors work in

a ternary complex to regulate the expression of respiration genes. While the

module network procedure correctly captured Hap4 as a regulator of respiration

it failed to identify Hap2, 3, and 5 which have a “redundant function”. Note

that the changes in Hap4’s expression are the most pronounced among these

four potential regulators, explaining the method’s specific choice. Note that

this limitation of our methods does not apply to combinatorial regulation, when

several regulators have only partly overlapping roles (e.g., Hap4 and Msn4 in

the respiration module).

• Co-regulation redundancy: Many modules contain target genes that also happen

to belong to the candidate regulator set. As these genes often have an expression

profile which is similar to that of the other target genes in the module, they may

mistakenly be chosen as a regulator for the module, in some cases rendering the

true regulator redundant. In such cases, the true regulator is often assigned as

a module member, along with its targets (e.g., Uga3 and Dal80 in the Nitrogen
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Catabolite Repression module).

• Gene specific regulation: Even when a regulator’s expression pattern is highly

(and possibly uniquely) predictive of that of its known target, this relationship

may be specific to a single target, and cannot be generalized to an entire module

or set of genes. In such cases, the module network procedure, which is aimed

at identifying shared regulatory responses, would not detect the regulatory re-

lation. We believe that the statistical robustness and biological conciseness

gained by taking a general perspective of regulation outweighs this particular

limitation of our approach.

Thus, while we attempt to limit the false positives, our reconstruction approach

inherently leads to many false negatives. We do not reconstruct the entire regulatory

program of an entire organism, rather only certain aspects of it. Further work is

required in order to explain why a specific transcription factor is chosen over other

potential ones, why a signaling molecule is identified as a regulator instead of its cog-

nate transcription factor in certain cases (e.g., Tpk1 and Msn4, both of which have

a strong expression signature) but not in others, or why a particular combination of

regulators has been selected. While some of the reasons may have to do with our

computational method, others may be related to critical biological issues such as the

strength of feedback regulation and the coordination of action between various regu-

lators. Answers to these questions can both aid the design of better regulatory models

and algorithms to reconstruct them and can illuminate the regulation of regulators

and the coordination of their actions.

4.9 Conclusions

Discovering biological organization from gene expression data is a promising but chal-

lenging task. In this chapter, we introduced the framework of module networks, which

offers unique capabilities in extracting modularity and regulation from expression

data. Furthermore, the framework of module networks developed for this task can be

successfully applied to other domains. For example, we applied the module network
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procedure to stock market data (Segal et al., 2003b), where the data consisted of

changes in the price of stocks in consecutive trading days and our goal was to identify

sets of stocks whose pricing patterns are similar and can be explained as a function

of the pricing patterns of a small set of other stocks.

The statistical advantages of module networks allow us to learn detailed regula-

tory programs over thousands of gene solely from approximately one hundred gene

expression data samples. Overall, our resulting model provides a clear global view

of functional modules and their regulation, that corresponds well to the known bio-

logical literature. Perhaps the most powerful feature of our method is its ability to

generate detailed testable hypotheses concerning the role of specific regulators and

the conditions under which this regulation takes place. Microarray experiments that

we carried out based on the computational predictions for three putative regulators

with as yet unknown functions (a transcription factor and two signaling molecules)

validated the method’s predictions and provided important insight regarding the func-

tion of these uncharacterized regulators. As more diverse gene expression datasets

become available, it is our belief that applying the module networks may result in

important new insights in the ongoing endeavor to understand the complex web of

biological regulation.

Despite the success of the module network procedure in identifying regulators

of biological processes our approach has several limitations. First, the assumption

that the regulators themselves have detectable changes in their expression that are

coordinated with the expression of their targets results in several types of regulatory

relationships that cannot be inferred by our method. We discussed the implications

of this assumption in detail in Section 4.8.

A second limitation of our approach is that each gene is assigned to exactly one

module. Thus, a regulatory module is defined over the entire set of arrays in the input

dataset. However, in the biological domain, many genes are known to be involved

in several different processes where the processes differ in their associated genes. As

these processes may be activated under different conditions, a module network, by

restricting each gene to only one module, cannot represent such overlapping processes

with different regulatory mechanisms. In a separate project (Segal et al., 2003a, Battle
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et al., 2004), we presented one way to extend our probabilistic model that allows genes

to be assigned to several modules. The expression of a gene in a particular array is

then modeled as a sum of its expression in each of the modules in which it participates,

and each module can potentially have a different set of regulators.

Another limitation of our approach is that the number of modules is determined

in advance and given as input to the method. Obviously, the number of regulatory

modules of an organism in an expression dataset is not known and thus determining

the number of modules should be part of the regulatory module discovery task. In

Section 4.5, we showed that at least in synthetic data, where the number of modules

is known, we can use the score of the model to select the correct number of modules

by choosing the model with the smallest number of modules from among the highest

scoring models. This observation is encouraging, as it suggests that we can extend

our approach to select the number of modules automatically by adding search steps

that modify the number of modules and use the model score to compare models that

differ in their number of modules.

Finally, in the application of the module network procedure to the biological

domain, we pre-selected a candidate set of regulatory genes and allowed the learned

model to only use these candidate regulators as parents in the learned regulation

programs. Thus, we had to know the potential regulators in advance and our results

may be sensitive to this choice of input regulators. Furthermore, it precludes the

identification of regulatory genes that were not included in the candidate regulator set.

Thus, an interesting extension would be to learn regulatory modules while allowing

all genes to be regulators. However, in such an extension we must find other means

for biasing the learned model towards assigning regulatory proteins as parents of

regulation programs. For example, if we can identify distinguishing features of the

general class of regulatory proteins, we might be able to use those to bias the learned

model. In addition to expanding the set of regulators that can be considered as

regulators, such an extension can also reveal interesting aspects of the behavior of

regulators and their interaction with their target genes.



Chapter 5

Conserved Regulatory Modules

The recent sequencing efforts are producing complete genomes for many organisms at

a fast rate. Combined with advances in new technologies for obtaining genome-wide

information at the sub-cellular level, there are several organisms for which we now

have several types of data on a genome-wide scale. Each of these data types provides

an informative view of one aspect of the cellular machinery. Thus, by combining

different types of data we can arrive at more reliable and biologically meaningful

conclusions. We saw one such example in Chapter 3, where we combined both DNA

sequence data and genome-wide expression measurements into a single probabilistic

framework. However, an interesting question is whether we can further improve our

understanding of the biological system by combining data across multiple organisms.

While there has been much work on combining sequence data across organisms,

very little work has been done on combining other types of functional data. In this

chapter, we present an extension to the module network framework of Chapter 4 that

combines expression data from multiple organisms for the task of discovering regu-

latory modules that have been conserved across evolution. As in module networks,

our procedure identifies modules of co-regulated genes, their regulators, and the con-

ditions under which this regulation occurs. The key difference is that the regulatory

modules in our extended procedure are jointly learned from expression profiles of

several organisms. As we show in an application of the method to expression mea-

surements of brain tumors from human and mouse, this joint learning allows us to

187
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improve our regulatory predictions compared to models learned from each organism’s

data in isolation. Moreover, we show that by combining expression data from human

and mouse, we can gain insights into the evolution of the regulatory relationships in

brain tumors between these organisms.

We start this chapter with an overview of our approach, followed by a formal

presentation of the underlying probabilistic model and our algorithm for learning this

model automatically from expression data from multiple organisms. We then show

the results obtained when applying the framework to the human and mouse brain

tumor expression profiles mentioned above.

5.1 Model Overview

An implicit assumption made in the models we presented thus far has been that co-

regulation of the mRNA expression profiles of a set of genes, observed in expression

data, implies some functional relatedness among the gene set. While this assumption

is true in many cases, it is definitely not true in all cases. Some reasons have to do with

noise in the technology for measuring the data. For example, the mRNA products

of two genes with similar sequences might cross-hybridize and bind to each other’s

designated spots on the microarray chip. Such genes may appear to be co-regulated

even though they really are not.

However, even if the measuring technology was perfect, there may still be cases in

which truly co-regulated genes are not functionally related. For example, physically

close neighboring genes on the DNA that are transcribed from opposite DNA strands

may share the same DNA control element or promoter. A transcription factor that

binds this common promoter may thus regulate the expression of both genes. Such

gene pairs will be co-regulated but the reason may have to do with their commonly

shared promoter rather than their participation in the same biological process. As

another example, cis-regulatory DNA motifs can occur by chance in the genome and

might lead to serendipitous transcriptional regulation of nearby genes. Such genes

may be co-regulated with the ‘true’ targets of the binding transcription factor, even

though they are not related in function to the true targets. In both examples, genes
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that are not related to the cellular response or the process carried out by the cell

may be co-regulated with the genes that are. In most cases, the biological system is

robust enough to handle such redundancies.

The discussion above implies that in some cases unrelated genes may be co-

regulated. How can we distinguish accidentally regulated genes from those that are

physiologically important?

One powerful way, which has been employed with great success in sequence analy-

sis, is to use evolution as a filter. As organisms evolved from a common ancestor in an

evolutionary process that selects against mutations in functional elements, the idea

is that by finding those sequence elements that have been conserved between organ-

isms throughout evolution, we are likely to enrich for the more functionally relevant

elements.

In this chapter, we extend the use of the evolution filter idea beyond sequence

data, and ask whether we can improve our ability to discover regulatory relationships

by combining expression data across different organisms. We (Stuart et al., 2003)

and others (Bergmann et al., 2004) have shown that by integrating expression data

from multiple organisms we can improve the prediction of gene function. The basic

idea was to identify those co-expression relationships that have been conserved across

organisms and use only those for the gene function prediction task. The assumption

was that the functionally irrelevant co-expression relationships that are due to ran-

dom noise would not be preserved across organisms, while the relevant co-expression

relationships, by being functionally important will be selected for and thus conserved

across evolution. Thus, by identifying the conserved co-expression relationships we

were able to filter out many irrelevant relationships and improve our ability to predict

the function of genes.

We use a similar assumption for the regulatory module discovery task: regulator-

regulatee relationships that have been conserved across evolution confer some selective

advantage. Thus, by finding them we might be able to improve regulatory module

discovery.

We design a joint probabilistic model over expression data from multiple organ-

isms, which directly extends the module network framework presented in Chapter 4.
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Figure 5.1: Example of a parallel module network with three modules for two organ-
isms, each with five orthologous genes. Genes are shown as filled ovals. Orthologous
genes are given the same name and their corresponding ovals are filled with the same
color in both organisms. In the example shown, three genes are assigned to the same
module in both organisms (Bmh1, Far1, and Hsp60) while three genes have different
module assignments in the two organisms (Usv1, Gic2, and Hsp10). Two regulatory
relationships are shared between organisms (Bmh1 as a regulator of module 2, and
Far1 as a regulator of module 3), while two relationships exist only in one of the
organisms (Usv1 as a regulator of module 3 in organism 1, and Hsp10 as a regulator
of module 3 in organism 2).

We refer to this extension as a parallel module network. The input for a parallel

module network consists of expression data from ` organisms. As our focus is discov-

ering conserved regulatory modules, we construct the model only over the data for

evolutionary conserved genes. We use orthologous genes as a proxy for evolutionary

conserved genes, where an orthologous pair of genes consists of two genes from two or-

ganisms that are derived from a common ancestral gene. We assume that orthologous

genes perform the same function in the two organisms. We further assume that the set

of orthologs is known. Thus, in addition to the input expression datasets, our method

also takes as input an orthology map which specifies the orthology relationships that

hold between all the genes in the ` input organisms.
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Under these assumptions, a parallel module network consists of ` separate module

networks, where each module network is defined over the expression data of one

of the organisms and has K modules. An example of a parallel module network

for two organisms and five genes is shown in Figure 5.1. The probabilistic model

is such that each module network is independent of the other networks, except for

two modifications that bias the model towards finding regulatory modules that are

conserved across the input organisms.

The first modification captures our intuition that orthologs are more likely to be

assigned to the same module across different organisms. We encode this modifica-

tion in the module assignment prior probability distribution, which assigns a higher

likelihood to an assignment in which orthologs are assigned to the same module in

different organisms. Note that encoding this preference in the module assignment

prior does not force orthologs to be assigned to the same module. This feature of the

model is important, as we want to allow for the possibility that orthologs diverged in

function during evolution and thus their module assignment differs.

The second modification we make to the model favors the sharing of regulator-

regulatee relationships across the otherwise ` independent module networks. We

encode this bias in the structure prior probability distribution, which assigns a higher

likelihood to models in which corresponding modules in different organisms share the

same parent regulators. As in the case of the module assignment prior, this sharing

of relationships is not forced.

We present an algorithm for learning a parallel module network from data that

takes the above module assignment and structure prior into account. Thus, by chang-

ing the strength of these priors we can learn models with a varying degree of shared

regulatory relationships. Interestingly, as we show in an application of this model

to expression data from human and mouse brain tumors, a parallel module network

learns better regulatory modules in both human and mouse compared to the regula-

tory modules learned by a separate module network over the human expression data

and a separate module network over the mouse data. Moreover, we show that this

gain is indeed due to evolutionary conservation of regulatory relationships, as no gain

is observed when combining random data from another organism or when scrambling
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the mapping of orthologous genes across organisms.

5.2 Probabilistic Model

We now provide a formal definition of our probabilistic model. Although the model

can be applied in other settings, we focus the presentation on the application to gene

expression data. As discussed above, our model is a direct extension of the module

network framework presented in Chapter 4. We refer to this extension as a parallel

module network.

¿From the representation perspective, a parallel module network over ` organisms

is nothing more than ` separate instances of the module network model, each defined

over the expression data of one of organism. The only two modifications we make to

this model are in the module assignment and structure prior probability distributions.

We introduce these changes in Section 5.3, where we discuss how we learn a parallel

module network automatically from data.

As discussed above, we construct the model only over genes that have at least

one ortholog in one of the other organisms, and assume that this orthology map is

given to us as input. We represent this orthology map by a graph O that has a

node for every gene in each of the ` organism, and every pair of orthologous genes

are connected by an edge in O. Using the orthology map, and following the module

network definitions in Section 4.2, we define a parallel module network as:

Definition 5.2.1: A parallel module network G over ` organisms consists of an or-

thology map O and a set of module networks (M1, . . . ,M`), where each module

networkMi is a triple (Mi.C,Mi.T ,Mi.A) defined as in Section 4.2, i.e.,Mi.C is a

module set,Mi.T is a module network template forMi.C (see Definition 4.2.1), and

Mi.A is a module assignment function forMi.C (see Definition 4.2.2). In addition:

• The module network Mj for each organism j is defined over a set of nj ran-

dom variables Mj.X = {X1, . . . , Xnj
} of the same type (i.e., for every pair of

variables Xi ∈ Mj.X and Xl ∈ Mj.X , Val(Xi) = Val(Xl)).
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• The module setMj.C for each organism j has exactly K modules, i.e.,Mj.C =

{M1, . . . ,MK} of the same type (i.e., for every pair of modules Mi and Ml,

Val(Mi) = Val(Ml)).

• The orthology map O is a graph that has a node for each random variable

Mj.Xi of every module networkMj, and every pair of orthologous genes from

two different organisms are connected by an edge in O (i.e.,Mj.Xi1 andMl.Xi2

are connected by an edge if gene i1 in the j-th organism and gene i2 in the l-th

organisms are orthologs).

In our gene expression domain, the random variableMj.Xi represents the mRNA

expression level of the i-th gene in organism j. In our example from Figure 5.1 there

are two organisms. The genes for both organism 1 and organism 2 are {Bmh1,Gic2,

Usv1,Far1,Hsp10,Hsp60}, where M1.Bmh1 and M2.Bmh1 are orthologs, M1.Gic2

and M2.Gic2 are orthologs, and so on. In addition, the module assignments for

organism 1 are M1.A(Bmh1) = 1,M1.A(Gic2) = 2,M1.A(Usv1) = 2, and so on,

while the module assignments for organism 2 are M2.A(Bmh1) = 1,M2.A(Gic2) =

3,M2.A(Usv1) = 3, and so on.

A parallel module network defines a probabilistic model using the probabilistic

model induced by the module network associated with each organism. Specifically,

we define the semantics of a parallel module network by “unrolling” a Bayesian net-

work where all of the variables assigned to module Mi.Mj share the parents and

conditional probability template assigned to Mi.Mj in Mi.T . Thus, the resulting

Bayesian network consists of ` independent Bayesian networks, each unrolled from

a module network of one of the organisms. For this unrolling process to produce a

well-defined distribution, the resulting network must be acyclic. By our construc-

tion, acyclicity can be guaranteed by requiring the Bayesian network induced from

the module network associated with each organism to be acyclic, as described in

Definition 4.2.3.

We can now define the semantics of a parallel module network:
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Definition 5.2.2: A parallel module network G = (M1, . . . ,M`) defines a ground

Bayesian network BG over M1.X , . . . ,M`.X as follows: For each variable Mi.Xj ∈
Mi.X , where Mi.A(Mi.Xj) = k, we define the parents of Mi.Xj in BG to be

PaMi.Mk
, and its conditional probability distribution to be P (Mi.Mk | PaMi.Mk

), as

specified in Mi.T . The distribution associated with G is the one represented by the

Bayesian network BG. To guarantee that this distribution is coherent, we require the

module graph GMi
(see Definition 4.2.3) of each module networkMi to be acyclic.

5.3 Learning the Model

We now turn to the task of learning parallel module networks from data. Recall that

a parallel module network is specified by an orthology map O and a set of ` module

networks, one for each of the ` organisms. Each module network Mi is in turn

specified by a set of K modules, an assignment function Mi.A of genes to modules,

the parent structureMi.S specified inMi.T , and the parametersMi.θ for the local

probability distributions P (Mi.Mj | Mi.PaMj
).

As in Chapter 4, we focus on the most general task of learning the network struc-

ture and the assignment function, as well as a Bayesian posterior over the network

parameters for each of the ` module networks.

Thus, we are given a training set D which includes ` gene expression datasets,

i.e., D = {M1.D, . . . ,M`.D}, where the expression dataset for the i-th organism,

Mi.D = {x[1], . . . ,x[Mi]}, consists of Mi instances drawn independently from an

unknown distribution P (Mi.X ). Our primary goal is to learn a module network

structure Mi.S and assignment functionMi.A for each distribution P (Mi.X ).

In Chapter 4, we took a score-based approach to the learning task of each mod-

ule network, and defined a Bayesian scoring function that measures how well each

candidate model fits the observed data. If we use this scoring function for each of

the ` module networks, then we can learn each module network independently of the

other networks using the algorithms presented in Section 4.3. However, recall that

our goal is to learn networks in which orthologs are assigned to the same module in
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different organisms and regulator-regulatee relationships are shared across the regu-

lation programs of corresponding modules in different organisms. We encode these

preferences in a module assignment and network structure prior distributions that

are defined jointly over all ` module networks and take into account the joint assign-

ments and structures of all module networks. Thus, as the prior distributions are

no longer independent across the ` module networks, we cannot learn each module

network independently. We thus focus this section on the algorithmic problem of

finding a high scoring model for all ` module networks in the presence of these joint

prior distributions.

5.3.1 Likelihood Function

We begin by examining the data likelihood function

L(G : D) = P (D | G) =
∏̀

i=1

L(Mi :Mi.D) =
∏̀

i=1

Mi
∏

m=1

P (Mi.x[m] | Mi.T ,Mi.A).

This function plays a key role both in the parameter estimation task and in the

definition of the structure score.

As the semantics of a parallel module network is defined via a ground Bayesian

network composed of ` independent ground Bayesian networks, one for each organism,

we have that the likelihood decomposes into a product of likelihood functions, one

for each module network Mi. As in Equation 4.1, the likelihood for each module

network decomposes according to modules, such that we can write:

L(G : D)

=
∏̀

i=1

K
∏

j=1





Mi
∏

m=1

∏

Mi.Xk∈Mi.X
j

P (Mi.xk[m] | paMi.Mj
[m], θMi.Mj |PaMi.Mj

)





=
∏̀

i=1

K
∏

j=1

Lj(PaMi.Mj
,Mi.X

j, θMi.Mj |PaMi.Mj
:Mi.D), (5.1)

where Mi.X
j = {X ∈ Mi.X | Mi.A(X) = j}, and θMi.Mj |PaMi.Mj

are the parame-

ters associated with the CPD template P (Mi.Mj | PaMi.Mj
).
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As described in Section 4.3.1, when learning conditional probability distributions

from the exponential family (e.g., discrete distribution, Gaussian distributions, and

many others), then the module likelihood functions can be reformulated in terms

of sufficient statistics of the data. As the likelihood for a parallel module network

decomposes as a product of likelihoods, one for each module network, the formula for

the module likelihood as a function of the sufficient statistics are identical to those

presented in Section 4.3.1.

5.3.2 Priors and the Bayesian Score

As we discussed, our approach for learning parallel module networks is based on

the use of a Bayesian score. Specifically, we define a model score for a pair (S,A)

as the posterior probability of the pair, integrating out the possible choices for the

parameters θ, where S = {M1.S, . . . ,M`.S} and A = {M1.A, . . . ,M`.A} are the

vectors of network structures and assignment functions for all ` module networks,

respectively. We define an assignment prior P (A), a structure prior P (S | A) and a

parameter prior P (θ | S,A). These describe our preferences over different networks

before seeing the data. By Bayes’ rule, we then have

P (S,A | D) ∝ P (A)P (S | A)P (D | S,A)

where the last term is the marginal likelihood

P (D | S,A) =
∫

P (D | S,A, θ)P (θ | S)dθ.

We define the Bayesian score as the log of P (S,A | D), ignoring the normalization

constant

score(S,A : D) = logP (A) + logP (S | A) + logP (D | S,A) (5.2)

As discussed above, a parallel module network is equivalent to ` independent mod-

ule networks with two modifications. The first modification biases the learned models
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to ones in which orthologous genes are assigned to the same module in the module

networks of the different organisms. We encode this bias in the prior probability over

assignments, P (A). Intuitively, assignments in which more orthologs are assigned to

the same module should receive higher prior probabilities. We choose to represent

this probability by pairwise terms over the assignments of each pair of organisms as

follows:

P (A) ∝
K
∏

j=1

(

∏̀

i=1

α(Mi.Aj)
)





∏̀

i1=1

∏̀

i2=i1+1

fA(Mi1.Aj,Mi2 .Aj)


 (5.3)

where Mi.Aj is the choice of variables assigned to module j in the module network

for organism i, α is a function from a set of variables to the positive reals, and fA is

a function from two sets of variables to the positive reals such that:

fA(Mi1.Aj,Mi2.Aj) = exp[λ

ni1
∑

i=1

ni2
∑

l=1

η{Mi1.A(Mi1.Xi) =Mi2.A(Mi2.Xl) = j)}

η{(Mi1.Xi,Mi2.Xl) ∈ O}]

where η{Mi1.A(Mi1.Xi) =Mi2.A(Mi2.Xl) = j)} is an indicator function that is

equal to 1 if and only if Mi1.Xi is assigned to module j in the module network

of organism i1, andMi2 .Xl is assigned to module j in the module network of organ-

ism i2, and η{(Mi1.Xi,Mi2.Xl) ∈ O} is an indicator function that is equal to 1 if

and only if gene i in organism i1 and gene l in organism i2 are orthologs according

to the orthology map O. Thus, fA is parameterized by a single parameter λ ≥ 0 and

assigns a ‘bonus’ of eλ to every orthologous gene pair in which the two orthologs from

the respective organisms are assigned to the same module.

We note that other choices for the form of fA are also possible. Our choice

of decomposing fA by pairs of organisms, and parameterizing it with a single λ

parameter is motivated by its simplicity and extensibility to several organisms. The

function α is similar to its definition in Definition 4.3.1 and may be used to encode

our prior preferences over the number of genes assigned to each module. We also note

that we can describe the part of the assignment prior that favors assigning orthologs

to the same module using a Markov network (Pearl, 1988) that has a random variable
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for every gene in each organism representing its module assignment. We then have

pairwise potentials over every pair of orthologous genes, where this potential has the

value λ for entries in which the pair of variables have the same module assignment

and 1 for all other entries. Note that this Markov network has the same structure as

the orthology map O.

The second modification we make in a parallel module network biases the learned

models to ones in which regulator-regulatee relationships are shared across the module

networks for the different organisms. We encode this bias in the prior probability over

network structures, P (S). Intuitively, structures in which orthologs are assigned as

parents of corresponding modules in different organisms should receive higher prob-

abilities. We represent this probability in a similar form to the prior over module

assignments, using pairwise terms over the network structures of each pair of organ-

isms as follows:

P (S) ∝
K
∏

j=1

(

∏̀

i=1

ρ(Mi.Sj)
)





∏̀

i1=1

∏̀

i2=i1+1

fS(Mi1 .Sj,Mi2.Sj)


 (5.4)

whereMi.Sj denotes the choice of regulator parents for module j, ρ is a function from

a set of parents for module j to the positive reals as described in Definition 4.3.1, and

fS is a function from two sets of parents to the positive reals such that:

fS(Mi1.Sj,Mi2.Sj) = exp[γ

ni1
∑

i=1

ni2
∑

l=1

η{Mi1.Xi ∈ Mi1.Sj}η{Mi2.Xl ∈ Mi2.Sj}

η{(Mi1.Xi,Mi2 .Xl) ∈ O}]

where η{Mi1.Xi ∈ Mi1.Sj} is an indicator function that is equal to 1 if and only if

Mi1.Xi is a parent of module j in the module network of organism i1, and

η{(Mi1.Xi,Mi2.Xl) ∈ O} is an indicator function that is equal to 1 if and only if

the parent gene i in organism i1 and the parent gene l in organism i2 are orthologs

according to the orthology map O. Thus, fS is parameterized by a single parameter

γ ≥ 0 and assigns a ‘bonus’ of eγ to every orthologous gene pair and every module

j where each gene in the pair is a parent (regulator) of module j in its respective

organism. Note that in our construction, an orthologous pair may receive more than
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one bonus, if there is more than one module that has both genes as its parents. Again,

we note that while our choice of fS is motivated by simplicity, other choices are also

possible. We also note that we can represent the part of the structure prior that

favors assigning orthologous pairs to corresponding modules in different organisms by

a Markov network using a similar network construction to the one described above

for the assignment prior.

In Section 4.3.2 we presented a list of conditions (see Definition 4.3.1) under which

the Bayesian score for a module network decomposes into local module scores. To

allow efficient evaluation of a large number of alternative models, we want similar

conditions to hold in the case of parallel module networks. As the module assign-

ment prior and structure prior are different in a parallel module network, we need to

revisit two conditions from Definition 4.3.1. The first is structure modularity, which

states that the prior over structures decomposes as a product over terms, one for

each module. The second is assignment modularity, which states that the prior over

assignments decomposes as a product of terms, one for each module. Note that in

both the modified assignment prior (Equation 5.3) and the modified structure prior

(Equation 5.4), we took care to maintain this property of decomposability according

to modules. Thus, following the same arguments of Theorem 4.3.2, we can prove the

decomposability property of the Bayesian score for parallel module networks:

Theorem 5.3.1: Let P (A), P (S | A), P (θ | S,A) be assignment, structure, and

parameter priors. When the assignment prior P (A) follows the form of Equation 5.3,

the structure prior P (S | A) follows the form of Equation 5.4, and the parameter prior

P (θ | S,A) satisfies the assumptions of Definition 4.3.1, then the Bayesian score of a

parallel module network decomposes into local module scores:

score(S,A : D) =
K
∑

j=1

scoreMj
(PaM1.Mj

,M1.Aj, . . . ,PaM`.Mj
,M`.Aj : D)

scoreMj
(M1.Sj,M1.Aj, . . . ,M`.Sj,M`.Aj : D) = (5.5)

∑̀

i=1

log
∫

Lj(Mi.Sj,Mi.Aj, θMi.Mj |Mi.Sj
:Mi.D)P (θMi.Mj

| Mi.Sj)dθMi.Mj |Mi.Sj
+

logP (M1.Sj, . . . ,M`.Sj) + logP (M1.Aj, . . . ,M`.Aj)
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whereMi.Sj denotes that we chose a structure in which Sj are the parents of module

j in the module network of organism i (i.e.,Mi.Sj = {X ∈ Mi.X | X ∈ PaMi.Mj
}),

and Mi.Aj denotes that we chose an assignment function in which Aj is the set of

variables assigned to module j in the module network of organism i (i.e., Mi.Aj =

{X ∈ Mi.X | Mi.A(X) = j}).

Note that, while the module likelihood scores further decompose by the module

network of each organism, the terms for the module assignment prior and structure

prior do not, as we modified them such that they are not independent across organ-

isms. As we shall see below, the decomposition of the Bayesian score plays a crucial

rule in our ability to devise an efficient learning algorithm that searches the space of

parallel module networks for one with a high score.

5.3.3 Structure Search Step

Given a scoring function over networks, we now consider the task of finding a high

scoring parallel module network. This problem is a challenging one, as it involves

searching over two combinatorial spaces simultaneously — the space of structures

and the space of module assignments. We use a similar approach to that described in

Chapter 4 and simplify our task by using an iterative approach that repeats two steps:

In one step, we optimize the dependency structures of all module networks relative

to our current assignment functions, and in the other, we optimize the assignment

functions of all module networks relative to our current dependency structures.

The first type of step in our iterative algorithm learns the structure of each module

network, Mi.S, assuming that the module assignments of each module network,

Mi.A, are fixed. This step involves a search over the space of dependency structures,

attempting to maximize the score defined in Equation 5.2.

We first consider optimizing the dependency structure of each module network

separately, using the algorithm described in Section 4.3.3. There, we used a standard

heuristic search over the combinatorial space of dependency structures. We defined

a search space, where each state in the space is a legal parent structure, and a set of

operators that take us from one state to another. We traversed this space looking for
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high scoring structures using the greedy hill climbing search algorithm.

Our choice of local search operators included steps for adding or removing a vari-

able Mi.Xk from a parent set PaMi.Mj
. When an operator caused a parent Mi.Xj

to be added to the parent set of module Mi.Mj, we had to verify that the resulting

module graph remains acyclic, relative to the current assignmentMi.A. As described

in Section 4.3.3, this step is quite efficient, as cyclicity is tested on the module graph,

which contains only K nodes, rather than on the dependency graph of the ground

Bayesian network, which contains ni nodes (usually ni � K).

However, recall that our structure prior, P (S), defined in Equation 5.4, decom-

poses by modules and pairs of organisms, such that a bonus of eγ is given for each

pair of orthologous genes and module j where both genes from the orthologous pair

are parents of module j in the respective organisms. Thus, if we learn the dependency

structure of each module network independently using the local search operators de-

scribed above, we ignore this aspect of the structure prior during the search. Any

bonuses we may get for adding a shared regulator for corresponding modules in dif-

ferent organisms are thus accidental.

To take this structure prior into account, we modify the above search algorithm.

Rather than searching for dependency structures independently in each module net-

work, we interleave the search steps for the different module networks. We construct

one search space that includes the local search operators for all module networks.

At each step, we apply the highest scoring step which modifies the structure of only

one of the module networks. Upon applying a step that adds (or removes) a vari-

able Mi.Xk to the parent set of PaMi.Mj
, we add (or subtract) a bonus of γ to the

log-score of the search steps that add (or remove) the ortholog variables of Mi.Xk

according to the orthology map O in all module networks other thanMi.

Note that, as in module networks, the decomposition of the score provides consid-

erable computational savings. When updating the dependency structure for a module

Mi.Mj, the module score for another module Mi.Ml does not change, nor do the

changes in score induced by various operators applied to the dependency structure

of Mi.Ml. Hence, after applying an operator to PaMi.Mj
that involves a variable

Mi.Xk, we need only update the change in score for those operators that involve
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Mi.Mj. Note, however, that we do need to modify the operators that involve mod-

ule j and the orthologs ofMi.Xk in all other networks, due to the form of the structure

prior, although this modification is limited as the likelihood component of the score

does not change.

As described in Section 4.3.6, in the gene expression domain, we represent the

regulation program of each module using a conditional probability model represented

as a regression tree (Breiman et al., 1984). When performing structure search for

module networks with regression-tree CPDs, we learned the associated tree structures

using operators that split leaves. We use the same search strategy for parallel module

networks, together with the modifications described above that take the form of the

structure prior into account.

5.3.4 Module Assignment Search Step

The second type of step in our iteration learns an assignment function Mi.A from

data for each module network Mi. This type of step occurs in two places in our

algorithm: once at the very beginning of the algorithm, in order to initialize the

modules; and once at each iteration, given the module network structure Mi.S for

each module network Mi learned in the previous structure learning step.

Module Assignment Initialization

In Section 4.3.4, we showed how the task of finding an assignment of genes to modules

can be viewed as a clustering task: Given arrays (instances) that specify a value for

all genes (variables), our goal is to cluster genes that have similar expression levels

across the different arrays. We used this clustering idea to initialize the assignment

of genes to modules: After applying the clustering algorithm, genes that ended up in

the same cluster were initially assigned to the same module. We note that we can

also view this clustering task from a probabilistic perspective (see Section 4.3.4).

We use the clustering idea to initialize the module assignments of a parallel module

network. However, rather than applying a clustering algorithm separately to the ex-

pression data of each organism, we jointly cluster the expression data of all organisms
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(a) Data (b) Initialization

Figure 5.2: Example of the joint clustering procedure for initializing a parallel module
network of two organisms. In this example, each organism has six genes that are each
orthologous to exactly one gene in the other organism (e.g., both organisms have the
gene Hsp10). The rows correspond to arrays (instances) and the columns correspond
to genes (variables). The first organism has four arrays while the second has three.
(a) Shown is the expanded expression dataset, in which the data for each gene consists
of its data from each of the organisms. (b) Initialization of the assignment function
for the parallel module network procedure based on a joint clustering of the data in
(a). Note that genes were swapped in their location to reflect the initial assignment
into three modules. The initial assignment assigns orthologous genes to the same
module in different organisms.

and find the module assignment of all `module networks in one application of the clus-

tering algorithm. For simplicity, assume that each organism has exactly n genes, and

that the i-th gene in every pair of organisms are orthologous. Under this assumption,

we can create an expanded expression dataset that consists of n genes, where the data

for each gene consists of its data from all ` organisms. We then use the probabilistic

hierarchical clustering algorithm described in Section 4.3.4 to cluster the genes in this

expanded dataset into K clusters, and assign the i-th gene to the same module in all

organisms based on the cluster it ended up in. That is, if the clustering algorithm as-

signed the i-th gene to cluster j, then we setM1.A(M1.Xi) = . . .M`.A(M`.Xi) = j.

An example of this joint clustering procedure is shown in Figure 5.2.
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Note that this joint clustering results in a module assignment in which orthologous

genes are assigned to the same module in different organisms. Thus, similar to our

modified module assignment prior, this initialization point also biases the model to

ones in which orthologs are assigned to the same module. However, based on the

expression data, the final assignments can certainly change after applying the iterative

learning algorithm.

In the general case, where the orthology map is many-to-many and some organisms

may be missing some genes, we define an orthologous group to be a set of genes

that form a maximal connected component in the orthology map O. If a connected

component consists of more than one gene from a single organism, then we initialize

the clustering so that such genes are assigned to the same cluster. After such an

initialization, we continue with the clustering algorithm as described above. Note

that this algorithm results in a clustering where genes in the same orthologous group

are assigned to the same module in different organisms.

Module Reassignment

In the module reassignment step, the task is more complex. We now have the vector

of structures for each module network, S, and wish to find the vector of assignments

to all module networks, A, such that A = argmaxA′scoreG(S,A′ : D). We thus wish

to select the optimal assignment Mi.A(X) for each gene X in each module network

Mi. However, as we showed in Section 4.3.4, the score does not decompose by genes,

and we thus can not determine the optimal assignment Mi.A(X) for each gene X

independently. The same is true in the case of a parallel module network.

We therefore follow our approach from Section 4.3.4 and use a sequential update

algorithm that reassigns the genes in each orthologous group to modules one by

one (recall that a set of genes is called an orthologous group if it forms a maximal

connected component in the orthology map O). The idea is simple. We start with an

initial assignment function A0, and in a “round-robin” fashion iterate over all of the

orthologous groups one at a time, and consider changing the module assignment of

their member genes in all ` module networks. When considering a reassignment for

the i-th orthologous group of genes in all module networks, we keep the assignments
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of all other genes fixed and find the optimal legal (acyclic) assignment for the genes in

the i-th orthologous group in each module network relative to the fixed assignment.

We continue reassigning variables until no single reassignment can improve the score.

Note, however, that due to the form of the module assignment prior (see Equa-

tion 5.3), we cannot find the jointly optimal assignment for all the genes in an or-

thologous group by searching for the optimal assignment of each gene in the group

independently in each module network. The reason is that the module assignment

prior assigns a bonus of eλ each time we assign an orthologous pair of genes to the

same module in their respective module networks. Thus, finding the assignment in

each module network independently might result in sub-optimal joint assignments, if

the bonus we get by assigning an orthologous pair to the same module is greater than

the loss we incur by setting the orthologous pair to a sub-optimal module relative to

their best assignment when each module network is considered in isolation.

In a typical application of the parallel module network procedure the number of

organisms and the number of genes in each orthology group is relatively small (e.g.,

the application we present in Section 5.4 is for two organisms, human and mouse,

and the orthology map is one-to-one so each orthologous group consists of exactly

two genes). In such settings we can find the jointly optimal assignment for a set

of genes X1, . . . , Xk in an orthology group of size k, by first enumerating over all

of the possible ways to partition the orthologs X1, . . . , Xk into nonempty subsets.

For example, for an orthology group of two genes there are two possible partitions,

one where the two genes are in the same subset and another where each of the two

genes is in its own subset. For each such partition, we then require that genes in the

same subset are assigned to the same module — the one that gives the highest score

for all genes in the subset under this constraint. We can find this optimal module

assignment for each subset of size n by computing:

m∗ = argmaxKm=1

[

λN(O, n) +
n
∑

i=1

scoreM[Xi](M[Xi].S,M[Xi].A[M[Xi].Xi, m] : D)

]

(5.6)

where M[Xi] denotes the module network that the orthologous gene Xi belongs to,

M[Xi].A[M[Xi].Xi, m] represents the current assignment function for the module
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network of Xi, M[Xi].A, except that we changed the assignment of M[Xi].Xi to

module m (i.e., we setM[Xi].A(Xi) = m) and N(O, n) denotes the number of edges

in O for the subset of size n:

N(O, n) =
n
∑

i1=1

n
∑

i2=11+1

η{(Xi1 , Xi2) ∈ O}

where η{(Xi1, Xi2) ∈ O} is an indicator function that is equal to 1 if and only if Xi1

and Xi2 are orthologs according to the orthology map O.

Thus, under the constraint that genes in the same subset of size n are assigned

to the same module we can find the optimal module assignment for the subset by

performing n ·K score computations and the optimal assignment for the entire par-

tition by performing k ·K score computations. We note that this is actually a lower

bound on the optimal assignment for the entire partition as we are not taking into

account additional assignment bonuses that may be possible to get if two or more

subsets actually assign their genes to the same module. Such cases, however, will

be considered as we iterate over all possible partitions into subsets and require that

genes in the same subset are assigned to the same module. After iterating over all

partitions of X1, . . . , Xk into nonempty subsets, we select the joint assignment with

the highest score across all partitions.

The number of ways that a set of k elements can be partitioned into nonempty

subsets is called a Bell number (Bell, 1934), where the first few Bell numbers for k =

1, 2, . . . , 10 are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975. Thus, the above algorithm

is feasible for parallel module networks with up to ten or so genes in the same orthology

group.

In order to deal with the unlikely scenario in which more than ten genes are

assigned to the same orthology group, we note that we can cast the problem of

finding the optimal module assignment for genes in the same orthology group across all

module networks as an instance of the well studied minimum multiway cut problem.

In minimum multiway cut, we are given a graph G = (V,E), a subset S ⊆ V of

terminal nodes, and a weight function w : E → IR. The problem is then to find

a minimum multiway cut, i.e., a set E ′ ⊆ E such that the removal of E ′ from E
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disconnects each terminal from all the others and the weight of the cut,
∑

e∈E′ w(e),

is minimal. Although minimum multiway cut was shown by Dahlhaus et al. (1994) to

be NP-hard, there is an algorithm, due to Calinescu et al. (1998), which approximates

the optimal solution within 3/2− 1/|S| and runs in polynomial time.

We can easily cast our problem as an instance of multiway cut by creating a graph

with K terminal nodes, one for each of the K modules M1, . . . ,MK, and k additional

nodes for each of the genes X1, . . . , Xk in the orthologous group. For a terminal

node that represents module j, Mj, and a gene node Xi, the weight function would

correspond to the score of the module network M[Xi] that gene Xi belongs to when

assigning Xi to module j, scoreM[Xi](M[Xi].S,M[Xi].A[M[Xi].Xi, j] : D). For two

gene nodes Xi and Xl that are orthologs according to the orthology map O (i.e.,

(Xi, Xl) ∈ O), the weight function would be equal to the module assignment bonus

λ (i.e., w(M[Xi].Xi,M[Xk].Xk) = λ). It is easy to show that finding the minimum

multiway cut in this problem corresponds to the jointly optimal assignment of the

genes in the orthology group across all ` module networks. Thus, when the number

of genes in an orthology group is large, we can use the approximation algorithms

developed for minimum multiway cut to find an assignment which is within 3/2−1/K

to the optimal one.

The key to the correctness of this algorithm is its sequential nature: Each time

genes in the same orthologous group change their assignment, the assignment function

as well as the associated sufficient statistics are updated before evaluating another

orthologous group. Thus, each change made to the assignment function leads to a

legal assignment which improves the score. Our algorithm terminates when it can no

longer improve the score. Hence, it converges to a local maximum, in the sense that

no single assignment change can improve the score.

The computation of the score is the most expensive step in the sequential al-

gorithm. As described in Section 4.3.4, the decomposition of the score (see Theo-

rem 5.3.1) plays a key role in reducing the complexity of the computation as we only

need to rescore the module from which we reassign the gene and the module to which

we reassign the gene.
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Input:

D // Data set
K // Number of modules
` // Number of organisms

Output:

M // A module network
Learn-Module-Network

A0 = jointly cluster M1.X , . . . ,M`.X into K modules
S0 = empty structure
Loop t = 1, 2, . . . until convergence
St = Greedy-Structure-Search(At−1,St−1)
At = Sequential-Update(At−1,St);

Return M = (At,St)

Figure 5.3: Outline of the parallel module network learning algorithm. Greedy-
Structure-Search successively applies operators that change the structure as long as
each such operator results in a legal structure and improves the module network score

5.3.5 Algorithm Summary

To summarize, our algorithm starts with an initial assignment of genes to modules

in all ` module networks. In general, this initial assignment can come from any-

where, and may even be a random guess. We choose to construct it using the joint

clustering idea described in the previous section. The algorithm then iteratively ap-

plies the two steps described above: learning the module dependency structures of

all module networks, and reassigning genes to modules. These two steps are repeated

until convergence. An outline of the module network learning algorithm is shown in

Figure 5.3.

Each of these two steps — structure update and assignment update — is guaran-

teed to either improve the score or leave it unchanged. We can thus prove:

Theorem 5.3.2: The iterative module network learning algorithm converges to a

local maximum of score(S,A : D).
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5.4 Application to Brain Tumor Expression Data

We evaluated our method on an expression dataset from human (Pomeroy et al.,

2002) and an expression dataset from mouse (Lee et al., 2003b), both measuring

the expression of various brain tumors. In human, the data consisted of a total of 90

arrays from various brain tumors: 60 arrays from medulloblastoma, the most common

malignant brain tumor of childhood; 10 arrays from malignant gliomas; 10 arrays from

atypical teratoid/rhabdoid tumors (AT/RT); 6 arrays from primitive neuroectodernal

tumors (PNETs); and 4 arrays from normal cerebella. In mouse, the data consisted

of a total of 43 arrays: 23 arrays from medulloblastoma and 20 arrays from normal

cerebella.

Our goal is to discover the regulatory modules underlying these malignancies and

gain insights into the conservation of regulatory relationships between these tumors

in human and mouse. In addition, we test our hypothesis that we can learn better

models of gene regulation by combining expression datasets across organisms.

In the application of module networks to yeast (see Section 4.6) we restricted the

set of potential parents to those genes for which we had prior knowledge that they

are likely to play a regulatory role. We used a similar idea here: We compiled a set of

1537 candidate regulators whose GO (Ashburner et al., 2000) annotations in human

or mouse suggest a potential regulatory role in the broad sense: both transcription

factors and signaling proteins that may have transcriptional impact. We excluded

global regulators, whose regulation is not specific to a small set of genes or processes.

Of these 1537 candidate regulators, 604 were both in our orthology map and measured

in the microarrays of both human and mouse. Subsequently, we restricted the parent

set in both human and mouse to these 604 candidate regulators

Recall that in addition to the expression datasets, our method takes as input an

orthology map O between the organisms. We thus start this section by describing

the construction of an orthology map between human and mouse. We then evaluate

the results of applying our method to the two expression datasets described above,

both from a statistical and a biological standpoint.
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5.4.1 Constructing a Human-Mouse Orthology Map

As described above, the input to a parallel module network includes an orthology

map between organisms. For simplicity, in our application to human and mouse we

assume that this orthology map is one-to-one. This means that for every gene we

wish to include from human, we need to know which gene performs a similar function

to it in mouse. As the function of many genes is not known, a full human-mouse

orthology map is also not known. In fact, obtaining such an orthology map is an area

of active research.

As a gene’s function is dictated by its protein sequence, a standard computational

approach for constructing a proxy to this orthology map (Tatusov et al., 2001) is to

base the map on a comparison of the protein sequences of the organisms in question.

To this end, we first obtained the 33, 367 human protein sequences (version hg16) and

the 30, 988 mouse protein sequences (version mm4) from the UCSC genome browser

(Kent et al., 2002). For each gene in human, we used the standard BLAST algorithm

(Basic Local Alignment Search Tool (Altschul et al., 1990)) to compute its e-value to

each of the proteins in mouse. For a pair of proteins, the BLAST e-value measures

the probability of obtaining their observed sequence similarity by chance. Thus, lower

e-values correspond to higher similarity among a pair of protein sequences. As the

BLAST score is not symmetric, we performed a similar computation for each mouse

gene. We ignored e-values higher than 10−5. We used these e-values to construct a

one-to-one orthology map between human and mouse. To make the map reliable, we

defined a gene gh from human as an ortholog of a gene gm from mouse if and only if

gm was the best BLAST hit (lowest e-value) for gh out of all mouse genes and gh was

the best BLAST hit for gm out of all human genes (Tatusov et al., 2001).

Using the above procedure, we created 11, 983 orthologous gene pairs between hu-

man and mouse. For 3, 718 of these orthologs we also had expression measurements

in both the human and the mouse expression datasets (the loss is due to incomplete-

ness of both the mouse and the human microarray chips). We thus used these 3, 718

orthologs for our subsequent analyses.

Examining the functions represented by the selected orthologs according to the

gene annotation database of Gene Ontology (GO (Ashburner et al., 2000)), we found
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thus contain human-specific and mouse-specific genes that do not have orthologs.

However, the missed genes were also enriched for large gene families whose genes are

very similar to each other and differ only in a small number of amino acids (e.g.,

the family of G-protein coupled receptors). These cases point to limitations of our

procedure for constructing orthologs, as in such gene families it is often difficult

to determine a one-to-one orthology mapping between genes based on the protein

sequence alone. We return to the orthology mapping issue at the end of this chapter.

5.4.2 Comparison to Module Networks

We first evaluated whether there is a gain from learning a joint model over both the

human and mouse brain tumor expression datasets using the parallel module network

procedure described above, as compared to learning separate models on each dataset

using the module network procedure described in Chapter 4. Recall that the prob-

abilistic model of a parallel module network is composed of ` independent module

network models (in our case ` = 2). However, during the learning process, we maxi-

mize a score that favors models in which orthologs are assigned to the same module

and corresponding modules in different organisms have common regulator parents.

We encode this preference by two parameters: λ, which parameterizes the prior over

module assignments P (A) (see Equation 5.3) and assigns a bonus of λ to each or-

thologous pair of genes assigned to the same module; and γ, which parameterizes the

prior over network structures P (S) (see Equation 5.4) and assigns a bonus of γ for

each module j and orthologous pair of regulators where the orthologous pair are both

parents of module j.

Thus, for λ = 0 and γ = 0, the parallel module network learning procedure is

equivalent to applying the module network learning procedure separately to each of

the input expression datasets (except for the initial module assignment which in the

case of parallel module networks is obtained through a joint clustering of the input

expression datasets). Moreover, by increasing λ and γ we can increase the degree of

shared module assignments and regulatory parents, respectively.

We evaluated the generalization ability of models learned with different settings
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Figure 5.6: Results for human. (a) Shown is the generalization ability of models
learned with different settings of λ and with γ = 20, in terms of log-likelihood of test
data, using 5-fold cross validation. The results are shown for the module network over
the human expression data, and are displayed as the log-likelihood gain per instance
(array). (b) Same as (a), but the x-axis displays the fraction of orthologs that are
assigned to the same module in human and mouse.

of λ and γ, in terms of log-likelihood of test data, using 5-fold cross validation. In all

cases, we applied the learning procedure described in Section 5.3 with 100 modules

(i.e., K = 100). As a baseline, we used the models learned when both λ and γ are

set to zero. We then learned different models while varying λ between 0 and 20

and varying γ between 0 and 50 (these upper ranges were chosen as they resulted

in maximal sharing of module assignments and regulator parents). In Figure 5.6, we

show the results for the range of values of λ when setting γ to 20 (qualitatively similar

results were obtained for γ = 50). As can be seen, all modules learned performed

better than the baseline in both human and mouse. For most models the gain was

also statistically significant. Moreover, there was a strong positive correlation (0.62

in human and 0.8 in mouse) between the fraction of human-mouse orthologs assigned

to the same module and the generalization performance on test data. This indicates

that, in general, the stronger our bias is to models in which orthologs are assigned to

the same module, the larger the gain in performance. Overall, these results indicate
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Figure 5.7: Results for mouse. (a) Shown is the generalization ability of models
learned with different settings of λ and with γ = 20, in terms of log-likelihood of test
data, using 5-fold cross validation. The results are shown for the module network over
the mouse expression data, and are displayed as the log-likelihood gain per instance
(array). (b) Same as (a), but the x-axis displays the fraction of orthologs that are
assigned to the same module in human and mouse.

that, by biasing the learned models towards ones in which orthologs are assigned to

the same module and corresponding modules share parent regulators, we can learn

better regulatory modules in both human and mouse.

Recall that we initialize the assignments of genes to modules from a joint clustering

of both input expression datasets. Thus, by comparing the learned models above to a

baseline in which both λ and γ are set to zero, we showed that our learning procedure

improves significantly over module networks that are learned independently (since

λ = γ = 0) but initialized from a joint clustering algorithm. As another baseline,

we also compared the learned models to module networks that are both learned

and initialized independently from each expression data. To this end, we applied the

module network procedure as described in Chapter 4 with 100 modules. In mouse, this

new baseline was nearly identical to the previous baseline (the gain per instance was

35.1). In human, the new baseline outperformed the previous baseline (the gain per

instance was 346.1) but was still worse than all of the models presented in Figure 5.6.
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Thus, our main result, that we can learn better regulatory modules by combining

brain tumor expression datasets from human and mouse into a unified probabilistic

model also holds in comparison to a pure module network baseline.

A notable difference between the module network procedure and the parallel mod-

ule network procedure is that a parallel module network is learned from a larger set

of input expression data. To verify that the gain in performance is indeed due to

utilizing evolutionary conservation and is not merely a consequence of learning from

more data, we performed two additional tests. In one test, we permuted the mouse

expression data matrix (by swapping every entry in the matrix with another ran-

domly selected entry) and in the other, we left both expression datasets intact, but

permuted the human-mouse orthology mapping. In both tests, we applied the paral-

lel module network procedure with 100 modules. These results test, in two different

ways, whether we can get a gain in performance even by adding random data. When

permuting the mouse expression data, we got essentially identical results (the gain

per instance in human was −22.1) to the baseline model which sets both λ and γ

to zero and is thus effectively learning independent module networks. The same was

true when permuting the orthology mapping (the gain per instance was −311.6 in

human and −32.6 in mouse). These results show that merely adding expression data

from another organism is not enough for learning better models — we need to add

such data in a meaningful way through the orthology map.

In summary, our results show that by combining brain tumor expression datasets

from human and mouse, we can learn better regulatory modules compared to modules

learned using each expression dataset in isolation. Moreover, this gain in performance

can be attributed in part to the evolutionary conservation of regulatory relationships

between human and mouse in these tumors.

5.4.3 Biological Evaluation

We now turn to a detailed biological evaluation of the results when learning a parallel

module network with 100 modules (λ = 20 and γ = 20; these settings were selected

based on the generalization tests on held out data) over the brain tumor expression
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data from human and mouse. To simplify the analysis, we excluded the 604 regula-

tors from this run and learned the network only over the 3, 114 orthologs that were

not defined as regulators and for which we had expression data in both organisms.

I.e., we assigned each of the 604 regulator to its own module and did not change this

assignment during the learning process; regulators were only allowed to be parents of

other modules. As in the biological evaluation of our results on yeast (see Section 4.6

and Section 3.5), we evaluate the inferred models relative to the literature and to

databases of functional annotations of genes. However, as much less is known about

human and mouse, we cannot expect the evaluation to be exhaustive and comprehen-

sive as was it was in yeast. Thus, many of our results remain as novel computational

predictions.

Annotation Databases

We evaluated the results relative to gene and array annotation that we collected

from four different sources. For gene annotations, we compiled annotations from:

the GO database of functional annotations (Ashburner et al., 2000); the PROSITE

database of protein families and domains (Bairoch et al., 1997); and the dataset of Su

et al. (2002) that measured the expression of a variety of human and mouse tissues,

organs and cell lines. We ensured that each pair of orthologs have the same gene

annotations by completing missing annotations for a gene in one organism using the

annotations for its ortholog in the other organism. Thus, for deriving GO annotations,

we associated each gene with an annotation if, according to the GO database, the

gene was associated with the annotation in either human or mouse (or both). We

removed annotations with less than 5 genes, resulting in 1195 GO annotations. We

processed the PROSITE database in a similar way, resulting in 490 protein domain

annotations. From the dataset of Su et al. (2002) we defined one annotation for each

of the 101 arrays in this study by taking all genes whose absolute expression was

above 400. In order for the annotations to correspond to expression in specific tissue

types, we removed genes whose absolute expression was above 400 in more than 50

of the 101 arrays from the dataset.
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For array annotations, we associated each array with the annotations it repre-

sents, from a total of 27 annotations that we compiled from the published studies

(21 annotations for the human arrays of Pomeroy et al. (2002) and 6 annotations

for the mouse arrays of Lee et al. (2003b)). These condition annotations represent

information available about the samples, such as tissue sub-type, tumor sub-type,

tumor stage, genetic background, clinical treatment given to the patient, and clini-

cal outcome. Note that, in contrast to the gene annotations, the array annotations

are defined separately for every organism, as there is no analogous correspondence

between arrays as there is for genes (using the orthology mapping). Nevertheless,

two annotations, ‘Medulloblastoma’ and ‘Normal cerebellum’, were defined in both

studies.

Global Conservation Properties of Regulatory Modules

Overall, we learned 100 modules in human and 100 modules in mouse over the expres-

sion data of the 3, 114 orthologous genes that were not classified as potential regulators

and for which we had expression data in both organisms. Of these 3, 114 orthologous

gene pairs, 2, 276 pairs were assigned to the same module in the human and the mouse

module network models, representing a 73% level of conservation between the gene as-

signments across organisms. Moreover, this gene assignment conservation was spread

across a large number of modules, with 76 and 77 modules exhibiting a conservation

level of 50% or higher in the human and mouse module networks, respectively (see

Figure 5.8). Thus, our model predicts that a substantial number of the co-regulation

relationships among genes have been conserved between human and mouse.

Examining the learned regulation programs for all modules, we found that the

total number of regulators that appeared in at least one regulation program was 212

in the human module network and 199 in the mouse module network. Of these, 108

regulators appeared in the regulation programs of both human and mouse, where

86 of these 108 regulators appeared in the regulation programs of corresponding

modules (i.e., for 86 regulators, there was at least one module j such that the regulator

appeared in the regulation program of module j in both the human and the mouse

module networks). For 30 of these 86 shared regulators, all of their appearances in
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Figure 5.8: Distribution of shared module assignments of orthologs across modules.
Each module j is indicated by a blue dot, representing the fraction of genes that were
assigned to module j in both the human and the mouse module networks out of the
total number of genes assigned to module j in human (y-axis) and the total number
of genes assigned to module j in mouse (x-axis). The red bars indicate the total
number of modules whose fraction was above 50% or 75% (e.g., in 76 modules from
the human module network, the fraction of shared assignments was 50% or higher).

regulation programs were shared (i.e., for each occurrence of these regulators in the

regulation program of module j in one organism, there was a corresponding occurrence

in the regulation program of module j in the other organism; see Figure 5.9). At

the gene level, the total number of regulator-regulatee relationships was 12, 226 in

the human module network and 11, 056 in the mouse module network, where 3, 086

of these regulatory relationships (representing a total of 2, 012 genes) appeared in

both the human and the mouse module networks. Thus, our model predicts that

a significant number of regulators and regulator-regulatee relationships have been

conserved between the regulation programs of human and mouse.
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(x-axis). Only the 86 regulators that were shared in at least one module are shown.
The red bars indicate the total number of regulators whose fraction was above 50%
or 75% (e.g., in 71 modules from the human module network, the fraction of shared
modules was 50% or higher).

Recall that our 604 candidate regulators represent a broad class of proteins that

may have a potential regulatory role, consisting of both transcription factors and sig-

naling proteins that may have transcriptional impact. As discussed above, 86 of these

604 regulators appeared in the regulation programs of corresponding modules between

human and mouse. We next tested whether these 86 putatively conserved regulators

shared any functional properties that distinguish them from the entire set of candidate

regulators. To this end, we computed the fraction of conserved regulators that were

associated with each of the annotations in the gene annotation databases mentioned
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above (GO, PROSITE, and tissue expression dataset), and compared these fractions

to those obtained when performing the computation on the entire set of regulators.

We used the hypergeometric distribution to obtain a p-value for these fractions and

performed a Bonferroni correction for multiple hypotheses (see Appendix C).

We found that the conserved regulators indeed had commonalities beyond what

would be expected by randomly selecting 86 regulators from the set of 604 candidate

regulator set. These included enrichment for: thermoregulation regulators (the 86

conserved regulators included 4 of the 6 thermoregulation regulators; p < 0.004);

immune response regulators (e.g., humoral defense mechanism: 5 of 10; p < 0.007);

nucleic acid binding regulators (7 of 18; p < 0.007); phosphatase inhibitor activity

(4 of 7; p < 0.007); transcription co-repressor activity (9 of 29; p < 0.01); regulators

expressed in certain tissue types, including heart (11 of 32; p < 0.003), brain (10

of 35; p < 0.02) and placenta (14 of 58; p < 0.03); cyclin regulators, which play

an active role in controlling nuclear cell division cycles (4 of the 8 regulators with

a cyclin-box domain; p < 0.02); and nuclear regulators (27 of 132 with a nuclear

localization domain; p < 0.02).

We note that while some of these shared properties (e.g., regulators expressed in

brain tissues) may be due to our choice of brain tumor expression datasets, others may

represent general biological properties of those regulators that have been conserved

in the regulatory programs between human and mouse. For example, as our candi-

date regulators consisted primarily of transcription factors and signaling molecules,

the enrichment for nucleic acid binding predicts that transcription factors have been

more conserved than signaling molecules in their regulatory role. The enrichment

for transcription co-repressor activity predicts that there is a strong selective evolu-

tionary pressure to preserve the role of regulators who act in combination with other

regulators to perform their function. A possible explanation for this conservation

may have to do with the increased number of interactions that such regulators must

have in order to be active, which implies that their protein sequence must obey more

constraints (as it needs to preserve both the site that binds the DNA and the site

that binds its co-regulators). We note that while the enrichment of other annotations

(e.g., heart) is intriguing, we have no satisfactory explanation for their preferential
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conservation at this time.

Global View of Module Genes

To obtain a global view of the regulation programs, we identified all the GO and tissue

type annotations significantly enriched (p-value ≤ 0.05; Bonferroni corrected) in the

genes assigned to each module in both human and mouse and compiled all enriched

annotations into the single matrix shown in Figure 5.10. In order to distinguish the

conserved annotations from those that are organism specific, we colored in blue the

annotations that were enriched only in modules from the human module network, in

green the annotations that were enriched only in modules from the mouse module

network, and in red the annotations that were enriched in the modules from both

organisms.

Overall, we found enrichment for 66 module-GO-annotation pairs (44 human spe-

cific, 12 mouse specific, and 10 conserved), spanning 14 modules and 37 annotations

(see Figure 5.10). These included enrichment for basic cellular processes such as

translation (e.g., of the 16 genes in module 96 in human, 14 were ribosomal genes,

out of the 61 ribosomal genes in the dataset; p < 10−22), energy related processes

(e.g., ATP biosynthesis; p < 5 · 10−7), and DNA replication (p < 5 · 10−6).

Interestingly, the spliceosome complex, and most (5 of 8) of the energy related an-

notations were only enriched in corresponding modules in human and mouse. Trans-

lation related processes such as protein biosynthesis were enriched in several modules,

once in both human and mouse, and in other cases only in human or only in mouse

modules. A summary of the enrichments broken down by their conservation proper-

ties described above is shown in Figure 5.11.

Among the annotations whose enrichment was conserved, the enrichment for mi-

tochondrial genes (module 50; see Figure 5.12) was particularly intriguing, as these

genes were recently reported to play a role in aging in several organisms including

mouse (Trifunovic et al., 2004), fly (McCarroll et al., 2004), and worm (McCarroll et

al., 2004, Lee et al., 2003a). Moreover, the transcription factor YY1 was predicted as

the (activating) regulator in the regulation program of this module in both the hu-

man and the mouse module networks. This prediction is consistent with the known
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Figure 5.10: Enrichment of gene and array condition annotations in modules. Entries
represent the fraction of module genes that are associated with the annotation.

role of YY1 in regulating mitochondrial genes (Seelan and Grossman, 1997, Lescuyer

et al., 2002). Indeed, at least 5 of the 39 genes in the human module and 3 of the

38 genes in the mouse module are known targets of YY1. A closer examination of

the module in human showed that YY1 was predicted as the regulator primarily in

patients with advanced medulloblastoma tumors (stage T3; p < 0.002), in which the

module genes were repressed. As YY1 itself was also repressed in these tumors, our

method suggests that its down-regulation in these tumors may provide a partial ex-

planation for the repression of this module in advanced stages of medulloblastoma

tumors. We note that McCarroll et al. (2004) found that mitochondrial genes are
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4 arrays (of 35) from
stage T3 medulloblastoma

23 arrays (of 52) from
stage T3 medulloblastoma

Figure 5.12: Predicted regulatory role for YY1 in patients with advanced (stage
T3) medulloblastoma tumors. Shown is the regulation program of module 50 in the
human module network, whose primary predicted regulator was the transcription
factor YY1. Note that YY1 splits the arrays into two contexts, with one context
containing most of the arrays from patients with stage T3 medulloblastoma, thereby
predicting a regulatory role for YY1 in these tumors.

To obtain a more comprehensive view of our results, we also tested the enrichment

of the annotations that we derived from the genome-wide expression profiles of Su

et al. (2002). The resulting tests showed enrichment for many additional modules,

providing further support our above conjecture: When performing similar enrichment

computations for these annotations as we did for the GO annotations, we found

enrichment for 112 module-tissue type annotation pairs (51 human specific, 36 mouse

specific, and 25 conserved), spanning 31 modules and 44 annotations (see Figure 5.10).

As expected from our choice of datasets, the most significant enrichments were for

genes that according to the dataset of Su et al. (2002) are expressed in brain tissue
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sub-types (e.g., in human: cerebellum, p < 5 · 10−17; amygdala, p < 10−12; cortex,

p < 2 · 10−11; and whole brain, p < 6 · 10−11). However, we also detected enrichment

for other tissue types, some representing samples from cancerous tumors that were

not part of our input expression data (e.g., conserved enrichment for prostate cancer

in corresponding modules in human and mouse, p < 3 · 10−6 in human and p < 10−4

mouse; and enrichment of retinoblastoma in human, p < 8 · 10−6). Such modules

might represent responses that are common between these cancers and the brain

tumors in our expression compendium. Note that these tissue annotations are not

represented in GO and thus we could not make the above inferences using GO. From

the conservation perspective, the enrichment of 5 of the 7 annotations that represent

expression in brain tissue sub-types was conserved between human and mouse as

was the enrichment in prostate cancer tissues. Figure 5.13 shows the conservation

properties for the tissue related annotations.

In addition to enrichment for gene annotations, we also identified condition an-

notations that are enriched in the regulation programs of the different modules. To

this end, for each occurrence of a regulator as a decision node in a regression tree

(regulation program), we computed the partition of each experimental condition an-

notation between the right branch (the true answer to the query on the regulator)

and the left branch (the false answer), and used the binomial distribution to compute

a p-value on this partition as described in Appendix D. We then defined a module

to be significantly enriched for a condition annotation if any of the regulators in the

regulation program of the module partitioned the arrays in a way that enriched one

of the splits for the tested annotation (p-value ≤ 0.05; Bonferroni corrected).

These evaluations relative to condition annotations in the arrays showed enrich-

ment for 312 module-condition pairs (206 human specific, 103 mouse specific and

3 conserved), spanning 85 of the 100 modules and 23 of the 27 condition annota-

tions (see Figure 5.10). Similar to the enrichment relative to the tissue expression

annotations, these results represent another global unbiased measure of evaluation,

indicating that the regulation programs in most modules captured responses that

are characteristic of certain tumor properties (e.g., sub-type and stage) and clinical

outcomes. We note that these condition annotations are by definition specific to
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Figure 5.13: Distribution of tissue expression enrichments by conservation.

each organism, since, with the exception of two annotations (normal cerebellum and

medulloblastoma), they were all defined only over the arrays of one organism.

Global View of Predicted Regulators

We next turned to a detailed evaluation of the regulators in the predicted regulation

programs. To identify the predicted function of the regulators, we associated each

regulator with biological processes and experimental conditions. As a regulator ‘X’

may regulate more than one module, its targets consist of the union of the genes in

all modules predicted to be regulated by ‘X’. We tested the targets of each regulator

in the human and mouse module networks for enrichment of the same GO and tissue

expression gene annotations as above. We took p-values < 0.05 (Bonferroni corrected
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Figure 5.14: Enrichment of annotations in predicted targets of regulators. Entries
represent the fraction of genes for each of the predicted targets of a regulator that
are associated with the annotation.

as for module annotations) to be significant. We compiled the results into the single

regulator-annotation matrix shown in Figure 5.14. As for the module enrichment, we

distinguished the conserved regulator-annotation pairs from those that are organism

specific, by coloring in blue the annotations that were enriched only in regulator

targets from the human module network, in green the annotations that were enriched

only in regulator targets from the mouse module network, and in red the annotations

that were enriched in the regulation targets from both organisms.

Overall, we found enrichment for 158 regulator-GO-annotation pairs (132 human

specific, 24 mouse specific, and 2 conserved), spanning 39 regulators and 45 anno-

tations (see Figure 5.14). These included conserved enrichment for the spliceosome
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complex in the targets of the protein kinase MAPKAPK2 in both human and mouse

and conserved enrichment for genes involved in protein biosynthesis in the targets of

the transcription factor YY1 in both human and mouse. We note that while both

MAPKAPK2 and YY1 are known to control the expression of several biological pro-

cesses, they have not been associated with regulation of the above processes.

As was the case for the module annotations, GO provided a very limited view

of the function of the regulators and we obtained a more comprehensive view using

the tissue expression annotations. We found enrichment for 446 regulator-tissue an-

notation pairs (209 human specific, 192 mouse specific, and 45 conserved), spanning

94 regulators and 52 annotations (see Figure 5.14). We found additional support

for 59% (261 of 446) of these regulator-tissue pairs, as in these cases the regulator

itself was also expressed in the respective tissue. Interestingly, when examining these

261 additionally supported cases by their conservation properties, we found that the

regulator-tissue pairs that were predicted in both the human and the mouse module

networks had much stronger support: 80% (36 of 45; p < 0.001) of them were addi-

tionally supported when examining the expression of the regulator, compared to only

65% (136 of 209; p < 0.005) and 46% (89 of 192; p < 0.99) additionally supported

pairs in human and mouse, respectively. These results further indicate that we can

better predict regulatory relationships by identifying those relationships that have

been conserved between human and mouse.

As discussed above, we also tested each regulator for experimental conditions

that it significantly regulates by examining how conditions are split by each rele-

vant regulation tree. We found enrichment for 345 regulator-condition annotation

pairs (250 human specific, 91 mouse specific and 4 conserved), spanning 127 regu-

lators and 23 condition annotations. (see Figure 5.10). We again note that except

for the ‘medulloblastoma’ and ‘normal cerebellum’ annotations, all condition anno-

tations were defined per organism and thus we do not expect to find many conserved

regulator-condition annotation pairs.

Nevertheless, among the 4 annotations that were conserved was the enrichment

of Cyclin D1, a key cell cycle regulator, for splitting medulloblastoma arrays. This

regulator appeared in the control programs of module 78 in both the human and
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the mouse module networks and in both cases defined a split on the arrays that was

significant with respect to arrays that represent medulloblastoma samples (p < 0.02

in human; p < 10−6 in mouse). Moreover, our procedure predicted that Cyclin D1

regulates nearly the same set of target genes in both human and mouse, as 89%

(34 of 38) and 85% (34 of 40) of the genes were shared in module 78 in human

and mouse, respectively. This prediction, that Cyclin D1 is involved in regulation

in medulloblastoma tumors, is supported by the recent study of Neben et al. (2004)

which showed that higher levels of expression of Cyclin D1 predict an unfavorable

survival for medulloblastoma patients. Interestingly, Cyclin D1 was also enriched for

poor survival (p < 0.03) in our human module network (this test was not possible for

mouse as this information was not available).

We note that the other three regulators, CSDA (cold shock domain protein),

ISGF3G (interferon stimulated transcription factor), and PSMB10 (proteasome sub-

unit), that were enriched for medulloblastoma splits in both human and mouse, are

not known in the literature to play a role in this tumor. However, it is noteworthy

that according to our method, all three of these regulators were also associated with

predicting survival rates in patients (induction of CSDA was associated with high

survival rates, p < 0.03; induction of ISGF3G and PSMB10 was associated with poor

survival rates, p < 0.002 and p < 0.03, respectively).

Overall, the enriched regulator-condition annotations provide support for our com-

putational predictions, and demonstrate that a large number of our inferred regula-

tory relationships are predicted as characterizing various tumor properties and clinical

outcomes.

Conserved Annotations Enriched in Modules and Regulator Targets

We now present a global view and summary of the properties that we found to be

conserved between our predicted regulatory modules in human and mouse. To obtain

this view, we combined the module-annotation and regulator-annotation matrices

of Figure 5.10 and Figure 5.14 and created a sub-matrix from them that included

only those annotations whose enrichment was conserved (i.e., annotations that were

enriched in at least one corresponding module between human and mouse or in the
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targets of at least one of the regulators in both human and mouse). This sub-matrix

consisted of 38 annotations, 18 modules and 16 regulators and is shown in Figure 5.15.

Based on this presentation, we can divide the conserved annotations into two

groups. The first consists of annotations whose enrichment was always conserved

(i.e., every time the annotation was enriched in the module or predicted targets of

a regulator in one organism, it was also enriched in the corresponding module or

in the predicted targets of the same regulator in the other organism). This group

included the spliceosome (in module 75 and the targets of the regulator MAPKAPK2),

mitochondrial genes (in module 50) and several energy related processes (mostly in

module 27). Thus, our method suggests that these basic cellular processes are strongly

selected against mutations that would alter their behavior. As we noted above, at

least in the case of mitochondrial genes, there is mounting evidence from several

independent studies in different organisms to support such a prediction.

The second group of conserved annotations consists of annotations that in addition

to being conserved in some modules and regulator targets, were also enriched for

some modules and regulator targets only in human or only in mouse. Thus, our

method suggests that this second group of annotations represent processes that are

partly conserved and partly evolving differently between human and mouse. Indeed,

this group included annotations that are more broad (e.g., expression in brain tissue

sub-types and other types of tumor such as prostate cancer and retinoblastoma)

and thus perhaps more likely to evolve differently between human and mouse. We

note, however, that this group also included annotations that represent basic cellular

processes such as translation, which we might not expect to evolve differently between

human and mouse.

Brain Related Modules and Regulators

As our input expression datasets represent expression profiles from human and mouse

brain tumors, we next examined our results from the perspective of the information

they provided about these processes. To this end, we compiled another sub-matrix

from the matrices of Figure 5.10 and Figure 5.14, but this time we created the matrix

such that it includes all the modules and regulators that were enriched for genes that
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Figure 5.15: Enrichment of conserved annotations in modules and regulator targets.

are expressed in brain tissue sub-types according to Su et al. (2002). This sub-matrix,

presented in Figure 5.16, consisted of 11 modules and 31 regulators that together were

enriched for 59 annotations. As we noted earlier, some of the annotations enriched in

these module and predicted targets were conserved between human and mouse while

others were specific to human or mouse.

As can be seen from Figure 5.16, in addition to the enrichment of the module

genes and the predicted targets for genes expressed in brain tissue sub-types, many of

the regulation program splits were enriched for experimental condition annotations.

Together, this suggests that the brain related modules and their associated regulators

provide an informative view of the regulatory programs that underlie brain tumors

in human and mouse. For example, module 17 was enriched for genes expressed

in various brain tissue sub-types in both human and mouse. In human, the primary
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Figure 5.16: Annotation enrichment for brain related modules and regulator targets.

regulator predicted for this module was the neurogenic differentiation regulator Neuro

D1 (see Figure 5.17). This regulator split the arrays in the module into two contexts,

where one context contained all 10 arrays from the glioblastoma samples (p < 0.005)

and all 10 arrays from the atypical teratoid/rhabdoid tumors (AT/RT) samples (p <

0.005), thereby predicting a regulatory role for Neuro D1 in these tumors. While

there is no known role for NeuroD1 in these tumors, the study of Oyama et al. (2001)

predicted a regulatory role for Neuro D1 in pituitary adenomas (another type of brain

tumor of the pituitary gland), based on its selective expression in these tumors.
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AT/RT AT/RTGlioblastoma

Figure 5.17: Predicted regulatory role for Neuro D1 in human brain tumors. Shown
is the regulation program of module 17 in the human module network, whose primary
predicted regulator was the neurogenic differentiation regulator Neuro D1. Note that
Neuro D1 splits the arrays into two contexts, with one context containing all 10 arrays
from the glioblastoma samples and all 10 arrays from the atypical teratoid/rhabdoid
tumors (AT/RT) samples, thereby predicting a regulatory role for Neuro D1 in these
tumors.

In mouse, the primary regulator predicted for module 17 was Cyclin H (see Fig-

ure 5.18). This regulator splits the arrays into two contexts, where one context

consisted of 17 arrays, 16 of which represent induction in medulloblastoma samples

(p < 0.006), thereby predicting a regulatory role for Cyclin H in medulloblastoma.

We note that Cyclin H itself is also expressed in several of the brain tissue sub-types

in the study of Su et al. (2002). Interestingly, the recent study of Neben et al. (2004)

suggested Cyclin H as one of 54 genes whose expression in medulloblastoma predicts

an unfavorable survival rate in patients with these tumors.
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MedulloblastomaMedulloblastoma

Figure 5.18: Predicted regulatory role for Cyclin H in mouse medulloblastoma tu-
mors. Shown is the regulation program for module 17 in the mouse module network,
whose primary predicted regulator was the Cyclin H. Note that this regulator splits
the arrays into two contexts, with one context consisting of 17 arrays, 16 of which
representing medulloblastoma samples, thereby predicting regulation of medulloblas-
toma by Cyclin H. A recent study (Neben et al., 2004) suggested Cyclin H as one of
54 genes that predict unfavorable survival rates in medulloblastoma.

5.5 Discussion

In this chapter we presented parallel module networks, an extension of the module

network framework presented in Chapter 4 for the task of learning regulatory modules

from expression datasets of several organisms. We presented a joint probabilistic

model over expression data from multiple organisms and an algorithm that learns this

model automatically from the input data. Our model allows us to explicitly specify

the degree of bias that the algorithm will have for learning conserved regulatory

modules between the input organisms. This conservation preference is expressed via

two independent parameters, one specifying the bias towards assigning orthologs to



236 CHAPTER 5. CONSERVED REGULATORY MODULES

the same module in different organisms, and the other specifying the bias towards

assigning the same regulator parents in the regulation programs of corresponding

modules in different organisms.

We applied our model to data that measured the expression of human and mouse

in brain tumors (mainly medulloblastoma). From a statistical standpoint, we pre-

sented generalization results on held-out test data demonstrating that the parallel

module network procedure learned better regulatory modules as compared to mod-

els learned on the expression data from each organism separately using the module

network procedure of Chapter 4. The best performance was achieved for a setting

of the conservation parameters that results in substantial conservation of the module

assignments (about 70%) and of the regulators (about 50%) between the regulation

programs of human and mouse.

¿From a global biological perspective, our model allowed us to suggest hypothe-

ses regarding the properties that have been conserved in the regulation programs of

human and mouse. We found that the regulators predicted by our method to be con-

served in human and mouse were enriched for sharing several properties, including

enrichment for immune response, cyclin, nucleic acid binding, and nuclear regulators,

as well as enrichment for co-repressor activity and regulators expressed in brain. We

also found several biological processes whose regulation has been conserved, including

mitochondrion and several other energy related processes, spliceosome, and transla-

tion processes. This finding is consistent with several recent studies that showed

conservation of these processes in independent expression datasets from human and

mouse and from other organisms (Stuart et al., 2003, Bergmann et al., 2004, Tri-

funovic et al., 2004, McCarroll et al., 2004, Lee et al., 2003a). In addition, we also

showed that the conserved regulatory relationships predicted had stronger support

in an independent expression dataset (Su et al., 2002) compared to predictions that

were specific to either the human or the mouse module networks.

Finally, the model suggested detailed hypotheses regarding the role of several

regulators in our input brain tumors, including a conserved regulatory role for YY1

in regulating mitochondrial genes in medulloblastoma tumors in both human and

mouse, a conserved regulatory role for Cyclin D1 in medulloblastoma, a regulatory
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role for Cyclin H in medulloblastoma tumors in mouse, and a regulatory role for

Neuro D1 in gliblastoma and atypical teratoid/rhabdoid tumors in human. The

regulatory roles for YY1, Cyclin D1, and Cyclin H are supported by several recent

studies (Seelan and Grossman, 1997, Lescuyer et al., 2002, Neben et al., 2004) and

thus suggest interesting directions for future research into the regulatory role of these

regulators in medulloblastoma.

Despite the successes described above, our method has several important draw-

backs and limitations. First, we predict regulatory relationships using only measure-

ment of mRNA expression data of the regulators and their targets. As many biological

processes and events are not regulated at the transcriptional level, expression data

provides an incomplete view of the regulation process and our method will thus fail to

capture certain regulatory relationships. This assumption is similar to that made in

the module network framework and we refer the reader to Section 4.8 for additional

details about its entailed limitations.

Second, recall that our method takes as input an orthology mapping which spec-

ifies a set of genes that have a similar function across the input organisms. As the

function of many genes is not known, such an orthology mapping is also not known.

We thus followed the approach used in several recent studies and inferred an orthol-

ogy map computationally, using the protein sequences of the input organisms. This

procedure is bound to produce errors and may cause a problem for our method, which

relies heavily on this mapping. Furthermore, as we noted in Section 5.4.1, in some

protein families with a high degree of conservation, it is hard to select the exact or-

tholog based on sequence data alone. This implies that many genes will not have

orthologs and will be unnecessarily excluded from our analysis.

One possible solution may be to develop a better procedure for inferring an or-

thology map, taking into account other information (e.g., syntenic regions). Another

option is to use the rich expressive power of our probabilistic framework and represent

the orthology mapping as a relationship between the genes of different organisms. By

incorporating this relationship into our models, we can explicitly represent our uncer-

tainty over the orthology map and allow the model to modify this mapping based on

the expression data (in addition to the protein sequences). We are currently pursuing



238 CHAPTER 5. CONSERVED REGULATORY MODULES

this direction as part of our future work on this framework.

We chose to represent the regulation programs of each organism using a separate

module network over its expression data. To find conserved regulatory relationships,

we then defined two parameters that bias the learning algorithm towards models

in which regulation programs of corresponding modules have the same genes and

regulators. In this sense, our model does not use the data from one organism directly

when learning the structure and estimating the parameters of the regulation programs

of another organism. An alternative approach would thus be to allow regulation

programs (regulator parents or regulation parameters or both) to be shared across

organisms, which may potentially lead to more robust predictions. However, we note

that such an approach is challenging, as it might require mapping experiments across

expression datasets of different organism and normalizing the expression datasets such

that we can compare expression measurements taken in different organisms.

We encode our preference towards assigning orthologs to the same module in

different organisms by an assignment prior that gives a bonus each time an orthologous

pair is assigned to the same module. Thus, according to our model, cases in which

orthologs are assigned to different modules imply that the two genes diverged in

function during evolution. As the phylogenetic trees between many organisms are

known, an interesting extension is to take these trees into account in the assignment

prior. For example, we may want to favor models whose module assignments predict

the smallest number of divergence events during evolution, where the number of

divergence events can be computed relative to the phylogenetic trees of the organisms.

Another interesting extension to our approach involves the biological question we

address. Here, we focused on a model for identifying commonalities between the

regulatory modules of different organisms. However, a complementary and interest-

ing question is to focus on those relationships that are different and distinguish one

organism from another. Using our method, we can address such questions only in-

directly, by extracting those regulatory relationships from our learned models that

were not conserved. However, a more direct approach, that also includes genes that

have no orthologs as part of the analysis, is likely to provide more insights into this

question. We note that even when focusing on the conserved regulatory modules,
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including the data for genes that do not have orthologs may help in extracting the

meaningful patterns in the data.

Finally, recall that our results included modules that were enriched for genes coor-

dinately expressed in other cancerous tumors (prostate cancer and retinoblastoma).

This suggests that if we learn our models over additional expression datasets, we

might be able to further refine and improve our predictions. Thus, as more expression

datasets are becoming available for many organisms and processes, it might be use-

ful to incorporate them when learning regulatory modules. However, adding datasets

raises other computational and scalability issues that will need to be addressed before

such an approach is feasible.



Chapter 6

Conclusions

In this final chapter, we summarize the contributions of this thesis, discuss a number

of its limitations, and present some challenges and future research directions that

build on top of the work in this thesis.

6.1 Summary

In this thesis, we presented a statistical modeling language, based on Probabilistic

Relational Models (PRMs), that we developed for representing complex interactions

in the biological domain. We showed three applications of this framework for studying

different aspects of the gene regulation process.

Discovering cis-Regulatory Modules

In the first application, we presented a unified model over gene expression and se-

quence data, aimed at providing a genome-wide explanation of the observed expres-

sion data as a function of combination of DNA sequence motifs. Previous standard

approaches for the motif discovery task typically handle the expression and sequence

data separately using different algorithms. We presented results on yeast, demonstrat-

ing that our method is better than such standard approaches at recovering known

motifs and at generating biologically coherent modules. Finally, we also combined

our results with binding location data to obtain regulatory relationships with known

240
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transcription factors. As we showed, many of the inferred relationships have sup-

port in the literature, allowing us to derive global insights regarding the regulatory

network of yeast.

Identifying Regulators of Biological Processes

Identifying the sequence motifs reveals part of the mechanism by which transcription

factors regulate their target genes, but does not directly specify the identity of the

regulatory proteins. Thus, in the second application of our modeling language, we

presented module networks, a new probabilistic framework for discovering regulatory

modules using only gene expression data. Our procedure identifies modules of co-

regulated genes, their regulators, and the conditions under which regulation occurs,

generating testable hypotheses in the form ”regulator ‘X’ regulates module ‘Y’ under

conditions ‘W’”. We presented wet lab experiments supporting three of our novel

computational predictions, allowing us to suggest regulatory roles for three previously

uncharacterized proteins in yeast. This was one of the first approaches that completed

an entire discovery cycle that starts from publicly available data, then applies a

computational method to analyze the data, generates testable hypotheses, and finally

tests these hypotheses in the wet lab, ending with new insights into the biological

system.

Discovering Conserved Regulatory Modules

Finally, due to noise in microarray technology and redundancy in the biological sys-

tem, sometimes unrelated genes may be co-regulated, although this co-regulation may

not be physiologically meaningful. To distinguish accidental co-regulation from func-

tionally relevant co-regulation, our third application presented an extension of the

module network procedure that incorporates expression data from several organisms

into a unified probabilistic model. The basic idea underlying the unified model was

to discover regulatory modules (regulators and their target genes) that are conserved

in the regulation programs of all input organisms. As we showed in an application

of our extended procedure to expression data of human and mouse brain tumors, by



242 CHAPTER 6. CONCLUSIONS

combining expression data from multiple organisms, we can learn better regulatory

modules than those which we can learn by applying the module network procedure

separately to the data from each organism. From a global biological perspective,

our model also allowed us to gain insights regarding the properties that have been

conserved in the regulation programs of human and mouse. We found several com-

monalities in the set of conserved regulators and several functional properties that

were enriched in the set of their conserved target genes. The model also suggested

detailed hypotheses regarding a conserved role for several regulators in the regulation

programs of human and mouse brain tumors.

Learning the Models

For all of the above models, we presented algorithms that learn the details (structure

and parameters) of the model automatically from the input genomic data. This

learning task is computationally very challenging, since, as we showed, when applying

our models to genome-wide biological datasets, we need to deal with networks that

have thousands of highly dependent hidden variables whose values we need to infer

and whose structural dependencies we need to discover. To address these challenges,

we adapted existing algorithms as well as developed new algorithms that exploit

problem specific structures and result in efficient learning algorithms.

Evaluating the Results

As our methods are aimed at knowledge discovery in the biological domain where

very little is known, it is often hard to evaluate their performance. Thus, throughout

this thesis we presented several new types of statistical evaluations and new types

of formal evaluations relative to the biological literature that objectively report on

our performance. Many of these new evaluation methods can easily be adapted for

evaluating the results of other approaches.
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Visualizing the Results

Finally, for computational tools to have a broad impact, they must be accompanied

by visualization and browsing tools that are easily accessible to biologists. To support

this effort, we developed GeneXPress, a software environment for visualization and

statistical analysis of genomic data, including gene expression, sequence data, and

protein-protein interactions. In particular, GeneXPress can visualize the output of

our algorithms and many of the figures in this thesis were generated directly from it.

Currently, GeneXPress has been downloaded by over 800 researchers from more than

50 countries.

Incorporating Heterogeneous Types of Genomic Data

One of the key features of our modeling language is that it allows us to incorporate

several types of genomic data into a single unified probabilistic model. By learning

the details of such unified models, we can integrate different viewpoints of the cel-

lular activity. In this thesis, we showed two such examples, one for integrating gene

expression and sequence data and one for integrating gene expression data across

multiple organisms. We also used our framework for integrating additional types of

genomic data in other projects that were not presented in this thesis. In one case,

we combined protein-DNA binding data together with gene expression and sequence

data (Segal et al., 2002). This extended model allowed us to reason about both the

motifs and identity of the transcription factors that bind them within a single model.

In another case, we integrated gene expression and protein-protein interaction data

for the purpose of identifying biological pathways (Segal et al., 2003d), based on the

assumption that many pathways exhibit two properties: their genes exhibit similar

gene expression profile and the protein products of the genes often interact. We

showed that such integration is more successful at discovering both functional groups

and entire protein complexes as compared to approaches that use each data type in

isolation.

Certainly, it is possible to extend our language for integrating other types of



244 CHAPTER 6. CONCLUSIONS

genomic data. As new technologies for obtaining other types of genome-wide mea-

surements of the biological system are being developed, it is our belief that extending

our approach to incorporate them can potentially lead to new biological discoveries.

6.2 Limitations and Future Directions

It is our hope that this thesis demonstrated the usefulness of unified probabilistic

models for studying key problems in the biological domain. Obviously, our approach

has several limitations and there are important aspects of the biological domain that

it cannot currently model. In this section, we highlight some of these limitations and

discuss some exciting research directions for future work.

6.2.1 Computational Complexity

While our models can integrate different types of genomic data and represent many

of the complex interactions they posses, as we showed throughout this thesis, learning

such models automatically from the data is computationally very challenging. Conse-

quently, it is often infeasible to develop exact learning algorithms and we must resort

to approximation algorithms and heuristics. Even then, when applying the framework

to large scale genomic datasets, it may still take up to several hours or even several

days to learn a single model. In contrast, many of the currently available procedural

approaches are very fast and can sometimes give results within several minutes.

Thus, one challenge is to design better approximations and more efficient algo-

rithms for learning the models from data. However, even with such algorithmic

advances, it is hard to imagine achieving performance in terms of computation time

similar to that of some of the fast procedural approaches, especially in light of the

increasing size of the available genomic datasets. This limitation of our model im-

plies that it will be hard to apply our approach in some settings (e.g., where real-time

performance is needed). Thus, when considering the application of our framework to

study a biological problem, one should evaluate the added value gained by its use and

trade that off with the extra time computation time it requires. We note, however,
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that although it may take several hours to learn a single model within our framework,

it is still considerably less time compared to the several months or years it takes to

measure and collect the biological data.

6.2.2 Estimating the Confidence of Our Predictions

A potential pitfall of our approach is that, given an input dataset, it will always learn

a model regardless of the quality of the signal present in the data. For example,

given expression data, the module network procedure will always learn gene modules

and predict their regulators even if the resulting model poorly predicts the expression

of the target genes as a function of the expression of the regulators. This behavior

is in contrast to hypothesis-driven approaches that first assume that the data was

generated by some null distribution, and then compute the probability that such an

assumption indeed holds in the data. Only patterns in the data that are unlikely

to have been generated by the null distribution are then reported. Thus, when the

signal in the data is weak, these approaches may have the desired property of not

reporting any results.

Obviously, hypothesis-driven approaches have other limitations, such as the fact

that they rely heavily on the choice of null distribution and that the tested hypotheses

must be specified in advance rather than being driven by the input data. Yet, their

ability to provide confidence estimates for the results they report is a highly desired

feature. In this thesis, we implemented this feature only indirectly, through statistical

generalization tests on held out data and through the evaluation of our results relative

to the literature and to current biological databases. As a more direct approach,

in some cases we can make use of well known methods for confidence estimation

such as bootstrap (Efron and Tibshirani, 1993), which repeatedly learns models from

resamples of the original input data and then estimates the confidence of different

features of the model based on the number of times they appear in all models learned.

This approach was used by Pe’er et al. (2001) for estimating the confidence of the

features of regulatory networks inferred from expression data using Bayesian networks.

Adapting such confidence estimation approaches for our models can greatly enhance
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the reliability of our results.

6.2.3 Incorporating Prior Biological Knowledge

While there are advantages to learning models in an unbiased way directly from the

data, in some cases it may be useful to incorporate prior biological knowledge into the

learning process. Such prior knowledge can come, for example, from manually curated

biological databases such as GO, but also from the results of applying genome-wide

computational methods such as the ones presented in this thesis. The idea is that

once we are satisfied with some aspects of our model, we can make use of them in

designing the next model, rather than having to start the design process each time

from scratch. Incorporating prior knowledge of the form that exists in biological

databases can also help us in focusing on the novel predictions made by the method,

rather than on rediscovering what is already known.

In theory, we can easily encode such prior knowledge into our model. For example,

if we know the targets of some regulator, we can bias our model towards including

those regulatory relationships. In practice, however, devising a principled approach

for incorporating prior knowledge and for reusing parts of previous models is chal-

lenging, especially since we may want to represent the various degrees of confidence

that we have in this prior knowledge, depending on the source from which it was

derived.

6.2.4 Modeling Time and System Dynamics

The cell is constantly responding to the environment by changing its state, as de-

fined by the activity level of its proteins. Clearly, the state of the cell at one time

point is highly dependent on its previous state and on the environmental signals it

receives. In this thesis, we completely ignored such time dependencies, even though

some of the expression data we used had such information as it was measured across

consecutive time points. In some cases, ignoring this aspect may result in unrealistic

computational predictions. For example, the module network procedure may predict

that a regulator activates its targets 5, 15, and 25 minutes after the cell receives some
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stress signal, but not 10 or 20 minutes after receiving the signal.

One way to incorporate time into our framework is to add dependencies between

variables in consecutive time points, as in the framework of Dynamic Bayesian Net-

works (DBNs). For example, the expression level of a gene at one time point might

depend on its expression level in the previous time point and on the expression of its

regulator in the current time point. However, a naive application of DBNs assumes

that these dependencies are time homogeneous, i.e., that the form of the dependency

of a variable on variables from the previous time point does not change under differ-

ent conditions or in different time points. As the biological system may change its

behavior under different conditions, such an approach may be overly simplistic.

We note that, while the time homogeneity assumption can be addressed, a more

inherent limitation of DBNs is that they make the first-order Markov assumption,

which asserts that variables in time point t + 1 are independent of variables in time

t − 1 given an assignment to the variables in time point t. Clearly, this assumption

is often too restrictive in the biological domain where, for example, we may want the

expression of a gene at each time point to depend on its overall behavior in the time

series. Thus, an important direction for future work is to devise a general scheme for

modeling time in biological systems that can be incorporated within our modeling

language.

6.2.5 Modeling Cyclic Dependencies and Feedbacks

Recall that our models always define a joint distribution by the ground Bayesian

network that it induces over the set of random variables in the domain. In order for

this joint distribution to be coherent, the resulting Bayesian network must be acyclic.

This acyclicity constraint is a serious limitation in the biological domain, where there

are many systems that utilize feedback loops, in which one gene affects the expression

of another gene, which in turn affects the expression of the first gene.

One way to model such cyclic dependencies is to properly incorporate time into

our models as described above. We can then have cyclic dependencies as long as

they do not occur in the same time. For example, we can model a dependency of
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some variable A at the current time point on the value of some other variable B

from the previous time point, and also the dependency of B in the current time

point on the value of A in the previous time point. However, such models may be

difficult to learn and hard to interpret. We note that Richardson (1996) proposed a

different formalism for modeling cyclic dependencies in directed graphs that would

be interesting to explore within our framework.

Another approach for relaxing the acyclicity constraint is to use undirected graph-

ical models, such as Markov Networks (Pearl, 1988) or their extension to the relational

domain as presented by Taskar et al. (2002). However, the learning task (especially

the structure learning problem) for this class of networks is more complicated than

it is for directed graphical models.

6.2.6 Integrating Realistic Models of Biological Interactions

As discussed above, we use our language to represent complex interactions among

various entities in the biological domain, such as the binding of a transcription factor

to its target site on the DNA or the binding between two physically interacting pro-

teins. In representing such interactions, we make simplifying assumptions regarding

the details of the interaction. For example, we represent the interaction between a

transcription factor and the motif to which it binds using a PSSM model that as-

sumes independence among the nucleotides in the different positions of the motif.

Clearly, such models only roughly approximate the true underlying interactions in

the biological system.

Recently, there have been several works that build more sophisticated quanti-

tative models based on the chemistry of molecular interactions (e.g., see Kalir and

Alon (2004) and Nachman et al. (2004)). By incorporating such detailed quantitative

models, we can construct more realistic models of the underlying biological system.

However, these models incur additional computational costs and add degrees of free-

dom to the model that may potentially lead to overfitting. Thus, a key challenge in

constructing more realistic models of physical interactions lies in extending the mod-

ularity of our framework in order to reduce the computational costs, and in choosing
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the appropriate level of detail we include in the model based on the data that we

have available for learning the models.

6.2.7 Using the Models for Predicting New Behavior

Finally, our work has focused on the task of learning models from data and on analyz-

ing the patterns that these models find in the input data. However, we do not have to

limit ourselves to use the model only for these purposes. If we trust the models that

we learn, then once we obtain a model from data, we can use it for reasoning about

the underlying biological system, even under conditions that are not represented in

the input data. For example, we can predict how the behavior of the biological system

will change in response to deletion of some regulatory genes, if we set the expression

level of these genes to zero, and then use the model to infer the value of the other

genes in the system. While in theory such an approach is feasible, its reliability and

usefulness remains to be seen.

6.3 The Challenge Ahead

In this thesis, we presented a statistical modeling language that we developed for

the biological domain and several applications of this framework for addressing key

problems in gene regulation, including discovering regulators of biological processes,

finding the motifs to which these regulators bind, and detecting regulatory relation-

ships that have been conserved across evolution. It is our hope that these applications

demonstrate that the general framework of probabilistic relational models is a pow-

erful tool for representing complex interactions and for studying key problems in the

biological domain.

Nevertheless, we view our work only as a first step in the direction of laying

out the computational frameworks that will be crucial for the transition of biology

into becoming an information science. It is evident that in the upcoming years,

much more data will become available but more importantly, new types of data, such

as protein-level and tissue-specific expression, will be measured on a genome-wide
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scale. Combined with the fact that these data will be measured in many different

organisms, across a wide range of environmental conditions, it is clear that soon we

will be overwhelmed by the amount of data that will be available, and will need to

develop new ways of utilizing it to further our understanding of biology. It is our hope

that this thesis demonstrates that by continuing to extend and develop our framework

along the lines discussed above, we might be able to use it for addressing many of

these upcoming challenges.



Appendix A

Data Marginal Likelihood for

Multinomial Distribution

Assume that that X[1], . . . , X[N ] form a random sample from a multinomial distribu-

tion, where each X[i] can take on one of k different values, and for which the parameter

vector θ = {θ1, . . . , θk} is unknown. Also assume that the prior distribution over θ

is a Dirichlet distribution with hyperparameters α = {α1, . . . , αk}:

P (θ) =
Γ(
∑k
i=1 αi)

∏k
i=1 Γ(αi)

k
∏

i=1

θαi−1
i

where Γ(x) is the Gamma function defined as Γ(x) =
∫∞
0 tx−1e−xdt. If we let Ŝ[j]

represent the number of instances X[i] in the data that have the j-th value, then the

log of the marginal likelihood of the data D = {X[1], . . . , X[N ]}, logP (D), is given

by:

logP (D) = log
∫ 1

0
P (D | θ)P (θ)dθ

= log
∫ 1

0





N
∏

j=1

θ
Ŝ[j]
j





Γ(
∑k
i=1 αi)

∏k
i=1 Γ(αi)

k
∏

i=1

θαi−1
i dθ

= log

(

Γ(
∑k
i=1 αi)

∏k
i=1 Γ(αi)

)

+ log
∫ 1

0

N
∏

j=1

θ
Ŝ[j]+αj−1
j dθ
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Note that the quantity inside the integral is proportional to a Dirichlet distribution

with parameters α = {Ŝ[1] + α1, . . . , Ŝ[k] + αk}. Since the integral of this Dirichlet

distribution is 1, we know that:

∫ 1

0

Γ(
∑k
i=1 Ŝ[i] + αi)

∏k
i=1 Γ(Ŝ[i] + αi)

k
∏

i=1

θ
Ŝ[i]+αi−1
i dθ = 1

Using this, we can now derive the log marginal likelihood of the data as:

logP (D) = log

(

Γ(
∑k
i=1 αi)

∏k
i=1 Γ(αi)

)

+ log





∏k
i=1 Γ( ˆS[i] + αi)

Γ(
∑k
i=1

ˆS[i] + αi)





= log Γ(
k
∑

i=1

αi)−
k
∑

i=1

log Γ(αi) +
k
∑

i=1

log Γ( ˆS[i] + αi)− Γ(
k
∑

i=1

ˆS[i] + αi)
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Data Marginal Likelihood for

Univariate Gaussian Distribution

Assume that that X[1], . . . , X[N ] form a random sample from a normal distribution

for which both the mean µ and the precision τ are unknown (−∞ < µ < ∞ and

τ > 0). Also assume that the joint prior distribution of µ and τ is as follows:

The conditional distribution of µ given τ is a normal distribution with mean µ0 and

precision λ0τ (−∞ < µ0 < ∞ and λ0 > 0); and the marginal distribution of τ

is a gamma distribution with parameters α0 and β0 (α0 > 0 and β0 > 0). This

prior distribution, P (µ, τ), is called a Normal-Gamma distribution with parameters

〈µ0, λ0, α0, β0〉. The log of the marginal likelihood of the data D = {X[1], . . . , X[N ]},
logP (D), is given by:

logP (D) = log
∫ ∞

µ=−∞

∫ ∞

τ=0
P (D | µ, τ)P (µ, τ)dτdµ

= log
∫ ∞

µ=−∞

∫ ∞

τ=0

(

N
∏

i=1

(2π)−1/2τ 1/2 exp
[

−0.5τ(X[i]− µ)2
]

)

(2π)−1/2(λ0τ)
1/2 exp

[

−0.5λ0τ(µ− µ0)
2
] βα0

0

Γ(α0)
τα0−1 exp[−β0τ ]dτdµ

= log
∫ ∞

µ=−∞

∫ ∞

τ=0
(2π)−N/2τN/2 exp

[

−0.5τ
N
∑

i=1

(X[i]− µ)2

]

(2π)−1/2(λ0τ)
1/2 exp

[

−0.5λ0τ(µ− µ0)
2
] βα0

0

Γ(α0)
τα0−1 exp[−β0τ ]dτdµ
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= −N
2

log(2π) +
1

2
logλ0 + α0 log β0 − log Γ(α0) +

log
∫ ∞

µ=−∞

∫ ∞

τ=0
τN/2 exp

[

−0.5τ
N
∑

i=1

(X[i]− µ)2

]

(2π)−1/2τ 1/2 exp
[

−0.5λ0τ(µ− µ0)
2
]

τα0−1 exp[−β0τ ]dτdµ

If we now let the mean of the observed data be X̄ = 1
N

∑N
i=1X[i] and define:

λ1 = λ0 +N

µ1 =
λ0µ0 +NX̄

λ1

α1 = α0 +
N

2

β1 = β0 +
1

2

N
∑

i=1

(X[i]− X̄)2 +
Nλ0(X̄ − µ0)

2

2λ1

,

then after some simple algebra we can show that:

N
∑

i=1

(X[i]− µ)2 + λ0(µ− µ0)
2 = λ1(µ− µ1)

2 +
N
∑

i=1

(X[i]− X̄)2 +
Nλ0(X̄ − µ0)

2

λ1

which means that we can now rewrite the log marginal likelihood as:

logP (D) = −N
2

log(2π) +
1

2
log λ0 + α0 log β0 − log Γ(α0) +

log
∫ ∞

µ=−∞

∫ ∞

τ=0
(2π)−1/2τ 1/2 exp

[

−0.5λ1τ(µ− µ1)
2
]

τα1−1 exp [−τβ1] dτdµ

Note that the quantity inside the integral is proportional to a Normal-Gamma dis-

tribution with parameters 〈µ1, λ1, α1, β1〉. Since the integral of this Normal-Gamma

distribution is 1, we know that:

∫ ∞

µ=−∞

∫ ∞

τ=0
(2π)−1/2(λ1τ)

1/2 exp
[

−0.5λ1τ(µ− µ1)
2
] β1

α1

Γ(α1)
τα1−1 exp [−τβ1] dτdµ = 1
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Using this, we can now rewrite the log marginal likelihood of the data as:

logP (D) = −N
2

log(2π) +
1

2
log λ0 + α0 log β0 − log Γ(α0) + log

Γ(α1)

β1
α1λ

1/2
1

Thus, the log marginal likelihood of a univariate Gaussian distribution where

we have a Normal-Gamma prior distribution over the mean µ and precision τ with

hyperparameters 〈µ0, λ0, α0, β0〉, is given by:

logP (D) =

−N
2

log(2π) +
1

2
log λ0 + α0 log β0 − log Γ(α0) + log Γ(α1)− α1 log β1 −

1

2
log λ1

where 〈µ1, λ1, α1, β1〉 are defined as above.



Appendix C

Computing Enrichment of

Annotations

Assume that we are given a set of n objects. If these n objects are chosen randomly

(without replacements) from a population of N objects, of which K are known to be

of a particular type T , then we can use the hypergeometric distribution to compute

the probability that the n randomly selected objects will contain k or more objects

of type T . This probability will be:

P (X ≥ k) =
n
∑

i=k

(

K
i

)(

N−K
n−i

)

(

N
n

)

where P (X ≥ k) represents the probability that the n randomly selected objects will

have k or more objects of type T .

We use the above computation in several places throughout this thesis, usually

to test whether a set of genes is enriched for genes in the same functional category

according to some gene annotation database (e.g., Gene Ontology (GO, (Ashburner

et al., 2000))). Under the null hypothesis that the set of genes is randomly chosen

from the population of genes, we can treat the probability above as a p-value for

the functional enrichment of the gene set relative to the tested annotation. As we

usually test several different sets of genes, each against several different functional
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annotations, we need to correct these p-values for the multiple tests we perform. The

simplest such correction is a Bonferroni correction for multiple hypotheses, which

simply multiplies the above p-value by the total number of tests performed.



Appendix D

Computing Significance of

Annotation Partition

Assume that we are given a partition of N objects into two groups of size N1 and

N2. If we randomly select n objects from the entire set of N objects, then we can use

the binomial distribution to compute the probability that the n randomly selected

objects will contain k or more objects from partition N1. This probability will be:

P (X ≥ k) =
n
∑

i=k

(

n

i

)

(

N1

N

)i (N2

N

)n−i

where P (X ≥ k) represents the probability that the n randomly selected objects will

have k or more objects from the N1 partition.

We use the above computation in several places throughout this thesis, usually to

test whether a set of arrays that are split by a regulator in some regulation program

are enriched for arrays with the same experimental condition according to condition

annotations for the arrays in the respective study. Under the null hypothesis that

the set of arrays are randomly chosen from the population of arrays, we can treat the

probability above as a p-value for the enrichment of the array set relative to the tested

annotation. As we usually test several different sets of arrays, each against several

different condition annotations, we need to correct these p-values for the multiple

tests we perform. The simplest such correction is a Bonferroni correction for multiple
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hypotheses, which simply multiplies the above p-value by the total number of tests

performed.



Bibliography

S. Akutsu, T. Kuhara, O. Maruyama, and S. Minyano. Indentification of gene reg-

ulatory networks by strategic gene disruptions and gene over-expressions. In Pro-

ceedings Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

1998.

B. Alberts, A. Johnson, J. Lewis, K. Roberts, M. Raff, and P. Walter. Molecular

biology of the cell. Garland publishing, 2002.

S. F. Altschul, Gish W., Miller W., E.W. Myers, and D.J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P.

Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver,

A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin,

and G. Sherlock. Gene ontology: tool for the unification of biology. the gene

ontology consortium. Nature Genetics, 25:25–29, 2000.

T.L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization

to discover motifs in biopolymers. In Proceedings International Conference on

Intelligent Systems for Molecaulr Biology (ISMB), pages 28–36, 1994.

A. Bairoch, P. Bucher, and K. Hofmann. The PROSITE database, its status in 1997.

Nucleic Acids Research (NAR), 25:217–221, 1997.

Y. Barash and N. Friedman. Context-specific Bayesian clustering for gene expression

data. In Proceedings Third Interational Conference on Computational Molecular

Biology (RECOMB), 2001.

260



BIBLIOGRAPHY 261

Y. Barash, G. Bejerano, and N. Friedman. A simple hyper-geometric approach

for discovering putative transcription factor binding sites. In O. Gascuel and

B. M. E. Moret, editors, Algorithms in Bioinformatics: Proceedings First Inter-

national Workshop, number 2149 in LNCS, pages 278–293, 2001.

Y. Barash, G. Elidan, N. Friedman, and T. Kaplan. Modeling dependencies in protein-

dna binding sites. In Proceedings Seventh Interational Conference on Computational

Molecular Biology (RECOMB), 2003.

A. Battle, E. Segal, and D. Koller. Probabilistic discovery of overlapping cellular

processes and their regulation using gene expression data. In Proceedings Eighth

Annual International Conference on Research in Computational Molecular Biology

(RECOMB), 2004.

M.A. Beer and S. Tavazoie. Predicting gene expression from sequence. Cell,

117(2):185–198, 2004.

E.T. Bell. Exponential numbers. Journal of the American Mathematical Society,

41:411–419, 1934.

S. Bergmann, J. Ihmels, and N. Barkai. Similarities and differences in genome-wide

expression data of six organisms. PLoS Biology, 2:E9, 2004.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific inde-

pendence in Bayesian networks. In Proc. Twelfth Conference on Uncertainty in

Artificial Intelligence (UAI ’96), pages 115–123, 1996.

A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regulatory elements

in silico on a genomic scale. Genome Res., 8:1202–15, 1998.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression

Trees. Wadsworth & Brooks, Monterey,CA, 1984.

J. Buhler and M. Tompa. Finding motifs using random projections. In Proceedings

Fifth Interational Conference on Computational Molecular Biology (RECOMB),

2001.



262 BIBLIOGRAPHY

H.J. Bussemaker, H. Li, and E.D. Siggia. Regulatory element detection using corre-

lation with expression. Nature Genetics, 27:167–71, 2001.

G. Calinescu, H. Karloff, and Y. Rabini. An improved approximation algorithm for

multiway cut. In Proceedings 30th. Annual ACM symposium on theory of compu-

tation, pages 48–52, 1998.

P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. Autoclass:

a Bayesian classification system. In Proceedings Fifth International Conference on

Machine Learning (ML), pages 54–64, 1988.

J. M. Cherry, C. Ball, K. Dolinski, S. Dwight, M. Harris, J. C. Matese,

G. Sherlock, G. Binkley, H. Jin, S. Weng, and D. Botstein. Saccharomyces

genome database. Nucleic Acids Research, 26:73–79, 1998. http://genome-

www.stanford.edu/Saccharomyces/.

D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning

Bayesian networks with local structure. In Proceedings International Conference

on Uncertainty in Artificial Inteillegence (UAI), pages 80–89, 1997.

D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and

H.-J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V.

Springer Verlag, 1996.

P.F. Cliften, L.W. Hillier, L. Fulton, T. Graves, T. Miner, W.R. Gish, R.H. Waterston,

and M. Johnston. Surveying saccharomyces genomes to identify functional elements

by comparative dna sequence analysis. Science, 11:1175–1186, 2004.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9:309–347, 1992.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.

The complexity of multiterminal cuts. SIAM Journal of Computation, 23:864–894,

1994.



BIBLIOGRAPHY 263

T. Dean and K. Kanazawa. A model for reasoning about persistence and causation.

Computational Intelligence, 5:142–150, 1989.

M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, B 39:1–39,

1977.

J. DeRisi, V. Iyer, and P. Brown. Exploring the metabolic and genetic control of gene

expression on a genomic scale. Science, 282:680–686, 1997.

P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mrna ex-

pression levels during cis development and injury. In Proceedings Pacific Symposium

on Biocomputing (PSB), pages 41–52, 1999.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley

& Sons, New York, 1973.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall,

London, 1993.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and dis-

play of genome-wide expression patterns. Proceedings National Academy of Science

(PNAS), 95(25):14863–8, 1998.

G. Elidan and N. Friedman. Learning the dimensionality of hidden variables. In

Proceedings Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI),

pages 144–151, 2001.

S.L. Forsburg and L. Guarente. Identification and characterization of HAP4: a third

component of the CCAAT-bound HAP2/HAP3 heteromer. Genes and Develop-

ment, 3:1166–1178, 1989.

N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure.

In M. I. Jordan, editor, Learning in Graphical Models, pages 421–460. Kluwer,

Dordrecht, Netherlands, 1998.



264 BIBLIOGRAPHY

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational

models. In Proceedings Sixteenth International Joint Conference on Artificial In-

telligence (IJCAI), 1999.

N. Friedman, I. Nachman, and D. Peér. Learning of Bayesian network structure from

massive datasets: The “sparse candidate” algorithm. Submitted, 1999.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to

analyze expression data. Journal of Computational Biology (JCB), 7:601–620, 2000.

N. Friedman. The Bayesian structural EM algorithm. In Proceedings UAI, 1998.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz,

D. Botstein, and P. O. Brown. Genomic expression program in the response of

yeast cells to environmental changes. Mol. Bio. Cell, 11:4241–4257, 2000.

A.C. Gavin and et al.. Functional organization of the yeast proteome by systematic

analysis of protein complexes. Nature, 415:141–7, 2002.

L. Getoor, D. Koller, and N. Friedman. From instances to classes in probabilistic

relational models. In Proceedings ICML Workshop, 2000.

L. Getoor. Learning Statistical Models From Relational Data. PhD thesis, Dept. of

Computer Science, Stanford University, 2001.

M.S. Halfon, Y. Grad, G.M. Church, and A.M. Michelson. Computation-based dis-

covery of related transcriptional regulatory modules and motifs using an experi-

mentally validated combinatorial model. Genome Research, 12:1019–1028, 2002.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 20:197–243,

1995.

D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan,

editor, Learning in Graphical Models. MIT Press, Cambridge, MA, 1998.



BIBLIOGRAPHY 265

T. Heinemeyer, X. Chen, H. Karas, A.E. Kel, O.V. Kel, I. Liebich, T. Meinhardt,

I. Reuter, F. Schacherer, and E. Wingender. Expanding the TRANSFAC database

towards an expert system of regulatory molecular mechanisms. NAR, 27:318–322,

1999.

W.S. Hlavacek and M.A Savageau. Rules for coupled expression of regulator and

effector genes in inducible circuits. Journal of Molecular Biology, 255:121–139,

1996.

Y. Ho and et al.. Systematic identification of protein complexes in saccharomyces

cerevisiae by mass spectometry. Nature, 415:180–3, 2002.

P.E. Hodges, A.H. McKee, B.P. Davis, W.E. Payne, and J.I. Garrels. The yeast

proteome database (ypd): a model for the organization and presentation of genome-

wide functional data. Nucleic Acids Research, 27:69–73, 1999.

I. Holmes and W. Bruno. Finding regulatory elements using joint likelihoods for

sequence and expression profile data. In Proceedings International Conference on

Intelligent Systems for Molecaulr Biology (ISMB), 2000.

T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour,

H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R.

Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte,

K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend. Functional discovery via a

compendium of expression profiles. Cell, 102(1):109–26, 2000.

J Ihmels, G Friedlander, S Bergmann, O Sarig, Y Ziv, and N Barkai. Revealing modu-

lar organization in the yeast transcriptional network. Nature Genetics, 31:370–377,

2002.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to

variational approximations methods for graphical models. In M. I. Jordan, editor,

Learning in Graphical Models. Kluwer, Dordrecht, Netherlands, 1998.



266 BIBLIOGRAPHY

S. Kalir and U. Alon. Using a quantitative blueprint to reprogram the dynamics of

the flagella gene network. Cell, 117(6):713–720, 2004.

M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya. The kegg databases at

genomenet. Nucleic Acids Research, 30:42–46, 2002.

M. Kellis, N. Patterson, M. Endrizzi, B.W. Birren, and E.S. Lander. Sequencing

and comparison of yeast species to identify genes and regulatory elements. Nature,

423:241–254, 2004.

W.J. Kent, C.W. Sugnet, T.S. Furey, K.M. Roskin, T.H. Pringle, A.M. Zahler, and

D. Haussler. The human genome browser at ucsc. Genome Research, 12:996–1006,

2002.

D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Proceedings Interna-

tional Conference on Uncertainty in Artificial Inteillegence (UAI), pages 302–313,

1997.

D. Koller and A. Pfeffer. Probabilistic frame-based systems. In AAAI ’98, 1998.

H. Langseth and T. D. Nielsen. Fusion of domain knowledge with data for structural

learning in object oriented domains. Machine Learning Research, 4:339–368, 2003.

TI Lee, NJ Rinaldi, F Robert, DT Odom, Z Bar-Joseph, GK Gerber, NM Hannett,

CT Harbison, CM Thompson, I Simon, J Zeitlinger, EG Jennings, HL Murray,

DB Gordon, B Ren, JJ Wyrick, JB Tagne, TL Volkert, E Fraenkel, DK Gifford,

and RA Young. Transcriptional regulatory networks in saccharomyces cerevisiae.

Science, 298:799–804, 2002.

S.S. Lee, R.Y. Lee, A.G. Fraser, R.S. Kamath, J. Ahringer, and G. Ruvkun. A sys-

tematic rnai screen identifies a critical role for mitochondria in c. elegans longevity.

Nature Genetics, 161(3):1101–1112, 2003.

Y. Lee, H.L. Miller, P. Jensen, R. Hernan, M. Connelly, C. Wetmore, F. Zindy, M.F.

Roussel, T. Curran, R.J. Gilbertson, and P.J. McKinnon. A molecular fingerprint

for medulloblastoma. Cancer Research, 63(17):5428–5437, 2003.



BIBLIOGRAPHY 267

E. Lenssen, U. Oberholzer, C. Labarre, J.and De Virgilio, and M.A. Collart. Saccha-

romyces cerevisiae ccr4-not complex contributes to the control of msn2p-dependent

transcription by the ras/camp pathway. Molecular Microbiology, 43:1023–1037,

2002.

P. Lescuyer, P. Martinze, and J. Lunardi. Yy1 and sp1 activate transcription of the

human ndufs8 gene encoding the mitochondrial complex i tyky subunit. Biochimica

et biophysica acta, 1574(2):164–174, 2002.

X. Liu, D.L. Brutlag, and J.S. Liu. Bioprospector: discovering conserved dna motifs in

upstream regulatory regions of co-expressed genes. In Proceedings Pacific Symposim

on Biocomputing, pages 127–38, 2001.

D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee,

M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E. L. Brown. Expression

monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol,

14(13):1675–80, 1996.

D. MacKay, R. McEliece, and J. Cheng. Turbo decoding as an instance of pearl’s belief

propagation algorithm. IEEE J. Selected Areas in Communication, 16(2):140–152,

1997.

S.A. McCarroll, C.T. Murphy, S. Zou, S.D. Pletcher, C.S. Chin, Y.N. Jan, C. Kenyon,

C.I. Bargmann, and H. Li. Comparing genomic expression patterns across species

identifies shared transcriptional profile in aging. Nature Genetics, 36(2):197–204,

2004.

H.W. Mewes, K. Albermann, K. Heumann, S. Liebl, and F. Pfeiffer. Mips: a database

for protein sequences, homology data and yeast genome information. Nucleic Acids

Research, 25:28–30, 1997.

R Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network

motifs: simple building blocks of complex networks. Science, 298:824–7, 2002.



268 BIBLIOGRAPHY

K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference: An

empirical study. In Proc. Fifthteenth Conference on Uncertainty in Artificial Intel-

ligence (UAI ’99), 1999.

I. Nachman, A. Regev, and N. Friedman. Inferring quantitative models of regulatory

networks from expression data. Bioinformatics, Suppl 1, 2004.

R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incre-

mental and other variants. In M. I. Jordan, editor, Learning in Graphical Models.

Kluwer, Dordrecht, Netherlands, 1998.

K. Neben, A. Korshunov, A. Benner, G. Wrobel, M. Hahn, F. Kokocinski, A. Golanov,

S. Joos, and P. Lichter. Microarray-based screening for molecular markers in medul-

loblastoma revealed stk15 as independent predictor for survival. Cancer Research,

64(9):3103–3111, 2004.

J. Norbeck and A. Blomberg. The level of camp-dependent protein kinase a activ-

ity strongly affects osmotolerance and osmo-instigated gene expression changes in

saccharomyces cerevisiae. Yeast, 16:121–137, 2000.

K. Oyama, N. Sanno, A. Teramoto, and R.Y. Osamura. Expression of neuro d1 in

human normal pituitaries and pituitary adenomas. Modern Pathology, 14(9):892–

899, 2001.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from per-

turbed expression profiles. In Proceedings International Conference on Intelligent

Systems for Molecaulr Biology (ISMB), 2001.

A. Pfeffer, D. Koller, B. Milch, and K. Takusagawa. SPOOK: A system for proba-

bilistic object-oriented knowledge representation. In Proceedings Thirteenth Annual

Conference on Uncertainty in AI (UAI), pages 541–550, 1999.

A. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford Uni-

versity, 2000.



BIBLIOGRAPHY 269

Y. Pilpel, P. Sudarsanam, and G.M. Church. Identifying regulatory networks by

combinatorial analysis of promoter elements. Nature Genetics, 29:153–9, 2001.

S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo, M.E. McLaughlin,

J.Y. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. Zagzag, J.M.

Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin,

A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. Lander, and T.R. Golub.

Prediction of central nervous system embryonal tumour outcome based on gene

expression. Nature, 415(6870):436–442, 2002.

D. Poole. First-order probabilistic inference. In Proceedings Eighteenth International

Joint Conference on Artificial Intelligence (IJACI), pages 985–991, 2003.

T. Richardson. A discovery algorithm for directed cyclic graphs. In Proceedings Thir-

teenth International Conference on Uncertainty in Artificial Inteillegence (UAI),

pages 454–461, 1996.

N. Rosenfeld, M.B. Elowitz, and U. Alon. Negative autoregulation speeds the response

times of transcription networks. Journal of Molecular Biology, 323:785–793, 2002.

F.P. Roth, P.W. Hughes, J.D. Estep, and G.M. Church. Finding DNA regulatory

motifs within unaligned noncoding sequences clustered by whole-genome mRNA

quantitation. Nature Biotechnolology, 16:939–945, 1998.

R. S. Seelan and L. I. Grossman. Structural organization and promoter analysis of the

bovine cytochrome c oxidase subunit viic gene: a functional role for yy1. Journal

of Biological Chemistry (JBC), 272(15):10175–10181, 1997.

E. Segal and R. Sharan. A discriminative model for identifying spatial cis-regulatory

modules. In Proceedings Eighth Annual International Conference on Research in

Computational Molecular Biology (RECOMB), pages 141–149, 2004.

E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic models

for gene expression. Bioinformatics, 17(Suppl 1):S243–52, 2001.



270 BIBLIOGRAPHY

E. Segal, Y. Barash, I. Simon, N. Friedman, and D. Koller. From sequence to ex-

pression: A probabilistic framework. In Proceedings Sixth Annual International

Conference on Research in Computational Molecular Biology (RECOMB), 2002.

E. Segal, A. Battle, and D. Koller. Decomposing gene expression into cellular pro-

cesses. In Proceedings Eighth Pacific Symposium on Biocomputing (PSB), 2003.

E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Friedman. Learning module networks.

In Proceedings Nineteenth International Conference on Uncertainty in Artificial

Inteillegence (UAI), pages 525–534, 2003.

E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman.

Module networks: Discovering regulatory modules and their condition specific reg-

ulators from gene expression data. Nature Genetics, 34(2):166–176, 2003.

E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein

interaction and gene expression data. Bioinformatics, 19(Suppl 1):i264–i272, 2003.

E. Segal, R. Yelensky, and D. Koller. Genome-wide discovery of transcriptional mod-

ules from dna sequence and gene expression. Bioinformatics, 19(Suppl 1):i273–i282,

2003.

S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional

regulation network of escherichia coli. Nature Genetics, 31:64–68, 2002.

S. Sinha and M. Tompa. A statistical method for finding transcription factor binding

sites. In Proceedings International Conference on Intelligent Systems for Molecaulr

Biology (ISMB), pages 344–54, 2000.

R. Somogyi, S. Fuhrman, M. Askenazi, and A. Wuensche. The gene expression matrix:

Towards the extraction of genetic network architectures. In The Second World

Congress of Nonlinear Analysis (WCNA), 1996.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O.



BIBLIOGRAPHY 271

Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-

regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.

Mol. Biol. Cell, 9(12):3273–97, 1998.

J.M. Stuart, E. Segal, D. Koller, and S. Kim. A gene co-expression network for global

discovery of conserved genetic modules. Science, 302:249–255, 2003.

A.I. Su, M.P. Cooke, K.A. Ching, Y. Hakak, J.R. Walker, T. Wiltshire, A.P. Orth,

R.G. Vega, L.M. Sapinoso, A. Moqrich, A. Patapoutian, G.M. Hampton, P.G.

Schultz, and J.B. Hogenesch. Large-scale analysis of the human and mouse tran-

scriptomes. Proceedings National Academy of Science (PNAS), 99(7):4465–4470,

2002.

A. Tanay, R. Sharan, and R Shamir. Discovering statistically significant biclusters in

gene expression data. Bioinformatics, 18 Suppl 1:S136–S144, 2002.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for rela-

tional data. In Eighteenth International Conference on Uncertainty in Artificial

Intelligence (UAI), pages 485–492, 2002.

RL Tatusov, DA Natale, IV Garkavtsev, TA Tatusova, UT Shankavaram, BS Rao,

B Kiryutin, MY Galperin, ND Fedorova, and EV Koonin. The COG database:

new developments in phylogenetic classification of proteins from complete genomes.

Nucleic Acids Research, 29:22–28, 2001.

S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. Systematic

determination of genetic network architecture. Nature Genetics, 22(3):281–5, 1999.

Trifunovic, A., A. Wredenberg, M. Falkenberg, J.N. Spelbrink, A.T. Rovio, C.E.

Bruder, Y.M. Bohlooly, S. Gidlof, A. Oldfors, R. Wibom, J. Tornell, H.T. Jacobs,

and N.G. Larsson. Premature ageing in mice defective mitochondrial dna poly-

merase. Nature, 429(6990):417–423, 2004.

M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree-based reparameterization

for approximate estimation on loopy graphs. In Advances in Neural Information

Processing Systems 14, Cambridge, Mass., 2001. MIT Press.



272 BIBLIOGRAPHY

D. Weaver, C. Workman, and G. Stormo. Modeling regulatory networks with weight

matrices. In Proceedings Pacific Symposium on Biocomputing (PSB), pages 112–

123, 1999.

Y. Weiss. Correctness of local probability propagation in graphical models with loops.

Neural Computation, 12(1):1–41, 2000.

E. Wingender, X. Chen, Fricke E., R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys,

H. Michael, R. Ohnhauser, M. Pruss, F. Schacherer, S. Thiele, and S. Urbach. The

TRANSFAC system on gene expression regulation. Nucleic Acids Research, 29:281–

283, 2001.

E. A. Winzeler, D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B. Andre,

R. Bangham, R. Benito, J. D. Boeke, H. Bussey, A. M. Chu, C. Connelly, K. Davis,

F. Dietrich, S. W. Dow, M. E. Bakkoury, F. Foury, E. Gentalen, Giaever G, J. H.

Hegemann, T. Jones, M. Laub, H. Liao, N. Liebundguth, D. J. Lockhart, A. Lucau-

Danila, M. Lussier, N. M’Rabet, P. Menard, M. Mittmann, C. Pai, C. Rebischung,

J. L. Revuelta, L. Riles, C. J. Roberts, P. Ross-MacDonald, B. Scherens, M. Snyder,

S. Sookhai-Mahadeo, R. K. Storms, S. Vronneau, M. Voet, G. Volckaert, T. R.

Ward, R. Wysocki, G. S. Yen, K. Yu, K. Zimmermann, P. Philippsen, M. Johnston,

and R. W. Davis. Functional characterization of the s. cerevisiae genome by gene

deletion and parallel analysis. Science, 285:901–906, 1999.

L.F. Wu, T.R. Hughes, A.P. Davierwala, M.D. Robinson, R. Stoughton, and S.J.

Altschuler. Large-scale prediction of saccharomyces cerevisiae gene function using

overlapping transcriptional clusters. Nature Genetics, 31:255–265, 2002.

J.M. Young, C. Friedman, E.M. Williams, J.A. Ross, L. Tonnes-Priddy, and B.J.

Trask. Different evolutionary processes shaped the mouse and human olfactory

receptor gene families. Human Molecular Genetics, 11(14):535–546, 2002.


