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Abstract

Many real-world tasks require multiple decision makers (agents) to coordinate their actions
in order to achieve common long-term goals. Examples include: manufacturing systems,
where managers of a factory coordinate to maximize profit; rescue robots that, after an
earthquake, must safely find victims as fast as possible; or sensor networks, where multiple
sensors collaborate to perform a large-scale sensing task under strict power constraints. All
of these tasks require the solution of complex long-term multiagent planning problems in
uncertain dynamic environments.

Factored Markov decision process@dDPs) allow us to represent complex uncertain
dynamic systems very compactly by exploiting problem-specific structure. Specifically,
the state of the system is described by a set of variables that evolve stochastically over time
using a compact representation calletyaamic Bayesian netwo(WBN). A DBN exploits
locality by assuming that the short-term evolution of a particular variable only depends on a
few other variabless.g, the state of a section of a factory is only directly affected by a few
other sections. In the long-term, all variables in a DBN usually become correlated. Factored
MDPs often allow for an exponential reduction in representation complexity. However, the
complexity of exact solution algorithms for such MDPs grows exponentially in the number
of variables, and in the number of agents.

This thesis builds a formal framework and approximate planning algorithms that exploit
structure in factored MDPs to solve problems with many trillions of states and actions very
efficiently. The main contributions of this thesis include:

Factored linear programs: A novel LP decomposition technique, using ideas from infer-
ence in Bayesian networks, that can exploit problem structure to reduce exponentially-
large LPs to polynomially-sized ones that are provably equivalent.

\Y



Factored approximate planning: A suite of algorithms, building on our factored LP de-
composition technique, that exploit structure in factored MDPs to obtain exponential
reductions in planning time.

Distributed coordination: An efficient distributed multiagent decision making algorithm,
where the coordination structure arises naturally from the factored representation of
the system dynamics.

Coordinated reinforcement learning: A simple, yet effective, framework for designing
algorithms for planning in multiagent environments, where the factored model is not
knowna priori.

Generalization in relational MDPs: A framework for obtaining general solutions from
a small set of environments, allowing agents to act in new environments without
replanning.

Empirical evaluation: A detailed evaluation on a variety of large-scale tasks, including
multiagent coordination in a real strategic computer game, demonstrating that our
formal framework yields effective plans, complex agent coordination, and successful
generalization in some of the largest planning problems in the literature.

Vi
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Chapter 1
Introduction

Decision making problems in uncertain dynamic environments arise in many real-world
situations. The efficiency of a factory is optimized by the decisions of a set of managers. A
good manager has “vision” and “communication skills”, that is, she can design long-term
plans in collaboration with other managers. After an earthquake, members of the rescue
team must coordinate their decisions to safely find victims, as fast as possible. Air traffic
control routes hundreds of planes, balancing safety and speed.

All of these problems involve decision makers,aments selecting a sequence of ac-
tions in order to maximize multiple long-term goals. Additionally, uncertainty is ubiquitous
in these domains, both in the effects of a decision makers’ actions, and in the evolution of
the actual system. In recent years, advances in technology and algorithms have lead to in-
creased interest in automated methods for solving each of these tasks. Commercial tools are
now available for problems ranging from supply-chain management to matchmaking (an-
other example of a complex decision-making under uncertainty problem). Unfortunately,
these problems usually tend to be very large and complex, and most of the existing auto-
mated solution methods either build on heuristic procedures, or do not fully address the
long-term or the uncertain aspects of these sequential decision problems.

Although such domains are very large, real-world problems usually possess large amounts
of structure. As argued by Herbert Simon [1981] in “Architecture of Complexity”, many
complex systems have a “nearly decomposable, hierarchical structure”, with the subsys-
tems interacting only weakly between themselves. This is the type of structure that a human

1
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decision maker will probably exploit to solve such large-scale problems.

Briefly, this thesis focuses on building a formal framework and a suite of automated
methods for exploiting problem-specific structure in order to scale up planning under uncer-
tainty to very large, complex systems. Our framework addresses three aspects of decision
making in complex dynamic systems: finding successful strategies for decision-making
agents; obtaining efficient methods for coordinating the actions of multiple agents; and,
generalizing strategies obtained in a set of environments to new ones without replanning.
We also empirically demonstrate that our formally well-founded methods yield effective
plans, complex agent coordination, and successful generalization in some of the largest
planning problems in the literature.

1.1 Sequential decision making in collaborative multia-
gent problems

This section presents a brief, high-level, overview of the type of decision-making problems
we address in this thesis.

States and actions: A sequential decision making problem is often formulated in terms

of one or manyagents or decision makers, interacting witrsgstemand with each other.

The stateof this system is often specified by a setsbhte variabledescribing the state

of each part of this system. In our factory example, the agents are the managers of each
section of the factory. Each section is described by one or more state variables. The state
of the entire factory is then specified by these variables, in addition to other state variables
defining the demand, the stock levels, etc. At every time step, each agent maa®an
choice. The dynamics of the system are then influenced by the joint action assignment of
all agents.

Dynamics: We model these system dynamics in discrete time, and assume that the state
at the next time step depends only on the state at the current time step and on the joint
action choice of all agents. Such systems are caladckovian We also formulate the
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dynamics of the system asochasti¢ that is, the state evolution is uncertain, but follows
some probability distribution.

Rewards: In addition, each agent has preferences over states of the system and over
action choices. Specifically, the preferences of each agent are definedvgrd function

that assigns a real value to each state and joint action of all agents. In a factory, a man-
ager’s reward function may depend positively on the overall throughput of the factory, and
negatively on the maintenance cost of its section, for example.

Multiagent problems:  Systems involving multiple decision makers are often called
multiagent problemsOur factory example can be approximated asliaborativesetting,

where the multiple agents seek to fulfill a common goal, maximizing profit. Formally,

a collaborative multiagent problem is one where every agent possesses the same reward
function. An alternative, more general, formulation occurs when agents have the different
reward functions. This type of domain is usually callecbanpetitivemultiagent problem.
Games such as chess &ully competitiveas the agents have exactly opposite preferences.
More generally, decision makers in competitive settings may share some aspects of their
reward functions, and choose to collaborate at some points in time. In reality, a factory is
a competitive problem, as managers may have self-interested terms in their reward func-
tion, such as their own salary. The algorithms and methods in this thesis will focus on
collaborative multiagent problems, and on the special case of single agent problems.

Policies:  Overall, this thesis will focus on efficiently obtaining strategies, usually re-
ferred to agolicies that seek to maximize the long-term reward of an agent, or of many
collaborating agents, interacting with a system that evolves stochastically over time.

Autonomous agents: More specifically, we focus on developing policiesémtonomous
agentswhere each agent is assumed to repeat three tasks at every time step:
Sensing: the agent observes some aspect of the current state of the system;

Action selection: the agent makes a decision about its action choice for the current
time step, perhaps by communicating with other agents;



4 CHAPTER 1. INTRODUCTION

Actuation: the selected action is executed, affecting the evolution of the system.

In a factory, for example, each manager (agent) observes the state of its section, and, per-
haps, that of neighboring sections; the managers then negotiate a course of action; and each
manager implements this action in its own section.

Full and limited observability: =~ We assume that the true state of the systerfully
observablethat is, the agenisollectivelyobserve the true state at each time step. Unfortu-
nately, settings where each agent to needs to observe a large number of state variables are
often impractical in real-world situations. In our factory example, it is infeasible to expect
each manager to know the whole state of the factory before selecting its action. Thus, we
seek to design algorithms that leaditoited observabilitywhere, at each time step, each
agent only needs to observe a small set of state variables. In our factory, we would like
the manager of one section to observe the state of this section and that of only a few other
sections.

Limited communication: A very complex deliberation process for action selection may
lead agents to spend an unmanageable amount of time negotiating the action choice, as in
many management meetings. An alternative is to use a centralized action selection proce-
dure, where a single agent makes a global decision and transmits the appropriate action to
each one of the other agents. Unfortunately, as with most centralized methods, this proce-
dure may lead both to a communication bottleneck, and to robustness problems. We thus
need efficient methods for multiagent coordination, where agents select the optimal action
while only needing to communicate with a small number of other agents. We call this
propertylimited communication

MDPs, planning and reinforcement learning: A Markov decision proced$DP) is a
formal mathematical framework, popularized by Bellman [1957], for modelling and solv-
ing dynamic decision-making problems. There are two more specific problem definitions
fitting this MDP formalism: Aplanningproblem is one where a model of the environment,
i.e., representations of the system dynamics and of the reward function, are krypovani.

The objective here is to find a policy that maximizes long-term reward with respect to this
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model. Alternatively, a model of the environment may not be known, and the agents must
optimize their policy through experimentation. This second setting is cadlatbrcement
learning This thesis will mainly focus on addressing the planning problem in large-scale
environments, though we will also present new algorithms for reinforcement learning in
collaborative multiagent settings.

Generalization:  In many real-world settings, agents will face many environments over
their lifetime, and need to obtain good strategies for each one of these environments. Often
their experience with one environment will help them to perform well in another, even
with minimal or no replanning. For example, a management consultant may be called
to optimize the production of many factories. The experience in one factory helps the
consultant design good strategies for other factories. Unfortunately, most planning methods
are designed to optimize the plan of agents in a fixed environment. In this thesis, we would
like to build a framework that will allow us tgeneralizesolutions obtained from a set of
environments to a new unseen environment, without replanning.

1.2 Exploiting problem structure to tackle the curse of di-

mensionality

As discussed in the previous section, the state of a system is described by an assignment
to a set of state variables. Therefore the number of possible states is exponential in the
number of state variables,g, the state space of a factory is exponential in the number of
sections in this factory. Bellman [1957] coined the tenmse of dimensionalitio describe

this exponential relationship between the number of states and the number of variables that
describe each state. Multiagent problems possess another “curse of dimensionality”: Each
agent’s action can be thought as action variable The set of joint actions is thus the
exponential set of assignments to these action variables. For example, the action space in a
factory grows exponentially with the number of managers.
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The curse of dimensionality makes the representation of the model of an MDP infeasi-
ble in systems described by many state variables, or ones involving many agents. Specifi-
cally, as the reward function assigns a value to each state and joint action, a tabular repre-
sentation of this function is thus infeasible in large systems. Similarly, the transition model
for taking some joint action in some state assigns a probability distribution over states in
the next time step. Again, a tabular representation is infeasible, as it requires an entry for
each joint assignment of a state in the current time step, action, and state in the next time
step.

This problem can be addressed by exploiting structure in the problem to define a com-
pact representation to the reward function and of the transition modelBayesian net-
works(BNs) framework [Pearl, 1988] allows the compact representation of exponentially-
large complex probability distributions. Additionally, probabilistic inferences can often be
performed very efficiently in BNs. Dean and Kanazawa [1989] extend the BN framework
to allow for the compact representation of Markovian transition models, such as those used
in MDPs. This compact representation of the transition model is calliygiamic Bayesian
network(DBN).

A DBN represents the transition model exactly as a product of local factors representing
the transition probabilities of each variable. Often, by exploiting conditional independence
structure in the system, the factor for each variable can be represented very compactly. In
our factory example, the probability distribution for the state of a particular section in the
next time step may depend on the state of this section, the state of neighboring section, and
the action choice of this section’s manager in the current time step, but not on the state of
any other section or on the action of other managers. Thus, the factor representing the dy-
namics of this section can be represented quite compactly. If the number of state and action
variables involved in each factor are small, we can obtain an exponential reduction in space
complexity. Despite the fact that the transition model represented by a DBN is factored,
influence propagates from variable to variable over time, an a sparsely connected DBN
can still represents complex long-term correlations. In the factory example, a manager’s
action only affects its section in the next time step, but this decision may have long-term
consequences for the entire factory.

The reward function can often be represented compactly with a similar factorization. In
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this thesis, we focus on additive decompositions [Howard & Matheson, 1984]. Specifically,
we assume that the global reward function can be decomposed as the sum of factors, each
depending only on a small number of state and action variables. For example, the reward
function of a factory can be decomposed as the income from sales, minus the sum of the
maintenance costs for each section, and so on. Again, this factored representation can often
be exponentially more compact than the explicit tabular one. An MDP represented using
factored representations for the transition model and for the reward function is called a
factored MDP[Boutilier et al.,, 1995].

1.3 Approximate solutions for MDPs

Most solution algorithms for MDPs seek to find a policy that assigns an (optimal) action
choice for each agent at each state. There are two typical approaches: the policy can be
represented explicitly, in tabular form, or implicitly byvalue function which describes,

for each state, the long-term reward that the agents will accumulate by starting from this
state. Unfortunately, both of these representations are exponential in the number of state
variables.

Factored MDPs give us a very compact representation of the MDP model using ex-
tensions of BNs. Inferences in Bayesian networks can be performed very efficiently in
sparsely connected problems [Pearl, 1988; Dechter, 1999]. We may thus be tempted to
believe that sparsely connected factored MDPs will allow us to obtain an optimal policy
or value function efficiently. Unfortunately, even though factored MDPs give us a very
compact representation for large planning problems, computing exact solutions to these
problems is known to be hard [Mundheakal, 2000; Liberatore, 2002]. Furthermore, as
shown by Allendeet al. [2002], a compact approximate solution with theoretical guaran-
tees generally does not exist.

In order to address the exponential growth, we resort to approximate solutions to the
factored MDP. There are many types of approximation methods for MDPs. Typically, these
methods are divided into two main classgalue function approximatior methods that
search in a parametric space of approximate value functpmigy search- methods that
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search in a parametric space of approximate policies. We refer the reader to books by Bert-
sekas and Tsitsiklis [1996], or Sutton and Barto [1998] for a more in-depth discussion.

This thesis focuses mainly dmear value function approximatiora form of linear
regression as first proposed by Bellmaet al. [1963]. Here the value function is ap-
proximated by a linear combination of (potentially non-linear) basis functions, or features.
Unlike many policy search methods and more complex value function approximation archi-
tectures, the parameters of such a linear approximation can often be estimated effectively
by stable global optimization procedures.

In the context of factored MDPs, Koller and Parr [1999] suggest a specific type of basis
function that is particularly compatible with the structure of the factored model. They sug-
gest that, although the value function is typically not structured, there are many cases where
it might be “close” to structured, that is, where the value function is well-approximated us-
ing a linear combination of functions, each of which refers only to a small number of state
variables. They call such approximation architectufacored (linear) value functian
This representation of the value function is a central element in our efficient approximate
solution algorithms, in our distributed multiagent coordination methods, and in our gener-
alization approach.

1.4 Main contributions

We have now set the basic foundation for the work in this thesis: We seek to find efficient
approximate solutions to large-scale stochastic planning problems that can be represented
compactly by exploiting problem structure in factored MDPs. Specifically, we approximate
the value function of such MDPs using an appropriate linear architecture, the factored value
function representation, where the each basis function is restricted to depend on a small set
of variables.

Efficient planning:  We propose a suite of approximate planning algorithms that can
exploit problem structure to optimize the basis function weights efficiently. One of these
algorithms, for example, relies on a linear program (LP) formulation for optimizing the
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basis function weights that was first proposed by Schweitzer and Seidmann [1985]. Un-
fortunately, this LP formulation has one constraint for each state and joint action, a thus
exponentially-large set of constraints. We address this problem by proposifartbeed

LP algorithm, a novel LP decomposition technique, which allows us to exploit structure in
the factored MDP and in the factored value function to represent this exponentially-large
set of constraints by a provably equivalent polynomial formulation. The complexity of our
algorithm will depend explicitly on the sparseness of the interactions between state vari-
ables in the factored MDP, and on the complexity of the structure of our factored value
function. Factored LPs are a core element to all of our efficient solution algorithms, both
in the single agent, and in the multiagent settings.

Multiagent coordination:  In collaborative multiagent settings, at every time step, agents
must choose the action that maximizes the value function, among an exponential set of pos-
sible action choices. This action selection problem is generally intractable, and requires a
centralized decision-making procedure. We present a novel distributed algorithm for action
selection in collaborative multiagent settings. This algorithm is able to chose the action that
optimally maximizes our approximate value function by exploiting problem structure. Ad-
ditionally, our approach fulfills two important properties described earlier in this chapter:
limited observability and limited communication. Interestingly, the communication struc-
ture between agents in our algorithm is not impoaegatiori, but derived directly from the
structure in the factored MDP and value function.

Coordinated reinforcement learning:  Thus far, we have assumed that the system we
are tackling has been modelled by a factored MDP. In many practical problems, this model
is not knowna priori, agents must learn effective policies through their interactions with
the environment. We demonstrate that many existing RL algorithms that have been suc-
cessfully applied to single agent problems can be generalized to collaborative multiagent
settings by applying simple extensions of our factored value function representation, along
with our multiagent coordination algorithm.
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Context-specific structure:  Thus far, we have assumed that the factored MDP dynamic
model is composed of state variables whose evolution depends only on few other variables
in the system. Unfortunately, this assumption is often incorrect. A state variable in the
next time step mayotentiallydepend on many other variables in the current time step,
but usually not at the same time. In our factory example, a section may receive parts from
any other section, thus potentially correlating the state of all sections. However, the current
work order defines the specific parts that a section will need, and thus the particular sec-
tions that will influence the state of each section of the factory in the next time step. This
type of structure can exploited in the representation by using the noticonséxt-specific
independencé€CSl) [Boutilier et al., 1995], where the correlation between variables may
depend on the specific context at hand. We extend our factored LP decomposition tech-
nigue to allow us to design efficient planning algorithms that can exploit both the additive
structure present in the standard factored MDP formulation, and context-specific structure
to obtain approximate solutions to highly connected, structured problems.

Variable coordination structure:  In addition to increasing the efficiency of our plan-
ning algorithm, CSI allows us to address a very important shortcoming of the multiagent
coordination formulation described above. Our standard algorithm allows agents to com-
pute the maximizing action while only communicating with a few other agents, but always
with the same agents. However, if we consider our factory example, we realize that man-
agers usually only need to communicate with the managers of sections involved in the cur-
rent work order. Thus, the communication structure should not be fixed, but rather change
with the state of the system. Interestingly, by exploiting both the additive structure in the
factored MDP and CSI, we are able to design a multiagent coordination algorithm where
the communication structure will no longer be fixed, but varies naturally with the state of
the system. Again, this (varying) structure is not defiagaiori, but derived directly from

the structure in the model and in the value function.

Generalization: Asdiscussed above, in many real-world situations, the agents will often
be faced with many environments, and experiences from some environments should allow
these agents to perform well in other ones. Such a generalization allows us to tackle new
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environments with minimal or no replanning, and also gives us a methodology for obtaining
good strategies for extremely large environments that could not be solved even with our
factored techniques. However, itis not clear how policies for one MDP could be mapped to
other ones. Each MDP is different, having a different number of states, actions, a different
reward function, transition model, etc. To address this problem we propose the framework
of relational MDPs based on therobabilistic relational model (PRM) framework of

Koller and Pfeffer [1998]. In a relational MDP, an environment is represented by a sets of
related objects of different classes, where the transition model of one objects depends only
on the states of related objects. For example, a modern factory is often organized in terms of
many manufacturing cells. Each cell is of one of a few “types”, or classes in our relational
model, e.g, lathes, painting, etc. The flow plan of parts between these cells defines the
relations between these objects, and specifies the dynamics of the overall factory.

Such a relational representation allows us to represent a whole class of similar environ-
ments very compactly. Specifically, we can instantiate a particular environment by specify-
ing the number of objects of each class, and the relations between them. For each particular
environment we can apply our factored planning algorithms and distributed multiagent co-
ordination approach to perform planning and action selection very efficiently. However, if
we need to replan in every new environment, we have not achieved the any type of gen-
eralization. To address this issue, we propose a relational representation for the factored
value function. Here our basis functions are represented in terms of classes of objects. We
present a new LP formulation that allows us to find the weights of this class-level approx-
imate value function by only considering a small set of sampled environments. We prove
that, by optimizing over a polynomial number of sampled “small” environments, we obtain
a class-level value function that is close to the one we would obtain had we considered all,
possibly unboundedly-large, environments. Once we have obtained these weights, we can
instantiate our class-level value function in any new environment, thus allowing us to gen-
eralize the results from a few sampled environments to new ones without any replanning.
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1.5 Examples

There are many real-world problems that require the solution of sequential decision making
problems. Puterman [1994], Bertsekas and Tsitsiklis [1996], and Sutton and Barto [1998]
present many case studies. In particular, Puterman, [1994, Chapter 1], describes several
problems in industry and science that were solved by automated algorithms, along with
estimates of the large sums of money that were saved in the long-run. In this section, we
present some intuitions about the types of structure we address and about the scope of this
thesis by describing some abstractions of complex practical problems.

Manufacturing system:  Optimization procedures have been applied to many areas of
manufacturing. Consider, for example, the problem scheduling maintenance in sections of
a large factory. As described in this chapter, we could model the dynamics of such a factory,
albeit in an abstracted fashion, using a factored representation. Here we would also have
an action variable for each section of the factory indicating whether this section should
undergo maintenance in the next time step. The reward function will be factored additively
according to sections of the factory indicating the production of each section minus its
maintenance cost. The complexity of the representation of the factored value function
depends on the particular problem at hand. We could, for example, include basis functions
over pairs of connected sections in the factory. Using such a model our algorithms will give
us a policy for scheduling maintenance that attempts to maximize the global reward of the
entire factory. As described above, we can also use a relational representation for this type
of problem. This representation would allow us to generalize from a few small factories to
significantly larger ones.

Queueing networks: Queueing problems are a special type of stochastic dynamic sys-
tem, where an agent who manages a set of queues of jobs must decide which one to serve
at every time step. These problems have been widely studied in the literature, as they pro-
vide abstractions of many practical problems in industry. Queueing networks [Boédh

1998] are an extension of this model to problems involving many agents (servers) simulta-
neously. The network defines a process where jobs that are served in one queue are then
assigned to another one. We can view this process as a factored MDP with a state variable
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to represent the length of each queue, and an action variable representing the action of each
server. The network defines the interactions in the factored MDP, as the state of a particular
gueue in the next time step depends only on the queues that feed jobs into this one. The
reward function is also factored, defined, for example, as the number of jobs that termi-
nate in each queue. Given this factored representation, our framework will give us efficient
algorithms for obtaining policies that coordinate the actions of these servers in order to
approximately minimize the overall wait in the system. Again, a relational representation
could be effective in this setting. Here large complex networks can often be composed of
similar subnetworks, where each subnet is chosen from a few classes of subnets.

Computer games: In recent years, there has been a significant increase in interest in
the applications of Al techniques to computer games [Laird & Van Lent, 2001]. In Chap-
ter 13, we present an application of our factored techniques to a strategic war game called
Freecraft[Freecraft, 2003], an open-source version of the popular Wai®gsme. The
objective of this game is to coordinate the actions of a set of units with different skills in or-
der to defeat an enemy force. Here, we use relational MDPs to represent possible Freecraft
scenarios. Each unit is an instance of one of a few classes, including peasants, footmen,
enemies, etc. Our agents, the units we control, receive a reward for each dead enemy, thus
the reward function is additive, with one term for each enemy. The transition model also
decomposes according to the interactions in the gange the state of an enemy depends

on the footmen that are attacking it. A relational representation for this domain would
include a class of objects for each type of unit in the game. Our class-level value func-
tion could include terms between objects of class footman and those of class enemy. In
Section 13.5.2, we show that this type of class-level value function allows us to generalize
solutions effectively to very large Freecraft scenarios that could not be solved even by our
factored planning techniques.

Networking:  There are many possible applications of planning algorithms in network-
ing tasks €.g, packet routing [Boyan & Littman, 1993]). An interesting potential appli-
cation is the routing of queries in peer-to-peer systems [Crespo & Garcia-Molina, 2002],
such as the popular music sharing softw@mutella We can consider each node as an
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agent that can decide to fulfill a query, or forward it to one of the neighboring nodes. The
state of this system is specified by the informatierg( songs) stored in each node and

the query. A node cannot observe (or even store) the state of every node in the network,
and should not flood the entire system with queries. Using our approach, we could tackle
such problems effectively, requiring only limited observability and limited communication
between the nodes.

Elevator scheduling: A building with a large number of floors requires an effective ele-
vator scheduling policy to avoid long waits. This optimization problem requires long-term
planning under uncertainty [Crites & Barto, 1996]. We can view the number of passengers
waiting at each floor and in each elevator, along with the current floor of each elevator and
the requested stops, as our state variables. There is one action variable for each elevator in
this model, indicating the elevator’'s next destination. One could imagine a formulation of
this problem as a factored MDP, where the state of each elevator only depends on its actions
and the number of passengers in the current floor. The reward function can be represented
additively as the number of people waiting on each floor and in each elevator. In most prac-
tical systems, however, rather than observing the number of people waiting on each floor,
the elevators receive a signal of whether there are any passengers waiting at each floor.
The problem is thus no longer fully observable, breaking the assumptions of our models.
Typically, this partial observability issue is addressed by assuming full observability of the
number of passengers on each floor, or by considering that an “average number” of peo-
ple are waiting every time the elevator is called. Under these assumptions, our algorithms
could also be applied to the elevator scheduling task.

Sensor networks: Estrinet al. [1999] define networked sensors as “those that coordinate
among themselves to achieve a larger sensing task”. We can even extend this definition
to include actuation, leading to large-scale distributed planning problems, such as the ones
addressed in this thesis. Actuation in such systems encompasses not only standard effectors
in the environment, but also decisions over when to communicate information to other
sensors, and when to sense the environment, thus maximizing the amount of information
gathered, while bounding power consumption. We could use the factored MDP framework
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to model such systems, where the interactions between sensors would be fixed in static
environments, and varying in environments where the location of sensors changes over
time. Our relational framework could be particularly useful in such tasks, allowing us
to generalize from environments with a manageable number of sensors, to very complex
environments involving a very large set of devices.

1.6 The Thesis

The remainder of this thesis is organized as follows:

Chapter 2: We first present a brief review of the MDP model, and some exact and ap-
proximate solution algorithms, including?-based approximatioandapproximate
policy iteration We also extend approximate policy iteration to utilize projections in
max-norm that are compatible with existing theoretical analyzes.

Chapter 3: We review the factored MDP model, along with the factored value function
approximation architecture and some initial basic operations required by our algo-
rithms.

Chapter 4: We describe our novel factored LP decomposition technique, which allows us
to exploit problem structure to solve LPs with exponentially-large constraint set very
efficiently.

Chapter 5: We present our efficient approximate planning algorithms for single agent
problems. By building on our factored LP algorithm, we design factored versions
of the LP-based approximation algorithm and of approximate policy iteration with
projections in max-norm. We also present an empirical evaluation of the scaling
properties, and of the quality of the policies generated by these two approaches.

Chapter 6: We consider the dual formulation of our LP-based approximation algorithm
for factored MDPs. This new formulation allows us find approximate solutions in
highly connected problems that could not be solved by our factored LP decomposi-
tion technique.
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Chapter 7: We extend our approximate solution algorithms to problems with context-
specific structure, thus allowing us to exploit both additive structure and CSI. The
empirical evaluation in this chapter includes comparisons to existing state-of-the-art
methods of Boultilieet al. [1995] and Hoeet al. [1999].

Chapter 8: We review the basic extension of factored MDPs to problems involving mul-
tiple collaborating agents. We then present a straightforward extension of the basic
factored value function representation to such problems.

Chapter 9: We present our new distributed multiagent coordination algorithm, which al-
lows agents with limited observability and communication to select a maximizing
joint action for each state. We also extend our basic factored LP-based planning al-
gorithm to the multiagent setting. We present empirical evaluations demonstrating
the polynomial scaling property for problems with fixed induced width, and compar-
ing our algorithms to other state-of-the-art methods.

Chapter 10: We show that, by extending our factored multiagent approach to problems
with context-specific structure, we obtain a new coordination algorithm, where the
coordination structure naturally changes with state of the system. We also empir-
ically verify that this algorithm yields highly dynamic coordination structures and
effective policies.

Chapter 11: We describeoordinated reinforcement learning framework that leverages
on our multiagent coordination algorithm to allow us to extend many existing RL
solution methods to collaborative multiagent settings. We present empirical compar-
isons of our coordinated RL method and some existing state-of-the-art approaches.

Chapter 12: We introduce the new framework of relational MDPs, where both the MDP
model and the factored value function of domain are represented in terms of related
objects of various classes.

Chapter 13: We describe a new algorithm for optimizing the weights of the class-level
value function over a set of environments. We also prove that by sampling a poly-
nomial number of “small” environments we obtain a class-based value function that
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is close to the one we would obtain had we considered all worlds in our optimiza-
tion. We present empirical evaluations of our generalization algorithm for relational
MDPs, both on simulated environments, and on a real strategic computer war game.

Chapter 14: We summarize the algorithms and main contributions of this thesis. We
finally conclude a discussion of future directions and open problems.

Our factored LP algorithm was first presented by Guestrin, Koller and Parr in [Guestrin
etal, 2001a], along with the factored approximate iteration algorithm using max-norm pro-
jections. Guestrin, Koller and Parr describe the multiagent coordination algorithm along
with the factored version of the LP-based approximation algorithm for both single and mul-
tiagent problems, in [Guestriet al., 2001b]. The dual factorization method in Chapter 6
is new, and has not yet been published in the literature. The extension of our algorithm to
exploit both additive and context-specific structure was presented by Guestrin, Venkatara-
man and Koller in [Guestriret al, 2002d], who also describe the resulting variable co-
ordination structure in multiagent problems. Guestrin, Koller, Parr and Venkataraman de-
scribe all of our single agent methods in an unified presentation, in [Guesain2002a].
Guestrin, Lagoudakis, and Parr present the coordinated reinforcement learning framework,
in [Guestrinet al,, 2002b]. Finally, the relational MDP representation, the generalization
algorithm to new unseen problems, and the experimental results on the real strategic com-
puter war game were described by Guestrin, Koller, Gearhart and Kanodia in [Guestrin
et al, 2003].
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Chapter 2
Planning under uncertainty

A Markov decision process (MDP) is a mathematical framework for sequential decision

making problems in stochastic domains. MDPs thus provide underlying semantics for the
task of planning under uncertainty. We present only a concise overview of the MDP frame-
work here, referring the reader to the books by Bertsekas and Tsitsiklis [1996], Puterman
[1994], or Sutton and Barto [1998] for a more in-depth review.

2.1 Markov decision processes

A Markov decision process (MDRW is defined as a 4-tupla1 = (X, A, R, P) where:

X is a finite set of| X| = N states;A is a finite set of actionsf? is areward function

R : X x A — R, such thatR(x, a) represents the reward obtained by the agent in state
after taking actior; and P is aMarkovian transition modelvhereP(x’ | x, a) represents
the probability of going from state to statex’ after taking actioru. We assume that the
rewards are bounded, that is, there exigts,. such thatR,,.. > |R(x,a)|, Vx, a.

Example 2.1.1 Consider the problem of optimizing the behavior of a system administra-
tor (SysAdmin) maintaining a network of computers. In this network, each machine is
connected to some subset of the other machines. Various possible network topologies can
be defined in this manner (see Figure 2.1 for some examples). In one simple network, we
might connect the machines in a ring, with machigennected to machinés-1 andi —1.

(In this example, we assume addition and subtraction are performed modulo

20
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Bidirectional Ring

Ring of Rings

Figure 2.1: Network topologies tested; the status of a machine is influence by the status of
its parent in the network.

Each machine is associated with a binary random variakile representing whether
it is working or has failed. At every time step, the SysAdmin receives a certain amount of
money (reward) for each working machine. The job of the SysAdmin is to decide which
machine to reboot; thus, there are + 1 possible actions at each time step: reboot one
of them machines or do nothing (only one machine can be rebooted per time step). If a
machine is rebooted, it will be working with high probability at the next time step. Every
machine has a small probability of failing at each time step. However, if a neighboring
machine fails, this probability increases dramatically. These failure probabilities define
the transition modelP(x’ | x,a), wherex is a particular assignment describing which
machines are working or have failed in the current time steig,the SysAdmin’s choice of
machine to reboot and’ is the resulting state in the next time stefi

A stationary (deterministic) policyr for an MDP is a mapping : X — A, where
7(x) is the action the agent takes at stateln the SysAdmin problem, for each possible
configuration of working and failing machines, the policy would tell the SysAdmin which
machine to reboot. Atationary randomized poli¢ylso known as a stochastic poligyis
a mapping from a stateto a probability distribution over the actions the agent may take at
this state. We denote the probability of taking acticat statex by p(a | x). For all MDPs,
there exists at least one optimal policy which is stationary and deterministic [Puterman,
1994].
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In this thesis, we assume that the MDP has an infinite horizon and that future rewards
are discounted exponentially with a discount factog [0,1).! Each policy is associated
with a value functionV, € R”, whereV, (x) is the discounted cumulative value that the
agent gets if it starts at stateand follows policyr. More precisely, the valug, of a state
x under policyr is given by:

Vrr(X) _ Eﬂ- Z ,th (X(t)’ W(X(t)))
t=0

x = x] ,

whereX® is a random variable representing the state of the systemtadteps. In our
running example, the value function represents how much money the SysAdmin expects to
collect if she starts acting accordingtavhen the network is at state

The value function for a fixed policy is the fixed point of a set of linear equations that
define the value of a state in terms of the value of its possible successor states. More
formally, we define:

Definition 2.1.2 (DP operator) TheDP operatorZ,, for a stationary policyr is:

TV(x) = Re(x) +7 Y P(x' | x)V(X),
whereR,(x) = R(x,7(x)) and P, (x" | x) = P(x’ | x,7m(x)). The value function of policy
7, Vx, IS the fixed point of th&, operator:V, = 7. V,. 1

The optimal value function’* describes the optimal value the agent can achieve for
each starting staté?* is defined by a set afon-linearequations. In this case, the value of
a state must be the maximal expected value achievable by any policy starting at that state.
More precisely, we define:

Definition 2.1.3 (Bellman operator) TheBellman operatqrZ ™, is:

TV(x) = mgx[R(x, a) + ’yz P(x'| x,a)V(x')].

IMost of the results and algorithms we present have straightforward generalizations to other optimality
criteria, such as long-term average reward [Puterman, 1994].
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The optimal value functiok’* is the fixed point of *: V* = 7*V*. 1

For any value functio®, we can define the policy obtained by acting greedily relative
to V. In other words, at each state, the agent takes the action that maximizes the one-step
utility, assuming thal’ represents our long-term utility achieved at the next state. More
precisely, we define:

Greedy|V](x) = arg maX (x,a) + WZP | x,a)V(x')]. (2.1)

It is useful to define &)-function, Q,(x), which represents the expected value the agent
obtains after taking action at the current time step and receiving a long-term value
thereafter. Thig) function can be computed by:

Qu(x) = xa—l—’yZP " x, a)V(x). (2.2)

That is, @, (x) is given by the current reward plus the discounted expected future value.
Using this notation, we can express the greedy policycasedy|[V](x) = max, Q4 (X).
The greedy policy relative to the optimal value functighis the optimal policy:

7 = Greedy[V"]. (2.3)

Often, we can only obtain an approximati@nof the optimal value functio’*. In
this case, our policy will be the suboptintal= Greedy[ﬁ], rather than the optimal one
7*. Williams and Baird [1993] present a bound on the loss of acting accordindrtom a
bound on the approximation quality dfcalled theBellman error

Definition 2.1.4 (Bellman error) TheBellman errorof a value functior) is defined as:
BellmanErr(V) = |77V - V|| . .
where for any vectoV, the max-norm is given byfV|| = maxy [V(x)|. 1§

Using this measure, Williams and Baird obtain the bound:
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Theorem 2.1.5 (Williams & Baird, 1993) For any value function estimai with agreedy

policy 7 = Greedy[V], the loss of acting according t instead of the optimal policy*
is bounded by:

~

2yBellmanErr (V)
L=y
whereV* is the value of the optimal poliey* andV; is the actual value of acting according

Vi(x) = Valx) < , Vx,

to the suboptimal policy. 1

2.2 Solving MDPs

There are several algorithms to compute the optimal policy in an MDP. The three most com-
monly used are linear programming, value iteration, and policy iteration. A key component
in all three algorithms is the computation of value functions, as defined in Section 2.1.
Recall that a value function defines a value for each statethe state space. With an
explicit representation of value functions as a vector of values for the different states, the
solution algorithms all can be implemented as a series of simple algebraic steps. Once the
optimal value function/* is computed, the optimal policy* is simply the greedy policy

with respect toV* as defined in Equation (2.3).

2.2.1 Linear programming

Linear programming (LP) provides a simple and effective solution method for finding the
optimal value function for an MDP. In the formulation first proposed by Manne [1960], the
LP variables aré’ (x) for each state, whereV' (x) represents the value of starting at state
x, i.e, V(x). The LP is given by:

Variables: V(x), Vx;
Minimize: > a(x) V(x); (2.4)
Subjectto: V(x) > R(x,a) +v> ., P(X' | x,a)V(x), VxeX,ac A;

where thestate relevance weights are positive ¢(x) > 0, ¥x), and, usually, normalized
to sumto oneY_ «a(x) = 1). Interestingly, the optimal solution obtained by this LP is the
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same for any positive weight vector. Intuitively, the constraints enforcéthat is greater
than or equal tenax, R(x,a) + v >, P(x' | x,a)V(x'). By minimizing > a(x) V(x),
the LP forces equality for the maximum value of the righthand side, thus enforcing the
Bellman equations.
It is useful to understand the dual of the LP in (2.4).

Variables: ¢,(x), Vx Va ;
Maximize: > > ¢.(x)R(x,a) ;
Subjectto: )Y du(x) = a(x) +7>, > P(x| X, a)¢p.(x), VxeX;

Pa(x) >0, VxeX,a€A.
(2.5)

In this dual LP, the variable,(x), called thevisitation frequencyor statex and action
a, can be interpreted as the expected number of timesktwall be visited and actior
executed in this state (discounted so that future visits count less than present ones), where
« is the starting state distribution. The constraints in (2.5) are thus analogous to the def-
inition of a stationary distribution in a Markov chain (except that our frequency is now
discountedy. Specifically, a constraint for a stateforces the total visitation frequency
for this state,) _ ¢,(x), to be equal to the probability of starting at this staiéx), plus
the discounted expected flow from all other statéso this statex times the respective
visitation frequencies of the origin statesy > >, P(x | X, a)¢,(x’).

There is a one to one correspondence between feasible solutions to this dual LP and
policies in the MDP. Specifically, there is well-defined mapping between every feasible
solution and a (randomized) policy in the underlying MDP. More formally:

Theorem 2.2.1

1. Letp be any stationary randomized policy, then if:

dx) =) > A'ola )FxY =x|x =x)ax), vx,a, (2.6)

t=0 x’/

2 This relationship becomes very precise if (rather than discounted) the average reward optimality criteria
is used. In this case, the constraints become exactly the stationary distribution constraints [Puterman, 1994].
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whereP,(x' | x) = > P(x' | x,a)p(a | x), theng¢? is a feasible solution to the
dual LP in (2.5).
2. If ¢, is a feasible solution to the dual LP in (2.5), then for all state3 °, ¢, (x) > 0.

Furthermore, define a randomized policypy:

_a(x)
> Pal(x)

Then the dual solution defined by(x) as in Equation (2.6) is a feasible solution to
the dual LP in (2.5), an@d”(x) = ¢,(x) for all x anda.

pla | x) = (2.7)

3. A deterministic policyr* is optimal if and only if¢™" is an optimal basic feasible
solution to the dual LP in (2.5).

4. The dual linear program has the same optimal basis for any positive weight vector
a. Thus, bothy™ and=* do not depend on.

Proof: see, for example, the book by Puterman [1994.

Now consider the objective function of the dual LP in (2.5). By substituting the result
in Equation (2.6), we obtain:

ZZ¢Q(X)R(X, a) = ZZZny pla | x)P, = x | x9 = x)a(x')R(x, a);
- Setn, [t

That is, the objective of the dual LP in (2.5) is to maximize total reward for all actions

executed, and the state relevance weightgpresent the starting state distribution. It is
again surprising that the solution does not depend on the value™iis property will not
hold for the approximate version of this algorithm.

2.2.2 Value iteration

Value iterationis a commonly used alternative approach for solving MDPs [Bellman,
1957]. This algorithm, shown in Figure 2.2, starts from any initial estiméte of the
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VALUEITERATION (P, R, 7, VO &, t1haz)
/I P — transition model.
/I R —reward function.
/I v — discount factor.
/1 V(© —any initial estimate of the value function.
/I € — Bellman error precision.
Il t,,0 — Mmaximum number of iterations.
/I Return near-optimal value function.
LET t=0.
REPEAT
LET:

VD (x) = TV® (x) = max | R(x,a) + va(x’ | x,a)V(x)|, Vx.

LETt=1¢+1.
UNTIL BellmanErr(V3HD) < e ORt > tae.
RETURN V(D)

Figure 2.2: Value iteration algorithm.

value function. This estimate is iteratively improved through repeated applications of the
Bellman operator. The convergence of this algorithm relies on the max-comntmaction
property of the Bellman operator:

Definition 2.2.2 (contraction mapping) An operator? is said to be acontraction map-
pingin norm||-||, with factor~ > 0, if for any two vectord’; and V;:

1 TVi —TVo|| < [IVi = Vol - 1

The Bellman operator is a max-norm contraction:

Theorem 2.2.3 The Bellman operatd? * and the DP operatof, are max-norm contrac-
tion mappings with factof.
Proof: see, for example, the book by Puterman [1994.

A corollary of this theorem is the convergence of value iteration:
Corollary 2.2.4

1. The Bellman operator has an unique fixed point, .= 7 *V*.
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POLICYITERATION (P, R, v, VO, ¢, t1az)
/I P — transition model.
/I R —reward function.
/I ~ — discount factor.
/I 7(© — any initial policy.
/I € — Bellman error precision.
Il t,,0 — Mmaximum number of iterations.
/I Return (near-)optimal policy.
LETt=0.
REPEAT

/I Value determination step.
COMPUTE VALUE OF POLICY 7(Y) BY A SOLVING LINEAR SYSTEM OF EQUATIONS

Vﬂ.(f,)( ) ﬂ.(f) Jr’}/ZP (f) |X ,n.(f)( ), Vx .

/I Policy improvement step.

LET 7(*+1) = GREEDY[V, (1 ].

LETt=1¢+1.
UNTIL 7® = 7+ or BellmanErr (V1)) < € ORt > thnae.
RETURN 7(t+1),

Figure 2.3: Policy iteration algorithm.

2. ForanyV, (T*)*V = V*.
3. Value iteration converges t3*. 1

Note that, a¥; is equivalent td * in an MDP with only one possible policy, these results
also apply to the DP operat@r. In this case, value iteration would convergéto

2.2.3 Policy iteration

Policy iteration is a very effective algorithm for solving MDPs [Howard, 1960]. This al-
gorithm, shown in Figure 2.3, iterates over policies, producing an improved policy at each
iteration. Starting with some initial policy”’, each iteration consists of two phas¥alue
determinatiorcomputes, for a policy®, the value function_,,. Thepolicy improvement
step defines the next policy a§*!) = Greedy[V, ).

Policy iteration is monotonic:

Theorem 2.2.5 Let7® and# ) be any two successive policies generated by policy iter-
ation, then:
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Vﬂ.(t+1) (X) 2 Vﬂ.(t) (X), Vx .

Furthermore, eitherr® is the optimal policyr*, or there exists at least one statésuch
that:
Vﬂ(t+1) (X/) > Vﬂ.(t) (X/).

Proof: see, for example, the book by Puterman [19944.
A corollary of this theorem is the convergence of policy iteration:
Corollary 2.2.6 Policy iteration converges to the optimal policy. 1

Note that the algorithm in Figure 2.3 may terminate with a suboptimal policy if the maxi-
mum number of iterations is reached or the Bellman error tolerance is set to a value greater
than zero.

It is interesting to note that steps of the simplex algorithm when applied to solving
the dual linear programming formulation in Section 2.2.1 correspond to policy changes at
single states. On the other hand, steps of policy iteration can involve policy changes at mul-
tiple states. Thus, in practice, policy iteration tends to be faster than the linear programming
approach [Puterman, 1994].

Policy iteration converges in at most as many iterations as value iteration [Puterman,
1994]. In practice, policy iteration tends to find the optimal policy in many fewer iterations,
though each iteration is more costly computationally. Obtaining a tight bound on the num-
ber of iterations required for policy iteration to converge is still an open problem. However,
in practice, the convergence to the optimal policy is usually very quick.

2.3 Approximate solution algorithms

In the previous section, we presented three algorithms for find optimal solutions to MDPs.
The linear programming approach, for example, is guaranteed to yield a solution in time
polynomial in the number of states and actions. Unfortunately, the number of states in
most practical applications is too large for these methods to be feasible. Sysi#amin
problem, for example, the stateof the system is an assignment describing which machines
are working or have failed; that is, a states an assignment to each random variakle
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Thus, the number of states is exponential in the numbesf machines in the network
(IX| = N = 2™). Hence, even representing an explicit value function in problems with
more than about ten machines is infeasible.

In this section, we discuss the use of @pproximatevalue function, which admits a
compact representation. We also describe approximate versions of these exact algorithms
that use approximate value functions. Our description in this section is somewhat abstract,
and does not specify how the basic operations required by the algorithms can be performed
explicitly. In later chapters, we elaborate on these issues, and describe the algorithms in
detail.

2.3.1 Linear Value Functions

A very popular choice for approximating value functions is by udingar regressionas
first proposed by Bellmaet al. [1963]. Here, we define our space of allowable value
functionsY € H C R" via a set obasis functions

Definition 2.3.1 (linear value function) A linear value functiorover a set of basis func-
tions H = {hy,..., Iy} is a function’ that can be written a¥(x) = >, w; h;(x) for

some coefficienty = (wq,...,w;). 1

We can now defing{ to be the linear subspace Bf¥ spanned by the basis functiofs
It is useful to define aV x k& matrix H whose columns are thiebasis functions viewed
as vectors. Specifically, thgh column ofH corresponds ta;, while theith row of this
column corresponds to the assignment:jan the ith state,;(x;). In a more compact
notation, our approximate value function is then representddwy

The expressive power of this linear representation is equivalent, for example, to that of
a single layer neural network with features corresponding to the basis functions defining
‘H. Once the features are defined, we must optimize the coefficlemworder to obtain a
good approximation for the true value function. We can view this approach as separating
the problem of defining a reasonable space of features and the inducedsfeae the
problem of searching within the space. The former problem is typically the purview of
domain experts, while the latter is the focus of analysis and algorithmic design. Clearly,



2.3. APPROXIMATE SOLUTION ALGORITHMS 31

feature selection is an important issue for essentially all areas of learning and approxima-
tion. We offer some simple methods for selecting good features for MDPs in Section 14.2.1,
but it is not our goal to address this large and important topic in this thesis.

Once we have a chosen a linear value function representation and a set of basis func-
tions, the problem becomes one of finding values for the weightaich thatHw will
yield a good approximation of the true value function. In this section, we consider two
such approaches: approximate dynamic programming using policy iteration, and linear
programming-based approximatidnin remainder of this thesis, we show how we can
exploit problem structure to transform these approaches into practical algorithms that can
deal with exponentially-large state spaces.

2.3.2 Linear programming-based approximation

The simplest approximation algorithm is based on the LP-based solution in Section 2.2.1.
The approximate formulation for the LP approach, first proposed by Schweitzer and Sei-
dmann [1985], restricts the space of allowable value functions to the linear space spanned
by our basis functions. In this approximate formulation, the variableware . , wy: the
weights for our basis functions. The LP is given by:

Variables: wq,...,w; ;
Minimize: > a(x) Y, w; hi(x) ;

Subjectto: >, w; hi(x) > R(x,a) +v> ., P(x' | x,a) >, w; hi(x') Vx e X,Vae A.
(2.8)

In other words, this formulation takes the LP in (2.4) and substitutes the explicit state value
function by a linear value function representatipr) w; h;(x), or, in our more compact
notation,V is replaced byHw. This linear program is guaranteed to be feasible if a constant
function — a function with the same constant value for all states — is included in the set
of basis functions. To simplify our presentation, we assume that this basis function is
included:

Assumption 2.3.2 (constant basis function)The constant function is included in our set
of basis function. We will denote this basis functiomby

3 Our techniques easily extend to approximate versions of value iteration.
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ho(x) =1, Vx. 1

In this linear programming-based approximation, the choice of state relevance weights,
«, becomes important. Intuitively, not all constraints in this LP are binding; that is, the
constraints are tighter for some states than for others. For eack stagrelevance weight
a(x) indicates the relative importance of a tight constraint. Therefore, unlike the exact
case, the solution obtained may differ for different choices of the positive weight vector
de Farias and Van Roy [2001a] provide an example of this effect.

The recent work of de Farias and Van Roy [2001a] provides some analysis of the quality
of the approximation obtained by this approach relative to that of the best possible approx-
imation in the subspace, and some guidance as to selectsogas to improve the quality
of the approximation. In particular, their analysis shows that this LP provides the best ap-
proximation (in a weighted’,-norm senseHw* of the optimal value functiow* subject
to the constraint thaldw* > 7*Hw*, where the weights in th€; norm are the state rel-
evance weights. Additionally, de Farias and Van Roy provide an analysis of the quality
of the greedy policy generated from the approximafibw obtained from this LP-based
approach.

The transformation from an exact to an approximate problem formulation has the ef-
fect of reducing the number of free variables in the LR:tfone for each basis function
coefficient), but the number of constraints remaivis< |A|. In our SysAdmirproblem,
for example, the number of constraints in the LP in (2.8pis+ 1) - 2™, wherem is the
number of machines in the network. Thus, the process of generating the constraints and
solving the LP still seems unmanageable for more than a few machines. de Farias and Van
Roy [2001b] analyze the error introduced by an algorithm, where the LP is solved with
a sampled subset of th€ x |A|. To obtain these theoretical guarantees, the constraints
must be sampled according to a particular, often unattainable, distribution. In Chapter 5,
we discuss how we can exploit structure in an MDP to provide for a compact closed-form
representation and an efficient solution to this LP.
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2.3.3 Approximate policy iteration
Projections

The steps in the policy iteration algorithm require a manipulation of both value functions
and policies, both of which often cannot be represented explicitly in large MDPs. To define
a version of the policy iteration algorithm that uses approximate value functions, we use
the following basic idea: We restrict the algorithm to using only value functions within
the provided linear subspaéé whenever the algorithm takes a step that results in a value
functionV that is outside this space, vpeoject the result back into the space by finding
the value function within the space which is closespVtdMore precisely:

Definition 2.3.3 (projection operator) A projection operatofl is a mappingll : RY —
H. 1I is said to be aprojection w.r.t. a norm|-|| if IV = Hw* such thatw* €
argminy |[Hw — V||. &

That is,ITV is the linear combination of the basis functions that is closeBtwath respect
to the chosen norm.

Our approximate policy iteration algorithm performs the policy improvement step ex-
actly. In the value determination step, the value function — the value of acting according to
the current policyr® — is approximated through a linear combination of basis functions.

We now consider the problem of value determination for a poti¢yin detail. We can
rewrite the value determination step in terms of matrices and vectors. If welyigwand
R+ asN-vectors, and®_ ) as anN x N matrix, we have the equations:

Vw(t) = Rﬂ(w + ’yPﬂ(w Vﬂ-(t).

This is a system of linear equations with one equation for each state, which can only be
solved exactly for relatively smalN. Our goal is to provide an approximate solution,
within H. More precisely, we want to find:

w) = arg m“i,n |IHw — (R, + 7P, Hw)|| ;
= argmin H(H —yP.oH)wY — R_ H :
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Thus, ourapproximate policy iteratiomlgorithm alternates between two steps:

w® = argmin |[Hw — (R, 4+ 7P, Hw)||; (2.9)
— Greedy[Hw")]. (2.10)

Max-norm projection

An approach along these lines has been used in various papers, with several recent theoret-
ical and algorithmic results [Schweitzer & Seidmann, 1985; Tsitsiklis & Van Roy, 1996a;
Van Roy, 1998; Koller & Parr, 1999; Koller & Parr, 2000]. However, these approaches
suffer from a problem that we might call “norm incompatibility.” When computing the
projection, they utilize the standard Euclidean projection operator with respect &, the
norm or aweightedZ, norm.# On the other hand, most of the convergence and error anal-
yses for MDP algorithms utilize max-nornt{,). This incompatibility has made it difficult

to provide error guarantees.

We can tie the projection operator more closely to the error bounds through the use
of a projection operator i, norm. The problem of minimizing th€,, norm has been
studied in the optimization literature as the problem of finding the Chebyshev séltdion
an overdetermined linear system of equations [Cheney, 1982]. The problem is defined as
finding w* such that:

w" e argn‘ll‘i/nHCw—bHOO. (2.11)

We use an algorithm due to Stiefel [1960], that solves this problem by linear program-
ming:
Variables: w, ..., wy, ¢ ;
Minimize: ¢ ;
Subjectto: ¢ > Zﬁ;l ciw; —b; , and
¢>b— S5 cywy, i=1..N.

Jj=1

(2.12)

4Weighted£, norm projections are stable and have meaningful error bounds when the weights correspond
to the stationary distribution of a fixed policy under evaluation (value determination) [Van Roy, 1998], but
they are not stable when combined withi. Averagers [Gordon, 1995] are stable and non-expansigedn
but require that the mixture weights be determirepriori. Thus, they do not, in general, minimizg,,
error.

5The Chebyshev norm is also referred to as max, supremunt andorms and the minimax solution.
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The constraints in this linear program imply that> Zle c;jw; — b;| for eache, or

equivalently, that) > ||C'w — b||__. The objective of the LP is to minimizg. Thus, at the
solution(w*, ¢*) of this linear programw* is the solution of Equation (2.11) angis the

L., projection error.

We can use th&€ , projection in the context of the approximate policy iteration in the
obvious way. When implementing the projection operation of Equation (2.9), we can use
the £, projection (as in Equation (2.11)), whete= (H — yP,»H) andb = R_«). This
minimization can be solved using the linear program of (2.12).

A key point is that this LP only haks+ 1 variables. However, there a2éV constraints,
which makes it impractical for large state spaces. InSgggAdmirproblem, for example,
the number of constraints in this LP is exponential in the number of machines in the network
(a total of2 - 2™ constraints forn machines). In future chapters, we show thafaictored
MDPs with linear value functions, all th&/V' constraints can be represented efficiently,
leading to a tractable algorithm.

Error analysis

We motivated our use of the max-norm projection within the approximate policy iteration

algorithm via its compatibility with standard error analysis techniques for MDP algorithms.

We now provide a careful analysis of the impact of the error introduced by the projec-

tion step. The analysis provides motivation for the use of a projection step that directly
minimizes this quantity. We acknowledge, however, that the main impact of this analysis
is motivational. In practice, we cannot providepriori guarantees that afl,, projection

will outperform other methods.

Our goal is to analyze approximate policy iteration in terms of the amount of error
introduced at each step by the projection operation. If the error is zero, then we are per-
forming exact value determination, and no error should accrue. If the error is small, we
should get an approximation that is accurate. This result follows from the analysis below.
More precisely, we define th@ax-norm projection erroas the error resulting from the
approximate value determination step:

B = HwW" — (R0 +vPoHwW)|| .
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Note that, by using our max-norm projection, we are finding the set of weigfitghat
exactly minimizes the one-step projection erff. That is, we are choosing the best
possible weights with respect to this error measure. Furthermore, this is exactly the error
measure that is going to appear in the bounds of our theorem. Thus, we can now make the
bounds for each step as tight as possible.

We first show that the projection error accrued in each step is bounded:

Lemma 2.3.4 The value determination error is bounded: There exists a constant
R, SUCh that3p > 5O for all iterationst of the algorithm.
Proof: See Appendix A.1.1.1

Due to the contraction property of the Bellman operator, the overall accumulated error
is a decaying average of the projection error incurred throughout all iterations:

Definition 2.3.5 (discounted value determination error) Thediscounted value determi-
nation errorat iterationt is defined as3"” = g0 + 43" " 3” = 0. ¥

Lemma 2.3.4 implies that the accumulated error remains bounded in approximate policy
iteration: B(t) < %‘f’. We can now bound the loss incurred when acting according
to the policy generated by our approximate policy iteration algorithm, as opposed to the
optimal policy:

Theorem 2.3.6 In the approximate policy iteration algorithm, let?) be the policy gen-
erated at iterationt. Furthermore, let_ ., be theactualvalue of acting according to this
policy. The loss incurred by using poliey?) as opposed to the optimal poliay with value
V* is bounded by:

—=(t)
270

V"=Vl <AV = Vool + :
(1—7)2

(2.13)

Proof: See Appendix A.1.2.1

In words, Equation (2.13) shows that the difference between our approximation at iter-
ationt and the optimal value function is bounded by the sum of two terms. The first term
is present in standard policy iteration and goes to zero exponentially fast. The second is
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the discounted accumulated projection error and, as Lemma 2.3.4 shows, is bounded. This
second term can be minimized by choosing as the one that minimizes:

||HW(t) - (RW(") + ’}/Pﬂ_(z)HW(t)) Hoo )

which is exactly the computation performed by the max-norm projection. Therefore, this
theorem motivates the use of max-norm projections to minimize the error term that appears
in our bound.

The bounds we have provided so far may seem fairly trivial, as we have not provided
a stronga priori bound ons®. Fortunately, several factors make these bounds interest-
ing despite the lack o& priori guarantees. If approximate policy iteration converges, as
occurred in all of our experiments, we can obtain a much tighter bourdislthe policy

after convergence, then
2706z
(1—7)

where(; is the one-step max-norm projection error associated with estimating the value

V"= Vil <

of . Since the max-norm projection operation proviges we can easily obtain aa
posteriori bound as part of the policy iteration procedure. More details are provided in
Section 5.3.

If approximate policy iteration gets stuck in a cycle, one could rewrite the bound in
Theorem 2.3.6 in terms of the worst case projection efgqror the worst projection error
in a cycle of policies. These formulations would be closer to the analysis of Bertsekas and
Tsitsiklis, [1996, Proposition 6.2, p.276]. However, consider the case where most policies
(or most policies in the final cycle) have a low projection error, but there are a few policies
that cannot be approximated well using the projection operation, so that they have a large
one-step projection error. A worst-case bound would be very loose, because it would be
dictated by the error of the most difficult policy to approximate. On the other hand, using
our discounted accumulated error formulation, errors introduced by policies that are hard to
approximate decay very rapidly. Thus, the error bound represents an “average” case anal-
ysis: a decaying average of the projection errors for policies encountered at the successive
iterations of the algorithm. As in the convergent case, this bound can be computed easily
as part of the policy iteration procedure when max-norm projection is used.
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The practical benefit & posterioribounds is that they can give meaningful feedback
on the impact of the choice of the value function approximation architecture. While we are
not explicitly addressing the difficult and general problem of feature selection in this thesis,
our error bounds motivate algorithms that aim to minimize the gin@nan approximation
architecture and provide feedback that could be useful in future efforts to automatically
discover or improve approximation architectures.

2.4 Discussion and related work

This chapter presents Markov decision processes, the basic mathematical framework for
representing planning problems in the presence of uncertainty. The field of MDPs, as it
is popularly known, was formalized by Bellman [1957] in the 1950’s. The importance of
value function approximation was recognized at an early stage by Bellman himself [1963].
In the early 1990’s, the MDP framework was recognized by Al researchers as a formal
framework that could be used to address the problem of planning under uncertainty [Dean
et al, 1993].

Within the Al community, value function approximation developed concomitantly with
the notion of value function representations for Markov chains. Sutton’s seminal paper
on temporal difference learning [1988], which addressed the use of value functions for
prediction but not planning, assumed a very general representation of the value function and
noted the connection to general function approximators such as neural networks. However,
the stability of this combination was not directly addressed at that time.

Several important developments gave the Al community deeper insight into the rela-
tionship between function approximation and dynamic programming. Tsitsiklis and Van
Roy [1996b] and, independently, Gordon [1995] popularized the analysis of approximate
MDP methods via the contraction properties of the dynamic programming operator and
function approximator. Tsitsiklis and Van Roy [19964a] later established a general conver-
gence result for linear value function approximators @id(\). Bertsekas and Tsitsiklis
[1996] unified a large body of work on approximate dynamic programming under the name
of Neuro-dynamic Programminglso providing many novel and general error analyses.
The analysis of the novel max-norm projection version of approximate policy iteration,
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which we present in this chapter, builds on some of these techniques. The max-norm pro-
jection property of our algorithm directly minimizes a bound on the quality of the resulting
policy obtained from this analysis.

Approximate linear programming for MDPs using linear value function approximation
was introduced by Schweitzer and Seidmann [1985], though the approach was somewhat
underappreciated until fairly recently due to the lack of compelling error analyses and the
lack of an effective method for handling the large number of constraints. Recent work by
de Farias and Van Roy [2001a] has started to address some of these concerns with new error
bounds on the quality of the greedy policy with respect to the approximate value function
generated by the linear programming approach.



Chapter 3
Factored Markov decision processes

Factored MDPsare a representation language that allows us to exploit problem structure

to represent exponentially-large MDPs very compactly. In this chapter, we review this

representation as it is a central element for our efficient algorithms. We also present a
structured representation for an approximate value function, which will allow us to design

very efficient approximate solution algorithms for exponentially-large MDPs.

3.1 Representation

In a factored MDP, the set of states is described via a setmafom (state) variableX =
{X1,...,X,}, where eachX; takes on values in some finite domakm(X;). A statex
defines a value; € Dom(X;) for each variableX;. In general, we use upper case letters
(e.g, X) to denote random variables, and lower caseg,(x) to denote their values. We
use boldface to denote vectors of variabkeg( X) or their valuesx). For an instantiation

y € Dom(Y) and a subset of these variablés” Y, we usey|[Z] to denote the value of
the variable< in the instantiatiory.

3.1.1 Factored transition model

In a standard MDP as presented in Section 2.1, the representation of the transition model
is exponentially large in the number of state variables. However, the global state transition

40
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P(X! = Working| X;, X;_1, A):

Action is reboot:
machinei | other machine
X}i - B A 1 0.05
W) 1 05
Xi;i —0 1 0.09
XZZ - VV\\; A 1 0.9
(a) (b) (c)

Figure 3.1: Factored MDP example: from a network topology (a) we obtain the factored
MDP representation (b) with the CPDs described in (c).

model 7 can often be represented compactly as the product of local factors by using a
dynamic Bayesian network (DBNDean & Kanazawa, 1989]. Such a model is thus called

a factored MDP, The idea of representing a large MDP using a factored model was first
proposed by Boutilieet al. [1995].

Let X; denote the variablé(; at the current time and’/, the same variable at the next
step. Theransition graphof a DBN is a two-layer directed acyclic gragh whose nodes
are{Xy,..., X,, X1, ..., X! }. We denote the parents &f in the graph byParents, (X/).

For simplicity of exposition, we assume ttrRdrents (X!) C X, thus, all arcs in the DBN

are between variables in consecutive time slices. (This assumption is used for expository
purposes only; intra-time-slice arcs are handled by a small modification presented in Sec-
tion 3.3.) Each nodeX| is associated with aonditional probability distribution (CPD)
P.(X! | Parents,(X/)). The transition probability?, (x" | x) is then defined to be:

P.(x'|x) = HPT(x; | x[Parents, (X!)]),

wherex|[Parents, (X)] is the value inx to the variables ifParents, (X!). The complexity

of this representation is now linear in the number of state variables (the number of factors in
our DBN), and, in the worst case, only exponential in the number of variables in the largest
factor. In Chapter 7, we present a representation that can further reduce this complexity.
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Example 3.1.1 Consider, for example, an instance of the SysAdmin problem with four
computers,M;, ..., M, in an unidirectional ring topology as shown in Figure 3.1(a).
Our first task in modelling this problem as a factored MDP is to define the state space
X. Each machine is associated with a binary random variak)e representing whether

it is working or has failed. Thus, our state space is represented by four random vari-
ables: { X, Xy, X3, X}, where the domain of each state variable is giverdoyn[X;| =
{Working Dead}. The next task is to define the transition model, represented as a DBN.
The parents of the next time step variablésdepend on the network topology. Specifi-
cally, the probability that machiné will fail at the next time step depends on whether it

is working at the current time step and on the status of its direct neighbors (parents in the
topology) in the network at the current time step. As shown in Figure 3.1(b), the parents
of X/ in this example areX; and X;_,. The CPD ofX! is such that ifX; = Dead, then

X! = Dead with high probability; that is, failures tend to persist. Xf = Working, then

the distribution over possible values &f is a function of the number of parents that are
dead (in the unidirectional ring topolog¥’ has only one other parenY;_,); that is, a
failure in any of its neighbors can increase the chance that machiikfail. &

We have described how to represent factored the Markovian transition dynamics arising
from an MDP as a DBN, but we have not directly addressed the representation of actions.
Generally, we can define the transition dynamics of an MDP by defining a separate DBN
modelr, = (G,, P,) for each actioru. In Chapter 8, we introduce an additional factoriza-
tion of the action variables.

Example 3.1.2In our system administrator example, we have an aciiofor rebooting

each one of the machines, and a default actidor doing nothing. The transition model
described above corresponds to the “do nothing” action. The transition model ferdif-
ferent fromd only in the transition model for the variabl€;, which is nowX’ = Working

with probability one, regardless of the status of the neighboring machines. The table in
Figure 3.1(c) shows the actual CPD faét(X; = Working | X;, X;_1, A), with one entry

for each assignment to the state variablésand X;_;, and to the actiom. 1§
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3.1.2 Factored reward function

To fully specify an MDP, we also need to provide a compact representation of the reward
function. We assume that the reward function is factored additively into a set of localized
reward functions, each of which only depends on a small set of variables. In our example,
we might have a reward function associated with each machiwhich depends oLX;.

That is, the SysAdmin is paid on a per-machine basis: at every time step, she receives
money for machine only if it is working. We can formalize this concept of localized
functions:

Definition 3.1.3 (scope)A functionf has ascopeScope[f] = C C X if f : Dom(C)
R. 1

If f has scop& andY C Z, we usef(z) as shorthand fof (z[Y]), wherey is the part of
the instantiatiorz that corresponds to variablesth

We can now characterize the concept of local rewards. Rt .., R? be a set of
functions, where the scope of eakhis restricted to variable clust&8{ C {X;,..., X, }.
The reward for taking action at statex is defined to be?*(x) = "', R(W¢) € R. In
our example, we have a reward functiBhassociated with each machinavhich depends
only X;, and does not depend on the action choice. These local rewards are represented
by the diamonds in Figure 3.1(b), in the usual notation for influence diagrams [Howard
& Matheson, 1984]. Although not every problem can be modelled compactly using such
a factored representation of the reward function, we believe that such a representation is
applicable in many large-scale problems, as discussed in Chapter 1.

3.2 Factored value functions

One might be tempted to believe that factored transition dynamics and rewards would result
in a factored value function, which can thereby be represented compactly. Unfortunately,
even in trivial factored MDPs, there is no guarantee that structure in the model is preserved
in the value function [Koller & Parr, 1999], and exact solutions to these problems are
intractable [Mundhenlet al., 2000; Liberatore, 2002]. Thus, in general, we must resort to
approximate solutions to these factored MDPs.
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The linear value function approach, and the algorithms described in Section 2.3, apply
to any choice of basis functions. In the context of factored MDPs, Koller and Parr [1999]
suggest a specific type of basis function, which is particularly compatible with the structure
of a factored MDP. They suggest that although the value function is typically not structured,
there are many cases where it might be “close” to structured. That is, it might be well-
approximated using a linear combination of functions each of which refers only to a small
number of variables. More precisely, we define:

Definition 3.2.1 (factored value function) A factored (linear) value functiors a linear
function over the basis, ..., h;, where the scope of eadh is restricted to some subset
of variablesC,. 1

Value functions of this type have a long history in the area of multi-attribute utility the-
ory [Keeney & Raiffa, 1976]. In our example, we might have a basis funétjdor each
machine, indicating whether it is working or not. Each basis function has scope restricted
to X;. These are represented as diamonds in the next time step in Figure 3.1(b).

Factored value functions provide the key to performing efficient computations over
the exponential-sized state spaces we have in factored MDPs. The main insight is that
restricted-scope functions (including our basis functions) allow for certain basic operations
to be implemented very efficiently. In the remainder of this chapter, we show how structure
in factored MDPs can be exploited to perform one such crucial operation very efficiently:
one-step lookahead (backprojection). Then, in Chapter 4 we present a novel LP decom-
position technique, which exploits problem structure to represent exponentially many LP
constraints very compactly. These basic building blocks will allow us to formulate very ef-
ficient approximation algorithms for factored MDPs. For example, in Chapter 5, we present
two such algorithms, each in its own self-contained section: the linear programming-based
approximation algorithm for factored MDPs in Section 5.1, and approximate policy itera-
tion with max-norm projection in Section 5.2.
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3.3 One-step lookahead

A key step in all of our planning algorithms is the computation of the one-step lookahead
value of some action. This is necessary, for example, when computing the greedy policy,
as in Equation (2.1). Let us consider the computation@ffanction, which is again given
by:

Qu(x) = xa+72P | x,a)V(x). (3.1)

That is, Q. (x) is given by the current reward plus the discounted expected future value.
If we compute the-function, we obtain the greedy policy simply IBreedy[V](x) =

max, Q,(x).

Recall that we are estimating the long-term value of our policy using a set of basis
functions:V(x) = >, w; h;(x). Thus, we can rewrite Equation (3.1) as:

Q.(x) = R(x,a) + 72 P(x' | x,a) Zwi hi(x"). (3.2)

The size of the state space is exponential, so that computing the exped@tigh(x’ |

x,a) Y, w; h;(x") seems infeasible. Fortunately, as discussed by Koller and Parr [1999],
this expectation operation, or backprojection, can be performed efficiently if the transition
model and the value function are both factored appropriately. The linearity of the value
function permits a linear decomposition, where each summand in the expectation can be
viewed as an independent value function and updated in a manner similar to the value
iteration procedure used by Boutiliet al. [2000]. We now recap the construction briefly,

by first defining:

- ZP(X/ | X, CL) sz hi(xl) - Zwl ZP(X, | X, a)hi<xl)'
Thus, we can compute the expectation of each basis function separately:

ZP " | %, a)hi(x'),
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Backproj,(h) — WHERE BASIS FUNCTIONA HAS SCOPEC.
DEFINE THE SCOPE OF THE BACKPROJECTION,(C’) = Ux/cc' PARENTS, (X/).

FOR EACH ASSIGNMENTyY € T',(C'):
9°(Y) = Leree Hiixrec Pa(€'[XG] | y)R(C).

RETURN g¢°.

Figure 3.2: Backprojection of basis functién

and then weight them by, to obtain the total expectatiofi“(x) = > . w; ¢{(x). The
intermediate functiory{" is called thebackprojectionof the basis functiork; through the
transition modelP,, which we denote by¢ = P,h,. Note that, in factored MDPs, the
transition modelP, is factored (represented as a DBN) and the basis functigigave
scope restricted to a small set of variables. These two important properties allow us to
compute the backprojections very efficiently.

We now show how some restricted-scope functiofsuch as our basis functions) can
be backprojected through some transition mafletepresented as a DBN Hereh has
scope restricted td&; our goal is to computeg = P.h. We define thebackprojected
scope ofY through T as the set of parents &f’ in the transition grapltz,; T, (Y’) =
inley/ParentsT(Y;-’). If intra-time-slice arcs are included, so that

Parents, (X)) € {X1,..., X, X1,..., X},

then the only change to our algorithm is in the definition of backprojected scope of
through7. The definition now includes not only direct parentstdf but also all variables
in {X3,...,X,} that are ancestors of:

I, (Y') = {X; | there exist a directed path froi;, to any X’ € Y'}.

Thus, the backprojected scope may become larger, but the functions are still factored.

We can now show that, it has scope restricted 9, then its backprojectiog has
scope restricted to the parentsY, i.e, I'.(Y’). Furthermore, each backprojection can be
computed by only enumerating settings of variable§.ifiY’), rather than settings of all
variablesX:
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9x) = (Ph)(x);
= Y P | 0)h(x);

= ) P [x)hy);
= Y P |0hy) Y P |x);

u’E(x’—y’)

= Y Py | 2)h(y):
= g(z);

wherez is the value of-(Y’) in x and the termd_ .., Pr(u’ | x) = 1 as itis the
sum of a probability distribution over a complete domain. Therefore, we seeithatis a
function whose scope is restrictedito(Y’). Note that the cost of the computation depends
linearly on|Dom(I"-(Y"))|, which depends ofY (the scope of) and on the complexity
of the process dynamics. This backprojection procedure is summarized in Figure 3.2.

Returning to our example, consider a basis functipthat is an indicator of variable
X;: it takes valuel if the it machine is working an® otherwise. Eaclh; has scope
restricted taX?/, thus, its backprojectiog; has scope restricted Rarents, (X)): I'.(X!) =
{Xio1, X3}

3.4 Discussion and related work

This chapter describes the framework of factored MDPs, which allows the representation

of exponentially-large planning problems very compactly. This model builds on a dynamic

Bayesian network (DBN) [Dean & Kanazawa, 1989], which gives a compact representation

for a complex transition model. The idea of applying a DBN to represent a large MDP was
first proposed by Boutilieet al. [1995].

Although factored MDPs give us a very compact representation for large planning prob-

lems, computing exact solutions to these problems is known to be hard [Mundhahk
2000; Liberatore, 2002]. Furthermore, as shown by Allereteal. [2002], a compact
approximate solution with theoretical guarantees generally does not exist.
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However, as suggested by Koller and Parr [1999], in many practical cases, the value
function may be close to structured, and can be well-approximated by a factored linear
value function. This chapter describes this factored approximate representation of the value
function. We also review an efficient method for performing one-step lookahead planning
using a factored value function and a factored MDP, in a manner similar to the value itera-
tion procedure used by Boutiliet al. [2000].



Chapter 4

Representing exponentially many
constraints

Recall that both of the approximate solution algorithms presented in Chapter 2 use linear
programs to obtain the value function coefficients. The number of constraints in both of

these LPs is proportional to the number of states in the MDP, this number is exponential
in the number of state variables in the factored MDP. In this chapter, we present a novel
LP decomposition technique, which exploits problem structure, such as the one present in
factored MDPs, to represent exponentially many LP constraints very compactly. This de-
composition technique will be a central element in all of our factored planning algorithms.

4.1 Exponentially-large constraint sets

As seen in Section 2.3, both our approximation algorithms require the solution of linear
programs: the LP in (2.8) for the linear programming-based approximation algorithm, and
the LP in (2.12) for approximate policy iteration. These LPs have some common charac-
teristics: they have a small number of free variables ffbasis functions there ake+ 1

free variables in approximate policy iteration aneh linear programming-based approxi-
mation), but the number of constraints is still exponential in the number of state variables.
However, in factored MDPs, these LP constraints have another very useful property: the

49
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functionals in the constraints have restricted scope. This key observation allows us to rep-
resent these constraints very compactly.

First, observe that the constraints in the linear programs are all of the form:
¢ > w; ci(x) —b(x), Vx, (4.1)

where onlyy andwy, . .., w;, are free variables in the LP asdranges over all states. This
general form represents both the type of constraint in the max-norm projection LP in (2.12)
and the linear programming-based approximation formulation in {2.8).

The first insight in our construction is that we can replace the entire set of constraints
in Equation (4.1) by one equivalent non-linear constraint:

o> m&xZwi ¢i(x) — b(x). (4.2)

The second insight is that this new non-linear constraint can be implemented by a set of
linear constraints using a construction that follows the structure of variable elimination in
cost networks [Bertele & Brioschi, 1972]. This insight allows us to exploit structure in
factored MDPs to represent this constraint compactly.

We tackle the problem of representing the constraint in Equation (4.2) in two steps:
first, computing the maximum assignment for a fixed set of weights; then, representing
the non-linear constraint by small set of linear constraints, using a construction we call the
factored LP

4.2 Maximizing over the state space

First consider a simpler problem: Given soffireed weightsw;, we would like to com-
pute the maximizationy* = maxy ), w; ¢;(x) — b(x), that is, the state, such that the

1The complementary constraints in (2.12)> b(x) — >, w; ¢;(x), can be formulated using an analo-
gous construction to the one we present in this section by changing the sigixbfindb(x). The linear
programming-based approximation constraints of (2.8) can also be formulated in this form, as we show in
Section 5.1.
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difference betweel . w; ¢;(x) andb(x) is maximal. However, we cannot explicitly enu-
merate the exponential number of states and compute the difference. Fortunately, structure
in factored MDPs allows us to compute this maximum efficiently.

In the case of factored MDPs, our state space is a set of vectetsch are assign-
ments to the state variabl&s= { X1, ..., X,,}. We can view botlC'w andb as functions
of these state variables, and hence also their difference. Thus, we can define a function
FY(Xy,...,X,) such thatF"™(x) = > . w; ¢;(x) — b(x). Note that we have executed
a representation shift; we are viewid* as a function of the variableX, which is pa-
rameterized byw. Recall that the size of the state space is exponential in the number of
variables. Hence, our goal in this section is to compute, F'¥(x) without explicitly
considering each of the exponentially many states. The solution is to use the faEct'that
has a factored representation. More precis@ly, has the form) . w; ¢;(Z;), whereZ,; is
a subset oX. For example, we might have (X, X,) which takes valué in states where
X, = trueand X, = falseand0 otherwise. Similarly, the vectds in our case is also a sum
of restricted-scope functions. Thus, we can expr€$sas a sumzj f1'(Z;), wheref}”
may or may not depend ow. In the future, we sometimes drop the supersosipthen it
is clear from context.

Using our more compact notation, our goal here is simply to compute

msz w; ¢(x) — b(x) = max F™V(x),

that is, to find the state over which/™ is maximized. Recall that™ = 3", f(Z;).
We can maximize such a functiof;”, without enumerating every state usingn-serial
dynamic programmindBertele & Brioschi, 1972]. The idea is virtually identical vari-

able eliminationin a Bayesian network. We review this construction here, as it is a central
component in our solution LP.

Our goal is to compute

The main idea is that, rather than summing all functions and then doing the maximization,
we maximize over variables one at a time. When maximizing ayeonly summands
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involving z; participate in the maximization.

Example 4.2.1 Assume

F = fi(zy,22) + folw1, v3) + f3(we, 24) + fa(ws, 4).

We therefore wish to compute:

max fi(z1,x2) + fo(r1, 23) + f3(v2, 24) + fa(rs, 24).

T1,22,23,T4

We can first compute the maximum owxegy the functionsf; and f; are irrelevant, so we
can push them out. We get

max fi(x1,x2) + folx1,23) + H’:IE%X[fg(IQ, xy) + fa(xs,z4)].

T1,22,T3

The result of the internal maximization depends on the values, af; thus, we can intro-
duce a new function, (X», X3) whose value at the point, =3 is the value of the internal
max expression. Our problem now reduces to computing

max fi(xq, x2) + fo(r1,23) + e1(xa, x3),
x1,T2,T3

having one fewer variable. Next, we eliminate another variable J6gywith the resulting
expression reducing to:

max fi(z1,z2) + ea(xq, x2),
T1,T2

where 62(5(?1, .132) = I’le?X[fQ(Qil, Ig) + e (IQ, .’173)]

Finally, we define

ez = max f1(z1, T2) + ea(w1, T2).
x1,T2

The result at this point is a number, which is the desired maximumagver. , z,. While
the naive approach of enumerating all states requif@srithmetic operations if all vari-
ables are binary, using variable elimination we only need to perfasraperations. 1

The general variable elimination algorithm is described in Figure 4.1. The inputs
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to the algorithm are the functions to be maximiz€d= {fi,..., f..}, an elimination
ordering O on the variables, wheré(i) returns theith variable to be eliminated, and
ELIM OPERATOR(E, X)) is the operation that will be performed on the set of functions
&€ when variableX; is eliminated. If we are maximizing over the state space we use the
operator MAXOUT defined in Figure 4.2. As in the example above, for each variable
X, to be eliminated, we select the relevant functiens . ., e;, those whose scope con-
tains X;. These functions are removed from the $eand we introduce a new function

e = maxy, Zle e;. At this point, the scope of the functions jf no longer depends on
X, that is, X; has been ‘eliminated’. This procedure is repeated until all variables have
been eliminated. The remaining functions#rthus have empty scope. The desired maxi-
mum is therefore given by the sum of these remaining functions.

The computational cost of this algorithm is linear in the number of new “function val-
ues” introduced in the elimination process. More precisely, consider the computation of a
new functione whose scope i%. To compute this function, we need to compiidem|Z]|
different values. The cost of the algorithm is linear in the overall number of these values,
introduced throughout the execution. As shown by Dechter [1999], this cost is exponential
in the induced width of theost networkthe undirected graph defined over the variables
Xi1,...,X,, with an edge betweel; and.X,, if they appear together in one of the original
functions f;. The complexity of this algorithm is, of course, dependent on the variable
elimination order and the problem structure. Computing the optimal elimination order is
an NP-hard problem [Arnborgt al,, 1987] and elimination orders yielding low induced
tree width do not exist for some problems. These issues have been confronted successfully
for a large variety of practical problems in the Bayesian network community, which has
benefited from a large variety of good heuristics which have been developed for the vari-
able elimination ordering problem [Bertele & Brioschi, 1972; Kjaerulff, 1990; Reed, 1992;
Becker & Geiger, 2001].

4.3 Factored LP

In this section, we present the centerpiece of our planning algorithms: a new, general ap-
proach for compactly representing exponentially-large sets of LP constraints in problems
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VARIABLE ELIMINATION (F, O, ELIM OPERATOR)
Il F={fi1,..., fm}is the set of functions.
/I O stores the elimination order.
/I ELIM OPERATORIS the operation used when eliminating variables.

FOR i =1 TO NUMBER OF VARIABLES:
/I Select the next variable to be eliminated.

LETI=0(i).
/I Select the relevant functions.
LET £ = {e1,...,er} BE THE FUNCTIONS INF WHOSE SCOPE CONTAINSX;.

/! Eliminate current variabl&;.

LET e = ELIMOPERATOR(E, X;).

/I Update set of functions.

UPDATE THE SET OF FUNCTIONSF = F U {e} \ {e1,...,eL}.
/I Now, all functions have empty scopes, and the last step eliminates the empty set.
RETURN ELIM OPERATOR(F, ().

Figure 4.1: Variable elimination procedure, wheffeiIMm OPERATORIS used when a vari-
able is eliminated. To compute the maximum valuefof- - - - + f,,,, where eacly; is a
restricted-scope function, we must substitiieim OPERATORWIth MAXOUT.

MAxOuT (€, X;)
1€ ={e,...,en} is the set of functions to be maximized.
/I X; variable to be maximized.
LET f=Y01 €.
IF X, = 0:
LETe=f.
ELSE:
DEFINE A NEW FUNCTION e = max,, f; NOTE THAT
SCOPE[e] = U, SCOPE[e;] — {Xi}.
RETURN e.

Figure 4.2: MAX OUT operator for variable elimination, procedure that maximizes variable
X; from functionse; + - - - + e,,,.
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with factored structure — those where the functions in the constraints can be decomposed
as the sum of restricted-scope functions. Consider our original problem of representing
the non-linear constraint in Equation (4.2) compactly. Recall that we wish to represent the
non-linear constraing > maxy Y . w; ¢;(x) — b(x), or equivalently,p > maxy F™V(x),
without generating one constraint for each state as in Equation (4.1). The new, key insight
is that this non-linear constraint can be implemented using a construction that follows the
structure of variable elimination in cost networks.

Consider any functior used withinF (including the originalf;'s), and letZ be its
scope. For any assignmentto Z, we introduce a variable:, whose value represents
ez, into the linear program. For the initial functiorf$’, we include the constraint that
ufi = f¥(z). As f" is linear inw, this constraint is linear in the LP variables. Now,
consider a new functioaintroduced intaF by eliminating a variabl&;. Lete,, ..., e be
the functions extracted fro, where eacl; has scope restricted ¥, and letZ = | J; Z;
be the scope of the resultirg We introduce a set of constraints:

L
UG ) U ym, Y (4.3)
j=1

Let e,, be the last (empty scope) function generated in the elimination, and recall that its
scope is empty. Hence, we have only a single variable We introduce the additional
constraintp > u~.

The complete algorithm, presented in Figure 4.3, is divided into three parts: First, we
generate equality constraints for functions that depend on the weiglitgisis functions).
In the second part, we add the equality constraints for functions that do not depend on the
weights (target functions). These equality constraints let us abstract away the differences
between these two types of functions and manage them in a unified fashion in the third
part of the algorithm. This third part follows a procedure similar to variable elimination
described in Figure 4.1. However, unlike standard variable elimination where we would
introduce a new function, such that = max,, Zle e;, inour factored LP procedure we
introduce new LP variables,. To enforce the definition of as the maximum ovek|; of

Zle e;, we introduce the new LP constraints in Equation (4.3).
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FACTOREDLP (C, b,0)
/I C ={c1,...,ck}is the set of basis functions.
/Il b=1{by,...,b,}is the set of target functions.
/I O stores the elimination order.
/I Return a (polynomial) set of constrairfisequivalent top > >, wici(x) + 3_; b;(x), Vx .
/I Data structure for the constraints in factored LP.

LETQ={}.
/I Data structure for the intermediate functions generated in variable elimination.
LETF={}.

/I Generate equality constraint to abstract away basis functions.
FOR EACH ¢; € C:
LET Z = SCOPE|¢;].
FOR EACH ASSIGNMENTz € Z, CREATE A NEW LP VARIABLE uji AND ADD A CON-
STRAINT TO :
ufi = wici(z).

STORE NEW FUNCTION f; TO USE IN VARIABLE ELIMINATION STEP: F = F U {f;}.
/I Generate equality constraint to abstract away target functions.
FOR EACH b; € b:
LET Z = SCOPE[b,].
FOR EACH ASSIGNMENTz € Z, CREATE A NEW LP VARIABLE u;’ AND ADD A CON-
STRAINT TO 2:
ul =b;(z).
STORE NEW FUNCTION f; TO USE IN VARIABLE ELIMINATION STEP: F = F U {f;}.
/I Now, F contains all of the functions involved in the LP, our constraints become>
> e, er €i(X), ¥x , which we represent compactly using a variable elimination procedure.
FOR 7 =1 TO NUMBER OF VARIABLES:
/I Select the next variable to be eliminated.
LETI=0().
/I Select the relevant functions.
LET eq,...,er BE THE FUNCTIONS INF WHOSE SCOPE CONTAINSX;, AND LET Z; =
SCOPE[e;].
/I Introduce linear constraints for the maximum over current vari&ble
DEFINE A NEW FUNCTION e WITH SCOPEZ = UjLzlzj — {X;} TO REPRESENT
max, Zle €j.
ADD CONSTRAINTS TOf2 TO ENFORCE MAXIMUM: FOR EACH ASSIGNMENTz € Z:

L
e €j
ug 2D UG oz,
=1

/' Update set of functions.

UPDATE THE SET OF FUNCTIONSF = F U {e} \ {e1,...,eL}.
/I Now, all variables have been eliminated and all functions have empty scope.
ADD LAST CONSTRAINT TOQX: ¢ > > _re.
RETURN (2.

Figure 4.3: Factored LP algorithm for the compact representation of the exponential set of
constraintsp > >, wic;(x) + >, b;(x), Vx.
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Example 4.3.1 To understand this construction, consider the LP formed when using the
simple functions in Example 4.2.1 above, and assume we want to express the fact that
¢ > max, FV(x). We first introduce a set of variable@lmc2 for every instantiation of
valuesry, x5 to the variablesX, X5. Thus, ifX; and X, are both binary, we have four such
variables. We then introduce equality constraints defining the valug qf appropriately.
For example, iff; is an indicator weighted by, that takes valué if X; =tand X, = f,
and 0 otherwise, we have{}t =0, uflf = w;, and so on. We have similar variables and
constraints for eaclf; and each value in Z;. Note that each of the constraints is a simple
equality constraint involving numerical constants and perhaps the weight variables

Next, we introduce variables for each of the intermediate expressions generated by
variable elimination. For example, when eliminatiiXg, we introduce a set of LP variables
utl ; for each of them, we have a set of constraints

r2,T3’

el f3 fa
ux27x3 Z ux27x4 + u$37$4

one for each value, of X,. We have a similar set of constraint fof* , in terms ofu /2

1,73

anduf!

T2,T3"

Note that each constraint is a simple linear inequality.

We can now prove that our factored LP construction represents the same constraint as
the non-linear constraint in Equation (4.2):

Theorem 4.3.2 The constraints generated by the factored LP construction are equivalent
to the non-linear constraint in Equation (4.2). That is, an assignmeft.tev) satisfies the
factored LP constraints if and only if it satisfies the constraint in Equation (4.2).

Proof: See Appendix A.2.1

Returning to our original formulation, we have t@j [} is Cw — b in the original
set of constraints. Hence our new set of constraints is equivalent to the original set:
maxy y . w; ¢;(x) — b(x) in Equation (4.2), which in turn is equivalent to the exponential
set of constraint® > > . w; ¢;(x) — b(x), Vx in Equation (4.1). Thus, we can represent
this exponential set of constraints by a new set of constraints and LP variables. The size of
this new set, as in variable elimination, is exponential only in the induced width of the cost
network, rather than in the total number of variables.
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4.4 Factored max-norm projection

We can now use our procedure for representing the exponential number of constraints in
Equation (4.1) compactly to compute efficient max-norm projections, as in Equation (2.11):

w* € argmin [|[Cw — b||__ .
w

The max-norm projection is computed by the linear program in (2.12). There are two
sets of constraints in this LR > 3", c;jw; —b;, Viandg > b;— 3% ¢;jw, Vi. Each of
these sets is an instance of the constraints in Equation (4.1), which we have just addressed
in the previous section. Thus, if each of théasis functions irC' is a restricted-scope
function and the target functioh is the sum of restricted-scope functions, then we can
use our factored LP technique to represent the constraints in the max-norm projection LP

compactly. The correctness of our algorithm is a corollary of Theorem 4.3.2:

Corollary 4.4.1 The solution(¢*, w*) of a linear program that minimizes subject to the
constraints inFACTOREDLP(C, —b,0) andFACTOREDLP(—C, b,0), for any elimination
order O satisfies:

w" € argmin|[Cw —Db|_, and ¢"=min||Cw—Db]_. 1

The original max-norm projection LP had+- 1 variables and two constraints for each
statex; thus, the number of constraints is exponential in the number of state variables. On
the other hand, our new factored max-norm projection LP has more variables, but exponen-
tially fewer constraints. The number of variables and constraints in the new factored LP is
exponential only in the number of state variables in the largest factor in the cost network,
rather than exponential in the total number of state variables. As we show in Section 5.4.1,
this exponential gain allows us to compute max-norm projections efficiently when solving
very large factored MDPs.
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4.5 Discussion and related work

Both of the approximate solution algorithms presented in Chapter 2 use linear programs
to obtain the value function coefficients. These LPs contain one constraint for each joint
assignment of the state variables. In this chapter, we present factored LPs, a novel LP
decomposition technique, which allows us to represent an LP with an exponentially-large
set of constraints by a provably equivalent, polynomially-sized LP. This decomposition
relies on the assumption that each constraint is defined by the sum of functions whose
scope is restricted to a subset of the state variables. The complexity of our decomposition
technique is exponential only in the induced width of a cost network defined by the local
functions in the constraints.

Many algorithms have been proposed for tackling exponentially-large constraint sets.
The book by Bertsimas and Tsitsiklis [1997] presents many typical approaches. An in-
teresting option is the use of the delayed constraint generation, or cutting planes, method.
Schuurmans and Patrascu [2001], building on our factored LP approach, propose one such
algorithm, where variable elimination cost network is used to find violated constraints. As
they use this approach in the context of the SIMPLEX algorithm, their method does not
offer our polynomial complexity guarantees. However, in light of the extension of Schu-
urmans and Patrascu [2001], we can view variable elimination as a polynomiaieiae
ration oraclefor finding violated constraints. Such an oracle guarantees polynomial time
complexity of the ellipsoid method for solving LPs [Bertsimas & Tsitsiklis, 1997, Theorem
8.5]. Thus, such cutting planes method can also yield a polynomial implementation of our
exponentially-large LPs. We present further discussion in Section 7.8.

The closest approach to our factored LP is the LP transformation method of Yan-
nakakis [1991]. He tackles the problem of optimizing a linear function over a polytope
that may contain exponentially many facets. Yannakakis shows that, for some examples,
this exponentially-large polytope can be described as a reduced, polynomially-sized, LP by
adding a new set of variables and constraints, as we do in our approach. He also proves
that if the underlying polytope represents a travelling salesman problem, then the reduced
LP requires exponentially many constraints, unless P=NP. Maximization in a cost network
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is obviously an NP-complete problem, thus, the reduced polytope will also require an ex-
ponential description, in general. Our factored LP method focuses on exploiting local
structure in the constraints to generate an analogous decomposition with a polynomial de-
scription, in problems that have fixed induced width.

We believe that the LP decomposition technique presented in this chapter allows the
compact representation of many practical optimization problems. In the next part of this
thesis, we will apply this technique to optimize the weights of our factored value function
approximation very efficiently.



Part lI

Approximate planning for structured
single-agent systems
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Chapter 5
Efficient planning algorithms

Recall that, as described in Chapter 3, we seek to find linear approximations to the value
function of the form:

V¥ (x) = Z w;hi(x),

where eachh; is a restricted scope function. Once these weightsre obtained (by any
approach), the agent can select its action in some sth{esimply computing the greedy
action with respect to this approximate value function, which is again given by:

Greedy[V"](x) = argmax QY (x) = argmax R(x,a) + 7y Z P(x' | x,a) Z wihi(x').

The@, function for each action can be computed efficiently, in single agent problems with
factored value functions, as described in Section 3.3. Thus, the greedy policy can always be
represent implicitly by the Q-function, givem. Therefore, this part of the thesis focuses

on designing efficient planning algorithms for optimizing such weights

In this chapter, we present two planning algorithms, which exploit structure in a fac-
tored MDP to compute approximate solutions very efficiently: factored linear programming-
based approximation, and factored approximate policy iteration with max-norm projection.
Each algorithm is presented in a self-contained section, which can thus be read indepen-
dently. Finally, we present an efficient algorithm for computing a bound on the quality of
the greedy policies obtained from factored value functions.

62
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5.1 Factored linear programming-based approximation

We begin with the simplest of our approximate MDP solution algorithms, based on the
linear programming-based approximation formulation in Section 2.3.2. Using the LP de-
composition technique in Chapter 4, we can formulate an algorithm, which is both simple
and efficient.

5.1.1 The algorithm

As discussed in Section 2.3.2, the linear programming-based approximation formulation
is based on the exact linear programming approach to solving MDPs presented in Sec-
tion 2.2.1. However, in this approximate version, we restrict the space of value functions
to the linear space defined by our basis functions. More precisely, in this approximate LP
formulation, the variables are,, . . . , w, — the weights for our basis functions. The LP is
given by:

Variables: wq,...,w; ;
Minimize: > a(x) >, w; hi(x) ;

Subjectto: Y w; hi(x) > R(x,a) +v> ., P(x' | x,a) >, w; hi(x') VxeX, ae€A
(5.1)

In other words, this formulation takes the LP in (2.4) and substitutes the explicit state
value function with a linear value function representatjonw; h;(x). This transforma-
tion from an exact to an approximate problem formulation has the effect of reducing the
number of free variables in the LP to(one for each basis function coefficient), but the
number of constraints remainX| x |A|. In our SysAdmirproblem in Example 2.1.1,
for example, the number of constraints in the LP in (5.1)ris+ 1) - 2™, wherem is
the number of machines in the network. However, using our algorithm for representing
exponentially-large constraint sets compactly we are able to compute the solution to this
linear programming-based approximation algorithntliosed formwith an exponentially
smaller LP, as in Chapter 4.

First, consider the objective function, «(x) >, w; h;(x) of the LP (5.1). Naively
representing this objective function requires a summation over an exponentially-large state
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FACTOREDLPA (P, R, v, H, O, )
/I P is the factored transition model.
/I R is the set of factored reward functions.
I ~v is the discount factor.
/I H is the set of basis function§ = {h1,..., hy}.
/I O stores the elimination order.
/I o are the state relevance weights.
/I Return the basis function weighés computed by linear programming-based approximation.

/I Cache the backprojections of the basis functions.

FOR EACH BASIS FUNCTIONA; € H; FOR EACH ACTIONa:
LET g¢ = Backproj,(h;).
/I Compute factored state relevance weights.
FOR EACH BASIS FUNCTIONA,;, COMPUTE THE FACTORED STATE RELEVANCE WEIGHT®;
AS IN EQUATION (5.2) .
/I Generate linear programming-based approximation constraints.
LeET Q= {}.
FOR EACH ACTION a:
LET Q = QU FACTOREDLP({vg{ — h1,...,vgy — hi}, R, O).

/' So far, our constraints guarantee that> R(x,a) + 7> . P(x' | x,a) Y, w; hi(x") —
>, w; hi(x); to satisfy the linear programming-approximation solution in (5.1) we must add
a final constraint.

LETQ=QU{¢ =0}.

/l We can now obtain the solution weights by solving an LP.

LET w BE THE SOLUTION OF THE LINEAR PROGRAN MINIMIZE ). o;w;, SUBJECT TO THE
CONSTRAINTS).

RETURN w.

Figure 5.1: Factored linear programming-based approximation algorithm.
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space. However, we can rewrite the objective and obtain a compact representation. We first
reorder the terms:

Z a(x) Zwi hi(x) = Zwi Z a(x) hi(x).

Now, consider the state relevance weightg) as a distribution over states, so thdk) >
0and)__a(x) = 1. As with the backprojections in Section 3.3, we can now write:

o= ax)hi(x) =Y o) hic), (5.2)
x cieC;

where a(c;) represents the marginal of the state relevance weightser the domain
Dom|[C;] of the basis functiort;. For example, if we use uniform state relevance weights
as in our experiments —a(x) = ‘—)1(| — then the marginals becomec;) = ﬁ Thus,
we can rewrite the objective function a3, w; «;, where each basis weight is computed
as shown in Equation (5.2). If the state relevance weights are represented by marginals,
then the cost of computing each depends exponentially on the size of the scop€ of
only, rather than exponentially on the number of state variables. On the other hand, if the
state relevance weights are represented by arbitrary distributions, we need to obtain the
marginals over theC;’s, which may not be an efficient computation. Thus, best results
are achieved by using a compact representation, such as a Bayesian network, for the state

relevance weights.

Second, note that the right side of the constraints in the LP (5.1) correspond@q the
functions:

Qu(x) = R*(x) + 7Y _P(x'| x,a) Z w; hi(xX).

Using the efficient backprojection operation in factored MDPs described in Section 3.3 we
can rewrite th&), functions as:

Qulx) = B +7 3w g2(x)

whereg¢ is the backprojection of basis functidnthrough the transition modét,. As we
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discussed, if; has scope restricted {0;, theng! is a restricted scope function bf,(C;).

We can precompute the backprojectigrisand the basis relevance weights The
linear programming-based approximation LP of (5.1) can then be written as:

Variables: wq,...,w; ;
Minimize: ) . o; w; ; (5.3)
Subjectto: Y w; hi(x) > R*(x) + v, wi gf(x) Vx e X,Va e A.

Finally, we can rewrite this LP to use constraints of the same form as the one in Equa-
tion (4.2):

Variables: wq,...,w; ;
Minimize: 7, a; w; ; (5.4)
Subjectto: 0> max, {R*(x) + >, w; [vg98(x) — hi(x)]} Va € A.

We can now use our factored LP construction in Chapter 4 to represent these non-linear
constraints compactly. Basically, there is one set of factored LP constraints for each ac-
tion a. Specifically, we can write the non-linear constraint in the same form as those in
Equation (4.2) by expressing the functiatisas: ¢;(x) = h;(x) — vg¢(x). Eache;(x) is a
restricted-scope function; that is,/if(x) has scope restricted @;, theng?(x) has scope
restricted td", (C}), which means that;(x) has scope restricted @; U I',(C}). Next, the

target functionb becomes the reward functid®*(x) which, by assumption, is factored.
Finally, in the constraint in Equation (4.2),s a free variable. On the other hand, in the LP

in (5.4) the maximum in the right hand side must be less than zero. This final condition can
be achieved by adding a constragnt= 0. Thus, our algorithm generates a set of factored
LP constraints, one for each action. The total number of constraints and variables in this
new LP is linear in the number of actiond| and only exponential in the induced width

of each cost network, rather than in the total number of variables. The complete factored
linear programming-based approximation algorithm is outlined in Figure 5.1.
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5.1.2 Anexample

We now present a complete example of the operations required by the approximate LP al-
gorithm to solve the factored MDP shown in Figure 3.1(a). Our presentation follows four
steps: problem representation, basis function selection, backprojections and LP construc-
tion.

Problem representation:  First, we must fully specify the factored MDP model for the
problem. The structure of the DBN is shown in Figure 3.1(b). This structure is maintained
for all action choices. Next, we must define the transition probabilities for each action.
There are 5 actions in this problem: do nothing, or reboot one of the 4 machines in the
network. The CPDs for these actions are shown in Figure 3.1(c). Finally, we must define the
reward function. We decompose the global reward as the sum of 4 local reward functions,
one for each machine, such that there is a reward if the machine is working. Specifically,
R;(X; =W) =1andR;(X; = D) = 0, breaking symmetry by setting, (X, = true) = 2.

We use a discount factor ef= 0.9.

Basis function selection: In this simple example, we use five simple basis functions.
First, we include the constant functidég = 1. Next, we add indicators for each machine
which take value 1 if the machine is workinb;(X; = W) = 1 andh;(X; = D) = 0.

Backprojections:  The first algorithmic step is computing the backprojection of the basis
functions, as defined in Section 3.3. The backprojection of the constant basis is simple:

g = SR | x)ho

= ZPa(x'|x)1;

= 1.

Next, we must backproject of each indicator basis functign¥Ve repeat the derivation of
this computation for completeness:
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g = ZP " x)hi(x) ;
= Z HP$ | @1, ) ha(af) 5

l‘l .732 .273 .274 ]

= ZP -73 ’xz 1,$Z)hl<$2) Z HP fﬂ ‘.’L'] 1,.1']);

X/ [X/—{X7}] j#

= ZP $ ’371 1,%) z( )7

= Pa(Xi = W| J:i—lyxi) 1+Pa(Xz/ =D | ZL’i_l,ZEi) 0 )
= Pa(le = W‘ xi,l,xi) .

Thus, ¢¢ is a restricted-scope function ¢f; ;, X;}. We can now use the CPDs in Fig-
ure 3.1(c) to specify:

g (X, X)) = | X =W

—_ | =
—_ | =

gireboot;é i(Xi—lyXi) = | X, =W 0.9 0.09

LP construction:  To illustrate the factored LPs constructed by our algorithms, we define
the constraints for the linear programming-based approximation approach presented above.
First, we define the function§ = g — h;, as shown in Equation (5.4). In our example,
these functions ar€} = v — 1 = —0.1 for the constant basis, and for the indicator bases:
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C£Eb00t: i(Xi—17 X)) = | Xisi=W| —0.1 0.9 3
X,.1=D| -0.1 0.9

JeboOF i X)) = | X, =W]| —0.19 | 0.081
X, 1 =D| —055 | 0.045

Using this definition ofc?, the linear programming-based approximation constraints are

given by:
0> maxz R, + Z w;ci , Va. (5.5)
( J

We present the LP construction for one of the 5 actioaksoot= 1. Analogous construc-
tions can be made for the other actions.

In the first set of constraints, we abstract away the difference between rewards and basis
functions by introducing LP variablesand equality constraints. We begin with the reward
functions:

Ry __
x2

uls =1, w2 =0; ufsz,u?f:O.

Ry _

=0; u L, ug; :

We now represent the equality constraints for thdunctions for thereboot= 1 action.
Note that the appropriate basis function weight from Equation (5.5) appears in these con-
straints:

u°0 = —0.1wg;
ug, . = —0lw, wug ., = 09w, ugh 7, = 01w, wugz; = 09w;
u? ., = —019wy, w3, = —055wy, wug’z = 0081wy, w3, = 0.045wy;
ug o = —019wz, wug, = —055wz, wug}; = 008lws, wug, = 0045w;3;
wg ,.o= —019wy, ug,, 055wy, ult, = 0081wy, ull, = 0.045w,.

Using these new LP variables, our LP constraint from Equation (5.5) foretimt= 1
action becomes:
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4 4
) c:
0> max E uf}? + u® + E Uy, . x. -
T1,72,73,T4 ¢ I=1R
i=1 j=1

We are now ready for the variable elimination process. We illustrate the elimination of
variableX,:

3 3

R; co i [ R4 c1 4 }

Ozxmax E uy, +u” + E Ug, | x, TMax |uy, +uy y, +ux, x| -

1,22,23 £ T — T4
1= Jj=

We can represent the termaxx, [ui + ug, x, +us, x,] by a setof linear constraints,
one for each assignment &f, and X, using the new LP variablesy, .. to represent this

maximum:

ust > g gy e

T1,T3 — T4 T1,T4 T3,T4 )
u§11,$3 Z Ugf + u90611 , T4 + ufci,m )
Ry 2 U g, Tl
u%ﬂ% Z Ugf + ufcfll T4 + u%@zx ,
uﬂeﬂllis > uff + ufﬂll , L4 + u%s,m )
(. “a?f g g, UG g,
u%,% Z ufzf + uﬂcﬁll L4 + u%@zx 3
ug z, > ugf +ug g, T ugh g,

We have now eliminated variablg, and our global non-linear constraint becomes:
0= max ; u% +u® + Z uigj—hXj + ui}leii :

Next, we eliminate variabl&'s. The new LP constraints and variables have the form:

e2 R3 c3 el .
Ux, X, 2 Ux, + Ux, Xy + Ux, x5 VX17X2’ X3 )
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thus removingX; from the global non-linear constraint:

We can now eliminate&,, generating the linear constraints:
s R
uR, > uy, + U%,XQ + UE?I,XQ , VX, Xy
Now, our global non-linear constraint involves onty:

Rl Cco €3
0> maX Uy, +u +uy, .

As X, is the last variable to be eliminated, the scope of the new LP variable is empty and
the linear constraints are given by:

eq Ry es3
u™ > uyt +uy VX

All of the state variables have now been eliminated, turning our global non-linear constraint
into a simple linear constraint:
0>u®+u™,

which completes the LP description for the linear programming-based approximation so-
lution to the problem in Figure 3.1.

In this small example with only four state variables, our factored LP technique generates
a total of 89 equality constraints, 115 inequality constraints and 149 LP variables, while the
explicit state representation in Equation (2.8) generates only 80 inequality constraints and
5 LP variables. However, as the problem size increases, the number of constraints and
LP variables in our factored LP approach grow?), while the explicit state approach
grows exponentially, ab(n2™). This scaling effect is illustrated in Figure 5.2.
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250000
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T
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riny

Figure 5.2: Number of constraints in the LP generated by the explicit state representation
versus the factored LP-based approximation algorithm.

5.2 Factored approximate policy iteration with max-norm
projection

The factored LP-based approximation approach described in the previous section is both
elegant and easy to implement. However, we cannot, in general, provide strong guaran-
tees about the error it achieves. An alternative is to use the approximate policy iteration
described in Section 2.3.3, which does offer certain bounds on the error. However, as we
shall see, this algorithm is significantly more complicated, and requires that we place addi-
tional restrictions on the factored MDP.

In particular, approximate policy iteration requires a representation of the policy at each
iteration. In order to obtain a compact policy representation, we must make an additional
assumption: each action only affects a small number of state variables. We first state this
assumption formally. Then, we show how to obtain a compact representation of the greedy
policy with respect to a factored value function, under this assumption. Finally, we describe
our factored approximate policy iteration algorithm using max-norm projections.

5.2.1 Default action model

In Chapter 3, we presented the factored MDP model, where each action is associated with
its own factored transition model represented as a DBN and with its own factored reward
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function. However, different actions often have very similar transition dynamics, only dif-
fering in their effect on some small set of variables. In particular, in many cases a variable
has a default evolution model, which only changes if an action affects it directly [Boutilier
et al, 2000].

This type of structure turns out to be useful for compactly representing policies, a prop-
erty which is important in our approximate policy iteration algorithm. Thus, in this section
of the thesis, we restrict attention to factored MDPs that are defined usiefaalt transi-
tion modelr, = (G4, P;) [Koller & Parr, 2000]. For each actiom we defineEffects|a] C
X'’ to be the variables in the next state whose local probability model is differentfyom
i.e, those variables(; such thatP, (X! | Parents,(X/)) # Pi(X! | Parents,(X})).

Example 5.2.1In our system administrator example, we have an actiofor rebooting
each one of the machines, and a default actidor doing nothing. The transition model
described above corresponds to the “do nothing” action, which is also the default transi-
tion model. The transition model far, is different fromd only in the transition model for

the variableX/, which is nowX! = W with probability one, regardless of the status of the
neighboring machines. Thus, in this exam@§ects[a;] = X!. 1

As in the transition dynamics, we can also define the notiotedfult reward model
In this case, there is a set of reward functions_, R;(W;) associated with the default
actiond. In addition, each action can have a reward functioR*(W*). Here, the extra
reward of actioru has scope restricted ®ewardsja] = W¢ C {Xy,..., X, }. Thus, the
total reward associated with actiaris given byR* + >"'_| R,. Note thatR* can also be
factored as a linear combination of smaller terms for an even more compact representation.

5.2.2 Computing greedy policies

We can now build on this additional assumption to define the complete algorithm. Recall
that the approximate policy iteration algorithm iterates through two steps: policy improve-
ment and approximate value determination. We now discuss each of these steps.

The policy improvement step computes the greedy policy relative to a value function
V- 7 = Greedy[V*~V]. Recall that our value function estimates have the linear
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form Hw. As we described in Section 3.3, the greedy policy for this type of value function
is given by:
Greedy[Hw](x) = arg max Q,(x),

where eaclf), can be represented by:
Qu(x) = R(x,a) + Y w; g}(x).

If we attempt to represent this policy naively, we are again faced with the problem of
exponentially-large state spaces. Fortunately, as shown by Koller and Parr [2000], the
greedy policy relative to a factored value function has the form déeision list More
precisely, the policy can be written in the forfty, a,), (ts, as), ..., (t;,ar), where each

t; is an assignment of values to some small sutisetf variables, and eact is an action.

The greedy action to take in states the action:; corresponding to the first evetitin the

list with which x is consistent. For completeness, we now review the construction of this
decision-list policy.

The critical assumption that allows us to represent the policy as a compact decision list
is the default action assumption described in Section 5.2.1. Under this assumpti@y, the
functions can be written as:

T

Qa(x) = R*(x) + ) Ri(x) + Z w; g7 (x),

i=1

where R® has scope restricted t&“. The @) function for the default action is just:

Qa(x) = Yoy Ri(x) + 3, wi g (x).

We now have a set of line&)-functions which implicitly describes a poliey. It is not
immediately obvious that thesg functions result in a compactly expressible policy. An
important insight is that most of the components in the weighted combination are identical,
so thatg? is equal tog? for mosti. Intuitively, a componeny? corresponding to the
backprojection of basis functioh;(C;) is only different if the actior: influences one
of the variables inC;. More formally, assume thakffects[a] N C; = (. In this case,
all of the variables inC; have the same transition model i) and ;. Thus, we have



5.2. FACTORED APPROX. POLICY ITERATION WITH MAX-NORM PROJECT.75

that g¢(x) = g¢¢(x); in other words, theth component of th&), function is irrelevant
when deciding whether actionis better than the default actieh We can define which
components are actually relevant: Igbe the set of indicessuch thatEffects[a]| N C; # (.
These are the indices of those basis functions whose backprojection difféysaimd P,.
In our example SysAdmin DBN of Figure 3.1, actianreboots machineg, thusa; only
affects the CPD of. As only the basis functioh; depends orX;, we have thaf,, = i.

Let us now consider the impact of taking actierover the default actiod. We can
define the impact — the difference in value — as:

3a(%) = Qu(x) — Qu(x);
= RY(x)+ Y w; [gi(x) - gl(x)]. (5.6)

i€l,

This analysis shows thaj (x) is a function whose scope is restricted to

To = WU [Uier, T'a(C))] - (5.7)
In our example DBNTT,, = { X, X»}.

Intuitively, we now have a situation where we have a “baseline” value funig)
which defines a value for each state Each actioru changes that baseline by adding or
subtracting an amount from each state. The point is that this amount depends dnly on
so that it is the same for all states in which the variabl€F jriake the same values.

We can now define the greedy policy relative to gufunctions. For each actiom,
define a set otonditionals(t, a, §), where eaclht is some assignment of values to the
variablesT,, and/ is 6, (t). Now, sort all of the conditionals for all of the actions by order
of decreasing:

<t17 ay, (51>a <t2> az, 52)7 ey <tL7 ar, (SL>

Consider our optimal action in a state We would like to get the largest possible “bonus”
over the default value. Ik is consistent witht;, we should clearly take actiomy, as it
gives us bonug;. If not, then we should try to gef,; thus, we should check i is
consistent witht,, and if so, takei,. Using this procedure, we can compute the decision-
list policy associated with our linear estimate of the value function. The complete algorithm
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DECISIONLISTPOLICY (Q,)
Il Q. is the set of Q-functions, one for each action;
/I Return the decision-list polici.
LET A = {}.
/I Compute the bonus functions.
FOR EACH ACTION a, OTHER THAN THE DEFAULT ACTIONd:
COMPUTE THE BONUS FOR TAKING ACTIONa,

0a(x) = Qa(x) — Qa(x);

AS IN EQUATION (5.6). NOTE THAT §, HAS SCOPE RESTRICTED Td',, AS IN EQUA-
TION (5.7).
/I Add states with positive bonuses to the (unsorted) decision list.
FOR EACH ASSIGNMENTt € T,:
IF d,(t) > 0, ADD BRANCH TO DECISION LIST.

A= AU{(ta,da(t))}-

/I Add the default action to the (unsorted) decision list.

LETA =AU{{0,d,0)}.

/I Sort decision list to obtain final policy.

SORT THE DECISION LISTA IN DECREASING ORDER ON THE) ELEMENT OF (t, a, ).
RETURN A.

Figure 5.3: Method for computing the decision-list polisyfrom the factored representa-
tion of the@,, functions.

for computing the decision-list policy is summarized in Figure 5.3.

Note that the number of conditionals in the lisdi$, |[Dom(T,)|; T,, in turn, depends
on the set of basis function clusters that intersect with the effeais dhus, the size of
the policy depends in a natural way on the interaction between the structure of our process
description and the structure of our basis functions. In problems where the actions modify
a large number of variables, the policy representation could become unwieldy. The linear
programming-based approximation approach in Section 5.1 is more appropriate in such
cases, as requires an independent factored LP construction for the DBN of each action, and
not for a particular policy. Thus, no explicit representation of the policy is necessary.

5.2.3 Value determination

In the approximate value determination step our algorithm computes:
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FACTOREDAPI (P, R, v, H, O, &, timaz)
/I P is the factored transition model.
/I R is the set of factored reward functions.
Il v is the discount factor.
/I H is the set of basis functio’§ = {hq, ..., h}.
/I O stores the elimination order.
/l £ is the Bellman error precision.
I timaz 1S the maximum number of iterations.
/I Return the basis function weighés computed by approximate policy iteration.
[ nitialize weights
LET w(® = 0.
/I Cache the backprojections of the basis functions.
FOR EACH BASIS FUNCTIONA; € H; FOR EACH ACTIONa:
LET g¢ = Backproj,(h;).
/I Main approximate policy iteration loop.
LET¢t=0.
REPEAT
/I Policy improvement part of the loop.
/I Compute decision list policy for iteratiarweights.
LET A® = DEcIsIONLISTPOLICY (R® +~ Y, w” g2).
/I Value determination part of the loop.
/I Initialize constraints for max-norm projection LP, and indicators.
LETQT ={},Q  ={},ANDZ = {}.
/I For every branch of the decision list policy, generate the relevant set of constraints, and
update the indicators to constraint the state space for future branches.
FOR EACH BRANCH (t;,a;) IN THE DECISION LIST POLICYA®):
Il Instantiate the variables Il to the assignment given ir}.
INSTANTIATE THE SET OF FUNCTIONS{h1 — 7gy”, ..., hi — vg,’ } WITH THE
PARTIAL STATE ASSIGNMENTt; AND STORE INC.
INSTANTIATE THE TARGET FUNCTIONSR® WITH THE PARTIAL STATE ASSIGN
MENT t; AND STORE INDb.
INSTANTIATE THE INDICATOR FUNCTIONSZ WITH THE PARTIAL STATE ASSIGN
MENT t; AND STORE INZ’.
/I Generate the factored LP constraints for the current decision list branch.
LET Qt = Qt UFACTOREDLP(C, —b + 7', 0).
LET Q™ = Q™ UFACTOREDLP(-C,b + 7", 0).
/I Update the indicator functions.
LET Z;(x) = —ool(x = t;) AND UPDATE THE INDICATORSZ =7 UZ;.
/I We can now obtain the new set of weights by solving an LP, which corresponds to the
max-norm projection.
LET w(*+1) BE THE SOLUTION OF THE LINEAR PROGRAN MINIMIZE ¢, SUBJECT TO
THE CONSTRAINTS{Q+, Q™ }.
LETt=1¢+1.
UNTIL BellmanErr(Hw(®)) < £ ORt > t0, ORWED) = w(®),
RETURN w(®),

Figure 5.4: Factored approximate policy iteration with max-norm projection algorithm.
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wt) — arg min HHW — (Rﬂ(t) + 'YPWU)HW) Hoo :
By rearranging the expression, we get:
w) = argmin | (H - yPro H) w = Roo |

This equation is an instance of the optimization in Equation (2.11)°_§f is factored,
we can conclude that = (H — vP,»H) is also a matrix whose columns correspond to
restricted-scope functions. More specifically:

ci(x) = hi(x) — g7 (x);

o)

whereg!

(2

is the backprojection of the basis functibnthrough the transition modét_,,

as described in Section 3.3. The target R, corresponds to the reward function, which

for the moment is assumed to be factored. Thus, we can again apply our factored LP in
Section 4.4 to estimate the value of the policy.

Unfortunately, the transition modét_., is not factored, as a decision list represen-
tation for the policyx® will, in general, induce a transition modél ., which cannot
be represented by a compact DBN. Nonetheless, we can still generate a compact LP by
exploiting the decision list structure of the policy. The basic idea is to introduce cost net-
works corresponding to each branch in the decision list, ensuring, additionally, that only
states consistent with this branch are considered in the cost network maximization. Specif-
ically, we have a factored LP construction for each braft¢hz;). Theith cost network
only considers a subset of the states that is consistent withthth@anch of the decision
list. LetS; be the set of states such thatt; is the first event in the decision list for which
x is consistent. That s, for each statec S;, x is consistent with;, but it isnot consistent
with anyt; with j < i.

Recall that, as in Equation (4.1), our LP construction defines a set of constraints, which
imply thate > . w; ¢;(x) — b(x) for each statex. Instead, we have a separate set of
constraints for the states in each subsetFor each state i¥;, we know that action; is
taken. Hence, we can apply our construction above uBing- a transition model which is
factored by assumption — in place of the non-factafed . Similarly, the reward function
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becomesR*(x) + >, R;(x) for this subset of states.

The only issue is to guarantee that the cost network constraints derived from this tran-
sition model are applied only to statesSn Specifically, we must guarantee that they are
applied only to states consistent with but not to states that are consistent with same
for j < i. To guarantee the first condition, we simply instantiate the variabléds; ito
take the values specified t. That is, our cost network now considers only the variables
in {Xy,...,X,} — T, and computes the maximum only over the states consistent with
T, = t;. To guarantee the second condition, we ensure that we do not impose any con-
straints on states associated with previous decisions. This is achieved by adding indicators
7, for each previous decisiar}, with weight—oo. More specificallyZ; is a function that
takes value-oo for states consistent withy and zero for other all assignmentsBf. The
constraints for theéth branch will be of the form:

¢ > R(x,a;) + Zwl (vai(x,a;) — h(x)) + Z —ool(x =t;), Vx ~ [t;], (5.8)

wherex ~ [t;| defines the assignments Xf consistent witht;. The introduction of these
indicators causes the constraints associated tyith be trivially satisfied by states ifi;

for j < i. Note that each of these indicators is a restricted-scope functidh ahd can

be handled in the same fashion as all other terms in the factored LP. Thus, for a decision
list of size L, our factored LP contains constraints fr@h cost networks. The complete
approximate policy iteration with max-norm projection algorithm is outlined in Figure 5.4.

5.3 Computing bounds on policy quality

We have presented two algorithms for computing approximate solutions to factored MDPs.
All these algorithms generate linear value functions which can be denotEbipywhere
w are the resulting basis function weights. In practice, the agent will define its behavior by
acting according to the greedy poligy= Greedy[Hw|. One issue that remains is how
this policy 7 compares to the true optimal poliey; that is, how theactual value V; of
policy 7 compares td)*.

In Section 2.3, we showed soragoriori bounds for the quality of the policy. Another
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FACTOREDBELLMANERR (P, R, v, H, O, W)

/I P is the factored transition model.

/I R is the set of factored reward functions.

/I v is the discount factor.

/I H is the set of basis functior§ = {hq, ..., h}.

/I O stores the elimination order.

/I w are the weights for the linear value function.

// Return the Bellman error for the value functibbw.
/I Cache the backprojections of the basis functions.
FOR EACH BASIS FUNCTIONA; € H; FOR EACH ACTIONa:

LET g¢ = Backproj,(h;).

/I Compute decision list policy for value functidiw.
LET A = DECISIONLISTPOLICY(R® + v ), w;gf).
/I Initialize indicators.

LETZ = {}.
/I Initialize Bellman error.
LET e =0.

/I For every branch of the decision list policy, generate the relevant cost networks, solve it with
variable elimination, and update the indicators to constraint the state space for future branches.

FOR EACH BRANCH (t;,a;) IN THE DECISION LIST POLICYA:
Il Instantiate the variables [l to the assignment given ir}.
INSTANTIATE THE SET OF FUNCTIONS{@1 (hy —7g}?), . .., @ (b — 79" )} WITH THE
PARTIAL STATE ASSIGNMENTt; AND STORE INC'.
INSTANTIATE THE TARGET FUNCTIONSR® WITH THE PARTIAL STATE ASSIGNMENT
t; AND STORE IND.
INSTANTIATE THE INDICATOR FUNCTIONSZ WITH THE PARTIAL STATE ASSIGNMENT
t; AND STORE INZ'.
/I Use variable elimination to solve first cost network, and update Bellman error, if error for
this branch is larger.
LET ¢ = max (¢, VARIABLEELIMINATION (C — b+ 7', 0)).
/I Use variable elimination to solve second cost network, and update Bellman error, if error
for this branch is larger.
LET e = max (&, VARIABLE ELIMINATION (—C' + b + 77, 0)).
/I Update the indicator functions.
LET Z;(x) = —ool(x = t;) AND UPDATE THE INDICATORSZ =Z UZ;.
RETURN e.

Figure 5.5: Algorithm for computing Bellman error for factored value funcibw.
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possible procedure is to computeaposterioribound. That is, given our resulting weights
w, we compute a bound on the loss of acting according to the greedy potaher than
the optimal policy. This can be achieved by using Be#lman erroranalysis of Williams
and Baird [1993].

The Bellman erroris defined aBBellmanErr(V) = ||[7*V — V||_.. Given the greedy
policy 7 = Greedy[V], their analysis provides the bound of Theorem 2.1.5:

2vBellmanErr())

V' — V= <
V"= vl < DB

(5.9)
Thus, we can use the Bellman erigllmanErr(Hw) to evaluate the quality of our result-
ing greedy policy.

Note that computing the Bellman error involves a maximization over the state space.
Thus, the complexity of this computation grows exponentially with the number of state
variables. Koller and Parr [2000] suggested that structure in the factored MDP can be ex-
ploited to compute the Bellman error efficiently. Here, we show how this error bound can
be computed by a set of cost networks using a similar construction to the one in our max-
norm projection algorithms. This technique can be used formathat can be represented
as a decision list and does not depend on the algorithm used to determine the policy. Thus,
we can apply this technique to solutions determined by the linear programming-based ap-
proximation algorithm if the action descriptions permit a decision list representation of the
policy.

For some set of weight®, the Bellman error is given by:

BellmanErr(Hw) = ||7"Hw — Hw||_;

C e ( maxe 32, wihs(x) — Ra(x) =7 Y0 Pa(x' | X) 32, wjhy(x) ) |
max Rz (%) + 7 20 Pr(x | x) 32 wih;(x') = 32, wihi(x)

If the rewardsR; and the transition modeP; are factored appropriately, then we can
compute each one of these two maximizatianax,) using variable elimination in a cost
network as described in Section 4.2. Howevers a decision list policy and it does not
induce a factored transition model. Fortunately, as in the approximate policy iteration al-
gorithm in Section 5.2, we can exploit the structure in the decision list to perform such a
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maximization efficiently. In particular, as in approximate policy iteration, we will generate
two cost networks for each branch in the decision list. To guarantee that our maximization
is performed only over states where this branch is relevant, we include the same type of
indicator functions, which will force irrelevant states to have a value @f, thus guaran-
teeing that at each point of the decision list policy we obtain the corresponding state with
the maximum error. The state with the overall largest Bellman error will be the maximum
over the ones generated for each point the in the decision list policy. The complete factored
algorithm for computing the Bellman error is outlined in Figure 5.5.

One last interesting note concerns our approximate policy iteration algorithm with max-
norm projection of Section 5.2. In all our experiments, this algorithm converged, so that
w® = w(t+D after some iterations. If such convergence occurs, then the objective function
»t1 of the linear program in our last iteration is equal to the Bellman error of the final
policy:

Lemma 5.3.1 If approximate policy iteration with max-norm projection converges, so that

w® = wtD) for some iteratiort, then the max-norm projection errgr**!) of the last
iteration is equal to the Bellman error for the final value function estinfdte = Hw(®):

BellmanErr(HW) = ¢!,

Proof: See Appendix A.3.1

Thus, we can bound the loss of acting according to the final paficy’ by substituting
»+1) into the Bellman error bound:

Corollary 5.3.2 If approximate policy iteration with max-norm projection converges after
t iterations to a final value function estimaléw associated with a greedy policy =
Greedy [Hw|, then the loss of acting according tinstead of the optimal policy* is

bounded by:
27¢(t+1)

V: =V <
V= Vel < 25

9

whereV- is theactualvalue of the policyr. 1§

Therefore, when approximate policy iteration converges we obtain a bound on the quality
of the resulting policy without a special purpose computation of the Bellman error.
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5.4 Empirical evaluation

The factored representation of a value function is most appropriate in certain types of sys-
tems: Systems that involve many variables, but where the strong interactions between the
variables are fairly sparse, so that the decoupling of the influence between variables does
not induce an unacceptable loss in accuracy. As discussed in Chapter 1 and argued by Si-
mon [1981], many complex systems have a nearly decomposable, hierarchical structure,
with the subsystems interacting only weakly between themselves. Throughout this thesis,
to evaluate our algorithms, we selected problems, which we believe to exhibit this type of
structure.

5.4.1 Scaling properties

In order to evaluate the scaling properties of our factored algorithms, we tested our ap-
proaches the SysAdmin problem described in detail in Chapter 7. This problem relates to a
system administrator who has to maintain a network of computers; we experimented with
various network architectures, shown in Figure 2.1. Machines fail randomly, and a faulty
machine increases the probability that its neighboring machines will fail. At every time
step, the SysAdmin can go to one machine and reboot it, causing it to be working in the
next time step with high probability. Recall that the state space in this problem grows ex-
ponentially in the number of machines in the network, that is, a problemmwithachines
has2™ states. Each machine receives a reward of 1 when working (except in the ring,
where one machine receives a reward of 2, to introduce some asymmetry), a zero reward
is given to faulty machines, and the discount factoy is 0.95. The optimal strategy for
rebooting machines will depend upon the topology, the discount factor, and the status of
the machines in the network. If machinend maching are both faulty, the benefit of
rebooting: must be weighed against the expected discounted impact of delaying rebooting
j on j's successors. For many network topologies, this policy may be a function of the
status of every single machine in the network.

The basis functions we used include independent indicators for each machine, with
value 1 if it is working and zero otherwiséd., each one is a restricted-scope function
of a single variable), and the constant basis, whose value is 1 for all states. We selected
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straightforward variable elimination orders: for the “Star” and “Three Legs” topologies, we
first eliminated the variables corresponding to computers in the legs, and the center com-
puter (server) was eliminated last; for “Ring”, we started with an arbitrary computer and
followed the ring order; for “Ring and Star”, the ring machines were eliminated first and
then the center one; finally, for the “Ring of Rings” topology, we eliminated the computers
in the outer rings first and then the ones in the inner ring.

We implemented the factored policy iteration and linear programming algorithms in
Matlab, using CPLEX as the LP solver. Experiments were performed on a Sun UltraSPARC-
I, 359 MHz with 256MB of RAM.

We first evaluated the complexity of our algorithms, tests were performed with increas-
ing the number of states, that is, increasing number of machines on the network. Figure 5.6
shows the running time for increasing problem sizes, for various architectures. The simplest
one is the “Star”, where the backprojection of each basis function has scope restricted to
two variables and the largest factor in the cost network has scope restricted to two variables.
The most difficult one was the “Bidirectional Ring”, where factors contain five variables.

Note that the number of states grows exponentially (indicated by the log scale in Fig-
ure 5.6), but running times increase only logarithmically in the number of states, or poly-
nomially in the number of variables. We illustrate this behavior in Figure 5.6(d), where
we fit a 3rd order polynomial to the running times for the “unidirectional ring”, where the
factors generated by variable elimination included up variables at a time. Note that the
size of the problem description grows quadratically with the number of variables: adding a
machine to the network also adds the possible action of fixing that machine. For this prob-
lem, the computation cost of our factored algorithm empirically grows approximately as
O ((n - |A])'®), for a problem withn variables, as opposed to the exponential complexity
— poly (2", | A|) — of the explicit algorithm.

Next, we measured the error in our approximate value function relative to the true op-
timal value function)*. Note that it is only possible to comput& for small problems;
in our case, we were only able to go up to 10 machines. Here, we used two types of basis
functions: the same single variable functions, and pairwise basis functions. The pairwise
basis functions contain indicators for neighboring pairs of machiresf(inctions of two
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variables). As expected, the use of pairwise basis functions resulted in better approxi-
mations. For comparison, we also evaluated the error in the approximate value function
produced by theC,-projection algorithm of Koller and Parr [2000]. As we discussed in
Section 5.5.1, th&, projections in factored MDPs by Koller and Parr are difficult and time
consuming; hence, we were only able to compare the two algorithms for smaller problems,
where an equivalenf,-projection can be implemented using an explicit state space for-
mulation. Results for both algorithms are presented in Figure 5.7(a), showing the relative
error of the approximate solutions to the true value function for increasing problem sizes.
The results indicate that, for larger problems, the max-norm formulation generates a better
approximation of the true optimal value functidti than thel,-projection.

For these small problems, we can also compare the actual value of the policy generated
by our algorithm to the value of the optimal policy. Here, the value of the policy generated
by our algorithm is much closer to the value of the optimal policy than the error implied by
the difference between our approximate value function)ahd-or example, for the “Star”
architecture with one server and up to 6 clients, our approximation with single variable
basis functions had relative error t#%, but the policy we generated had the same value
as the optimal policy. In this case, the same was true for the policy generated By the
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projection. In a “Unidirectional Ring” with 8 machines and pairwise basis, the relative
error between our approximation aid was about 0%, but the resulting policy only had

a6% loss over the optimal policy. For the same problem, fAh@pproximation has a value
function error of12%, and a true policy loss w&¥%. In other words, both methods induce
policies that have lower errors than the errors in the approximate value function (at least for
small problems). However, our algorithm continues to outperformCthalgorithm, even

with respect to actual policy loss.

For large models, we can no longer compute the correct value function, so we cannot
evaluate our results by computifiyy* — Aw|| . Fortunately, as discussed in Section 5.3,
the Bellman error can be used to provide a bound on the approximation error and can be
computed efficiently by exploiting problem-specific structure. Figure 5.7(b) shows that the
Bellman error increases very slowly with the number of states.

It is also valuable to look at the actual decision-list policies generated in our experi-
ments. First, we noted that the lists tended to be short, the length of the final decision list
policy grew approximately linearly with the number of machines. Furthermore, the policy
itself is often fairly intuitive. In the “Ring and Star” architecture, for example, the decision
list says: If the server is faulty, fix the server; else, if another machine is faulty, fix it.

5.4.2 LP-based approximation and approximate Pl

Thus far, we have presented scaling results for running times and approximation error for
our approximate Pl approach. We now compare this algorithm to the simpler approximate
LP approach of Section 5.1. As shown in Figure 5.8(a), the approximate LP algorithm
for factored MDPs is significantly faster than the approximate Pl algorithm. In fact, ap-
proximate Pl with single-variable basis functions variables is more costly computationally
than the LP approach using basis functions over consecutive triples of variables. As shown
in Figure 5.8(b), for singleton basis functions, the approximate PI policy obtains slightly
better performance for some problem sizes. However, as we increase the number of basis
functions for the approximate LP formulation, the value of the resulting policy is much
better. Thus, in this problem, our factored linear programming-based approximation for-
mulation allows us to use more basis functions and to obtain a resulting policy of higher
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value, while still maintaining a faster running time. These results, along with the simpler
implementation, suggest that in practice one may first try to apply the linear programming-
based approximation algorithm before deciding to move to the more elaborate approximate
policy iteration approach.

5.5 Discussion and related work

In this chapter, we present new algorithms for approximate linear programming and ap-
proximate dynamic programming (value and policy iteration) for factored MDPs. Both
of these algorithms leverage on the novel LP decomposition technique presented in the
previous chapter.

This chapter also presents an efficient factored algorithm for computing the Bellman
error. This measure can be used to bound the quality of a greedy policy relative to an ap-
proximate value function. Koller and Parr [2000] first suggested that structure in a factored
MDP can be exploited to compute the Bellman error efficiently. In this chapter, we present
a correct and novel algorithm for computing this bound.
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5.5.1 Comparing max-norm and.Z, projections

It is instructive to compare our max-norm policy iteration algorithm to fheprojection

policy iteration algorithm of Koller and Parr [2000] in terms of computational costs per
iteration and implementation complexity. Computing e projection requires (among

other things) a series of dot product operations between basis functions and backprojected
basis functiongh; e g7). These expressions are easy to compukt ifefers to the transition

model of a particular action. However, if the policyr is represented as a decision list,

as is the result of the factored policy improvement step, then this step becomes much more
complicated. In particular, for every branch of the decision list, for every pair of basis func-
tionsi andj, and for each assignment to the variableScéape|h;] U Scope|g7], it requires

the solution of a counting problem which#i&-complete in general. Although Koller and

Parr show that this computation can be performed using a Bayesian network (BN) infer-
ence, the algorithm still requires a BN inference for each one of those assignments at each
branch of the decision list. This makes the algorithm very difficult to implement efficiently

in practice.

The max-norm projection, on the other hand, relies on solving a linear program at every
iteration. The size of the linear program depends on the cost networks generated. As we
discuss, two cost networks are needed for each point in the decision list. The complexity
of each of these cost networks is approximately the same as only one of the BN inferences
in the counting problem for th&€, projection. Overall, for each branch in the decision
list, we have a total of two of these “inferences”, as opposed to one for each assignment of
Scope|h;] U Scope[g§] for every pair of basis functionsand;. Thus, the max-norm policy
iteration algorithm is substantially less complex computationally than the approach based
on L,-projection. Furthermore, the use of linear programming allows us to rely on existing
LP packages (such as CPLEX), which are very highly optimized.

In this chapter, we present empirical evaluations demonstrating that, as expected, the
running time of our factored algorithms grows polynomially with the number of state vari-
ables, for problems with fixed induced width in the underlying cost network. Additionally,
we empirically compare our max-norm projection method to£hgrojection algorithm,
demonstrating that the max-norm projection approach seems to generate better policies, in
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addition to the computational advantages described above.

5.5.2 Comparing linear programming and policy iteration

It is also interesting to compare the approximate policy iteration algorithm and the approx-
imate linear programming algorithm. In the approximate linear programming algorithm,
we never need to compute the decision list policy. The policy can always be represented
implicitly by the @, functions, as discussed in the beginning of this chapter. Thus, this
algorithm does not require explicit computation or manipulation of the greedy policy. This
difference has two important consequences: one computational and the other in terms of
generality.

First, not having to compute or consider the decision lists makes approximate linear
programming faster and easier to implement. In this algorithm, we generate a single LP
with one cost network for each action and never need to compute a decision list policy. On
the other hand, in each iteration, approximate policy iteration needs to generate two LPs for
every branch of the decision list of siZe which is usually significantly longer thgni|,
with a total of2L cost networks. In terms of representation, we do not require the policies
to be compact; thus, we do not need to make the default action assumption. Therefore, the
approximate linear programming algorithm can deal with a more general class of problems,
where each action can have its own independent DBN transition model. On the other hand,
as described in Section 2.3.3, approximate policy iteration has stronger guarantees in terms
of error bounds.

These differences are further highlighted in our experimental results comparing the two
algorithms: empirically, the LP-based approximation algorithm seems to be a favorable
option. Our experiments suggest that approximate policy iteration tends to generate better
policies for the same set of basis functions. However, due to the computational advantages,
we can add more basis functions to the approximate linear programming algorithm, ob-
taining a better policy and still maintaining a much faster running time than approximate
policy iteration.
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5.5.3 Summary

Our approximate dynamic programming algorithms are motivated by error analyses in Sec-
tion 2.3.3 showing the importance of minimizing,, error. These algorithms are more
efficient and substantially easier to implement than previous algorithms based 6 the
projection. Our experimental results also suggest that max-norm projection performs better
in practice.

Our approximate linear programming algorithm for factored MDPs is simpler, easier
to implement and more general than the dynamic programming approaches. Unlike our
policy iteration algorithm, it does not rely on the default action assumption, which states
that actions only affect a small number of state variables. Although this algorithm does not
have the same theoretical guarantees as max-norm projection approaches, empirically it
seems to be a favorable option. Our experiments suggest that approximate policy iteration
tends to generate better policies for the same set of basis functions.



Chapter 6

Factored dual linear
programming-based approximation

In this chapter, we describe the formulation and interpretation of both the dual of the linear
programming-based approximation algorithm, and of the dual of our factored version of
this algorithm. This presentation will yield a very natural interpretation of the factorized
dual LP, a new bound on the quality of the solutions obtained by the LP-based approxima-
tion approach, and a novel algorithm for approximating problems with large induced width
that cannot be solved by our standard LP decomposition technique.

6.1 The approximate dual LP

In Section 2.2.1, we presented an interpretation of the dual of the exact linear programming
solution algorithm for MDP$. This exact formulation is, again, given by:

n this thesis, we call the LP formulation in terms of the value function, presented in Equation (2.4), the
“primal” formulation, while we refer to the one involving the visitation frequencies, in Equation (2.5), the
“dual” formulation. In some presentations by other authors, the latter formulation is called the “primal”, as it
maximizes the rewards directly.

92
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Variables: ¢,(x), Vx, Va

Maximize: > > ¢.(x)R(x,a) ;
Subjectto: Vxe X,a€ A :

D Pa(X) = a(X) + 7Y 0 G (X)P(x | X, d) ; (6.1)
VxeX,a€ A :
¢a(x) = 0.

In this section, we present the formulation and interpretation of the dual of the LP-based
approximation algorithm, and a new bound on the quality of the policies obtained by the
LP-based approximation approach.

6.1.1 Interpretation

We present an interpretation of the dual of the LP-based approximation formulation in (2.8).
Similar interpretations have been described in more general settings involving constrained
optimizations over visitation frequencies [Derman, 1970]. This section will, however, build
the foundation for our bound and novel algorithm.

First, note that the dual of the LP-based approximation formulation in (2.8) is given by:

Variables: ¢,(x), Vx, Va

Maximize: > > o¢.(x)R(x,a);

Subjectto: Vi=1,...,k :
D oxa Pa(X)hi(x) = 3o (X)hi(X) + 7 3 o G (X) 2o P(x | X0 )hi(x) ;
VxeX,a€e A :

¢a(x) > 0.
(6.2)

At the optimum, the weights); of the ith basis functior; in the primal formulation will
be the Lagrange multiplier of thféeow constraint

Y Ga(Xhi(x) = Y a(x)hi(x) +7 ) du(x) Y Plx | X d)hi(x) (6.3)

X

induced byh;.
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Note that both the variables and the objective function of this LP are the same as those
inthe exact dual LP in (6.1). In this section, we show that the constraints in the approximate
version are a relaxation of the constraints in the exact dual LP in (6.1). To understand this
property, consider a basis functian that takes valué for statex; and zero for all other
statesj.e., h;(x) = 1(x = x;). The constraint corresponding to this basis function in the
approximate dual LP in (6.2) becomes:

D ba(L(x=x;) =Y ax)l(x=x;) +7)_ ¢u(x) Y Plx|x,a)l(x=x;);
this constraint is equivalent to:
D dalxy) = alx)) +7 ) du(X)P(x; | X, ).

This is exactly the constraint corresponding to staten the exact dual LP in (6.1). If
we had an indicator basis function for every stat¢hen the approximate dual LP in (6.2)
will be exactly equivalent to the exact one in (6.1), as they would have the same set of
constraints. Equivalently, the linear subspace formed by our basis functions would include
any possible value function, and the approximate LP approach would be exact. In practice,
our basis function subspace will not span the whole space of value functions, and, as we
will now prove, the constraints in (6.2) will be a relaxation of those in the exact dual LP
in (6.1).

First, it is useful to interpret the dual variablésas a density function:

Lemma 6.1.1 Any feasible set of visitation frequenciggx) in the approximate dual LP
in (6.2) forms a density function ov&r x A, that is:

Vx,a: ¢q(x) > 0, and (6.4)
Y balx) = ——. (6.5)

Proof: See Appendix A.4.1.1

In the exact case in Section 2.2.1, the density represented by the visitation frequencies
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¢4(x) has a one to one correspondence to policies in the MDP, as shown in Theorem 2.2.1.
This correspondence is guaranteed by the constraints in the dual LP in (6.1). Although,
in the approximate case, the visitation frequencigix) still form a density as shown by
Lemma 6.1.1, we now prove that the constraints have been relaxed, and the one to one
correspondence betweep(x) and policies no longer holds:

Theorem 6.1.2

1. Letp be any stationary randomized policy; then if:

0x) =) > Apla|)PEY =x|xV =x)a(x), vxa,  (6.6)
t=0 x’/
whereP,(x' | x) = ), P(x' | x,a')p(d’ | x), then¢?”, is a feasible solution to the
approximate dual LP in (6.2).

2. There may exist a feasible solutign(x) to the approximate dual LP in (6.2) such
that, for some state, > ¢,(x) = 0.

3. There may even exist a set@f(x) that is a feasible solution to the approximate
dual LP in (6.2), and such that, for all states ) ¢,(x) > 0, but if we define a
randomized policy by: 4030

o\ X
pla|x) = T )
then the dual solution defined Iy (x) as in Equation (6.6) is such that)(x) #
¢q(x) for at least some anda.

(6.7)

Proof: See Appendix A.4.2.1

Comparing Theorem 6.1.2 for the approximate dual formulation with the corresponding
Theorem 2.2.1 for the exact case, we formally prove two characteristics of the approximate
dual LP:

Relaxation: Theorem 2.2.1 proves that every solution to the exact dual LP corresponds to
a (randomized) policy. Theorem 6.1.2 Item 1 indicates that all (randomized) policies
yield feasible solutions to the approximate dual LP in (6.2).
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Non-policy solutions: The one to one correspondence between policies and dual solutions
that is present in the exact formulation no longer holds. Specifically, Theorem 6.1.2
Items 2 and 3 prove that not all feasible solutions to the approximate dual LP in (6.2)
necessarily correspond to policies.

Therefore, rather than approximating the space of policies, the approximate dual LP
in (6.2) is finding the approximation to the state visitation frequengj¢g) that has max-
imum value. To understand the nature of this approximation, examine again the constraint
introduced by an arbitrary basis functiopn(x):

Y GaXhi(x) = Y a(x)hi(x) +7 ) u(x) Y Plx| X a)hi(x).

X

As ¢,(x) can be interpreted as a density, we can express this constraint using expectations:

Eg, [hi(x)] = Eq [hi(x)] + 7Eg, p, [hi(X)] - (6.8)

Thus, rather than enforcing the flow constraints described in Section 2.2.1 for all states, we
are now enforcing flow constraints for features of the states (basis functions). That is, a set
of visitation frequencies, (x) in our approximate LP will be feasible if, for each feature or
basis functiorh;, the total expected value of this feature unggx), given byE,, [h;(x)],

is equal to the expected value of this feature under the starting distribution (represented
by the state relevance weight$x)), E, [h;(x)], plus the total discounted expected value

of this feature under the flow from all other stat€sto this statex times the respective
visitation frequencies of the origin stated;, », [;(x)]. In other words, we are enforcing

the flow constraints in terms of features of the states, rather than individually for each state.

2 As in the exact case, this relationship becomes more intuitive in the average reward case, where our
relaxed constraints now become relaxed conditions on a stationary distribution.
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6.1.2 Theoretical analysis of the LP-based approximation policies

Theorem 2.2.1 shows that there exists a one to one correspondence between every feasible
solution to the exact dual LP in (6.1) and a (randomized) policy in the MDP. In Theo-
rem 6.1.2, we proved that every policy corresponds to a feasible solution to the approx-
imate dual formulation in (6.2), but that the one to one correspondence no longer holds.
We will now define a correspondence between feasible solutions to the dual LP in (6.2)
and policies. This correspondence leads to a new bound and intuition on the quality of the
solutions obtained by the LP-based approximation approach, both in the dual form and in
the primal form in (2.8).

Definition 6.1.3 (approximate dual solution policy set)Let gga be any feasible solution
to the approximate dual LP in (6.2). We define #pproximate dual solution policy set
PoIiciesOf[&L], to include every (randomized) poligysuch that:

M if /N/X>()'
sl x) = 4 Tt T Lt >0

px, otherwise,
wherepX is any probability distribution over actions such that , pX =1. 11

In other words, we define every feasible solut@nto the dual LP to correspond to a set
of randomized policies, where for states such that 5(1/()() > 0 we define the policy
in the usual manner, and in states where, $o(x) = 0 we can select any distribution
over actions. Note that by Theorem 2.2.1, any feasible soldtj¢r) to the exact dual LP
in (6.1) has)_, ¢,(x) > 0 for all states. In this caséoliciesOf[¢,] contain exactly one
policy, as defined by the one to one correspondence in Theorem 2.2.1.

To understand the set of policies FﬂmliciesOf[ga}, let us consider the greedy policy
with respect to the solution of the primal LP-based approximation formulation in (2.8):

Lemma 6.1.4 Let w be the weights of an optimal solution to the approximate primal LP
in (2.8), then there exists an optimal soluti&pto the approximate dual such that:

Greedy[V™] € PoliciesOf[¢,] ,
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whereV¥ (x) = 3. @;h;(x) is our approximate value function with weigi#s
Proof: See Appendix A.4.3.1

This lemma proves that iv is an optimal solution to the LP-based approximation
formulation in (2.8), then the greedy policy with respect to this value function is in the set
of policies PoIiciesOf[gZa] associated with some optimal dual solutiﬁp We now prove a
result bounding the quality of all policies FI’DIiciesOf[qga].

Note that if the optimal solutio&a of the approximate dual LP is a feasible solution to
the exact dual LP, then it is also guaranteed to be an exact optimal solution. Intuitively, if
$a Is almost feasible in the exact dual, then it should close to the optimal solution. Thus,
we explicitly define a measure of violation, that indicates how clfals'es from satisfying
each flow constraint in the exact dual LP:

Definition 6.1.5 (dual violation) Let gfga be any feasible solution to the approximate dual
LP in (6.2). We define thdual violationA[¢,](x) for statex by:

Ald)(x) =Y da(x) —a(x) =7 > du(X)P(x | X, a) . 1
Ouir first result bounds the quality of the pOliCieSHGIiciesOf[gga] in terms of the dual
violation A[g,]:
Theorem 6.1.6 Let $a be an optimal solution to the approximate dual LP in (6.2), and let
p be any policy irPoIiciesOf[qga]; then:

V=Vl < D Alba)(x) Va(x), (6.9)

whereV; is the actual value function of the poligy and the weighted:; norm is defined

by [Vll1,0 = 2ok 2(x) [V(x)].
Furthermore, ifw is an optimal solution to the primal LP associated with the dual
solutionq/ifa, then:

A
) pePoliciesOf [¢q]

(6.10)

Z A[aa] (X> Vﬁ<x)
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whereV¥ is the approximate value function with weigkis
Proof: See Appendix A.4.4.1

Recall thatgga is not a feasible solution to the exact dual LP in (6.1). Our Theo-
rem 6.1.6 bounds the quality of the approximations obtained by the LP-based algorithm
in Section 2.3.2, and also the quality of all the pOIiCieSPiﬂiciesOf[qAba}, by a term that
measures the infeasibility @G‘a. Our next result build on this theorem to bound the quality
of our approximate value function and of our policies by the quality of the best achievable
approximation in our basis function space. One of our results uses the notigamfnov
functiondefined by de Farias and Van Roy [2001a]. This function is used to weigh our
approximation differently in different parts of the state space.

Theorem 6.1.7 Let $a be an optimal solution to the approximate dual LP in (6.2). ket
be any policy irPoIiciesOf[ngﬁa], andV; be the actual value of the poligy Let the errors3°
of the best max-norm approximation)df in the space of our basis functions be given by:

ey =min[|V; — Hwl| _; (6.11)
then:
. 25%0

If w is an optimal solution to the primal LP associated with the dual soluﬁgrthen:

* W : 25%0
HV -V HLa < min : (6.13)

o pePoliciesOf[Bq] 1 - Y
whereV¥ is our approximate value function with weighis
Furthermore, letL(x) = >, w’h;(x) be anyLyapunov functionin the space of our
basis functions, with contraction factare (0, 1) for the transition modeP;, that is, any
strictly positive function such that:

KL(x) > 7)) Pi(x' | x)L(x). (6.14)



100 CHAPTER 6. FACTORED DUAL LP-BASED APPROXIMATION

00,1/L
P
of our basis functions be given by:

Let the errore of the bestl /L weighted max-norm approximation B in the space

et = min ||V, — Hwl|_, ;. (6.15)
where|[V||, ,;, = maxx 755 [V(x)[ ; then:
2aTL
V=V, < —10‘ et (6.16)
’ — K
and
_ 2a7L o
Ve V¥, < min S =goVE (6.17)

pePoliciesOf(ga] 1 — K 7
Proof: See Appendix A.4.5.1

As the greedy policy with respect to the primal approximate solutionRsliiesOf [(;Asa],
our bound of course also applies:

Corollary 6.1.8 Letw be the weights of an optimal solution to the approximate primal LP
in (2.8), andV¥(x) = >, w;h;(x) be our approximate value function with weigfs Let
the greedy policy with respect to this value function be:

™ = Greedy[V"] ;
then:

V"=Vl <

2
——min ||V« — Hw||_ , (6.18)
l—nvy w

where)_s is the actual value of policy™.
Let L be a Lyapunov function as defined in Theorem 6.1.7, then:

207L .
_I{m“}nHVﬁw —Hw| /- (6.19)

||V* - V7r‘7" Hl,a

Proof: This result is a corollary of Lemma 6.1.4 and Theorem 6.1¥.
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In other words, the terrV* — V|, , measures the quality of each poIianIiciesOf[$a],
in terms of how well the basis functions can approximajethe value function othis pol-
icy. In particular, we can bound the quality of the greedy policy associatedwitthe
weights of an optimal solution to the approximate primal LP in (2.8), in terms of how well
our basis functions can approximates .

6.1.3 Relationship to existing theoretical analyzes

The results of de Farias and Van Roy [2001a] provide a foundation for the understanding
of the quality of the solution obtained by the LP-based approximation algorithm. The
theoretical bounds presented thus far provide further intuitions about this solution. To
understand this relationship, we review some results by de Farias and Van Roy [2001a].
First, their Theorem 4.1 proves that:

|

Theorem 4.2 of de Farias and Van Roy [20014a] states that:

Ve—y HLa < mm“llnHV —Hw| . (6.20)

X 2TL . .
v =v¥|,. < i—ﬁniinw o L (6.21)

for a Lyapunov functiornl as defined in Theorem 6.1.7. Finally, Theorem 3.1 of de Farias
and Van Roy [2001a] states that:

1
HV* - VW‘TVH @ S —
1, 1— v |

Vv — VVAVHL(H) g (6.22)

Wheregb”@ are the visitation frequencies of the greedy poli¢y. We now compare these
results by de Farias and Van Roy [2001a], with our results in Theorem 6.1.7 and Corol-
lary 6.1.8.

First note that the results of de Farias and Van Roy [2001a] in Equation (6.20) and Equa-
tion (6.21) bound the quality of the solution in terms of the best possible approximation of
the optimal value function. Our results in Theorem 6.1.7, Equations (6.13) and (6.17),
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respectively, present related bounds in terms of how well the basis functions can approxi-
mate the “easiest” policy iﬁoliciesOf[g/ga]. Our bounds are, in some sense, weaker, because
we are bounding the quality of the solution as a function of the solution (the approxima-
bility of the policies obtained by the algorithm), while the results of de Farias and Van
Roy [2001a] depend on how well the basis functions can approximate the optimal value
functionV*, which is independent of the algorithm. However, intuitively, it may be easier
to approximate the “easiest” policy I?oliciesOf[ngﬁa]. Thus, we view our bound as intro-
ducing the additional intuition that the LP-based approximation algorithm obtains good
approximations both when the optimal value function can be well-approximated by the ba-
sis functions, and when the value function of the policies generated by the approach can be
well approximated by the basis functions.

Additionally, de Farias and Van Roy [2001a] bound the quality of the greedy policy
7™ by substituting the bound in Equation (6.20) or the one in Equation (6.21), into Equa-
tion (6.22). On the other hand, our Corollary 6.1.8 bounds the greedy policy directly, albeit
as a function of the approximability of the solution.

Our results thus add some interesting properties to the results of de Farias and Van Roy
[20014a]: first, as discussed above, when both approaches are combined, we obtain bounds
that can depend on the approximability of the value function™for on the approxima-
bility of V*; second, our bound on the quality of the greedy policy is a factq_ll—g)tighter
than that of de Farias and Van Roy [2001a], though our result depends on the approximabil-
ity of the value function of this greedy policy; finally, there is an incompatibility between
the norms on the left and on the right hand side of the de Farias and Van Roy bound in
Equation (6.22), this issue does not arise in our result.

6.2 Factored dual approximation algorithm

In the previous section, we presented an interpretation and theoretical analysis of the dual
LP in (6.2). Unfortunately, the number of variables in this LP is exponential in the number
state variables. Thus, as in the primal formulation, a direct solution for this linear program
is infeasible. Fortunately, by considering the dual of the factored LP decomposition in
Chapter 4 we obtain a very compact formulation for the approximate dual.
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6.2.1 Factored objective function

First consider the objective function of the dual LP in (6.2), again giverpBy> " ¢.(x)R(x, a).
Recall that in factored MDPs, the reward function is decomposed as the sum of restricted-
scope functionsR*(X) = > 7_, R¢(W$). Using this representation, the objective func-
tion becomes:

D2 SaR(xa) = 3 Y alx) D Ri(x[W);
= Y 3> buxRUXW)

j=1 a X

Note that, as),(x) forms a density, we can decompose this expectation in an analogous
manner as the backprojection in Section 3.3. To understand this process, we define the
marginal visitation frequencies

Definition 6.2.1 (marginal visitation frequency, consistent flows)For some subset (clus-
ter) of variablesB C X, let themarginal visitation frequency,, (B) be:

pta(b) = Y ¢u(x), Vb € Dom[B], (6.23)

x~[b]

wherex ~ [b] are the assignments &fthat are consistent with.
We can, furthermore, marginalize out the action variable, defining:

pu(b) = pa(b) . (6.24)

Finally, we say that a set of marginal visitation frequenqgigsand a set of global visi-
tation frequencies, are consistent flow#f 1, and¢, satisfy Equations (6.23) and (6.24).
|

Using this definition, we can rewrite the objective function of our dual LP as:

D2 %@Rxa) =) > Y pma(WHRI(W]). (6.25)

r
a Jj=1 a w{eDom[W?]
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Thus, the representation of the objective function is now only exponential in the number of
variables in each local reward function. In our SysAdmin example, the reward function has
the formR*(X) = >, R;(X;). Thus, to represent the objective function for this problem,
we only need marginal visitation frequencies over single variah(és;). Therefore our
objective becomes to maximi2e ; yu(z;) R;(z;).

6.2.2 Factored flow constraints

Consider the flow constraint in the dual LP in (6.2) induced by each basis furigtiagain
given by:

D Ga(hi(x) =Y a®)hi(x) +7>_ ¢a(x) > P(x| ¥, a)hi(x).  (6.26)

Now recall thath; has scope&C;. Using the marginal visitation frequencies, as in the ob-
jective function, this constraint can be restated as an equividetdred flow constraint

Yo oulehle)= Y al@hle)+rY Y my)egy). (6.27)

c€Dom|[C;] ceDom[C;] a  yeDom(['q(C})]

wherel',(C!) is the backprojection (parents) of the variab{gsin the DBN as defined in
Section 3.3y? = Backproj.(h;) is the backprojection of; as defined in Figure 3.2; and
a(c) are the marginal state relevance weights, as defined in Equation (5.2).

To understand the factored flow constraint, consider our SysAdmin example. Each
basis functior; is an indicator that takes value 1 if machinis working. In this case, the
marginal visitation frequency constraint becomes:

p(es) = alw) +7) > pa(wi, 7y ) P | 2,2y, 0) 5

a bl €Dom[X] X! ]

that is, the visitation frequengy(x;) for states where machinds working is equal to the
starting probabilityx(z;) that maching is working, plus the discounted visitation frequen-

cies for the states of the parent machines in the network that lead to a state where machine
1 is working.
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In order to express the objective function and the factored flow constraints for each
basis function, our optimization problem must include variables to represent the marginal
visitation frequencies(b) andu,(b), Va, for each assignmei of each clusteB used
in the formulation. We call this set of clusters taetored MDP cluster set

Definition 6.2.2 (factored MDP cluster set) Thecluster set3ryppfor a factored MDP is
defined as:

BFMDP: {W(ll7 cee 7W;1 : va’} U {Clv SRR Ck} U {Fa(cll)v s 7Fa(C;f) : Va} )

where{W¢{, ..., W} are the scopes of the local reward functiol€}, ..., C,} are the
scopes of our basis functions; and,,(C’),...,I'.(C})} are the scopes of the backpro-
jections of our basis functions, as defined in Section 313.

Note that the scope of the constant basis functigis the empty set, thus the empty set
{0} is always included iBrypp

6.2.3 Global consistency

If we maximize the factored objective function in Equation (6.25) with non-negative vari-
ables, under the factored flow constraints in Equation (6.27), and under the constraints
in Equations (6.23) and (6.24) that enforce the definition of marginal visitation frequen-
cies, we would clearly obtain the same solution as solving the dual LP in (6.2). Un-
fortunately, the constraints in the definition of marginal visitation frequencies in Equa-
tions (6.23) and (6.24) require us to keep the global visitation frequency variafgbesin
the optimization problem, and, thus, the formulation remains exponentially large.
However, in some cases, we can remove the global visitation frequency varaptes
(and the constraints in Equations (6.23) and (6.24)) from the optimization problem, and
still obtain the same solution as the one for the dual LP in (6.2).
This equivalency occurs when the set of marginal visitation frequenciegaal con-
sistent
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Definition 6.2.3 (global consistency)As set of marginal visitation frequencigg(b) over
a set of clusters is said to beglobally consistenif there exists a set of non-negative global
visitation frequencies, (x), such thatp, and x, are consistent flows. i

Lemma 6.2.4 Let an optimal solution to the factored objective function in Equation (6.25),
under the factored flow constraints in Equation (6.27) for each basis funatidme given

by the non-negative marginal visitation frequengiééb), for each assignmett € Dom|B]|

of each clusteB in Bevpr If the (b) are globally consistent, lep’(x) be any set of
global visitation frequencies such thaf and x; are consistent flows; theg (x) is an
optimal solution to the dual LP in (6.2).

Proof: See Appendix A.4.6.1

6.2.4 Marginal consistency constraints

Even if we were given an optimal set of globally consistent marginal visitation frequen-
cies i’ it is still infeasible to obtain the global visitation frequencig’s Fortunately,
we never need to compute. The coefficient of basis functioh; in our approximation
is simply the Lagrange multiplier associated with the factored flow constraint induced by
h;. Therefore, we can restate our problem as one of findigtpbally consistenset of
non-negative marginal visitation frequencjggb) that maximizes the factored objective
function in Equation (6.25), under the factored flow constraint in Equation (6.27) for each
basis functiom;. Unfortunately, our factored flow constraints are not generally sufficient
to ensure that the marginal visitation frequengigsre globally consistent. We now show
that we can guarantee global consistency by including additional constraints in our LP.
First, note that if a set of marginal visitation frequencigéb) is globally consistent,
then, for any two clusters of variabl@; and B, the respective marginajs,(B,) and
1a(B;) assign the same frequency to the variables they share. We can add constraints to
the LP to guarantee this consistency:

Definition 6.2.5 (marginal consistency constraints)For two clusters of variableB; and
B;, themarginal consistency constrairits the marginal visitation frequencigs,(B;) and
1q(B;) are given by:
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> pa(bi) = Y pta(b;) . Vy € Dom[B; N By],Va. (6.28)
b;~[y] bj~[y]

For some set of variableB, the action-marginalization consistency constraiats given

by:
pu(b) => " j1a(b) , Vb € Dom[B] . (6.29)

For every pair of clusterd3, andB,, in our factored MDP cluster ségyps We thus
introduce a set of marginal consistency constraints. The number of such constraints is only
exponential in the number of variablesi) N B,. This number of variables is no larger
than the size of the larger clusterffigypr INn SOMe cases, these constraints are sufficient to
guarantee global consistency, as the following example shows:

Example 6.2.6 (marginal consistency may imply global consistency)ssume, for exam-
ple, that our state space is defined via the state variallegs, C', and that we have 2 clus-
ters of variables:B, = {4, B}, B, = {B,C'}. We are given two non-negative marginal
visitation frequencies over these three clusters,

{(A, B), u(B,C)},

WhereZa,b M(aﬂ b) = ﬁ and Zb,c M<b7 C) = ﬁ
Suppose that we add marginal consistency constraints for these marginal visitation
frequencies:

> pla,b) = > pu(be), Vb€ Dom|B] .
Now, let us define a set of global visitation frequenciged, B, C) by:
p(a, b)p(b, c)
¢(a,b,c) = —<—+—-, Va,b,c € Dom[A, B, (],
(ab,0) = K200 (A, B,C]

where we defing = 0.
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We must prove that the global visitation frequenciesnd the set of marginalg are
consistent flows. Consider firgta, b):

N pu(a, b)p(b, c).
20 = 2 )
pi(a,b) > p(b.c) |
Do (b )
= M(a’>b)'

A similar derivation proves the consistencygodind 1(b, c).

We must finally show that is a well-defined density function. Cleaa,b,c) is
non-negative, as it is composed of non-negative functions. We also need to show that
¢(a, b, c) is normalized appropriately. We show above that ¢(a,b,c) = p(a,b). As
> apiia,b) = ﬁ we have that) is a well-defined density function, and the marginal
consistency constraints are sufficient to guarantee global consistency of the set of marginals
1 are consistent flows, in this examplel

Although the marginal consistency constraints ensure that {i#8;) and.,(B,) agree
on the visitation frequency of the variables they share, they do not always enforce global
consistencyi.e., the existence of a set of global visitation frequengigssuch thaty, and
i1, are consistent flows. The following example illustrates this problem:

Example 6.2.7 (marginal consistency does not always imply global consistencikssume,
for example, that our state space is defined via the binary state varidblBsC', and that
we have 3 clusters of variable®, = {A, B}, B, = {B,C}, andB3 = {C, A}. We are
given three non-negative marginal visitation frequencies over these three clusters,

{u(A, B), u(B,C), u(C, A)},

where each, sums tol_%, as in the previous example.

Now, suppose that we add marginal consistency constraints for these marginal visita-
tion frequencies:



6.2. FACTORED DUAL APPROXIMATION ALGORITHM 109

Zu(a, b) = Z,u(b, ¢), Vb € Dom|[B] ;

Zu(b, c) = Zu(c, a) , Ve € Dom|[C] ;

Z,u(c, a) = Z,u(a, b) , Ya € Dom|[A] .
c b

These constraints enforce local consistency between the marginal frequencies. How-
ever, local consistency does not, in general, imply global consistency, i.e., that there exists
a set of global visitation frequencieg A, B, C') such that¢ and theyu’s are consistent
flows.

Consider, for example, the following assignment to the marginal visitation frequencies:

(A,B) = = (B,C) = = (C,A) = =l
A, - 0 0.5 y M ’ - O % L, - e 0.5—¢ )

1—v 1—v 1—v
for anye € (0,0.5]; where, for a particular marginal:(X,Y’), the rows in the matrix
correspond to values ok, and the columns correspond to valuesyaf Clearly, these
marginals satisfy the marginal consistency constraints.

Let us assume that there exists a set of global visitation frequea¢ies3, C'), such
that ¢ and the set of marginalg are consistent flows, and:

qu(a, b,c) = %, and ¢(a,b,c) > 0, Ya,b,c.
-7

a,b,c

If  and . are consistent flows, then:
$(a,b,2) + ¢(a, b, ) = p(b,e) = 0.
Thus, by non-negativity of the global visitation frequencies, we have that:

o(a,b,c) = ¢(a,b,¢) = 0. (6.30)
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Similarly, the consistent flows property implies that:

0la.b,) +0(a.b,0) = (e, h) = 7

Substituting the term(a, b, ¢) from Equation (6.30), we obtain:

¢(a,b,c) = % (6.31)

Now considep(c, a):

0l0.b.) +0(a.b.0) = ples) = T

Substituting the term(a, b, ¢) from Equation (6.31), we finally obtain:

violating the positivity requirement on the global visitation frequencies. Thus, even satis-
fying the marginal consistency constraints, the marginal visitation frequence® not
globally consistent. &

6.2.5 Global consistency constraints

In Example 6.2.6, the marginal consistency constraints were sufficient to guarantee global
consistency. In Example 6.2.7, on the other hand, we show that the marginal consistency
constraints do not always guarantee global consistency. Intuitively, this inconsistency is
caused by the cyclic nature of the marginals in the second example. Thatis3) is
consistent withu(B, C), u(B, C) with u(C, A), andu(C, A) with u(A, B), but there is no
constraint enforcing the joint consistency of the three terms. In general, if marginals can
be arranged in a forest (collection of trees) graph, then global consistency is guaranteed, as
we show in this section.

We can guarantee global consistency by using the notideamposable moddlsau-
ritzen & Spiegelhalter, 1988], where local consistency does imply global consistency.
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These models are characterized by cluster graphs that have a sgastal, treg(or forest),
structure with a particular property:

Definition 6.2.8 (cluster tree, running intersection property) A cluster treeF(B) is an

undirected tree (or forest) with a node for each clusire B. A cluster tree is said
to satisfy therunning intersection property, whenever there is a variabl& such that
X € B, € BandX € B, € B, there exists a (unique) path betweBnandB; in the

F(B), and X is also present in every clust#; in this path. 1

We can now define the requirements for global consistency of a set of clifsters

Definition 6.2.9 (junction tree) A setof cluster = {By, ..., B, } is said to form gunc-
tion treeif there exists a cluster forest(5) satisfying the running intersection property.
1

Clusters that form a junction tree are globally consistent:

Lemma6.2.10Let B = {By,...,B,} be a cluster set forming a junction treg(5).
Let (B) and i, (B) be a set of non-negative marginal visitation frequencies @eff,

for every pair of cluster®8,; andB; in 3, the marginal consistency constraints in Equa-
tions (6.28) and (6.29) hold, and for eathe 5 we have thad _, .1, #(b) = K then
the marginals.(B) andy,(B) are globally consistent. That is, there exists a dengjtk)
such that for eacB € B:

pa(b) = ) ¢u(x), Vb € Dom[B], Va
x~[b]

with >, ¢a(x) = K andg,(x) > 0.
Proof: see for example the book by Lauritzen and Spiegelhalter [1988].

Unfortunately, the factored MDP cluster $&iyppas stated in Definition 6.2.2 does not
necessarily form a junction tree as required by Theorem 6.2.10. However, using a simple
triangulation procedure, we can obtain such a junction tree [Lauritzen & Spiegelhalter,
1988]. LetTr (B) denote such a procedure that takes a clusteB setd returns a (larger)
cluster set forming a junction tree. For simplicity of presentation, we assumésthat
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Tr (B). Figure 6.1 illustrates a simple implementation of one such triangulation procedure,
where a variable elimination ordét is required.
We are now ready to present the completetored dual approximatioformulation:

Definition 6.2.11 (factored dual approximation) Thefactored dual approximatidcP for-
mulation for any set of clustei8 O BryppiS given by:

Variables: VB € B, Vb € Dom[B], Va :
p(b) and i, (b);

Maximize: Z;zl > ngeDom[W;} pa(W§) RS (W) ;

Subjectto: e Vi=1,...,k:
ZcEDom[C il ,LL( )h(C) = ZceDom[C ( )hl(c)

+ /VZ ZyEDom Fa(C’ ] /"La( ) (Y) ’
where C; = Scope[h;] ;

e VB, B; B, VyeDom[B;,NB,|,Va:
EbiN[y} a(bi) = Zb ]Na( i) s

e VBeB, Vbe Dom[B] Va:
Ha(b) 20,
p(b) =2y ta (b)) ,

Zb’GDom[B] M(b/) = ﬁ )

where the backprojection of basis functibp given by

gy)= Y, P ]y,a)h(c),

¢’eDom[C]]
is defined in Section 3.31

The factored dual approximation formulation is guaranteed to be equivalent to the dual
LP-based approximation formulation in (6.2):
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TR(B,0)
/I B=1{By,...,B,,}is asetof clusters.
/I O stores the elimination order.
/I Return a set of clustef$’ O B that forms a junction tree.
/I Initialize set of clusters.
LET B’ = B.
FOR ¢ =1 TO NUMBER OF VARIABLES:
/I Select the next variable to be eliminated.
LETI=0(i);
/I Select the clusters to be eliminated.
LET By,...,Bz BE THE CLUSTERS INB CONTAINING VARIABLES X].
LET B=B\{By,...,B.}.
/I Create a new union cluster.
LeT B =U~, B;.
/I Add new cluster to the junction tree.
LeET B =B U{B}.
/I Remove eliminated variable and store the new cluster.
LETB' =B\ X;.
LET B=BU{B'}.
/l We can now return a cluster set that forms a junction tree.
RETURN B'.

Figure 6.1: Triangulation procedure, returns a cluster set that forms a junction tree.

Theorem 6.2.121f the marginal visitation frequenciesg;(b) are an optimal solution to

the factored dual approximation formulation in Definition 6.2.11 using a set of clusters
B O Tr (Brwpp); then there exists a set of global visitation frequeneigsk) such thaty?

and the marginals:;’ are consistent flows, angf (x) is an optimal solution to the dual LP

in (6.2).

Proof: The existence of a set of global visitation frequendigs) such thaty? and the
marginalsy; are consistent flows is guaranteed by Lemma 6.2.10. The optimadify-of

is then guaranteed by Lemma 6.2.4

To obtain a value function estimate from the formulation in Definition 6.2.11, we simply
set the weightu; of theth basis functiorh; to be the Lagrange multiplier associated with
the:th factored flow constraint:

Corollary 6.2.13 Let the marginal visitation frequencieg (b), for each assignmerni €
Dom|[B] of each clusteB in B 2 Tr (Brvpp be an optimal solution to the factored dual
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approximation formulation in Definition 6.2.11. Let be the Lagrange multiplier associ-
ated with the factored flow constraint:

S owehle)= Y aleme)+ Y. Y ey

c€Dom|[C;] ceDom|[C;] a yeDom[l',(C})]

then) ", w;h; is an optimal solution to the primal formulation LP in (2.8).
Proof: This resultis a corollary of Theorem 6.2.12 and of standard complementarity results
in duality theory (e.g., [Bertsimas & Tsitsiklis, 1997, Theorem 4.5)).

Therefore, by solving the compact dual LP in Definition 6.2.11, we obtain the same
value function approximation as solving the exponentially-large dual LP in (6.2), in turn,
yielding the same approximation as the linear programming-based approximation in (2.8).

6.2.6 Approximately factored dual approximation

As with the factored LP construction in Chapter 4, the largest cluster generated by the
triangulation procedure is given by the induced width of an undirected graph defined over
the variablesXy, . .., X,,, with an edge betweeN; and X,, if they appear together in one

of the original cluster$gypr This induced width is exactly the size of the largest cluster

in a junction tree that includes the clusterd3a,pr The number of marginal consistency
constraints is exponential in this induced width. In some systems, the induced width may
be too large to allow us to solve such a optimization problem. A more efficient alternative
is to use arapproximate triangulatiorprocedure, relaxing the consistency constraints on
the visitation frequencies:

Definition 6.2.14 (approximate triangulation) An approximate triangulatioprocedure
Tr (B) for cluster set returns some cluster s& such that3 C 5. 1

Clearly, the approximate triangulation procediirg ) need not return a cluster set that
forms a junction tree, and it may even just return the original clugietdsing this proce-
dure, we can solve aapproximately factored dual approximatidormulation by solving

the LP in Definition 6.2.11 over the clustersin (Bevpp. If Tr (Brwpp does not increase

the size of the clusters significantly, the size of this approximately factored formulation can
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be exponentially smaller than that of the globally consistent one obtained when using the
exact triangulation procedufi& (Brwpp -

By definition, for any approximate triangulation proceddme(Bgypp, Our approxi-
mately factored dual LP contains a factored flow constraint for each basis fuhgtasin
Equation (6.27). Thus, for any choice Bf (Bempg, We can obtain a factored value func-
tion, where the coefficient; for eachh; is simply the Lagrange multiplier of the factored
flow constraint induced by;. This approximately factored formulation thus allows us to
find a value function approximation very efficiently, even in many problems with large
induced width.

Unfortunately, at this point, we cannot provide any theoretical guarantees for the quality
of the value function obtained by this approximately triangulated formulation. However,
this relaxed formulation does provide us with an “anytime” version of our factored LP
decomposition technique: Note that, for two sets of clusfeend B’ such thatBB3gypp C
B' C B, the set of constraints in the factored dual LPfais exactly a super set of those in
the dual LP foi3’, and both LPs have the same objective function. Our “anytime” algorithm
thus starts by formulating and solving the factored dual LP over the cluStgks. We
then choose a set of clustefls such that8 > Brype The dual LP formulation foi3
can be obtained simply by adding the extra constraints and variables corresponding to the
clusters inB\ Bempr Interestingly, this procedure corresponds to using a delayed constraint
generation procedure [Bertsimas & Tsitsiklis, 1997] to solve the dual LP formulation with
the full triangulationTr (53). This process can be repeated for increasing sets of constraints
until either the full triangulationTr (Beuwpp iS Obtained, or a preset running time limit is
reached.

6.3 Discussion and related work

This chapter focused on the dual of the LP-based approximation algorithm. We first de-
scribed an interpretation of this approach, showing that solutions to this approximate dual
no longer have the one to one correspondence to policies that was present in the exact
formulation. We then presented a new analysis of the quality of the policies obtained by
the LP-based approximation algorithm. In this analysis, we defined a mapping between
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approximate dual solutions and policies. We then presented a new bound on the quality
of all policies associated with the optimal solution of the approximate dual. These poli-
cies include the greedy policy with respect to the optimal solution to the primal LP-based
approximation algorithm used thus far in this thesis.

Our theoretical results provide some complementary intuitions to those of de Farias
and Van Roy [2001a]. We are able to obtain a potentially tighter bound on the quality of
the greedy policy than de Farias and Van Roy [2001a], though our bound depends on the
approximability of the value function of the greedy policy obtained by the algorithm, while
de Farias and Van Roy [2001a] provideapriori bound, in terms of the approximability
of the optimal value function. We thus view our bound as providing the intuition that the
LP-based approximation algorithm will yield good solutions when the value function of
the resulting greedy policy can be well-approximated by the basis functions, in addition to
when the optimal value function allows for such an approximation, which is the original
result of de Farias and Van Roy [2001a].

Our interpretation of the approximate dual also leads to a new link between value func-
tion approximation and the representation of exponentially-large distributions in graphi-
cal models. This link is analogous to the one between value function approximation and
maximization in a cost network presented in our factored primal LP decomposition tech-
nique. The complexity of the primal formulation is equivalent to that of the dual. Further-
more, the data structures used in the implementation of both formulations are very similar.
Thus, there are no significant advantages to solving the dual LP with the exact triangulation
Tr (B), over solving the primal formulation.

However, our dual formulation does yield approximate and “anytime” versions of our
factored LP decomposition technique, as discussed in Section 6.2.6. Note that the sim-
plest formulation of our approximately factored dual LP must contain at least the clusters
in Bempr Thus, this approximately factored dual formulation is particularly appropriate
when each cluster i8ryppOnly involves a small number of variables, but the cost net-
work formed by these clusters has high induced width. For example, consider a set of
variables{ X3, ..., X,,}. If Bemppcontains a cluster for every pair of variableX;, X},
thenTr (Bempp coNtains a cluster with all variables, and the representation of our factored
LP would be exponential in the number of variables. Alternatively, we can formulate an
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approximately factored dual Whefe?(BFMDF) = Bempr This formulation would only be
guadratic in the number of variables.

The use of such a locally consistent approximation is motivated by the success of ap-
proximate inference algorithms in graphical models. Exact inference in a graphical model
requires the same triangulation procedure used to create a junction tree. Analogously, the
complexity of such an inference procedure is exponential in the size of the largest cluster in
this junction tree. Thus, inference in graphical models is generally infeasible for problems
with large induced width. Recently, Yedid& al. [2001] proposed a very successful ap-
proximate inference algorithm, which leads only to local consistency between clusters of
variables, when the algorithm converges. The success of this procedure motivates the lo-
cally consistent relaxation of our factored dual approximation algorithm inducéd ().

We believe that our approximately factored dual formulation will extend the applicabil-
ity of our efficient solution techniques to highly-connected real-world systems.



Chapter 7
Exploiting context-specific structure

Thus far, we have presented a suite of algorithms which exploit additive structure in the
reward and basis functions and sparse connectivity in the DBN representing the transition
model. However, there exists another important type of structure that should also be ex-
ploited for efficient decision making:ontext-specific independeneSl), a type of sym-
metry [Boutilieret al,, 1995]. For example, consider an agent responsible for building and
maintaining a house, if the painting task can only be completed after the plumbing and the
electrical wiring have been installed, then the probability that the painting is danmmis
all contexts where plumbing or electricity are not doneependentlyf the agents action.
The representation we have used so far in this thesis would use a table to represent this type
of function. This table is exponentially large in the number of variables in the scope of the
function, and ignores the context-specific structure inherent in the problem definition.

Boutilier et al. [Boutilier et al, 1995; Dearden & Boutilier, 1997; Boutiliest al.,
1999; Boutilieret al, 2000] have developed a set of algorithms which can exploit CSI
in the transition and reward models to perform efficient (approximate) planning. Although
this approach is often successful in problems wherevéthee functioncontains sufficient
context-specific structure, the approach is not able to exploit the additive structure which is
also often present in real-world problems. (We discuss these algorithms further at the end
of this chapter.)

In this chapter, we first review the extension of the factored MDP model to include
context-specific structure. We then present an extension of our algorithms that can exploit

118
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both CSI and additive structure to obtain efficient approximations for factored MDPs.

7.1 Factored MDPs with context-specific and additive struc-

ture

There are several representations for context-specific functions. The most common are
decision trees [Boultilieet al, 1995], algebraic decision diagrams (ADDs) [Hoslyal,,

1999], and rules [Zhang & Poole, 1999]. We choose to use rules as our basic representation,
for two main reasons. First, the rule-based representation allows a fairly simple algorithm
for variable elimination, which is a key operation in our framework. Second, rules are not
required to be mutually exclusive and exhaustive, a requirement that can be restrictive if
we want to exploit additive independence, where functions can be represented as a linear
combination of a set of non-mutually exclusive functions.

We begin by describing the rule-based representation (along the lines of Zhang and
Poole’s presentation [1999]) for the probabilistic transition model, in particular, the CPDs
of our DBN model. Roughly speaking, each rule corresponds to some set of CPD entries
that are all associated with a particular probability value. These entries with the same value
are referred to aonsistentontexts:

Definition 7.1.1 (consistent)Let C C {X, X'} andc € Dom(C). We say that is con-
sistentwith b € Dom(B), for B C {X, X'}, if c andb have the same assignment for the
variablesinCNB. 1

The probability of these consistent contexts will be representqudiyability rules

Definition 7.1.2 (probability rule, context) A probability rulen = (c: p) is a function
n : {X,X'} — [0,1], where thecontextc € Dom(C) for C C {X,X'} andp € [0, 1],
such thaty(x, x") = p if (x,x) is consistent witle and is equal tal otherwise. 1

Definition 7.1.3 (rule CPD) A (rule CPD P, is a functionP, : ({X/} U X) — [0, 1],
composed of a set of probability rules

{T]177727 s 777m}7
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P(Painting’) =0

Not done Done

P(Painting’) =0 P(Painting’) = 0.95 P(Painting’)

(@) (b)

0 P(Painting’) =0.9

ns = (—ElectricalA Painting’: 0)
75 = (ElectricalA =PlumbingA Painting’: 0)
ne = (ElectricalA PlumbingA —PaintingA Painting’: 0)
n7 = (ElectricalA PlumbingA PaintingA Painting’: 0.9)

() (d)

Figure 7.1: Example CPDs for the true assignment of vari&aiating’ represented as
decision trees: (a) when the action is paint; (b) when the action is not paint. The same
CPDs can be represented by probability rules as shown in (c) and (d), respectively.

n = (—ElectricalA Painting’: 0)
12 = (ElectricalA — PlumbingA Painting’: 0)
ns = (Electrical A PlumbingA Painting’: 0.95)

whose contexts are mutually exclusive and exhaustive. We define:
Pa(x; ‘ X) = nj(x> X,)>

wheren; is the unique rule inP, for whichc; is consistent with{z}, x). We require that,
for all x,

ZPQ(:E; |x)=1. 1

In this case, it is convenient to require that the rules be mutually exclusive and exhaustive,
so that each CPD entry is uniquely defined by its association with a single rule. We can
defineParents, (X/) to be the union of the contexts of the rulesiy( X/ | X). An example
of a CPD represented by a set of probability rules is shown in Figure 7.1.

Rules can also be used to represent additive functions, such as reward or basis functions.
We represent such context-specific value dependencies weing rules
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Definition 7.1.4 (value rule) A value rulep = (c : v) is a functionp : X — R such that
p(x) = v whenx is consistent witle and 0 otherwise. &

Note that a value ruléc : v) has a scop€.
In general, our reward functioR® is represented asrale-based function

Definition 7.1.5 (rule-based function) A rule-based functiorf : X — R is composed of
asetofrulegp,, ..., p,} such thatf(x) = >, pi(x). I

In the same manner, each one of our basis functigns now represented as a rule-based
function.

Example 7.1.6 In our construction example, we might have a set of rules:

p1 = (Plumbing= done: 100);
p2 = (Electricity = done: 100);
p3 = (Painting= done: 100);
ps = (Action= plumb: —10);

which, when summed together, define the reward fundtiea p; + p2 + p3 + ps + -+ .
At a sate where only the plumbing and electricity are done, and the action is to paint, the
reward will be190. &

It is important to note that value rules are not required to be mutually exclusive and
exhaustive. Each value rule represents a (weighted) indicator function, which takes on a
valuev in states consistent with some contexand 0 in all other states. In any given state,
the values of the zero or more rules consistent with that state are simply added together.

This notion of a rule-based function is related to the tree-structure functions used by
Boutilier et al. [2000], but is substantially more general. In the tree-structure value func-
tions, the rules corresponding to the different leaves are mutually exclusive and exhaustive.
Thus, the total number of different values represented in the tree is equal to the number of
leaves (or rules). In the rule-based function representation, the rules are not mutually exclu-
sive, and their values are added to form the overall function value for different settings of
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the variables. Different rules are added in different settings, and, in factkwiites, one

can easily genera®¥ different possible values, as is demonstrated in Section 7.7.2. Thus,
the rule-based functions can provide a compact representation for a much richer class of
value functions. Using this rule-based representation, we can exploit both CSI and additive
independence in the representation of our factored MDP and basis functions.

7.2 Adding, multiplying and maximizing consistent rules

In our table-based algorithms, we relied on standard sum and product operators applied to
tables. In order to exploit CSI using a rule-based representation, we must redefine these
standard operations. In particular, the algorithms will need to add or multiply rules that
ascribe values to overlapping sets of states.

We will start by defining these operations for rules with the same context:

Definition 7.2.1 (rule product, rule sum) Let p; = (c:wv;) and po = (c: v9) be two
rules with the same contegt Define therule productas p; x ps = (c: vy - v9); and
therule sumasp; + ps = (c: v; +v9). 1

Note that this definition is restricted to rules with the same context. We will address this
issue in a moment.

We also introduce an additional operation which maximizes a variable from a set of
rules, which otherwise share a common context:

Definition 7.2.2 (rule maximization) LetY be a variable withDom[Y] = {v1,...,yx},
and letp;, for eachi = 1,... k, be a rule of the fornp; = (cAY =y; :v;). Then
for the rule-based functiorf = p; + --- + pi, define therule maximizationoverY as

maxy f = (c:max;v;) . 1

After this operationy” has been maximized out from the scope of the funcfion

These three operations we have just described can only be applied in to sets of rules
that satisfy very stringent conditions. In order to make our set of rules amenable to the
application of these operations, we might need to refine some of these rules. We therefore
define the following operation:
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Definition 7.2.3 (rule split) Letp = (c : v) be arule, and” be a variable. Define theule
split Split(p£Y") of p on a variableY” as follows: IfY” € Scope[C], thenSplit(p£Y) = {p};
otherwise,

Split(p£Y) = {(cANY =y, : v) | y; € Dom[Y]}.

Thus, if we split a rulep on a variableY” that is not in the scope of the context g@fthen
we generate a new set of rules, with one for each assignment in the domain of

In general, the purpose of rule splitting is to extend the cont@ttone rulep to coin-
cide with the context’ of another consistent rujé. Naively, we might take all variables in
Scope|C’] — Scope[C]| and splitp recursively on each one of them. However, this process
creates unnecessarily many rulesYlfs a variable irScope|[C’] — Scope[C] and we split
p onY, then only one of theDom[Y']| new rules generated will remain consistent with
p': the one which has the same assignmentfas the one ir’. Thus, only this consis-
tent rule needs to be split further. We can now define the recursive splitting procedure that
achieves this more parsimonious representation:

Definition 7.2.4 (recursive rule split) Letp = (c : v) be a rule, andb be a context such
thatb € Dom|[B]|. Define therecursive rule splitrule split!recursiv@plit(p£b) of p on a
contextb as follows:

1. {p}, if cis not consistent with; else,

2. {p}, if Scope[B| C Scope[C]; else,

3. {Split(p; Zb) | p; € Split(pLY )}, for some variablé” € Scope[B] — Scope[C] .
1

In this definition, each variabl® < Scope[B] — Scope[C] leads to the generation of
k = |Dom(Y')| rules at the step in which it is split. However, only one of theseles is
used in the next recursive step because only one is consisterih witherefore, the size of
the split setis simplyt+ 5 . scope(s)-Scopec) ([ Pom(Y )| —1). This size is independent
of the order in which the variables are split within the operation.
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Note that only one of the rules ®plit(p£b) is consistent wittb: the one with context
c A b. Thus, if we want to add two consistent rujgs= (c; : v1) andps = (cs : v2), then
all we need to do is replace these rules by the set:

Split(p1 Zcs) U Split(paZLcy),

and then simply replace the resulting rulgs A cs : v1) and{cy A ¢ : vy) by their sum
(c1 A ¢yt v + v9). Multiplication is performed in an analogous manner.

Example 7.2.5 Consider adding the following set of consistent rules:

p1=(aNb:5),
p2={aN—-cAd:3).

In these rules, the contekt of p; is a A b, and the context, of ps isa A —c A d.

Rulesp; and p, are consistent, therefore, we must split them to perform the addition

operation:
(aNbAc:b),
Split(p14ca) = ¢ (a AbA—cA—d:5),
(aNbAN—-cANd:Db).
Likewise,

(aN=bAN—-cNAd:3),

Splitppcer) = { (aNbAN=cNd:3)

The result of adding ruleg;, and p; is

{(a NbAc:b),
(aNbA—=cA—d:b),
(aNbAN=cNAd:8),
{aN=bN-cNd:3). 1
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7.3 Rule-based one-step lookahead

As in Section 3.3 for the table-based case, the rule-b@sddnction can be represented as

the sum of the reward function and the discounted expected value of the next state. Due to
our linear approximation of the value function, the expectation term is, in turn, represented
as the linear combination of the backprojections of our basis functions. To exploit CSI,
we are representing the rewards and basis functions as rule-based functions. In order to
represent), as a rule-based function, it is sufficient for us to show how to represent the
backprojectiony; of the basis functior; as a rule-based function.

Eachh; is a rule-based function, which can be writtemigagx) = > . pl(-hj)(x), where

h ) has the form<c(h i) . gy (a)

7

>. Each rule is a restricted-scope function; thus, we can
S|mpI|fy the backprojection as:

gix) = Y Palx | x)hy(x)
= xzpa<x’rx>2p§’”><x’>
- xzzpa<x'r;>p§’”’<x'>;
= iimx' [ %) = f");
- iv}”a(ci’”)rx).

(hj)

The termP, ( 2 | x) is equivalent to:
P %)= [ Pule![X]] ] ).
l: X[e C]
EachP,(c (hj)[ X/ | x) corresponds to a particular instantiation to the CPDXgfand is
thus a rule-based functior?, ( | x) is then the product of rule-based functions, and

can thus be also written as a rule-based function. We denote this backprojection operation
for a particular rule byRULEBACKPROJl(pZ ]))

The backprojection procedure, described in Figure 7.2, follows three steps. First, the
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RULEBACKPROY,(p) , WHEREp IS GIVEN BY (c : v), WITH ¢ € Dom|[C].
LET g ={}.
SELECT THE SETP OF RELEVANT PROBABILITY RULES:
P ={n; € P(X]| PARENTS(X])) | X/ € C AND c IS CONSISTENT WITHc; }.

REMOVE THE X’ ASSIGNMENTS FROM THE CONTEXT OF ALL RULES INP.

/I Multiply consistent rules:

WHILE THERE ARE TWO CONSISTENT RULES); = (1 : p1) AND 72 = (C2 : pa):
IF ¢; = ¢y, REPLACE THESE TWO RULES BY(c; : p1p2);
ELSE REPLACE THESE TWO RULES BY THE SETSPLIT(n;Zc2) U SPLIT(n2Z¢1).

/I Generate value rules:

FOR EACH RULE 7; IN P:
UPDATE THE BACKPROJECTIONg = g U {{(c; : p;v)}.

RETURN g.

Figure 7.2: Rule-based backprojection.

relevant rules are selected: In the CPDs for the variables that appear in the context of
we select the rules consistent with this context, as these are the only rules that play a role
in the backprojection computation. Second, we multiply all consistent probability rules to
form a local set of mutually-exclusive rules. This procedure is analogous to the addition
procedure described in Section 7.2. Now that we have represented the probabilities that
can affectp by a mutually-exclusive set, we can simply represent the backprojectipn of

by the product of these probabilities with the valugoThat is, the backprojection gfis

a rule-based function with one rule for each one of the mutually-exclusive probability rules
n;. The context of this new value rule is the same as that,and the value is the product

of the probability ofp; and the value op.

Example 7.3.1 For example, consider the backprojection of a simple rule,
p = ( Painting =done: 100),

through the CPD in Figure 7.1(c) for the paint action:
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RULEBACKPRObainfp) = Z Ppaintx’ | x)p(x');

= Z Ppaim(Painting{ | x)p(Paintind);

Painting
3
= 100 Hm(Painting’ = done, x) .

=1
Note that the product of these simple rules is equivalent to the decision tree CPD shown
in Figure 7.1(a). Hence, this product is equal @an most contexts, for example, when
electricity is not done at timeé The product is non-zero only in one context: in the context
associated with rules. Thus, we can express the result of the backprojection operation by
a rule-based function with a single rule:

RULEBACKPROQaint(p) = (PlumbingA Electrical : 95).

Similarly, the backprojection gf when the action is not paint can also be represented by a
single rule:

RULEBACKPROJ pajnt(p) = (Plumbing/ Electrical A Painting: 90). I

Using this algorithm, we can now write theckprojectiorof the rule-based basis func-
tion h; as:
grx) =) RULEBACKPRO(p\7), (7.1)

whereg; is a sum of rule-based functions, and therefore also a rule-based function. For
simplicity of notation, we usg; = RULEBACKPROJ,(h;) to refer to this definition of
backprojection. Using this notation, we can widfg(x) = R*(x) + v >_; w;g§(x), which

is again a rule-based function.
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7.4 Rule-based maximization over the state space

The second key operation required to extend our planning algorithms to exploit CSl is to
modify the variable elimination algorithm in Section 4.2 to handle the rule-based repre-
sentation. In Section 4.2, we showed that the maximization of a linear combination of
table-based functions with restricted scope can be performed efficiently using non-serial
dynamic programming [Bertele & Brioschi, 1972], or variable elimination. To exploit
structure in rules, we use an algorithm similar to variable elimination in a Bayesian network
with context-specific independence [Zhang & Poole, 1999]. Specifically, we will substitute
the generic operatiofELIM OPERATORIN Figure 4.1 with a new rule-based maximization
operation, which we denote bRULEMAX OUT.

Intuitively, the algorithm operates by selecting the value rules relevant to the variable
being maximized in the current iteration. Then, a local maximization is performed over
this subset of the rules, generating a new set of rules without the current variable. The
procedure is then repeated recursively until all variables have been eliminated.

More precisely, our algorithm “eliminates” variables one by one, where the elimina-
tion process performs a maximization step over the variable’s domain. Suppose that we
are eliminatingX;, whose collected value rules lead to a rule functfgrand f involves
additional variables in some sBt so thatf’s scope isB U { X;}. We need to compute the
maximum value forX; for each choice ob € Dom[B]. We use RULEMAXOUT(f, X;)
to denote a procedure that takes a rule funcfiéB, X;) and returns a rule functiofnB)
such that:g(b) = max,, f(b,z;). This is exactly a rule-based version of the table-based

MAXOUT procedure in Figure 4.2. Such a rule-based maximization procedure is an adap-
tation of the variable elimination algorithm of [Zhang & Poole, 1999].

The rule-based variable elimination algorithm maintains &3et value rules, initially
containing the set of rules to be maximized. The algorithm then repeats the following steps
for each variableX; until all variables have been eliminated:

1. Collect all rules that depend aXj; into f; — f; = {(c:v) € F | X; € C} —and
remove these rules frotA.

2. Perform the local maximization step ov&r: g; = RULEMAXOUT(f;, X;).

3. Add the rules iry; to F; now, X; has been “eliminated”.
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RULEMAXOuUT(f, B)
LET g ={}.
ADD COMPLETING RULES TOf: (B =b;:0),i=1,...,k.
/I Summing consistent rules:
WHILE THERE ARE TWO CONSISTENT RULE®; = (c1 : v1) AND po = (Ca : ¥2):
IF ¢y = cg, THEN REPLACE THESE TWO RULES BY(cq : v1 + v2);
ELSE REPLACE THESE TWO RULES BY THE SETSPLIT(p;Zc2) U SPLIT(p2Zcy).
/I Maximizing out variableB:
REPEAT UNTIL f IS EMPTY.
|F THERE ARE RULES(c A B = b; : v;),¥b; € Dom(B) :
THEN REMOVE THESE RULES FROMf AND ADD RULE {(c : max; v;) TO g;
ELSE SELECT TWO RULES p; = (c; A B =b; : v;) AND p; = (¢; A B =b; : v;) SUCH
THAT c¢; IS CONSISTENT WITHc;, BUT NOT IDENTICAL, AND REPLACE THEM WITH
SPLIT(p;Zcj) USPLIT(p; Zc;) .
RETURN g.

Figure 7.3: Maximizing out variabl®& from rule functionf.

In the remainder of this section, we present the algorithm for computing the local max-
imization RULEMAXOuUT( f;, X;). The procedure, presented in Figure 7.3, is divided into
two parts: first, all consistent rules are added together as described in Section 7.2; then,
variable B is maximized. This maximization is performed by generating a set of rules,
one for each assignment &f, whose contexts have the same assignment for all variables
except forB, as in Definition 7.2.2. This set is then substituted by a single rule without a
B assignment in its context and with value equal to the maximum of the values of the rules
in the original set. Note that, to simplify the algorithm, we initially need to add a set of
value rules with) value, which guarantee that our rule functipis completeice., there is
at least one rule consistent with every context).

The correctness of this procedure follows directly from the correctness of the rule-
based variable elimination procedure described by Zhang and Poole, merely by replacing
summations withnax, and products with sums.

The cost of this algorithm is polynomial in the number of new rules generated in the
maximization operatiorRULEMAX OUT( f;, X;). The number of rules is never larger and
in many cases exponentially smaller than the complexity bounds on the table-based max-
imization in Section 4.2, which, in turn, was exponential only initiretuced widthof the
cost network graph [Dechter, 1999]. However, the computational costs involved in manag-
ing sets of rules usually imply that the computational advantage of the rule-based approach
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over the table-based one will only be significant in problems that possess a fair amount of
context-specific structure.

We conclude this section with a small example to illustrate the algorithm:

Example 7.4.1 Suppose we are maximizing the variadldor the following set of rules:

= (ma: 1),

= (aN-b:2),

={(aNbA—c:3),
,04—<—|a/\b 1).

When we add completing rules, we get:

Ps = <_'CL : O>7
pe = (a: 0).

In the first part of the algorithm, we need to add consistent rules: Wepadid p; (which
remains unchanged), combipewith p4, ps With p,, and then splipps on the context ofs,
to get the following inconsistent set of rules:

p2 = (a N\ -b:2),

p3=(aANbA—c:3),

pr=(maANb:2), (from addingp, to the consistent rule froi8plit(p; £b))
= (-aN-b:1), (fromSplit(p; b))

po={aANbAc:0), (fromSplit(psZa Ab A —c)).

Note that several rules with valueare also generated, but not shown here because they
are added to other rules with consistent contexts. We can move to the second stage (repeat
loop) of RULEMAX OuT. We remove,, and pg, and maximized out of them, to give:

P10 = <_|b . 2>

We then select rules; and p; and splitp; on C' (ps is split on the empty set and is not
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changed),
p11:<—'a/\b/\012>,

p12:<—'a/\b/\ﬂc:2>.

Maximizing outA from rulesp;» and ps, we get:
p13 = (DA —c: 3).

We are left withp,;, which maximized with its counterpasg gives the final result that does
not depend om:
P12 = <b/\ —C 2>

Notice that, throughout this maximization, we have not split on the vari@bhen—b €

c;, giving us only 6 distinct rules in the final result. This is not possible in a table-based
representation, since our functions would then be over the 3 variahiBg”', and therefore
must have 8 entries. 1l

7.5 Rule-based factored LP

In Section 4.3, we showed that the LPs used in our algorithms have exponentially many
constraints of the formp > > . w; ¢;(x) — b(x), Vx, which can be substituted by a single,
equivalent, non-linear constraint: > maxy Y, w; ¢;(x) — b(x). We then showed that, us-

ing variable elimination, we can represent this non-linear constraint by an equivalent set of
linear constraints in a construction we called the factored LP. The number of constraints in
the factored LP is linear in the size of the largest table generated in the variable elimination
procedure. This table-based algorithm can only exploit additive independence. We now
extend the algorithm in Section 4.3 to explbdth additive and context-specific structure,

by using the rule-based variable elimination described in the previous section.

Suppose we wish to enforce the more general constfairt max, /™ (y), where
F¥(y) = >, f}*(y) such that eaclf; is a rule. As in the table-based version, the super-
scriptw means thalf; might depend ow. Specifically, if f; comes from basis function
h;, itis multiplied by the weightu;; if f; is a rule from the reward function, it is not.

In our rule-based factored linear program, we generate LP variables associated with
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contexts; we call theseP rules An LP rule has the fornfc : ); it is associated with a
contextc and a variable: in the linear program. We begin by transforming all our original
rules f}' into LP rules as follows: If rulef; has the form(c; : v;) and comes from basis
function h;, we introduce an LP rule; = (c; : u;) and the equality constraint; = w,v;.

If f; has the same form but comes from a reward function, we introduce an LP rule of the
same form, but the equality constraint becomes- v,.

Now, we have only LP rules and need to represent the constfaintmax, >, e;(y).
To represent such a constraint, we follow an algorithm very similar to the variable elimi-
nation procedure in Section 7.4. The main difference occurs irRbeEMAX OUT(f, B)
operation in Figure 7.3. Instead of generating new value rules, we generate new LP rules,
with associated new variables and new constraints. The simplest case occurs when com-
puting a split or adding two LP rules. For example, when we add two value rules in the
original algorithm, we instead perform the following operation on their associated LP rules:
If the LP rules ardc : ;) and(c : u;), we replace these by a new ryke: u;), associated
with a new LP variabley;, with contextc, whose value should be + «;. To enforce this
value constraint, we simply add an additional constraint to theu,P: u; + ;.

A similar procedure can be followed when a rule split is computed. If we are splitting
(c : u;) onvariableY’, we introduce new ruleg A yy, : u;) for each assignmepf, toY. All
of these new rules refer to the same LP varial)éhus no new LP variables or constraints
need to be introduced.

More interesting constraints are generated when we perform a maximization. In the
rule-based variable elimination algorithm in Figure 7.3, this maximization occurs when we
replace a set of rules:

(cAB=b;:v;),Vb; € Dom(B),

<c : maxvi>.
7

Following the same process as in the LP rule summation above, if we are maximizing

by a new rule

e; = (¢ AN B =1b; : u;),Vb; € Dom(B),
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we generate a new LP variablg associated with the rule, = (c : ;). We cannot add
the nonlinear constraint, = max; u;, but we can add a set of equivalent linear constraints

uy > U, V.

Therefore, using these simple operations, we can exploit structure in the rule functions
to represent the nonlinear constraint > maxy ) _; ¢;(y), wheree,, is the very last LP
rule we generate. A final constrainy = ¢ implies that we are representing exactly the
constraints in Equation (4.2), without having to enumerate every state.

The correctness of our rule-based factored LP construction is a corollary of Theo-
rem 4.3.2 and of the correctness of the rule-based variable elimination algorithm [Zhang &
Poole, 1999].

Corollary 7.5.1 The constraints generated by thde-basedactored LP construction are
equivalent to the non-linear constraint in Equation (4.2). That is, an assignmént to)
satisfies the rule-based factored LP constraints if and only if it satisfies the constraint in
Equation (4.2). 1

The number of variables and constraints in the rule-based factored LP is linear in the num-
ber of rules generated by the variable elimination process. In turn, the number of rules is
no larger, and often exponentially smaller, than the number of entries in the table-based
approach.

To illustrate the generation of LP constraints as just described, we now present a small
example:

Example 7.5.2 Letey, ey, €3, ande, be the set of LP rules which depend on the variable
B being maximized. Here, rulg is associated with the LP variabte:

In this set, note that rules; and e, are consistent. We combine them to generate the
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following rules:
es = (aANbAc: ug),
eg = (@ ANbDA—C:ug).

and the constraint;; + uy = us. Similarly,eq ande, may be combined, resulting in:
er = {(aNbA—c: ug).

with the constraintis = u; + u4. Now, we have the following three inconsistent rules for

the maximization:
es3 = (a A —b:ug),

es ={(aNbAc: us),
er = {aNbA—c: ug).

Following the maximization procedure, since no pair of rules can be eliminated right away,
we splite; andes; to generate the following rules:

es = (a N —bAc: us),
eg = (a A =b A —c:ug),
es =(aNbAc:us).

We can now maximizB out fromeg andes, resulting in the following rule and constraints
respectively:

e =(aNc:uy),

U7 2 Us,

U7y > U3.
Likewise, maximizing out fromey ande;, we get:
enn = {(a A —c: ug),

ug > U3,

ug > Ug;

which completes the elimination of varialtein our rule-based factored LP.1
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7.6 Rule-based factored planning algorithms

We have presented an algorithm for exploiting both additive and context-specific structure
in the LP construction steps of our planning algorithms. This rule-based factored LP ap-
proach can now be applied directly in our linear programming-based approximation and
approximate policy iteration algorithms, which were presented in Sections 5.1 and 5.2,
respectively.

Our linear programming-based approximation in Section 5.1 requires no further modi-
fication. Approximate policy iteration does require an additional modification concerning
the manipulation of the decision list policies presented in Section 5.2.2. Specifically, con-
sider the conditional branchés, a;, J;) in the decision list policy. This condition is exactly
a context-specific rule, wheitg is the context, and; andJ; the “values” associated with
this context. Thus, the policy representation algorithm in Section 5.2.2 can be applied
directly with our new rule-based representation. The actual approximate policy iteration
planning algorithm continues unchanged when we note that the indicators introduced into
the constraints, as in Equation (5.8), are simply rules assigniagcavalue to the con-
textt,. Therefore, we now have a complete framework for exploiting both additive and
context-specific structure for efficient planning in factored MDPs.

7.7 Empirical evaluation

This section presents empirical evaluations of our rule-based planning algorithm. We report
comparisons between the table-based and the rule-based implementations, and between our
approach and the Apricodd algorithm of Hostyal. [1999].

7.7.1 Comparing table-based and rule-based implementations

Our first evaluation compares a table-based representation, which exploits only additive
independence, to the rule-based representation described in this chapter, which can exploit
both additive and context-specific independence. For these experiments, we implemented
our factored linear programming-based approximation algorithm with table-based and rule-
based representations in C++, using CPLEX as the LP solver. Experiments were performed
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Figure 7.5: Fraction of total running time spent in CPLEX for table-based and rule-based
algorithms in the Process-SysAdmin problem with a “Ring” topology.

on a Sun UltraSPARC-II, 400 MHz with 1GB of RAM.

To evaluate and compare the algorithms, we utilized a more complex extension of the
SysAdmin problem. This problem, dubbed the Process-SysAdmin problem, contains three
state variables for each machinim the network:Load;, Status andSelectoy. Each com-
puter runs processes and receives rewards when the processes terminate. These processes
are represented by thevad; variable, which takes values ifidle, Loaded Succes}, and
the computer receives a reward when the assignmdrad; is SuccessThe Status vari-
able, representing the status of machirtakes values ifGood, Faulty, Dea, if its value
is Faulty, then processes have a smaller probability of terminating and if its valdedd
then any running process is lost anholad, becomeddle. The status of machinecan be-
comeFaulty and eventuallypeadat random; however, if machinigeceives a packet from
a dead machine, then the probability t&aatus becomedaulty and therDeadincreases.
The Selectoy variable represents this communication by selecting one of the neighbors of
7 uniformly at random at every time step. The status of machinghe next time step is
then influenced by the status of this selected neighbor.

The SysAdmin can select at most one computer to reboot at every time step. If computer

i is rebooted, then its status becon@sodwith probability 1, but any running process is
lost, i.e., the Load; variable become#dle. Thus, in this problem, the SysAdmin must
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balance several conflicting goals: rebooting a machine Kills processes, but not rebooting
a machine may cause cascading faults in network. Furthermore, the SysAdmin can only
choose one machine to reboot, which imposes the additional tradeoff of selecting only one
of the (potentially many) faulty or dead machines in the network to reboot.

We experimented with two types of basis functions: “single+” includes indicators over
all of the joint assignments dfoad;, Status and Selectoy, and “pair” which, in addition,
includes a set of indicators ov&tatus, Status, andSelectoy = j, for each neighboy
of machinei in the network. The discount factor was= 0.95. The variable elimination
order eliminated all of th&oad; variables first, and then followed the same patterns as in
the simple SysAdmin problem, eliminating fiStatus and therSelectoy when machiné
is eliminated.

Figure 7.4 compares the running times for the table-based implementation to the ones
for the rule-based representation for three topologies: “Star”, “Ring” and “Reverse star”.
The “Reverse star” topology reverses the direction of the influences in the “Star”: rather
than the central machine influencing all machines in the topology, all machines influence
the central one. These three topologies demonstrate three different levels of CSI: In the
“Star” topology, the factors generated by variable elimination are small. Thus, although
the running times are polynomial in the number of state variables for both methods, the
table-based representation is significantly faster than the rule-based one, due to the over-
head of managing the rules. The “Ring” topology illustrates an intermediate behavior:
“single+” basis functions induce relatively small variable elimination factors, so the table-
based approach is faster. However, with “pair” basis the factors are larger and the rule-based
approach starts to demonstrate faster running times in larger problems. Finally, the “Re-
verse star” topology represents the worst-case scenario for the table-based approach. Here,
the scope of the backprojection of a basis function for the central machine will involve
all computers in the network, as all machines can potentially influence the central one in
the next time step. Thus, the size of the factors in the table-based variable elimination ap-
proach is exponential in the number of machines in the network, which is illustrated by the
exponential growth in Figure 7.4(c). The rule-based approach can exploit the CSI in this
problem; for example, the status of the central maclstatug only depends on machine
j, if Selectog = j. By exploiting CSI, we can solve the same problem in polynomial time
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Figure 7.6: Comparing Apricodd [Hoet al., 2002] with our rule-based LP-based approx-

imation algorithm on the (d)inear and (b)Exponproblems.

in the number of state variables, as seen in the second curve in Figure 7.4(c).

It is also instructive to compare the portion of the total running time spent in CPLEX

for the table-based as compared to the rule-based approach. Figure 7.5 illustrates this

comparison. Note that amount of time spent in CPLEX is significantly higher for the
table-based approach. There are two reasons for this difference: first, due to CSl, the LPs
generated by the rule-based approach are smaller than the table-based ones; second, rule-

based variable elimination is more complex than the table-based one, due to the overhead
introduced by rule management. Interestingly, the proportion of CPLEX time increases as
the problem size increases, indicating that the asymptotic complexity of the LP solution is

higher than that of variable elimination, thus suggesting that, for larger problems, additional

large-scale LP optimization procedures, such as constraint generation, may be helpful.

7.7.2 Comparison to Apricodd

The most closely related work to ours is a line of research, which began with the work of

Boutilier et al. [1995]. In patrticular, the approximate Apricodd algorithm of Heal.
[1999], which uses analytic decision diagrams (ADDSs) to represent the value function is
a strong alternative approach for solving factored MDPs. As we will discuss in detail in

Section 7.8.1, the Apricodd algorithm can successfully exploit context-specific structure
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in the value function by representing it with the set of mutually-exclusive and exhaus-
tive branches of the ADD. On the other hand, our approach can exploit both additive and
context-specific structure in the problem, by using a linear combination of non-mutually-
exclusive rules. To better understand this difference, we evaluated both our rule-based
linear programming-based approximation algorithm and Apricodd in two problieims,

ear and Expon designed by Boutilieet al. [2000] to illustrate respectively the best-case
and the worst-case behavior of their algorithm. In these experiments, we used the web-
distributed version of Apricodd [Hoest al,, 2002], running it locally on a Linux Pentium

[l 700MHz with 1GB of RAM.

These two problems involve binary variablesXy, . . ., X,, andn deterministic actions
ay,...,a,. The reward isl when all variablesX, aretrue, and isO otherwise. The prob-
lem is discounted by a facter = 0.99. The difference between thenear and theExpon
problems is in the transition probabilities. In thanear problem, the actiom, sets the
variable X, to true and makes alsucceedingariables,X; for ¢ > k, false If the state
space of thé&.inear problem is seen as a binary number, the optimal policy is to repeatedly
set to true the largest bifX{, variable) which has all preceding bits setttoe. Using an
ADD, the optimal value function for this problem can be represented in linear space, with
n+ 1 leaves [Boutilieret al,, 2000]. This is the “best-case” for Apricodd, and the algorithm
can compute this value function quite efficiently. Figure 7.6(a) compares the running time
of Apricodd to the one of our algorithm with indicator basis functions between pairs of
consecutive variables. Note that both algorithms obtain the same policy in polynomial time
in the number of variables. However, in such a structured problem, the efficient implemen-
tation of the ADD package used in Apricodd makes it faster in this problem.

On the other hand, thExponproblem illustrates the worst case for Apricodd. In this
problem, the action,, sets the variabl&, to true, if all precedingvariables.X; for i < k,
aretrue, and it makes all preceding variablizdse If the state space is seen as a binary
number, the optimal policy goes through all binary numbers in sequence, by repeatedly set-
ting the largest bitX, variable) which has all preceding bits setree. Due to discounting,
the optimal value function assigns a valueyéf—/~! to the jth binary number, so that the
value function contains exponentially many different values. Using an ADD, the optimal
value function for this problem requires an exponential number of leaves [Bowtilar,
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2000], which is illustrated by the exponential running time in Figure 7.6(b). However, the
same value function can be approximated very compactly as a factored linear value function
usingn + 1 basis functions: an indicator over each variakleand the constant base. As
shown in Figure 7.6(b), using this representation, our factored linear programming-based
approximation algorithm computes the value function in polynomial time. Furthermore,
the policy obtained by our approach was optimal for this problem. Thus, in this problem,
the ability to exploit additive independence allows an efficient polynomial time solution.

We also compared Apricodd to our rule-based linear programming-based approxima-
tion algorithm on the Process-SysAdmin problem. This problem has significant additive
structure in the reward function and factorization in the transition model. Although this
type of structure is not exploited directly by Apricodd, the ADD approximation steps per-
formed by the algorithm can, in principle, allow Apricodd to find approximate solutions
to the problem. We spent a significant amount of time attempting to find the best set of
parameters for Apricodd for these problemgve settled on the “sift” method of variable
reordering and the “round” approximation method with the “size” (maximum ADD size)
criterion. To allow the value function representation to scale with the problem size, we set
the maximum ADD size td000 + 400n for a network withn machines. (We experimented
with a variety of different growth rates for the maximum ADD size; here, as for the other
parameters, we selected the choice that gave the best results for Apricodd.) We compared
Apricodd with these parameters to our rule-based linear programming-based approxima-
tion algorithm with “single+” basis functions on a Pentium [l 700MHz with 1GB of RAM.
These results are summarized in Figure 7.7.

On very small problems (up to 4-5 machines), the performance of the two algorithms
is fairly similar in terms of both the running time and the quality of the policies generated.
However, as the problem size grows, the running time of Apricodd increases rapidly, and
becomes significantly higher than that of our algorithm. Furthermore, as the problem size
increases, the quality of the policies generated by Apricodd also deteriorates. This differ-
ence in policy quality is caused by the different value function representation used by the
two algorithms. The ADDs used in Apricodd represémdifferent values withk leaves;
thus, they are forced to agglomerate many different states and represent them using a single

\We are very grateful to Jesse Hoey and Robert St-Aubin for their assistance in selecting the parameters.
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value. For smaller problems, such agglomeration can still represent good policies. How-
ever, as the problem size increases and the state space grows exponentially, Apricodd’s
policy representation becomes inadequate, and the quality of the policies decreases. On the
other hand, our linear value functions can represent exponentially many values with only
basis functions, which allows our approach to scale up to significantly larger problems.

7.8 Discussion and related work

Our factored LP decomposition technique, as discussed in Chapter 4, is able to exploit the
additive structure in the factored value function. When combined with the planning algo-
rithms in Chapter 5, we obtain efficient planning algorithms for factored MDPs. However,
typical real-world systems possess both additive and context-specific structure. In order to
increase the applicability of factored MDPs to more practical problems, in this chapter, we
extended our factored LP decomposition technique to exploit both additive and context-
specific structure in the factored model. Our table-based factored LP builds on the variable
elimination algorithm of Bertele and Brioschi [1972]. In order to exploit CSl, our rule-
based factored LP now builds on the rule-based variable elimination algorithm of Zhang
and Poole [1999].

We demonstrate that exploiting CSI using a rule-based representation instead of the
standard table-based one, can yield exponential improvements in computational time, when
the problem has significant amounts of CSI. However, the overhead of managing sets of
rules make it less well-suited for simpler problems.

7.8.1 Comparison to existing solution algorithms for factored MDPs

At this point, it is useful to compare our new factored planning algorithms, presented thus
far in this thesis, with other solution methods for factored MDPs.

Tatman and Shachter [1990] considered the additive decomposition of value nodes in
influence diagrams. This exact algorithm provides the first solution method for (finite hori-
zon) factored MDPs. A number of approaches for factoring of general MDPs have been
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explored in the literature. Techniques for exploiting reward functions that decompose ad-
ditively were studied by Meuleaet al. [1998], and by Singh and Cohn [1998].

The use of factored representations such as dynamic Bayesian networks was pioneered
by Boutilieret al. [1995] and has developed steadily in recent years. These methods rely on
the use of context-specific structures such as decision trees or analytic decision diagrams
(ADDs) [Hoey et al, 1999] to represent both the transition dynamics of the DBN and
the value function. These algorithms use a form of dynamic programming on ADDs to
partition the state space, representing the partition using a tree-like structure that branches
on state variables and assigns values at the leaves. The tree is grown dynamically as part of
the dynamic programming process and the algorithm creates new leaves as needed: A leaf
is split by the application of a DP operator when two states associated with that leaf turn
out to have different values in the backprojected value function. This process can also be
interpreted as a form of model minimization [Dean & Givan, 1997].

The number of leaves in a tree used to represent a value function determines the com-
putational complexity of the algorithm. It also limits the number of distinct values that
can be assigned to states: since the leaves represent a partitioning of the state space, ev-
ery state maps to exactly one leaf. However, as was recognized early on, there are trivial
MDPs which require exponentially-large value functions. This observation led to a line of
approximation algorithms aimed at limiting the tree size [Boutilier & Dearden, 1996] and,
later, limiting the ADD size [St-Aubiret al,, 2001]. Kim and Dean [2001] also explored
techniques for discovering tree-structured value functions for factored MDPs. While these
methods permit good approximate solutions to some large MDPs, their complexity is still
determined by the number of leaves in the representation and the number of distinct values
than can be assigned to states is still limited as well.

Tadepalli and Ok [1996] were the first to apply linear value function approximation
to Factored MDPs. Linear value function approximation is a potentially more expressive
approximation method than trees or ADDs, because it can assign unique values to every
state in an MDP without requiring storage space that is exponential in the number of state
variables. The expressive power of a tree witleaves can be captured by a linear function
approximator withk basis functions such that basis functibnis an indicator function
that tests if a state belongs in the partition of Iéafrhus, the set of value functions that
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can be represented by a tree witHeaves is a subset of the set of value functions that
can be represented by a value function withasis functions. Our experimental results

in Section 7.7.2 highlight this difference by showing an example problem that requires
exponentially many leaves in the value function, but that can be approximated well using a
linear value function.

The main advantage of tree-based value functions is that their structure is determined
dynamically during the solution of the MDP. In principle, as the value function representa-
tion is derived automatically from the model description, this approach requires less insight
from the user. In problems for which the value function can be well approximated by a rel-
atively small number of values, this approach provides an excellent solution to the problem.
Our method of linear value function approximation aims to address what we believe to be
the more common case, where a large range of distinct values is required to achieve a good
approximation.

In this chapter, we empirically compare our approach to the work of Bouglial. For
problems with significant context-specific structumethe value functiontheir approach
can be faster due to their efficient handling of the ADD representation. However, as dis-
cussed above, there are problems with significant context-specific structure in the problem
representation, rather than in the value function, which require exponentially-large ADDs.
In some such problem classes, we demonstrate that by using a linear value function our
algorithm can obtain a polynomial-time near-optimal approximation of the true value func-
tion.

We note that Schuurmans and Patrascu [2001], based on our earlier work on max-norm
projection using cost networks and our factored LP decomposition technique, indepen-
dently developed an alternative approach for the (table-based) linear programming-based
approximation presented in Section 5.1. Our method embeds a cost network inside a sin-
gle linear program. By contrast, their method is based on a delayed constraint generation
approach, as discussed in Section 4.5, using a cost network to detect constraint violations.
When constraint violations are found, a new constraint is added, repeatedly generating and
attempting to solve LPs until a feasible solution is found. As the approach of Schuurmans
and Patrascu uses multiple calls to variable elimination in order to speed up the LP solution
step, it will be most successful when the time spent solving the LP is significantly larger
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than the time required for variable elimination. As our experimental results in Section 7.7.1
suggest, the LP solution time is larger for the table-based approach. Thus, Schuurmans and
Patrascu’s constraint generation method will probably be more successful in table-based
problems than in rule-based ones.

Finally, de Farias and Van Roy [2001b] propose a planning algorithm where the LP-
based approximation formulation is solved by considering only a sampled subset of the
exponential number of constraints. They prove that, by sampling a polynomial number of
such constraints (under a particular distribution), they obtain a value function approxima-
tion close to that of considering all possible constraints. As de Farias and Van Roy discuss,
their approach can be quite sensitive to the choice of sampling distribution. Our factored
LP can efficiently decompose the exponentially-large constraint set in factored MDPs, in
closed form. Thus, in structured models, our approach will probably provide better poli-
cies, as shown empirically in Section 9.3 for a particular domain, conversely the sampling
method of de Farias and Van Roy [2001b] will apply to more general problems that can-
not be represented compactly by factored MDPs. In Chapter 14, we suggest methods for
combining the two approaches.

7.8.2 Limitations of the factored approach

In the previous section, we discuss some limitations of our algorithms, when compared to
some other methods mostly for solving factored MDPs. Of course, there are other settings
that are difficult to model with factored MDPs or to solve with our factored algorithms.
For example, BlocksWorld is a domain where an agent must arrange blocks in a particular
order on a table. This problem can be represented very compactly in deterministic settings
using the STRIPS language [Fikes & Nilsson, 1971], or in stochastic settings using the
probabilistic extension of this language [Kushmeratlal,, 1995]. Many algorithms have
been proposed that can plan effectively in this setting, such as the methods of Kushmerick
et al. [1995] and of Blum and Langford [1999]. Unfortunately, it is quite difficult to
model this setting effectively using the propositional representation of in a factored MDP.
In this case, the underlying model would have a very high connectivity, as each block
can potentially affect every other block. Furthermore, the CSI representation described in
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this chapter would not decrease the representational complexity, as, again, we require a
propositional representation that is not compact in BlocksWorld.

In Chapter 12, we present a relational representation for MDPs. such relational MDP
can potentially represent the BlocksWorld domain compactly. However, we are faced with
a second limitation of our approach: the reward function in BlocksWorld is specific to a
particular arrangement of the blocks. Unfortunately, our factored approaches will often
not be effective in such cases, where the reward function depends on a few very specific
states. Although the resulting value function may have a compact description using rules
that could probably be optimized effective by our method, it will often be difficult to select
basis functions that cover this set of rules.

Onthe other hand, typical algorithms that successfully address problems such as Blocks-
World tend to be goal-directed. That is, these algorithms can optimize for a single goal
state, but not for a more complex reward function, such as a factored reward function.
Furthermore, these methods are often not able to generate approximate solutions, as often
required in large-scale environments. In general, our approach will be most successful in
tasks were multiple goals must be balanced simultaneously, such as a maintenance task,
rather than a single, very detailed goal. Thus, we can view approaches such as those of
Kushmericket al. [1995] and of Blum and Langford [1999] as complementary to our
methods.

7.8.3 Summary

In the first part of this thesis, we presented the factored MDP representation, along with the
basic tools required by our factored planning algorithms, including our novel LP decom-
position technique. In this part of the thesis, we focused on developing a set of planning
algorithms that build on these basic tools to find efficient approximate solutions to factored
MDPs. This chapter, in particular, focused on extending our basic tools and algorithms to
exploit context-specific structure, in addition to the additive structure addressed previously
in this thesis. This novel algorithm can solve problems with very high induced width that
could not be solved using the table-based representation. We believe that these efficient
methods provide a strong framework for planning in large-scale real-world systems.
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Chapter 8

Collaborative multiagent factored MDPs

Consider a system where multiple agents, each with its own set of possible actions and
its own observations, must coordinate in order to achieve a common goal. One obvious
approach to this problem is to represent the system as an MDP, where the “action” now
is a vector defining the joint action for all of the agents and the reward is the total reward

received by all of these agents.

Thus far in this thesis, we have presented an efficient representation and algorithms for
tackling very large, structured planning problems with exponentially-large states spaces.
Our solution algorithms have assumed, though, that we are faced with single agent planning
problems, where the action spadas relatively small. The factored linear programming-
based approximation algorithm in Section 5.1, for example, requires us to apply our fac-
tored LP decomposition technique separately for each aatien A. Unfortunately, as
discussed in Chapter 1, the action space in multiagent planning problems is exponential
in the number of agents, thus rendering impractical any approach that enumerates possible
action choices explicitly.

In this part of the thesis, we present a representation and algorithms that will allow us
to tackle the exponentially-large action spaces that arise in multiagent systems.
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8.1 Representation

In our collaborative multiagent setting, we have a collection of ag&nts {A4,,..., A,},
where each agent; must choose an actiar) from a finite set of possible actioi®m|A,].
These agents are again acting in a space described by a set of discrete state variables,
X ={X;...X,}, asinthe single agent case.
Consider a multiagent version of our system administrator problem:

Example 8.1.1 Consider the problem of optimizing the behavior of many system adminis-
trators (multiagent SysAdmin) who must coordinate to maintain a network of computers. In
this problem, we have: administrators (agents), where age# is responsible for main-
taining theith computer in the network. As in Example 2.1.1, each machine in this network
is connected to some subset of the other machines.

We base this more elaborate multiagent example on the Process-SysAdmin problem in
Section 7.7.1, without introducing the selector variables. Each machine is now associ-
ated with only two ternary random variables: Stattise {good, faulty, dea$, and Load
L; € {idle, loaded, process succesgfuln this multiagent formulation, each age#t must
decide whether machineshould be rebooted, in which case the status of this machine be-
comes good and any running process is lost. On the other hand, if the agent does not reboot
a faulty machine, it may die and cause cascading faults in the network. Our goal here is
to coordinate the actions of the administrators in order to maximize the total number of
processes that terminate successfully in this netwolk.

This example illustrates some of the issues that arise in a collaborative multiagent problem:
although each agent receives a local reward (when its process terminates), its actions can
affect the long-term rewards of the entire system. As we are interested in maximizing
these global rewards, rather than optimizing locally and greedily for each agent, we must
design a model that will represent these long-term global interactions, and yield a global
coordination strategy which maximizes the total reward.

In our collaborative multiagent MDHRormulation, a statex is a state for the whole
system and an actioa is a joint action for all agents, as defined above. The transition
model P(x’ | x,a) now represents the probability that the entire system will transition
from a joint statex to a joint statex’ after the agents jointly take the actian Similarly,
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our reward function?(x, a) will now depend both on the joint state of the system and on
the joint action of all agents. A factored MDP allows us to represent transition models
with the exponentially many states represented by our state var¥blgsifortunately, as
defined in Chapter 3, our representation requires us to define a DBN for each joint action
a. The number of such DBNs would thus be exponential in the number of agents. In this
chapter, we extend our factored MDP representation and basic framework to allow us to
model multiagent problems.

8.1.1 Multiagent factored transition model

In the multiagent case, we describe the dynamics of the system usyigaanic decision
network (DDN)[Dean & Kanazawa, 1989]. A DDN is a simple extension of a DBN,
whose nodes are both the state variallEs, . . ., X,,, X7, ..., X/} and the agents’ (action)
variables{ A4, ..., A,}. For simplicity of exposition, we again assume tRatents(X/) C
{X, A}; this assumption is relaxed in Section 8.2. Each n¥¢les again associated with a
CPD P(X] | Parents(X/)). In the single agent case, we had a set of CPDs for each action
a, now we have one graph for the entire system, and the pareif§are a subset of both
state and agent variables. The global transition probability distribution is then defined to
be:

P(x' | x,a) = [ [ P(«} | x[Parents(X/)], a).

Figure 8.1(a), illustrates the part of the DDN corresponding toithenachine in a
multiagent SysAdmin network, where state variables are represented by circles, agent vari-
ables by squares and reward variables by diamonds in the usual influence diagram nota-
tion [Howard & Matheson, 1984]. The parents of the load varidiléor theith machine
areParents(L}) = {L;, S;, A;}, the load in the previous time step, the status ofithe
machine and the action of thith agent. Similarly, the parents of the status variatjlare
Parents(S!) = {5;, A;} U{S; | jis connected tain the computer network, the status
of theith machine in the previous time step, the action ofitheagent, and the statis of
all machinesj connected ta in the computer network. For the ring network topology in
Figure 8.1(b), we obtain the complete DDN in Figure 8.1(c).
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Neighboring
machines , *,

(b) (©)

Figure 8.1: Multiagent factored MDP example: (a) local DDN component for each com-
puter in a network; (b) ring of 4 computers; (c) global DDN ring of 4 computers.

8.1.2 Multiagent factored rewards

As discussed in Chapter 1, in a collaborative multiagent setting, every agent has the same
reward function, and agents are trying to maximize the long-term joint reward achieved by
all agents. To model this process, we assume that each agent observes a small part of the
global reward functione.g, each administrator observes the reward for the processes that
terminate on its machine. Each ageéig associated with a local reward functiéi(x, a)

whose scop&cope|R;(x, a)] is restricted to depend on a small subset of the state variables,
and on the actions of only a few agents. The global reward fundtion a) will be the

sum of the rewards accrued by each agéf,a) = > 7 | R;(x,a). In our multiagent
SysAdmin example, the local reward function for agehtis scope restricted to its load
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Figure 8.2: Multiagent factored MDP example, DDN for ring of 4 computers, including
nodes for basis functions on the right.

variableL;, as shown by the diamonds in Figure 8.1(a). The total reward for a network is
the sum of the rewards accrued by each machine?;(L;). In the ring topology example
in Figure 8.1(c), the reward function becom®@g L,) + Ra(Ls) + Rs3(L3) + Ra(Ly).

8.2 Factored Q-functions

Although multiagent factored MDPs allow us to model large collaborative multiagent prob-
lems very compactly, an exact solution to these problems remains infeasible. To address
this issue, we resort to the same approximate factored value function framework we used
for single agent problems in Section 3.2. We approximate the global value fupttioras

the weighted sum of local basis functioWi$x) = > . w;h;(x), where each basis function

h; has scope restricted to a subset of variaBlespe|h;| = C;.
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In this multiagent setting, we maintain a distributed representation of the value function,
where we associate a subset of the basis functions with each agent. These agent basis
functions are summed together to define this agent’s value. The particular assignment of
basis functions to agents can be made arbitrarily, though, as we will show, the assignment
affects the observation and communication requirements of each agent.

Definition 8.2.1 (agent’s value)Let theagent’s valudor agent: be given by:

Vix) = Y wih(x), (8.1)
h;j€Basis|i]
whereBasis|i] C {hi,..., At} is a subset of the basis functions which is associated with

agenti, such thaBasis[i] N Basis[j] = (), Vi # j, and|J!_, Basis[i] = {h1,...,hx}. 1§

In Figure 8.2, we have added two types of basis functions represented by diamonds in
the next time step in our DDN;, whose scope includes stattisand loadZ; of theith
computer, and;_ 1), with scope including status; of theith computer and status,

of thei + 1th computer. In this example, the basis functions associated with ageet
Basis[1] = {h1, h1_2}.

Given a particular set of weights, we again choose the agents actions by computing
the greedy policy with respect to this value function. Recall that greedy policy with respect
to a value functiorV is given byGreedy|V](x) = max, Q(x, a), where the Q-function is
again defined by:

Q(x,a) = Xa+’yZP " x,a)V(x). (8.2)

In Section 3.3, we show that by backprojecting our factored value function through the
transition graph for each actianwe can compute the Q-function efficiently.

In multiagent case, we no longer have a transition model for each action, but we can use
a very similar procedure to compute the Q function efficiently by decomposing the global
Q-function as a sum of local Q-functions for each agent:

Definition 8.2.2 (local Q-function) Thelocal Q-functionfor agent: is given by:

Qi(x,a) = xa—|—72P [x,a) Y wh(x). 1 (8.3)

h;eBasis|i]
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Backproj(h) — WHERE BASIS FUNCTIONA HAS SCOPEC.
DEFINE THE SCOPE OF THE BACKPROJECTIONI'(C') = Ux/ccr PARENTS(X]).

FOR EACH ASSIGNMENTyY € Dom[I'(C')]:
9) = Leco lixiec PEXI] [ y)h(c).

RETURN g.

Figure 8.3: Backprojection of basis functiarthrough a DDN.

Using this notation, our global Q-function is defined as:

Q(x,a) = Z Qi(x,a). (8.4)

Each local Q-function can be computed efficiently using the backprojection proce-
dure. Consider a basis functién its backprojection is defined by(x,a) = >, P(x’ |
x,a)h(x’). If the scope of: is restricted tcScope[h] = Y, the scope of; will be defined
by the backprojected scope &f through our DDN,i.e., the set of parents oY’ in the
DDN:

I'(Y') = Uyrey-Parents(Y;).

In a multiagent problent; (Y’) will now include both state variablés and agent variables
A, that is,Scope[g] € {X, A}. In the example in Figure 8.2, the backprojected scope of
{S5,5;,  Yisgiven byl'(S7, 57, ;) = {Si—1, 5, Sit1, A, Aiga }-

If intra-time-slice arcs are included, so that

Parents(X;) € {X1,..., Xn, A1, ..., Ay, X1, .., X ]

then the only change in our algorithm is in the definition of backprojected scopge ©he
definition now includes not only direct parentsof, but also all variables ifX, A} that
are ancestors df":

I'(Y') ={B € {X, A} | there exists a directed path frobto any X/ € Y'}.

Figure 8.3 shows the backprojection procedure for a DDN. We denote the backprojec-
tion of basis functiorh by ¢ = Backproj(h), whereScope[g] may include both state and
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agent variables. Using this notation, we can represent our local Q-function foridgent

Qi(x,a) = Ri(x,a) + v Z w;g;(x, a).

h;eBasis|i]

Thus, each local Q-functio); for agent: is the sum of restricted-scope functions. The
globalfactored Q-functions the sum of the local Q-functions:

Y g k
Q(x,a) = > Qi(x,a) = Y Ri(x,a) +7 ) wjg;(x,a).

i=1 i=1 j=1
Although the total scope @;, i.e., Scope[Q);] = Scope[R;]U{U;, cpasis;) Scopelg;]}, may
be significantly larger than the scope of eaglor of R;. For simplicity of presentation,
we assume thecope|Q);] is restricted to a small subset of the state and agents variables.
Note that all of our methods can exploit further decompositiogfthe purpose of this
assumption is to simplify our notation and exposition. In our multiagent SysAdmin ex-
ample,Scope|g;] = {Si-1,Si, L, Ai}, andScope|g;—i+1)] = {Si-1, 5, Siv1, Ai, Ai1}
Although the scope af); is

Scope|Q;] = {Si-1,Si, Sit1, Li, Ai, Aita },

our algorithms exploit the locality of; andg;_(i11).

8.3 Discussion and related work

Influence diagrams [Howard & Matheson, 1984] provide a graphical representation for de-
cision processes involving multiple action variables. Multiagent factored MDPs, described
in this chapter, combine influence diagrams with the DBN representation of Dean and
Kanazawa [1989], to define a dynamic decision diagrams, a compact representation for
large-scale collaborative multiagent planning problems.

We showed that, by combining the factored value function representation used thus far
in this thesis with multiagent factored MDPs, we obtain a factored representation of the
Q-function. This factored Q-function, given by the sum of local Q-functions, can then be



158 CHAPTER 8. COLLABORATIVE MULTIAGENT FACTORED MDPS

stored in a distributed fashion, where agentaintains the representation of the local term

Q@,. Due to the factorizations of the value function and of the multiagent MDP, the scope
of each tern); now depends on a subset of the state variables, as in the first part of this
thesis, and on the actions of a subset of the agents. This last property is the key element in
our efficient coordination algorithms described in the next chapter.



Chapter 9
Multiagent coordination and planning

In the previous chapter, we described multiagent factored MDPs, a compact representation
for large-scale collaborative multiagent problems. Unfortunately, as in the single agent
case, exact solutions for multiagent factored MDPs are intractable. Here, in addition to
an exponentially-large state space, the size of the action space grows exponentially in the
number of agents. As discussed in Chapter 1, multiagent settings have additional require-
ments. Exact solutions force each agent, online, to observe the full state of the system,
and a centralized procedure that computes the maximal joint action at each time step. Both
of these requirements will hinder the applicability of automated methods in many practical
problems. To address this problem, we suggest, in Chapter 1, that agents should coordinate,
while only observing a small subset of the state variables, and communicating with only a
few other agents.

In this chapter, we exploit structure in multiagent factored MDPs to obtain exact solu-
tions to the coordination problem and approximate solutions to multiagent planning prob-
lems: First, we present an efficient distributed action selection mechanism for tackling the
exponentially-large maximization irg max, > ;_, Q:(x, a) required for agents to coordi-
nate their actions. Then, we describe a simple extension to the linear programming-based
approximation algorithm, which allows us to obtain approximate solutions to multiagent
planning problems very efficiently.

159
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9.1 Cooperative action selection

In this section, we assume that our basis function weightare given, and consider

the problem of computing the optimal greedy action that maximizes the approximate Q-
function. In the next section, we address the problem of finginghich yields a good
approximate value function.

The optimal greedy action for stakeusing our factored Q-function approximation is
given by:
argmax (Q(x,a) = arg maxz Qi(x,a). (9.1)

As the Q-function depends on the action choices of all agents, they must coordinate in order
to select the jointly optimal action that maximizes Equation (9.1).

Our first task is to instantiate the current statan our Q-function. A n&e approach
would require each agent to observe the all state variables, an unreasonable requirement
in many practical situations. Our distributed representation of the Q-function, described in
the previous chapter, will allow us to address this problem: We divide the scope of the local
Q-function(; associated with ageninto two parts, the state variables

Obs[Qi] = {X; € X | X; € Scope[Q;]}
and the agent variables
Agents|Q;] = {A; € A | A; € Scope[Q;]}.

Note that, at each time step, agéohly needs to observe the variable®©ibs|Q;], and use

these variables only to instantiate its own local Q-functign Thus, each agent will only

need to observe a small subset of the state variables, significantly reducing the observability
requirements for each agent. To differentiate our requirements from partially observable
Markov decision processes [Sondik, 1971], we call this progdertjed observability as

each agent observes the small part of the system determined by the function approximation
architecture, but the agents are jointly solving a fully observable problem.

At this point, each agenthas observed the variables @bs|Q;] and will instantiate



9.1. COOPERATIVE ACTION SELECTION 161

Q; accordingly. We denote the instantiated local Q-functionllfy The scope of each
instantiated local Q-function includes only agent variahles,Scope[Q%*] = Agents|Q;].

Next, the agents must coordinate to determine the optimal greedy action, that is, the
joint actiona that maximizesy |, Q*(a). Unfortunately, the number of joint actions is ex-
ponential in the number of agents, which makes a simple action enumeration procedure
infeasible. Furthermore such a procedure would require a centralized optimization step,
which is not desirable in many multiagent applications. We now present a distributed pro-
cedure that efficiently computes the optimal greedy action.

Our procedure leverages on a very natural construct we calbadination graph In-
tuitively, a coordination graph connects agents whose local Q-functions interact with each
other and represents the coordination requirements of the agents:

Definition 9.1.1 Acoordination grapfor a set of agents with local Q-functiof®, ..., Q,}
is a directed graph whose nodes grd,, ..., A,}, and which contains an edgé, — A;
if and only if A; € Agents[@;]. 11

Computing the action that maximizés, Q7 requires a maximization of local functions

in a graph structure, suggesting the usenoh-serial dynamic programminiBertele &
Brioschi, 1972], the same variable elimination algorithm which we used in Chapter 4 for
our LP decomposition technique. We first illustrate this algorithm with a simple example:

Example 9.1.2 Consider a simple coordination problem withagents, where the global
Q-function is approximated by:

Q = Q1(a1,a2) + Qa2(az, as) + Qs(ar, az) + Q4(as, as),

and we wish to computeg max,, a,,05,0: Q1(a1, a2)+Q2(az, as)+Qs(a1, az)+Qua(as, as).
The initial coordination graph associated with this problem is shown in Figure 9.1(a).

Let us begin our optimization with agent 4. To optimizg functions@; and Q)5 are
irrelevant. Hence, we obtain:

max @Qi(a1,az) + Qs(ar,as) + m?X[Qz(am as) + Qalas, ay)].

ai,a2,a3 a
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QAL A) A
\ Q(A.A)

yi 7] QAL A)
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&AL A)

() (b)

QA A) AL
A
A, &(ALA) ez(A1) 1
() (d)

Figure 9.1: Example of distributed variable elimination in a coordination graph: (a) Initial
coordination graph for a 4-agent problem; (b) after agepérformed its local maximiza-
tion; (c) after agens performed its local maximization; and (d) after ag2mperformed its
local maximization.

We see that to make the optimal choice o¥er the agent must know the values Af

and As;. Additionally, agent4, must transmit), to A4. In effect, agentd, is computing

a conditional strategy, with a (possibly) different action choice for each action choice of
agents 2 and 3. Agent 4 can summarize the value that it brings to the system in the different
circumstances using a new functiey{ A,, A;) whose value at the poimt, a3 is the value

of the internalmax expression:

64(@2, CL3) = I%?X[Q2(a2a CL4) + Q4<a37 a4)]'

Agent4 has now been “eliminated”. The new functieqa,, a3) is stored by agert and
the coordination graph is updated as shown in Figure 9.1(b).
Our problem now reduces to computing

max (Qq(a1,az) + Qs(a1,as) + es(az, as),
al,a2,a3
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having one fewer agent involved in the maximization. Next, agent 3 makes its decision,
giving:

max Q1 (a1, az) + ez(ay, az),
al,a2

wherees(ay, az) = max,,[@Qs(ar,as) + e1(az, as)]. Once agent 3 is eliminated and the
new functiores (a1, as) is stored by ager, the coordination graph is updated as shown in
Figure 9.1(c).

Agent 2 now makes its decision, giving

es(ar) = Hl(l?X[Ql(aly as) + es(aq, az)],

The new functiom,(a, ) is stored by agent 1, and the coordination graph becomes simply
a single node as shown in Figure 9.1(d).

Agent 1 can now simply choose the actigrthat maximizes
e; = maxes(ay).
ai

The result at this point is a scalat;, which is exactly the desired maximum ower. . . , ay.

We can recover the maximizing set of actions by performing the process in reverse: The
maximizing choice fo¢; defines the action; for agent 1:

a) = argmax es(ay).
ay

To fulfill its commitment to agent 1, agent 2 must choose the vgludich yielded:; (a}):

a3 = arg max(Qa (a, a2) + eg(a, aa)],

This, in turn, forces agent 3 and then agent 4 to select their actions appropriately:

aj = arg n}gX[Qg(a’{, az) + eq(ay, as)l,

and

ay = arg H;%X[Qﬂa;» as) + Qa(az, as)]. N
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ARGVARIABLE ELIMINATION (F, O, ELIM OPERATOR ARGOPERATOR)
Il F={f1,..., fm}is the set of local functions.
/I O stores the elimination order.
/I ELIM OPERATORISs the operation used when eliminating variables.
/I ARGOPERATORIS the operation used to obtain the value of an eliminated variable.

FOR i =1 TO NUMBER OF VARIABLES:
/I Select the next variable to be eliminated.

LETI=0().
/I Select the relevant functions.
CACHE THE SETE; = {e1,...,er} OF FUNCTIONS INF WHOSE SCOPE CONTAINS;.

/I Eliminate current variablel;.
LET e = ELIM OPERATOR(E;, A;).
/I Update set of functions.
UPDATE THE SET OF FUNCTIONSF = F U {e} \ {e1,...,eL}.
/I Now, all functions have empty scopes, and the last step eliminates the empty set.
LET Z = ELIMOPERATOR(F, ().

/I We can obtain the assignment by eliminating the variables in the reverse order.
LET a* =0.
FOR i = NUMBER OF VARIABLES DOWN TO1:
/I Select the next variable to be eliminated.
LET [=0().
/I Instantiate the functions corresponding4p
FOR EACHe; € &;:
LET ef(a) = e;(a;, a*[SCOPE[e;] — {Ai}]), Ya; € A;.
REPLACE e; WITH e} IN &;.
/I Compute assignment fof;.
LET aj, THE ASSIGNMENT TOA; IN a*, BE aj = ARGOPERATOR(E, 4;).
/I Now, a* has the assignment for all variables.
RETURN THE ASSIGNMENTa* AND VALUE OF THIS ASSIGNMENT Z.

Figure 9.2: Variable elimination procedure, whelfeiIM OPERATORIS used when a vari-

able is eliminated andARGOPERATORIs used to compute the argument of the eliminated

variable. To compute the maximum assignmentef- - -+ f,,,, and its value, where eagh
is a restricted-scope function, we must substitiieam OPERATORWith MAXOUT from
Figure 4.2, andARGOPERATORWiIth ARGMAXOuUT from Figure 9.3.

ARGMAXOUT (€, A))
I €& ={e,...,en} is the set of functions that depend only dn

/I A; variable to be maximized.
L
RETURN argmaxg, > ;_; €;.

Figure 9.3: ARGMAXOUT operator for variable elimination, procedure that returns the

assignment of variabld, that maximizeg; + - - - + e,,.
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Figure 9.2 shows a simple extension of the variable elimination algorithm presented
in Section 4.2. In this extension, we generalize the procedure used in the simple example
above to an arbitrary set of functioifis . . ., f,,. We divide this algorithm in two parts: The
first part is exactly the maximization presented in Section 4.2. In the second part, we fol-
low the variable elimination order in reverse to obtain the maximizing assignment. When
computing the maximizing assignment fdy, theith variable to be eliminated, we have
already computed the maximizing assignments to all variables latet thahe ordering.

The scope of the cached local functifyronly depends odl; and on the assignment to vari-
ables which appear later in the ordering, whose optimal assignment has already been
determined. We can thus computgs optimal assignment; using a simple maximization
overa.

The correctness of this approach is guaranteed by the correctness of variable elimina-
tion:

Theorem 9.1.3 For any orderingO on the variables, thd RGMAX VARIABLE ELIMINA -
TION procedure computes the optimal greedy action for each statteat is:

ARGMAXVARIABLE ELIMINATION ({QF, ..., Q%}, O, MAXOUT, ARGMAXOUT)
€ argmax, y ., QF(a).

Proof: See for example the book by Bertele and Brioschi [1971].

As with the basic variable elimination procedure in Section 4.2, the cost of this algorithm is
linear in the number of new “function values” introduced, or in our multiagent coordination
case, only exponential in theduced widthof the coordination graph.

The variable elimination algorithm can thus be used for computing the optimal greedy
action very efficiently, in a centralized fashion. However, in practical multiagent coor-
dination problems, we often need to use a distributed algorithm to avoid the need for any
centralized computation. We have two coordination options in such a distributed procedure:
In asynchronousmplementation, each agent computes its local maximization (conditional
strategy) by following a pre-specified ordering over agents. In an (more roasat)
chronousmplementation, the elimination order is determined at runtime. We present only
the simpler synchronous implementation, as the asynchronous extension is straightforward.
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DISTRIBUTEDACTIONSELECTION(%)
/I Distributed action selection algorithm for agent
REPEAT EVERY TIME STEP:
/I INSTANTIATION.
/I Instantiate the current state.
OBSERVE THE VARIABLES OBS[Q;] IN THE CURRENT STATEx ("),
INSTANTIATE THE LOCAL Q-FUNCTION WITH THE CURRENT STATE

Q" (a) = Q:i(x", a).

/I INITIALIZATION .
/I Initialize the coordination graph.

LET THE PARENTS OFA; BE THE AGENTS |NSCOPE[Q;‘(”] = AGENTS[Q;].
STorRE Q.

/I Maximization.

/I Wait for signal from parent of in the variable elimination order.

WAIT FOR SIGNAL FROM AGENTO;, IF O; = () CONTINUE.

/I We can now compute the maximization for agént

/I First we collect the functions that depend dp, i.e., the ones stored byand by the
children ofi in the coordination graph.

COLLECT THE LOCAL FUNCTIONSeéy,...,er, FROM THE CHILDREN OFi IN THE CO-
ORDINATION GRAPH, AND THE ONES STORED BY AGENT.

CACHE THIS SETE; = {eq,...,er} OF FUNCTIONS IN WHOSE SCOPE CONTAINS;.

/I Eliminate current variablel;.

LET e = MAXOUT (&, A)).

/I Update the coordination graph.

STORE THE NEW FUNCTIONe WITH SOME AGENT A; € SCOPE(e].

DELETE A; FROM THE COORDINATION GRAPH AND ADD EDGES FROM THE AGENTS
IN SCOPE[e] TO 4;.

SIGNAL AGENT O,

/I Action selection.

/I Wait for signal from child ofi in the variable elimination order.

WAIT FOR SIGNAL FROM AGENTO;; IF O] = () INITIALIZE a) = () AND CONTINUE.
RECEIVE THE CURRENT ASSIGNMENT TO THE MAXIMIZING ACTION a(®) FROM
AGENT O,

/I We can now compute the maximizing action for agent

/I Instantiate the functions corresponding4g
FOR EACHe; € &;:

LET e;f(ai) = ej(ai,a*[SCOPE[ej] - {A,}]), Va; € A;.
REPLACE e; WITH €] IN &;.

/I Compute assignment fot;.

LET a}, THE ASSIGNMENT TOA; IN a*, BEa} = ARGMAXOUT (&;, A;).

/I Signal to next agent.

SIGNAL AGENT O; AND TRANSMIT a(®),

Figure 9.4: Synchronous distributed variable elimination on a coordination graph.
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As in the standard variable elimination algorithm, this synchronous implementation
requires an elimination ord€? on the agents, whei@(:) returns theth agent to be max-
imized. Agents do not need knowledge of the full elimination order. AgeatO(i) only
needs to know the agents that come before and after it in the ordeend);” = O(i — 1)
andO; = O(i + 1) respectively. To simplify our notatior®?; = @ for the first agent in
the ordering an@;” = { for the last one.

Figure 9.4 presents the complete algorithm that will be executed by agébevery
time step, the procedure follows 4 phases:

1. Instantiation: The agent makes local observations and instantiates the current state
in its local Q-function);, resulting inQ>.

2. Initialization: The edges in the coordination graph are initialized, with agent
initially storing only the@ function.

3. Maximization: When it is agent’s turn to be eliminated, it collects the local func-
tionsey, ..., e;, whose scope includd;, i.e., those functions stored by the children
of A; in the coordination graph and those stored by agenthese functions are
cached ay; = Zj e;. Agent: can now perform its local maximization by defin-
ing a new functiore = max,, f;, the scope ot is U%_ Scope(e;] — {4;}. As the
scope of this new function does not contaim;, it should now be stored by some
different ageny such that4d; € Scope[e]. At this point, ageni has been eliminated,
i.e,, there are no functions whose scope includgsand the coordination graph is
updated accordingly.

4. Action selection: The optimal action choice can be computed by following the
reverse order over agents. When it is agesturn, all agents later thanin the
ordering have already computed their optimal action and storedhit.imThe scope
of the cached local functiofi only depends oml; and on the actions of agents later
in the ordering, whose optimal action has already been determined. Agamthus
compute its optimal action choie€ using a simple maximization ovey.

The correctness of this distributed procedure is a corollary of Theorem 9.1.3:
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Corollary 9.1.4 For any ordering® over agents, if each agent executes the procedure in
Figure 9.4, the agents will jointly compute the optimal greedy aciiérfor each statex®),
that is:

9
al¥ € arg max Z Q;‘(t) (a). &
i=1

Itis important to note that in our distributed version of variable elimination, each agent does
not need to communicate directly with every other agent in the system. Agetyt needs

to communicate with ageritf the scope of one of the functions generated in our maximiza-
tion procedure includes both; and A;. We call this propertyimited communicationthat

is, rather than communicating with every agent in the environment, in our approach, agents
only needs to communicate with a small set of other agents. The communication bandwidth
required by our algorithm is directly determined by the induced width of the coordination
graph. We note that the centralized version of our algorithm is essentially a special case
of the algorithm used to solve influence diagrams with multiple parallel decisions [Jensen
et al, 1994]. However, to our knowledge, these ideas have not been applied to the problem
of online coordination in the decision making process of multiple collaborating agents in a
dynamic system.

Our distributed action selection scheme can be implemented as a negotiation procedure
for selecting actions at run time. Alternatively, if all agents observe the complete state
vectorx at every time step, and these agents agree on a tie-breaking scheme upfront, each
agent can efficiently determine the actions that will be taken by all of the collaborating
agents without any communication at all. Thus, in such cases, each;agemntd individ-
ually use the variable elimination algorithm in Figure 9.2, and take its optimal actifor
the current state. Thus, there is a tradeoff between full observability by each agent with no
communication required between the agents, and limited observability for each agent, but
with some additional communication requirements.

9.2 Approximate planning for multiagent factored MDPs

In the previous section, we presented an efficient online distributed algorithm for select-
ing the optimal greedy action for multiagent problem whose value is approximated by a
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factored Q-function. In Section 8.2, we show that a factored approximation to the value
function, i.e,, one where the value function is approximated as a linear combination of
basis functionsy_, w;h;, yields the necessary factored structure in the Q-function. We
now present a small extension to the linear programming-based approximation algorithm
in Section 5.1, which computes the weightsn our factored value functiod, w;h;.

As discussed in Section 2.3.2, the linear programming-based approximation formula-
tion is based on the exact linear programming approach for solving MDPs presented in
Section 2.2.1. However, in this approximate version, we restrict the space of value func-
tions to the linear space defined by our basis functions. More precisely, in this approximate

LP formulation, the variables are,, ..., w, — the weights for our basis functions. The
LP is given by:
Variables: wq,...,w; ;

Minimize: > a(x) Y, w; hi(x) ;
Subjectto: > w; hi(x) > R(x,a) +v> o P(x' | x,a) >, w; hi(x'), VxeX, a€cA.
9.2)

This is exactly the same LP formulation as the one in (5.1), except that now our constraints
span all possible joint assignments to the actions of the agenta.

The decomposition of the LP in (9.2) follows the same procedure used in the single
agent formulation in Section 5.1. First, the objective function is decomposed as:

Za(x) Zwi hi(x) = Zwi Z a(c;) hi(c;) = Z%wi- (9.3)

c;€Dom[C;]
The we reformulate the constraints as:

0> R(x,a) + Zwi [vgi(x,a) — hi(x)], Vx € X, a€A, (9.4)

where the backprojectiof(x,a) = >, P(x’ | x,a)h;(x’) is a restricted domain function
computed efficiently as described in Figure 8.3. Using the same transformation we applied
in the single agent case in Section 2.2.1, we can rewrite this exponentially-large set of
constraints as a single, equivalent, non-linear constraint:
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MULTIAGENTFACTOREDLPA (P, R, v, H, O, «)
/I P is the factored multiagent transition model.
/I R is the set of factored reward functions.
I ~v is the discount factor.
/I H is the set of basis function§ = {h1,..., hy}.
/I O stores the elimination order for all sta¥eand agent variables.
/I o are the state relevance weights.
/I Return the basis function weighés computed by linear programming-based approximation.
/I Cache the backprojections of the basis functions.
FOR EACH BASIS FUNCTIONA; € H:

/I Compute factored state relevance weights.
FOR EACH BASIS FUNCTIONA,;, COMPUTE THE FACTORED STATE RELEVANCE WEIGHT®;

AS IN EQUATION (9.3).

/I Generate linear programming-based approximation constraints

LET Q = FACTOREDLP({vg1 — h1,...,v9k — hi}, R, O).

/I So far, our constraints guarantee thiat> R(x,a) +v> ., P(x' | x,a) >, w; hi(x') —
>, w; hi(x); to satisfy the linear programming-approximation solution in (9.2) we must add
a final constraint.

LETQ=QU{¢ =0}.

/I We can now obtain the solution weights by solving an LP.

LET w BE THE SOLUTION OF THE LINEAR PROGRAN MINIMIZE ). o;w;, SUBJECT TO THE
CONSTRAINTS.
RETURN w.

LET g; = Backproj(h;).

Figure 9.5: Multiagent factored linear programming-based approximation algorithm.

o Offline:

1. Select a set of restricted-scope basis functigns.. . . , hy }.

2. Apply efficient LP-based approximation algorithm as shown in Figure 9.5 to compute coeffi-
cients{w, ..., wy} of the approximate value function =3 w;h;.

3. Use the one-step lookahead planning algorithm (Section 8.2)atha value function estimate
to compute local); functions for each agent.

e Online:

— Each agent executes the distributed procedure in Figure 9.4 to compute the greedy policy:
1. Each agent instantiates its local); function with values of state variables in scope of

Qi.
2. Agents apply distributed variable elimination on the coordination graph with IQ¢al
functions to compute the optimal greedy action.

Figure 9.6: Our approach for multiagent planning with factored MDPs.
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Number of agents Optimal policy | LP-based approximation

“single” basis| “pair” basis
1 4.27 4.36+0.18 | 4.36+ 0.18
2 4.16 4.27+0.20 | 4.284+0.21
3 4.16 3.96+0.24 | 416+ 0.16

Table 9.1: Comparing value per agent of policies on the multiagent SysAdmin problem
with “ring” topology: optimal policy versus LP-based approximation with “single” and
with “pair” basis functions. Value of approximate policies estimated by 20 runs of 100
steps.

0> max R(x,a) + Z w; [7g:(x, &) — hi(x)]. (9.5)
The difference between this constraint and the one in the single agent LP in (5.4) is that our
maximizationmaxy , IS NOW over both the state and agent variables.

We can use our factored LP decomposition technique in Chapter 4 to represent this
non-linear constraint exactly, and in closed form, using a set of linear constraints that is
exponentially smaller than the one in Equation (9.4). Note that our LP decomposition tech-
nique is now applied over both state and action variables. Thus, the variable elimination
order O should now give us an ordering over both state and action variables. Figure 9.5
presents the complete multiagent factored LP-based approximation algorithm. Our over-
all algorithm for multiagent planning and coordination with factored MDPs in shown in
Figure 9.6.

9.3 Empirical evaluation

We first evaluate our algorithms on the multiagent version of the SysAdmin problem pre-
sented in Example 8.1.1. Recall that, for a network ofiachines, the number of states in
the MDP is9” and the joint action space contai2ispossible action.g, a problem with
30 agents has ovei)?® states and a billion possible actions.

We implemented our factored multiagent LP-based approximation algorithm in C++,
using CPLEX as our LP solver. The experiments were run on a Pentium Il 700MHz
with 1GB of RAM. We experimented with two types of basis functions: “single”, which
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contains an indicator basis function for each value of éadmd L;; and “pair” which, in
addition, contains indicators over joint assignments of the Status variables of neighboring
agents. We use a discount factoof 0.95.

For small problems, we can run an exact solution algorithm for computing the value
of the optimal policy. These values can then be compared to the value of the approximate
policies computed by our factored multiagent LP-based approximation algorithm. The re-
sults in Table 9.1 compare the value of the two policies for an initial state with all machines
working. These results indicate that, for these small problems, the quality of our approxi-
mate solutions is very close to that of the optimal policy.

As shown in Figure 9.7(a), the running time of the exact solution algorithm grows
exponentially in the number of agents, as expected. In contrast, the time required by our
factored approximate algorithm grows only quadratically in the number of agents, for each
fixed network and basis type. This is the expected asymptotic behavior, as each problem has
a fixed induced tree width of our factored LP. The policies obtained tended to be intuitive:
e.g, for the “star” topology with pair basis, if the server becomes faulty, it is rebooted even
if loaded. but for the clients, the agent waits until the process terminates or the machine
dies before rebooting.

For comparison, we also implemented the distributed reward (DR) and distributed value
function (DVF) algorithms of Schneidet al. [1999]. These algorithms define a local value
function for each agent that may depend on the state of this agent and of a few other agents.
These local value functions are then optimized simultaneously using a Q-learning-style
update rule. This update rule is modified for each agent by including a term that depends
on the neighboring agents’ reward for DR, or value function for DVF.

Our implementation of DR and DVF used 10000 learning iterations, with learning and
exploration rates starting atl and1.0 respectively and a decaying schedule after 5000 it-
erations; the observations for each agent were the status and load of its machine. The results
of the comparison are shown in Figure 9.7(b) and (c). We also computed a utopic upper
bound on the value of the optimal policy by removing the (negative) effect of the neighbors
on the status of the machines. This is a loose upper bound, as a dead neighbor increases
the probability of a machine dying by abadii%. For both network topologies tested, the
estimated value of the approximate LP solution using single basis was significantly higher
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Figure 9.7: Multiagent SysAdmin problem: (a) Running time for LP-based approximation
versus the exact solution for increasing number of agents (induced waftthe underly-

ing factored LP is shown). Policy performance of our LP-based approximation versus the
DR and DVF algorithms [Schneidet al., 1999] on: (b) “star” topology, and (c) “ring of
rings” topology.
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Figure 9.8: Comparing the quality of the policies obtained using our factored LP decom-
position technique with constraint sampling.

than that of the DR and DVF algorithms. Note that the single basis solution requires no
coordination when acting, so, in this sense, this is a “fair” comparison to DR and DVF

which also do not communicate while acting. If we allow for pair bases, which implies

agent communication, we achieve a further improvement in terms of estimated value.

Our factored LP decomposition technique represents the exponentially-large constraint
set in the LP-based approximation formulation compactly and in closed form. An alter-
native to our decomposition technique is to solve the same optimization problem with a
tractable subset of this exponentially-large constraint set. Recently, de Farias and Van Roy
[2001b] analyze an algorithm that uses sampling to select such a subset. In Figure 9.8, we
compare this sampling approach with our LP decomposition technique. Both algorithms
were executed with the same set of basis functions. The number of sampled constraints
was such that the running time was equal for both algorithms, for each set of basis func-
tions. We used a simple uniform sampling distribution to generate constraints. As shown
by de Farias and Van Roy [2001b], the choice of distribution may affect the quality of
the solutions obtained by the sampling approach. They also suggest some heuristics for
choosing a good sampling distribution in some queueing problems. It is possible that a
non-uniform distribution could have improved the performance of the sampling approach,
in the SysAdmin problem.

For smaller problems both sampling and our factored LP approach obtained policies
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with similar value. However, as the problem size increase, the quality of the policies ob-
tained by sampling constraints deteriorated, while the ones generated with our factored LP
maintained their value. If we apply the sampling algorithm with “pair” basis (and, thus,
with the same running time as our factored LP approach with “pair” basis), the quality of
the policies deteriorates more slowly as the problem size increases. However, the policies
obtained by our factored LP approach with “single” basis are still better than the ones ob-
tained by the sampling approach with “pair” basis (and a longer running time). We compare
and contrast these two approaches further in the discussion below.

9.4 Discussion and related work

We provide a principled and efficient approach for planning in collaborative multiagent do-
mains. Rather than placira priori restrictions on the communication structure between
agents, we first choose the form of the approximate factored value function and derive the
optimal communication structure given the value function architecture. This approach pro-
vides a unified view of value function approximation and agent communication, as a better
approximation will often require more communication between agents. We use a simple
extension of our factored LP-based approximation algorithm to find an approximately op-
timal value function. The inter-agent communication and the LP avoid the exponential
blowup in the state and action spaces, having computational complexity depend, instead,
upon the induced tree width of the coordination graph used by the agents to negotiate their
action selection.

Alternative approaches to this problem have used local optimization for the different
agents, either via reward/value sharing [Schneataal, 1999; Wolpertet al., 1999], in-
cluding the algorithms we evaluate in Section 9.3, or direct policy search [Pesh&in
2000]. In contrast, we provide a global optimization procedure, where agents can explic-
itly coordinate their actions. An important difference between the methods of Schneider
et al. [1999] and our approach is that, although the agents communicate during learning
with their approach, there is no communication between agents at runtime. The method of
Peshkinet al. [2000] requires no communication between agents both during learning or
at runtime.
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The most closely related approach to our is that of Sallans and Hinton [2001], who
use a product of experts to approximate the Q-function. Action selection is intractable in
such models, and the authors address this problem by using Gibbs sampling [Geman &
Geman, 1984]. The weights of the product of experts are optimized using a local search
procedure. On the other hand, we restrict our value function to linear approximations. This
restriction allows us to optimize the weights using a (convex) linear program, removing the
reliance on local search methods, and lets us perform the action selection step optimally, in
a distributed fashion, using the coordination graph.

We present empirical evaluations of the quality of the policies generated by our mul-
tiagent planning algorithm. For small multiagent problems, where we could obtain the
optimal solution, we showed that our LP-based approximation algorithm obtains policies
with near-optimal value. For larger problem, we could only compare the value of our poli-
cies with a loose theoretical upper bound on the value of the optimal policy. For these
problems, our policies were again near-optimal, with significantly better values that those
obtained with the algorithms of Schneidetr al. [1999]. The running time of our al-
gorithm, as expected, demonstrated polynomial scaling for problems with fixed induced
width. Furthermore, the quality of our policies did not show decay in value as the problem
size increased.

Boutilier [1996] partitions coordination methods for collaborative multiagent planning
problems into ones where the agents negotiate their actions via communication, and ones
where the coordination follows from social convention. As discussed at the end of Sec-
tion 9.1, our coordination procedure can be implemented to fit both of these classes: As
described, our distributed action selection scheme requires local communication between
agents. Alternatively, if all agents observe the complete state veabevery time step,
and these agents agree on a tie-breaking scheme upfront (the social convention), each agent
can then use variable elimination to compute its own action. This process is guaranteed to
yield the globally optimal greedy action. Thus, our algorithm provides an intuitive tradeoff:
at one end of the spectrum, we have full observability by each agent with no communica-
tion required between the agents, and, at the other end, limited observability for each agent,
but with some additional communication requirements.

The analysis of constraint sampling of de Farias and Van Roy [2001b], discussed in
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more detail in Section 7.8.1, provides an alternative to our factored LP decomposition tech-
nique. The number of samples in the result of de Farias and Van Roy [2001b] depends on
the number of actions in the MDP, which is exponential in multiagent problems. They also
present an equivalent formulation where the state space is augmented with a state variable
to indicate the choice of each action variable. At every time step, the agent then sets one
of these state variables, in order. The number of actions in this modified formulation is
now equal to the size of the domain of each action variable. The theoretical scaling of the
number of samples thus depends on the log of the number of joint actions, but the size
of the state space is multiplied by the number of joint actions. The increased number of
states will probably increase the number of basis functions needed for a good approxi-
mation. Furthermore, as discussed by de Farias and Van Roy [2001b], their method can
often be quite sensitive to the choice of sampling distribution. Our factored LP can effi-
ciently decompose the exponentially-large constraint set in multiagent problems modelled
as factored MDPs, in closed form. Thus, in structured multiagent systems, while the sam-
pling method of de Farias and Van Roy [2001b] will apply to more general problems that
cannot be represented compactly by factored MDPs. We present a preliminary empirical
comparison of the two methods on a problem that can be represented by a factored MDP.
We attempt to make the comparison “fair” by giving both algorithms the same amount of
computer time, though we use a uniform sampling distribution for the method of de Farias
and Van Roy [2001b]. A non-uniform distribution could potentially improve the quality of
their approximation. The policies obtained by our methods outperformed those obtained
by sampling constraints, even when sampling was given a more expressive basis function
space, and increased running time.



Chapter 10
Variable coordination structure

In the previous chapter, we presented efficient coordination and planning algorithms for
multiagent systems. However, this approach assumes that each agent only needs to interact
with a small number of other agents. In many situations, an agenaantiallyinteract
with many other agents, but not at ttemetime. For example, two agents that are both part
of a construction crew might need to coordinate at times when they could both be working
on the same task, but not at other times. If we use the approach presented in the previous
chapter, we are forced to represent value functions over large numbers of agents, rendering
the approach intractable.

In this chapter, we explottontext specificity— a common property of real-world deci-
sion making tasks [Boutilieet al., 1999]. This is the same type of representation used in
the single agent case in Chapter 7. Specifically, we assume that the agents’ value function
can be decomposed into a sewafue rules each describing a context — an assignment to
state variables and actions — and a value increment which gets added to the agents’ total
value in situations when that context applies. For example, a value rule might assert that in
states where two agents are at the same house and both try to install the plumbing, they get
in each other’'s way and the total value is decrementethby

Based on this representation, we provide a significant extension to the notion of a co-
ordination graph. We again describe a distributed decision-making algorithm that uses
message passing over this graph to reach a jointly optimal action. However, the coordina-
tion used in the algorithm can vary significantly from one situation to another. For example,

178
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if two agents are not in the same house, they will not need to coordinate. The coordination
structure can also vary based on the utilities in the model; e.qg., if it is dominant for one
agent to work on the plumbing (e.g., because he is an expert), the other agents will not
need to coordinate with him.

As in Chapter 7, we use context specificity in the factored MDP model, assuming that
the rewards and the transition dynamics are rule-structured. We extend the linear pro-
gramming approach in Chapter 7 to construct an approximate rule-based value function for
multiagent factored MDPs. The agents can then use the coordination graph to decide on a
joint action at each time step. Interestingly, although the value function is computed once
in an offline setting, the online choice of action using the coordination graph gives rise to a
highly variable coordination structure.

10.1 Representation

In order to exploit both additive and context-specific independence in multiagent problems,
we must define a rule-based representation for multiagent factored MDPs. This extension is
analogous to the rule-based version of single agent factored MDPs presented in Chapter 7.
Thus, our presentation will be very concise.

In Chapter 8, we represent the transition model in a multiagent problem using a dynamic
decision network (DDN). In this model, each nodg is associated with a conditional
probability distribution (CPD)P(X] | Parents(X})), where the parents of variablé/ in
the graph include both state and agent varialflents(X/) C {X, A}. In order to exploit
context-specific independence, we represent é4cty | Parents(X!)) using a rule CPD
as in Definition 7.1.3.

Similarly, we must decompose the reward function into rule functions: In our collabo-
rative multiagent setting, each ageris associated with a local reward functidfi(x, a)
whose scop&cope|R;(x, a)] is restricted to depend on a small subset of the state variables,
and on the actions of only a few agents. The global reward funéticn a) is the sum of
the rewards accrued by each ag&tk,a) = > 7 | R;(x,a). In order to exploit context-
specific independence in the reward function, we represent/iedsh) using a rule-based
function as in Definition 7.1.5.
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Our approximation architecture uses basis functfordefined as rule-based functions.
Using this representatior,; can be written a%;(x) = >, pghj)(x), Wherepghj) has the
form <c£h” : vfhj)>, i.e., a function that takes valug if the current state is consistent with

(hj)

c, ’’, and0 otherwise. Using this definition, we can compute the backprojection of basis
functionh; as:

gi(x,a) = > RULEBACKPROJp"), (10.1)

where RULEBACKPROJ(thj)) is computed by applying the algorithm in Figure 7.2 using
our rule-based representation for the multiagent DDN. Noteghsta sum of rule-based
functions, and therefore also a rule-based function. For simplicity of notation, we use
g; = RULEBACKPROJh,) to refer to this definition of backprojection.

Using this rule-based backprojection, we can now define a rule-based version of the
local Q-function associated with each agent:

Definition 10.1.1 (rule-based local Q-function) Therule-based local Q-functidior agent
1 is given by:
Qi(X7 a) = R’L <X7 a) + Z w;g; (X7 a)7 (102)

h;eBasis|i]
where both the reward functioR;(x, a) and the basis functions; are rule-based func-
tions, and the rule-based backprojecti@rof basis functiort; is defined in Equation (10.1).

Our global Q-function approximation is then defined as a rule-based fun@iigna) =

Zi QZ (X7 a)'

10.2 Context-specific coordination

As in Chapter 9, we begin by assuming that the basis function weigli® given and we
are interested in computing the optimal greedy action that maximizes:

arg max (x,a) = arg max Z Qi(x,a),
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Figure 10.1: Example of variable coordination structure achieved by rule-based coordina-
tion graph, the rules id); are indicated in the figure by the rules next4p. Clockwise

from top-left: (a) initial coordination graph; (b) coordination graph for sféte- true; (c)

rules communicated td,; (d) coordination graph is simplified whet is eliminated.

for the current state.

In the previous chapter, the long-term utility, or Q-function is the sum of local Q-
functions, associated with the “jurisdiction” of the different agents. For example, if mul-
tiple agents are constructing a house, we can decompose the value function as a sum of
the values of the tasks accomplished by each agent. Thus, we specify the Q-function as a
sum of agent-specific value functios, each with a restricted-scope. Eaghis typically
represented as a table, listing agésfocal values for different combinations of variables
in the scope. However, this representation is often highly redundant, forcing us to represent
many irrelevant interactions. For example, an agérg local Q-function might depend on
the action of agen#, if both are trying to install the plumbing in the same house. How-
ever, there is no interaction H, is currently working in another house, and there is no
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point in makingA;’s entire local Q-function depend o#f,’s action. Our rule-based rep-
resentation of the local Q-function in Definition 10.1.1 allows us to represent exactly this
type of context specific structure. A value rule in a local Q-function for our example could
be:

(A;AtHouse= A,AtHouse A
Ay = plumbingA A, = plumbing: —100).

The rule-based local Q-functiap; associated with agemnthas the form:
j

Note that if each rulg’ has scop&?, thenQ; will be a restricted-scope function of;C.
As in the previous chapter, the scopegfcan be further divided into two parts: The state
variables

Obs[Q;] = {X; € X | X, € Scope[Q;]}

are the observations agenteeds to make at each time step. The agent variables
Agents[Q);] = {A; € a | A; € Scope|Q;]}

are the agents with whotrnnteracts directly in the initialization of our coordination graph,
as defined in Definition 9.1.1.

Example 10.2.1Consider a simple 6 agent example, where:

ag N x: 1)

_ . Qi(x,a) = !
(ay Nag Nz :5) 1(x,a) a1 Nag Nag ANz :3)

(ay Nag AT :1)

3

Q1(x,a) = {
Qa(x,a) = { (ag Nag ANx:0.1) ; Qs5(x,a) = {

(16/\ZE 7>

{

{

(al/\a5/\x:4> .
(@

< :
(ay Nag AT : 3)

Qs(x,a) = {(agAa4/\x:3> : Qs(x,a) = {
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The coordination graph for this example is shown in Figure 10.1(a). See, for example,
that agentA; has the parentl,, becaused,’s action affects)s. 1

Recall that, at every time stépthe agents’ task is to coordinate in order to select the
joint actiona® that maximizes)(x",a) = >~ Q;(x", a). If we apply the distributed
action selection algorithm in Figure 9.4 in the previous chapter, the coordination structure
would be always be the same. Surprisingly, as our example will illustrate, our simple rule-
based representation of the Q-function will yield a coordination structure that will change
with the state of the system, and even with the results of the local maximization performed
by each agent.

Given a particular state*) = {xf), . ,:cﬁf)}, agent; instantiateshe current state on
its local Q-function by discarding all rules i; not consistent with the current staté).

Note that agent only needs to observe the state variable®is[(;], and not the entire
state of the system, substantially reducing the sensing requirements. Interestingly, after the
agents observe the current state the coordination graph may become simpler:

Example 10.2.2Now consider the effect of observing the st&te= true on the rules in
Example 10.2.1. Our instantiated Q-functi@¥i(a) now becomes:

Qi(a) = {(al/\a2:5) . Qia) = {

Q3(a) = { (ag Naz:0.1) ; Qi (a) — {

Q3 (a) = as Nay:3) ; .
3( ) { < 3 4 > Qﬁ(a): { <a6:7>
Once we instantiate the current state, the coordination graph becomes simpler, as
shown in Figure 10.1(b). See, for example, that ageénis no longer a parent of agent;.
Thus, agents!; and Ag will only need to coordinate directly in the contextdf= z. 1

After instantiating the current stakeé?, eact‘Q;‘“) will now only depend on the agents’
action choices.. Now, our task is to select a joint actianthat maximizesy", Q"' (a).
Maximization in a graph with context-specific structure suggests the use of the rule-based
version of variable elimination presented in Chapter 7. The only difference between this



184 CHAPTER 10. VARIABLE COORDINATION STRUCTURE

rule-based variable elimination algorithm and the table-based version presented in Fig-
ure 9.2 occurs in the maximization step. Here, we introduce a new fungtisunch that

e = max,, f;. Instead of creating a table-based representatior,fare now generate a
rule-based representation for this function by using BRi&.EMAXOUT( f, B) procedure
presented in Figure 7.3. This procedure takes a rule-based funfcamal a variableB

and returns a rule-based functignsuch thaty = max, f. Thus, we can compute the
joint optimal greedy action for our multiagent system by substituting max,, f;, with

e = RULEMAXOUT(f;, A;). The rest of the algorithm remains the same.

The cost of this algorithm is polynomial in the number of new rules generated in the
maximization operatiorRULEMAX OUT(Q);, A;). The number of rules is never larger and
in many cases exponentially smaller than the complexity bounds on the table-based coor-
dination graph in the previous chapter, which, in turn, was exponential only indoeed
width of this graph [Dechter, 1999]. However, the computational costs involved in manag-
ing sets of rules usually imply that the computational advantage of the rule-based approach
will only manifest in problems that possess a fair amount of context-specific structure.
When considering the distributed version of this algorithm, the rule-based representation
has an additional advantage over the table-based one presented in the previous chapter: as
we show in this section, the distributed rule-based approach may have significantly lower
communication requirements.

Intuitively, the distributed algorithm, shown in Figure 10.2, follows very similar steps
as the table-based one in the previous chapter. An individual agent “collect” value rules
relevant to them from their children. The agent can then decide on its own conditional
strategy, taking all of the implications into consideration. The choice of optimal action and
the ensuing payoff will, of course, depend on the actions of agents whose strategies have
not yet been decided. The agent then simply communicates the value ramifications of its
strategy to other agents, so that they can make informed decisions on their own strategies.

Figure 10.2 presents the complete algorithm that will be executed by agéhévery
time step, the procedure follows 4 phases:

1. Instantiation: The agent makes local observations and instantiates the current state
in its local Q-function by selecting the rulesd consistent with the current state.
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RULEBASEDDISTRIBUTEDACTIONSELECTION(%)
/I Distributed rule-based action selection algorithm for agent
REPEAT EVERY TIME STEPt:
/I INSTANTIATION.
/I Instantiate the current state.
OBSERVE THE VARIABLES OBS|Q;] IN THE CURRENT STATEx ("),
INSTANTIATE THE LOCAL Q-FUNCTION WITH THE CURRENT STATE BY SELECTING
THE RULES INQ; THAT ARE CONSISTENT WITHx(®):
(t)

Q¥ (a) = Q:(xV, a).

/I Initialization.

[/ Initialize the coordination graph.

LET THE PARENTS OFA; BE THE AGENTS |NSCOPE[Q§‘”)} = AGENTSI[Q;].
Store Qx".

/[ Maximization.

/I Wait for signal from parent of in the variable elimination order.

WAIT FOR SIGNAL FROM AGENTO; , IF O; = () CONTINUE.

/I We can now compute the maximization for agént

/I First we collect the rules that depend dp i.e., the ones stored by and the ones stored
by the children of in the coordination graph whose context includgs

COLLECT THE LOCAL RULESpy,...,pr, FROM THE CHILDREN OFi IN THE COORDF
NATION GRAPH, WHOSE CONTEXT INCLUDESA;, AND THE ONES STORED BY AGENT
2.

CACHE A NEW RULE-BASED FUNCTION f; = Zle pj; NOTE THAT SCOPE|f;] =
UJ_, SCOPE[e;].

/I Compute the local maximization for agent
DEFINE A NEW FUNCTION e = RULEMAXOUT(f;, 4;), THE SCOPE OFe IS
ScoPE[f;] — {A:}.

/I Update the coordination graph.

STORE EACH RULE p, IN THE NEW FUNCTIONe IN SOME AGENT A; € SCOPE|p,].
DELETE A; FROM THE COORDINATION GRAPH AND ADD EDGES FROM THE AGENTS
IN SCOPE[e] TO 4;.

SIGNAL AGENT O}

/I Action selection.

/I Wait for signal from child of; in the variable elimination order.

WAIT FOR SIGNAL FROM AGENTO;; IF O = () INITIALIZE a(¥) = () AND CONTINUE.
RECEIVE CURRENT ASSIGNMENT TO THE MAXIMIZING ACTION al¥) FROM AGENT
o5 .

/I We can now compute the maximizing action for agent

/I Instantiate the maximization function correspondingatoby selecting the rules irf;
whose context is consistent with the action choice thus.ara¥) [Scope[f;] — {A;}].
LET fi(ai) = fi(ai,a"[SCOPE[fi] — {Ai}]), Va; € A;.

/I Compute optimal assignment fdr;.

LET a'”, THE ASSIGNMENT TO4; IN a®), BE ) = argmax,, f7(a;).

// Signal to next agent.

SIGNAL AGENT O; AND TRANSMIT a®).

Figure 10.2: Synchronous distributed rule-based variable elimination algorithm on a coor-
dination graph.
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2. Initialization: The edges in the coordination graph are initialized, with agent
initially storing only the@* function.

3. Maximization: When it is agent’s turn to be eliminated, it collects the rules
p1,-- -, pr Whose scopes includg;, i.e., only the relevant ones out of those rules
stored by the children ofi; in the coordination graph and those stored by agent
These rules are combined into a new rule-based fungtien) _; p;, which is cached
for the second pass of the algorithm. Agénan now perform its local maximization
by defining a new rule-based functien= RULEMAXOUT(f;, 4;), the scope ot
is U’ Scope[p;] — {A;}. As the scopes of all rules in this new functiero not
containA;, each rulep, € e should now be stored by some other aggrguch that,
A; € Scope|p|. Atthis point, agent has been eliminatede., there are no functions
whose scope include$;, and the coordination graph is updated accordingly.

4. Action selection: The optimal action choice can be computed by following the
reverse order over agents. When it is agémturn, all agents later thanin the
ordering have already computed their optimal action and storedhit.iThe scope
of the cached rule-based functignonly depends orl; and on the actions of agents
later in the ordering, whose optimal action has already been determined. Aggant
thus compute its optimal action choiggusing a simple maximization ovey.

The correctness of this distributed rule-based procedure is a corollary of Theorem 9.1.3 and
of the correctness of rule-based variable elimination algorithm of Zhang and Poole [1999]:

Corollary 10.2.3 For any orderingO over agents, if each agent executes the procedure in
Figure 10.2, the agents will jointly compute the optimal greedy acti®hfor each state
x| that is:

g
(t) x(®)
a'’ € arg max El QF (a). 1

Interestingly, the rule-based coordination structure exhibits several important proper-
ties. First, as we discussed, the structure often changes when instantiating the current state,
as in Figure 10.1(b). Thus, in different states of the world, the agents may have to coordi-
nate their actions differently. In our example, if the situation is such that the plumbing is
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ready to be installed, two qualified agents that are at the same house will need to coordinate.
However, they may not need to coordinate in other situations.

The context-sensitivity of the rules also reduces communication between agents. In
particular, agents only need to communicate relevant rules to each other, reducing unneces-
sary interaction. In the table-based version, when agpetforms its local maximization,
it generates a new functiofy by summing up all the local functions that depend4nin
the rule-based version, we only need to collect the rules that depeAd émthis case, the
scope, and thus the size, fifcan be significantly smaller, as seen in our example:

Example 10.2.4When agent4; performs its local maximization, its children in the co-
ordination graph transmit all rules whose scope includés Specifically, as shown in
Figure 10.1(c), agen#, transmits(a; A as A a4 : 3) and agentd; transmits(a; A as : 4).
The local Q-function for agemt; becomes:

<Cl1 A C_Lg : 5>
ng(a) = <a1 Nag N\ ay : 3>
<CL1 AN C_L5 : 4>

Note that the scope of the rule-bas@glis { A;, A, A4, A5}. Had we used the table-based
representation, the scope 6f would have been larger, i.e{, A1, Ay, Ay, A5, As}, aSQF
would includeAs in its scope. 1

More surprisingly, interactions that seem to hold between agents even after the state-
based simplification and the limited communication of relevant rules can disappear as
agents make strategy decisions. In the construction crew example, suppose electrical wiring
and plumbing can be performed simultaneously. If there is an agent that can do both tasks
and another that is only a plumber, theprioriagents need to coordinate so that they are
not both working on plumbing. However, when the first agent is optimizing his strategy,
he decides that electrical wiring is a dominant strategy, because either the other agent will
do the plumbing and both tasks are done or the other agent will perform a different task,
in which case the first agent can get to plumbing in the next time step, achieving the same
total value. We can see this effect more precisely in our running example:
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Example 10.2.5After collecting the relevant rules,the local Q-function for agdathad
become:
(ay N agy : 5)
Qi(a) = { (@ Aa2Nay:3)
(ay N as : 4)
As these are all the rules whose scope includeswe can now perform the local maxi-
mization for this agent, which yields:

<d2 . 5>

RULEMAXOUT(Q7, Ay) = i
<CL5 : 4)

The rule(a; A ay A aq : 3) disappeared, asa; A as : 5) dominates that rule for any as-
signment tod,. Thus,A;’s optimal strategy is to da, regardless.

In this example, there is aaprioridependence between, A, and A;5. However, after
maximizingA;, the dependence oA, disappears and agentd, and A5 will no longer
need to communicate, as shown in Figure 10.1(d).

Finally, we note that the rule structure provides substantial flexibility in constructing
the system. In particular, the structure of the coordination graph can easily be adapted in-
crementally as new value rules are added or eliminated. For example, if it turns out that two
agents intensely dislike each other, we can easily introduce an additional value rule that as-
sociates a negative value with pairs of action choices that puts them in the same house at the
same time, thus forcing them to be in different houses. In the example in Figure 10.1(d), we
may choose to remove the low-value rite A a; : 0.1), which will remove the commu-
nication requirement betweet, and A, at the cost of some approximation in our action
selection mechanism.

Therefore, by using the rule-based coordination graph, the coordination structure may
change when:

e instantiating the current state;
e agents communicate relevant rules;

e an agent performs its local maximization;
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¢ further approximating the value function by eliminating low-value rules.

10.3 Exploiting context-specific and additive structure in
multiagent planning

Thus far, we have presented a representation for multiagent problems that can exploit both
context-specific and additive independence. We have also described an algorithm for co-
ordinating the agents actions given a rule-based approximation to the value function. It
remains to show how such an approximation can be obtained. Fortunately, this approxi-
mation can be computed by a simple modification to the table-based multiagent factored
LP-based approximation algorithm presented in Section 9.2. This algorithm, shown in

Figure 9.5, relies on a call to our factored LP decomposition technique:

FACTOREDLP({vg1 — h1,...,v9x — hi}, R, O).

This decomposition exploits additive structure in our model, but relies on a table-based
representation. In order to exploit the context-specific structure in our rule-based repre-
sentation, we should simply replace this procedure with the rule-based one described in
Section 7.5.

10.4 Empirical evaluation

To verify the variable coordination property of our approach, we implemented our rule-
based factored LP-based approximation algorithm, and the message passing coordination
graph algorithm in C++, using again CPLEX as the LP solver. We experimented with a
construction crew problem, where agents need to coordinate to build and maintain a set of
houses. Each house hageatures{ Foundation, Electric, Plumbing, Painting, Decoraion

Each of these features is a state variable in our DDN. Each agent has a set of skills and
some agents may move between houses. Each feature in the house requires two time steps
to complete. Thus, in addition to the feature variables, the DDN for this problem contains
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Prob. | ghouses| Agent skills Agent location fstates factions &Tn(;
Ay € {Found Elec Plumb}; House 1
! L Az € {Plumh Paint Decor} House 1 2048 36 1.6
A, € {Paint Decor} Moves
Az € {Found Elec Plumh Paint House 1
2 2 As € {Found Eled} Moves 33,554,432 1024 33.7
Ay € {Plumh Decor} House 2
Ay € {Paint Decor} Moves
Az € {Found Elec Plumb} House 1
3 8 As € {Found Elec, Plumb Pain; House2 | 34359738368 6144 | 639
A4 € {Found Elec, Plumh Decor} House 3
Ay € {Found Moves
As € {Decor Moves
4 2 As € {Found Elec Plumh Paint House 1 8,388,608 768 5.7
Ay € {Elec Plumh Paint House 2

Table 10.1: Summary of results of our rule-based multiagent factored planning algorithm
on the building crew problem.

“action-in-progress” variables for each house feature, for each agent, A,-Plumbing-
in-progress-Housel”. Once an agent takes an action, the respective “action-in-progress”
variable becomes true with high probability. If one of the “action-in-progress” variables
for some house feature is true, that feature becomes true with high probability at the next
time step. At every time step, with a small probability, a feature of the house may break,
in which case there is a chain reaction and features that depend on the broken feature will
break with probability 1. For example, if the plumbing breaks, the painting will peel in the
next time step, and the decoration will be ruined in the following step. This effect makes
the problem dynamic, incorporating both house construction and house maintenance in
the same model. Agents receil) reward for each completed feature and0 for each
“action-in-progress”. The discount factori95. We selected a simple bases: for each as-
signment to the variables corresponding to the parents of each house feature variable in the
DDN, we introduced a rule-based basis function, whose context is exactly this assignment.

Table 10.1 summarizes the results for various settings. Note that, although the number
of states may grow exponentially from one setting to the other, the running time grows
polynomially. Furthermore, in Problem 2, the backprojections of the basis functions had
scopes with up to 11 variables, too large for the table-based representation to be tractable.
However, by using our rule-based representation, we can represent this backprojection very
compactly.
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Actualvalue of Optimal

Agent skills rule-based policy |  value
A, € {Found Elec};

Ay € {Plumh Paint Decor} 0650 o053
A; € {Found Elec, Plumb}; 6653 6654

Ay € {Plumh Paint Decor}

Table 10.2: Comparing the actual expected value of acting according to the rule-based
policy obtained by our algorithm with the optimal policy, on the one house problem starting
from the state with no features built in the house.

The policies generated in these problems are very intuitive. For example:

e In Problem 2, if we start with no features buil; will go to House 2 and wait as its
painting skills are going to be needed there before the decoration skills are needed in
House 1.

e In Problem 1, we get very interesting coordination strategies: If the foundation is
completed,A; will do the electrical fitting and4, will do the plumbing. Further-
more, A; makes its decision not by coordinating wits, but by noting that electri-
cal fitting is a dominant strategy. On the other hand, if the system is at a state where
both foundation and electrical fitting is done, then agents coordinate to avoid doing
plumbing simultaneously.

e Another interesting feature of the policies occurs when agents areiglein Prob-
lem 1, if foundation, electric and plumbing are done, then aggniepeatedly per-
forms the foundation task (yielding a -10 reward at every time step). This action
choice avoids a chain reaction starting from the foundation of the house. Checking
the rewards, there is actually a higher expected loss from the chain reaction than the
cost of repeatedly checking the foundation of the house.

For small problems with one house, we can compute the optimal policy exactly. In
Table 10.2, we present the optimal values for two such problems. Additionally, we can
compute the actual value of acting according to the policy generated by our method. As
the table shows, these values are very close, indicating that the policies generated by our
method are very close to optimal in these problems.
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10.5 Discussion and related work

We provide a principled and efficient approach for planning in multiagent domains where
the required interactions vary from one situation to another. We show that the task of find-
ing an optimal joint action in our approach leads to a very natural communication pattern,
where agents send messages alomp@dinationgraph determined by the structure of

the value rules, as in the previous chapter. However, the coordination structure now dy-
namically changes according to the state of the system, and even on the actual numerical
values assigned to the value rules. Furthermore, the coordination graph can be adapted
incrementally as the agents learn new rules or discard unimportant ones.

Our empirical evaluation shows that our methods scale to very complex problems, in-
cluding problems where traditional table-based representations of the value function blow
up exponentially. In problems where the optimal value could be computed analytically
for comparison purposes, the value of the policies generated by our approach was within
0.05% of the optimal value. We also empirically observed the variable coordination proper-
ties of our approach. Our algorithm thus provides an effective method for acting in dynamic
environments with a varying coordination structure.

From a representation perspective, the factored MDP model used in this chapter ex-
tends the rule-based representation described in Chapter 7 to the multiagent case. Boutilier
[1996] suggests that the algorithms developed in Boutéieal. [1995] can be extended
to this collaborative multiagent case. The tradeoffs between our methods and those of
Boutilier et al. have been discussed in detail in Section 7.8.1. In particular, their methods
exploit only context-specific structure, while our approach can additionally exploit addi-
tive structure. On the other hand, their methods do not require basis functions to be defined
a priori. We believe that, arguably, additive structure is even more important in multia-
gent systems. In our house building domain, for example, the interaction between agents
with the same skill is context-specific, but the one between agents with different skills is
probably better captured with an additive model.

Interestingly, Koket al. [2003] applied our variable coordination graph to select the
actions for a team of robots, where the weights of the rules were tuned by hand, rather than
with our factored LP-based algorithm. Their team used this policy to win first place (out
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of 46 teams) in the 2003 RoboCup simulation league, winning all games, scoring a total

of 177 goals with only 7 goals against them. Although the results oféa{. [2003] do

not evaluate our planning algorithms, they show that our factored Q-function representation

along with our variable coordination graph can capture very complex and effective policies.
We believe that this graph-based coordination mechanism will provide a well-founded

schema for other multiagent collaboration and communication approaches in many envi-

ronments, such as RoboCup, where the coordination structure must change over time.



Chapter 11
Coordinated reinforcement learning

In the previous chapters, we presented approaches that combine value function approxi-
mation with a message passing scheme by which multiple agents efficiently determine the
jointly optimal action with respect to an approximate value function. We have also pre-
sented efficient planning algorithms for computing these approximate value functions, in
multiagent settings.

Unfortunately, in many practical situations, a complete model of the environient,
of the transition probabilities?(x’ | x, a) or of the reward functionR(x, a), is not know.
Typically, there are two possible courses of action in such cases: to consult a domain ex-
pert who can provide an estimate of the model, or to estimate (learn) the model or a policy
directly from data obtained from the real world. The latter process is cadlatbrcement
learning (RL), as the agents are learning to act by responding to the reinforcement signals
(rewards) they receive from the environment. For an in-depth presentation of the reinforce-
ment learning problem and of some possible solution methods, we refer the reader to books
on this topic by Sutton and Barto [1998] and by Bertsekas and Tsitsiklis [1996], and the
review by Kaelblinget al. [1996].

At the high-level, there are two typical approaches to reinforcement learning. In a
model-base@pproach [Moore & Atkeson, 1993; Kearns & Singh, 1998; Brafman & Ten-
nenholtz, 2001], the environment is represented by a particular parametric model, and the
agents learn the parameters of this model from their experience in this environment. This
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approximate model is then used to obtain approximate policies for this environment. Typ-
ically, the agents may choose ¢aplorethe environment further in order to improve the
model, in the hope that an improved model will lead to a better policy in the future. Al-
ternatively, the agents may chooseetploit what they have learned thus far, and select

a policy that maximizes the reward with respect to this approximate model. Kearns and
Singh [1998] present an algorithm that makes this choice between exploring and exploit-
ing explicit. Brafman and Tennenholtz [2001] describe a simple algorithm that makes this
choice implicitly, but that still leads to near-optimal policies in polynomial time (in the
number of states). These methods tend to be effective, if an appropriate parameterization
of the model is chosen.

An alternative is to choosemaodel-freeapproach [Sutton, 1988; Watkins, 1989; Williams,
1992], where no assumptions are made about a particular parametric model of the environ-
ment. Here, either the value function or the policy are parameterized. The agents then
optimize these parameters directly from experience. Model-free approaches are often sim-
pler, require less assumptions about the environment, and are often more easily combined
with function approximation methods. Model-based approaches are often more stable and
allow us to obtain more effective exploration strategies. Atkeson and Santamaria [1997]
provide a more detailed discussion on the trade-off between these two approaches.

Most reinforcement learning methods have focused on single agent settings. Although
some algorithms have been proposed for collaborative multiagent settings, these meth-
ods often do not directly consider interactions between agents in the parameterized solu-
tions [Peshkiret al,, 2000], or use heuristic methods for combining values or rewards from
different agents [Schneidet al., 1999].

In this chapter, we show how our coordination graph action selection mechanism can be
applied to the design of efficient reinforcement learning algorithms for collaborative mul-
tiagent problems, by building on existing single agent RL methods. We call our approach
coordinated reinforcement learnings structured coordination between agents is used both
in the core of our learning algorithms and in our execution architectures. Interestingly, in
the context of reinforcement learning, we will no longer require a factored model of the
environment or even a discrete state space.

We begin by presenting two methods for computing an approximate value function
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through reinforcement learning in multiagent settings, building on two existing algorithms:
Q-learning [Watkins, 1989; Watkins & Dayan, 1992] and Least Squares Policy Iteration
(LSPI) [Lagoudakis & Parr, 2001]. We also demonstrate how parameterized value func-
tions of the form acquired by our reinforcement learning variants can be combined in a
very natural fashion with algorithms that attempt to optimize the policy directly, such as
those of Williams [1992], Jaakkokt al. [1995], Suttoret al. [2000], Konda and Tsitsiklis
[2000], Baxter and Bartlett [2000], Ng and Jordan [2000], and Shelton [2001]. The same
communication and coordination structures used in the value function approximation phase
are used in the policy search phase to sample from and update a factored stochastic policy
function.

Our framework will approximate the global Q-function using the same type of factored
Q-functions described in the previous chapters. Specifically, agerdssociated with a
local Q-function@;” that is parameterized by an independent set of parameterShe
global Q-function is again given by:

QW(X> a) = Z Q;VZ (X’ a)'

In our RL setting, we will optimize the parametexsfrom the agents’ experience with

the environment. This experience is described by quadruples of the form (state, action,
reward, next-state), which we will henceforth refer ta@%), a®), »® x(t+1) for thetth

time step, where® = R(x® a®) is the reward associated with the current state of the
system. Note that, in general, the rewards may depend stochastically on the state and
action. That is, at every visit the agents observe some reward sampled according to some
unknown distribution. Furthermore, in this chapter, as the experience with the environment

is represented by samples rather than a model, we no longer need to assume that the state
is discrete. We can thus consider both discrete and continuous state spaces.

11.1 Coordination structure in Q-learning

Q-learning is a standard approach for solving an MDP through reinforcement learning
[Watkins, 1989; Watkins & Dayan, 1992]. In Q-learning, the agent directly learns the
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values of state-action pairs from experience with the environment. The algorithm starts
with some estimate with the Q-function. This estimated is then updated at each iteration
using the following update rule:

Q(x",a") — Q(x",a") +a [r + Y (x") - Q(x¥,a")] (11.1)
wherea > 0 is the “learning rate,” or step size parameter, and

V(x"Y) = max Q(x*HY  a).

a

With a suitable decay schedule for the learning rate, a policy that ensures that every state-
action pair is experienced infinitely often, and a representatiof) fer a) which can assign

an independent value to every state-action pair, Q-learning will converge to estimates for
Q(x,a) which reflect the expected, discounted value of taking actidn statex and
proceeding optimally thereaftare., the optimal Q-function [Watkins & Dayan, 1992].

In practice the formal convergence requirements for Q-learning almost never hold, be-
cause the state space is too large to permit an independent representation of the value of
every state [Gordon, 2001]. Typically, a parametric function approximator such as a neural
network is used to represent the Q-function for each action. The following gradient-based
update scheme is often used to adapt Q-learning to this setting:

wherew is a weight vector for our function approximation architecture and, again, the
valueV(x+1) of the next state is again:

V() = max Q(x*, a). (11.3)

The Q-learning update mechanism is completely generic and requires only that the
approximation architecture be differentiable. We are free to choose an architecture that is
compatible with our action selection mechanism. Therefore, as described above, we can
assume that every ageintaintains a local Q-functio®; defined over some subset of the
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(possibly continuous) state variables, its own actions, and possibly actions of some other
agents. The global Q-function is again a function of the global stated the joint action
vectora:

where the dependence e of 1" (x,a) indicates the parametric (possibly non-linear)
nature of our local Q-function representation. There are some somewhat subtle conse-
quences of this representation. The first is that determibipng*")) in Equation (11.3)
requires a maximization over an exponentially-large action space that can be computed ef-
ficiently using the coordination graph procedure from Section 9.1 (or the rule-based version
in Section 10.2).

The @; functions themselves can be maintained locally by each agent as an arbitrary,
differentiable function of a set of local weighis,. Each(); can be defined over the entire
state space, or just some subset of the state variables visible ta agenimportant to note
that the dependence on the state variables does not affect the complexity of our coordination
graph algorithms, as the current state is always instantiated before these procedures are
applied.

Once we have defined the loag} functions, we must compute the weight update in
Equation (11.2). Each agent must compute:

Ax®,a® O ) 0) [,nm V(D) Z v (x® a®)] | (11.4)

the difference between the current Q-value and the discounted value of the next state. Thus,
each agent needs access, V(x(™), andQ™" (x(), a®). Both the global reward(

and the( value for the current stat&)™"’ (x(*), a(®)), can be computed by a simple message
passing scheme similar to the one in the coordination graph, by fixing the action of every
agent to the one assignedaf!. A more elaborate process is required in order to compute
V(x*1), However, as mentioned above, this term can be computed efficiently using our
coordination graph maximization procedures.

Therefore, after the coordination step, each agent will have access to the value of
A(x® a® r® xt+D w®)) At this point, the weight update equation is entirely local:
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COORDINATEDQLEARNING(Q, w© ~, n, o, O)
Q={Q,...,Q,} is the set of local Q-functions, each is parameterized by, .
11 w(© is the initial value for the parameters.
Il v is the discount factor.
/I n is the number of iterations.
Ila={a® ... o} isthe set of learning rates for each iteration.
/I O stores the elimination order.
/I Return the parameters of Q-function afteiterations.

FOR ITERATIONt=0TOn — 1:
/I Observe the current transition.
0BSeRVE (x(,a® ¢ x(t+1),
/I Compute the action which maximizes the Q-function at the next state and its value using
the variable elimination algorithm in Figure 9.2.

LET
[attD), V(x(tT1))] = ARGVARIABLE ELIMINATION (Q%" (x(+1), ),
O, MAXOUT, ARGMAXOUT),
t wit) w(®)
WHERE Q%' )(x(t+1)7a) ={Q7" (x"*V a),...,Q,° (x*tV) a)}.

/I Compute gradient for current state.

(t)
COMPUTE THE GRADIENT Vy,Q; ¢ (x®,a(")) FOR EACH LOCAL Q-FUNCTION ;.
/I Update parameters.
UPDATE Q-FUNCTION PARAMETERSW; FOR EACH LOCAL Q-FUNCTION @); BY:

(t)

W§t+1) - Wz(t) +a® [r(t) + ’yV(X(t+1)) —Qv (X(t)’a(t)) Ve, Q;"’E” (x(t),a(t))v

/I Take actiona(*+1) which maximizeQ™"” (x(t+1 a). If an exploration policy is used,
the action should be computed appropriately.

EXECUTE ACTION altt1),
RETURN THE PARAMETERSW (™).

Figure 11.1: Coordinated Q-learning algorithm.
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wftﬂ) — wgt) +a Ax®Y,a® O xED W(t))VWiQ:VEt) (x® a®). (11.5)

Note that, in this equation, agentnly needs to compute the local gradient

Ve, Q;NE” (x®,a®),

rather than the global gradieft, Q™" (x(), a®!)) used in Equation (11.2). The reason for
this simplification is that the gradient decomposes linearly as no two local Q-funcgions
and(); share parameters ia. The locality of the weight updates in this formulation of Q-
learning makes it very attractive for a distributed implementation. Each agent can maintain
an entirely local Q-function and does not need to know anything about the structure of
the neighboring agents’ Q-functions. Different agents can even use different architectures,
e.g, one might use a neural network and another might use a CMAC [Albus, 1975]. The
only requirement is that the joint Q-function be expressed as a sum of the these individual
Q-functions.

Our complete multiagent extension of the Q-learning algorithm is shown in Figure 11.1.
Note that Q-learning is usually implemented withexploration policy instead of always
taking the action that maximizes the Q-function at every time step, the agent also takes
actions that lead to rarely visited states. For examples of such policies and its effect on the
convergence of Q-learning, see the book by Sutton and Barto [1998].

A negative aspect of this Q-learning formulation is that, like almost all forms of Q-
learning with function approximation, it is difficult to provide any kind of formal conver-
gence guarantees.

11.2 Multiagent LSPI

An often effective approach to RL is to optimize a value function or policy using a stored
corpus of data, such methods are caliatich reinforcement learninglgorithms. Specifi-
cally, batch methods use a set of samples,

S ={(xj,a;,x;,7m;)|i=1,2,..., L},
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collected from the environment to optimize a value function estimate or a policy. In this
section, we propose a multiagent batch RL approach that builds on Least Squares policy
iteration (LSPI) [Lagoudakis & Parr, 2001], a batch algorithm that uses the stored corpus
of samples instead of a model to perform approximate policy iteration.

Given a policyr, the Q-function for this policy is again given by the following set of
linear equations:

Q(x,a) = R(x,a) + 7Y P |x,2)V:(x), Vx€X, VacA, (11.6)

whereV,(x) = Q.(x,7(x)). In matrix notation, we can express this fixed-point equation
as:

where@, andR are|X| - |A| vectors,V is a|X| vector, andP is a|X| - |A| x |X]| matrix.

LSPI approximates the Q-functions using a linear combination of basis functions (fea-
tures). Specifically, given a policy, the Q-function for this policy is approximated by:

k
@:(Xv a) = Z wi¢i<x7 a) = WT¢<X7 a)) (118)
=1

where we use;(x, a) to denote a basis function used for approximating the Q-function,
whose scope thus includes both stdtand agenfA variables. This notation differentiates
this type of basis functions from our usual basis funcfigix), whose scope includes only
state variables.

For a policy,7(), associated with théth iteration of the algorithm, LSPI computes
an approximation to the Q-functiorﬁﬂ(i), satisfying the fixed-point conditions in Equa-
tion (11.6) with respect to our sample set. The r@yvi) then implicitly defines a greedy
policy 7(+1:

r+)(x) = arg max @Wu) (%),
and the process is repeated until some form of convergence is achieved.

We briefly review the mathematical operations required for LSPI. For convenience we
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express our basis functions in matrix form:
¢(X17 al)T

P = o(x,a)T ;

O(xx, aja)T

where® is matrix (|X| - |A| x k), where each row corresponds to a state-action pair, and
each column corresponds to a basis function. We can represent our approximation of the
Q-function by®w. Additionally, we can define a matri® ., with one row for each state

x, Where the action choice for this row is the one specified by our paticy):

¢(x1, m(x1))T

@ = ¢(x, m(x))T )

P(xx), T(xx))T

note that®,, is a (|X| x k) matrix. Similarly, ®,w forms our approximation o¥,, the
value of policyr.

If we knew the transition matrixt?, and the reward functior?, we could, in principle,
compute the weights of our Q-function approximation by solving a least-squares approxi-
mation to the fixed point in Equation (11.7):

Qr = R+~yPV
dw R+~P®,w;
PTdw ~ PTR+YPTPD,w;

Q

Rearranging, we obtain the weightsby solving the following system of linear equations:

Cw, = b, (11.9)
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whereC = ®7(® — vP®,) and b= PTR.

Unfortunately, the matrices in Equation (11.7) contain entries for each state and action,
and are thus exponentially-large. Furthermore, in our RL setting, we do not have models of
R andP. However, we can use the samples in our corpus to construct approximate versions
of the fixed point in Equation (11.9) by using an approximate versich,d?®,., andR as

follows:
¢ (x1,a1)" ¢ (x1, m(x1))T
o= o(xna) | Po=| oLa)T |
¢ (xp,aL)T ¢ (x7,m(x7))T
™
EZ r;
rL

Note that® still has one column for each basis function, but now we only have one row for
each sample, rather than a row for each state and action. Similarly, the Yectomtains

one element per sample indicating the reward associated with this sample. Fﬂ’?/@,ly,

is an approximation of the backprojection of the basis functions. This matrix contains
one row per sample with the valug(x}, 7(x}))", which is an unbiased estimate of the
backprojections, when actian is taken at state;.

We can now compute the weights of our Q-function approximation for any polly
solving a linear system of equations:

(& — PP, )w, =P R. (11.10)

The complete algorithm, starting from some initial set of weight8 and some sample
setS, is given by repeating the following steps:
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1. Generate the backprojection matnf@ﬂ(w), for the greedy policyr**1) with re-
spect to our previous Q-function estimate defined by the weigtfts where each
row of @ﬂ(m) IS given by:

¢ (x, 7)) T,

and7(+1)(x}) = arg max, @W(X;, a,wi).

2. Compute weightsv**1 of Q-function estimate for new policy*") by solving the
linear system in Equation (11.10).

Lagoudakis and Parr [2001] present a simple incremental update rule for to generate
the matriceC andb directly. Thus, we never need to generate the intermediate matrices
®, R, andP®,. Specifically, assume that we initialif&? = 0 andb® = 0. For policy
7®, each sampléx, a, r, x') contributes to the approximation according to the following
update equation :

CO — €O+ 6(x,a) (4lx,2) — yo(x, 7O (X)) ), (11.11)

andb «— b+ r¢(x,a). We can then obtain the parameters for the Q-function estimate
associated with this policy by solving the linear syst€flw = b®.

Importantly, LSPI is able to reuse the same set of samples even as the policy changes.
For example, suppose the corpus contains a tiple,, r, x’), i.e., a transition from state
to statex’ under actioran;. Now suppose that the current polic{) takes actiom, at state
X, i.e, 7 (x') = a,. This tuple is thus entered into tli&?) matrix using Equation (11.11)
as if a transition were made from{x, a;) to ¢(x’, ay):

T

C— G+ olxa)(0(x a1) —70(xa2) )

If 7(+1)(x") changes the action for from a, to a3, then the next iteration of LSPI enters
a transition fromp(x, a; ) to ¢(x’, a3) into theC matrix:

~

C = C+olx.a)(0(x a1) —70(x, ) )
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The sample can be reused because the dynamics forsstateler actiona; have not
changed, only the greedy action definbg(x’) = Q(x’, 7(x’)) has changed from, to
as.

Extending LSPI to a multiagent setting is surprisingly straightforward if we use our
collaborative action selection mechanism, as shown in Figure 11.2. We first note that since
LSPI is a linear method, any set of Q-functions produced by LSPI will, by construction,
be of the right form for collaborative action selection. Each agent is assigned a local set of
basis functions which define its local Q-function. The scope of these basis functions can
be defined over the agent’'s own actions as well as the actions of a small number of other
agents. As with ordinary LSPI, the current policy is defined implicitly by the current set
of Q-functions,@ﬂ(@. However, in the multiagent case, we cannot enumerate each possible
action to determine the policy in Step 1 of the algorithm, because this set of actions is
exponential in the number of agents. Fortunately, we can again exploit the structure of the
coordination graph to determine the optimal actions relativ@;@: For each transition
from statex to statex’ under joint actiora the coordination graph is used to determine the
optimal greedy actiom’ = 7(x’) = argmax, @M(x’, a) for x’. The transition is added
to theC matrix in Equation (11.11) as a transition frapix, a) to Q(x’, a’).

A disadvantage of LSPI is that it is not currently amenable to a distributed implementa-
tion during the learning phase: The construction of@hmatrix requires knowledge of the
evaluation of each agent’s basis functions for every state in the corpus, not only for every
action that is actually taken by the agents, but also for the action selected by the each pol-
icy for the next time step. Thus, as most batch methods, multiagent LSPI is most useful as
an offline technique for computing value function approximations from samples, without
estimating a model of the environment.

11.3 Coordination in direct policy search

Value function-based reinforcement learning methods have recently come under some crit-
icism as being unstable and difficult to use in practice [Gordon, 1999]. A function ap-
proximation architecture that is not well-suited to the problem can diverge or produce poor
results with little meaningful feedback that is directly useful for modifying the function
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MULTIAGENTLSPI@®, w(®, ~, S, Thraa, £, O)
I ® = {¢1,...,0x} is the set of basis functions.
11 w0 is the initial value for the weights.
/[ v is the discount factor.
/I S is the sample set.
Il T,,02 1S the maximum number of iterations.
Il  is a precision parameter.
/I O stores the elimination order.
/I Return the weights for basis functions.
LET ITERATION ¢ = 0.
REPEAT:
/lnitialization.
LET C=0AND b =0.
/I lterate over samples.
FOR EACH (x;,a;,%x},7;) € S:
I Compute the action assigned by the poli¢y to the next state’, that is the action
which maximizes the current Q-functieng max, > -, w§t>¢(xg, a) at the next state
x; using the variable elimination algorithm in Figure 9.2.
LET

a’ = ARGVARIABLE ELIMINATION ({w'” ¢ (x}, ), ..., w!” ¢r(x],a)},
O, MAXOuUT, ARGMAXOUT),

/I Add this sample t&C matrix and to the vector.
~ ~ T
LET € — C+9(xi,a) (0(x;a) = 16(x},a))
LET /I; — /b\—l— Ti¢<xi7 ai).
/I Compute new basis function weightg*+1).
LET w(*t1) BE THE SOLUTION TO THE LINEAR SET OF EQUATIONS Cw = b.

LET t=t+1.
UNTIL [[w(HD) —wB|| < eoRt =Tpas

RETURN THE WEIGHTSw(®).

Figure 11.2: Multiagent LSPI algorithm.
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approximator to achieve better performance.

LSPI was designed to address some of the concerns with Q-learning-based value func-
tion approximation. It is more stable than Q-learning and since it is a linear method, it is
somewhat easier to debug. However, LSPI is still an approximate policy iteration procedure
and can be quite sensitive to small errors in the estimated Q-values for policies [Bertsekas
& Tsitsiklis, 1996]. In practice, LSPI takes large, coarse steps in policy space.

The shortcomings of value function-based methods have led to a surge of interest in
direct policy search methods [Williams, 1992; Jaakketal, 1995; Suttoret al., 2000;
Konda & Tsitsiklis, 2000; Baxter & Bartlett, 2000; Ng & Jordan, 2000; Shelton, 2001].
These methods use gradient ascent to search a space of parameterized stochastic policies.
As with all gradient methods, local optima can be very problematic. Furthermore, gradient
estimates are often very noisy and susceptible to plateaus, where the gradient magnitude is
very small and becomes difficult to follow. Defining a relatively smooth but expressive pol-
icy space and finding reasonable starting points within this space are all important elements
of any successful application of gradient ascent.

11.3.1 REINFORCE

In this section, we briefly review one of the simplest single agent policy search algorithms,
REINFORCHWilliams, 1992]. We refer the reader to the presentation of Meukdtaai.
[2001] for a more detailed derivation. ThEINFORCEalgorithm tacklesepisodic prob-

lems where the agent start from an initial stat€ distributed according t& (x(*)), and
collects rewards for,,., steps. Then a new starting state is sampled, and the process
is repeated. In the episodic formulation, the expected vEJueof a stochastic policy
parameterized by is given by:

‘/pw — Epw

> AR(XD, A<t>)] . (11.12)
t=0

If we differentiate the value in Equation (11.12) with respect to a particular policy
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parameterv € w, we obtain:

Tmax t
SR (X0, AW) (Z a% np (A X(t')))] _
t=0 t'=0

(11.13)

0

8—w‘/pw — Epw

Unfortunately, the derivative in Equation (11.13) requires us to compute a sum over all
possible assignments to the state and agent variables for the whole episode, an exponentially-
large summation. Th&EINFORCE algorithm addresses this issue by usibhgsampled

episodes:
S = { (xgoft), agoft), rioft)> e (xg)ft), a(LO*t), T(LO*t)> } , (11.14)

where (x§0*t>, al’™", rl@’t)) denotes, respectively, the states visited from tihie ¢, the

actions taken, and the rewards accrued. Using these samples, we obtain an unbiased esti-
mate of the derivative:

L Tmaz

(9/\ 1 . t ! 3 w t! t
%VPW = ZZZ’ytri()[Za—wlnp (ag)\xg )> :
i=1 t=0 t'=0

(11.15)

We thus need two operations in order to compute the gradient usingetiORCEal-
gorithm: a method to sample from our stochastic policy, in order to collect the samples,
and an efficient algorithm for computing- In p* (agt/) ] xgt')), the partial derivative of

the policy, for some fixed state and action choice.

11.3.2 Multiagent factored soft-max policy

In order to extend the reinforce algorithm to collaborative multiagent settings, we must first
choose an appropriate policy parameterization. We now show how to seed a gradient ascent
procedure with a multiagent policy generated by Q-learning or LSPI as described above.
Of course, the methods presented in this section also apply for policy search methods that
start from any initial policy estimate.

To guarantee that the gradient is well-defined, policy search methods require us to use
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stochastic policies (see definition in Chapter 2). Our first task is to convert the determin-
istic policy implied by our approximate Q-function into a stochastic poligg|x), i.e.,

a distribution over actions given the state. A natural way to do this, which also turns out
to be compatible with most policy search methods, is to create a soft-max policy over the
Q-values:

Definition 11.3.1 (soft-max policy) Let thesoft-max policySoftMax(a | x, Q) associ-
ated with the local Q-function@" = {Q}"(x,a),...,Qy°(x,a)} be defined as:
6% Ej Q:vj (X7a)

S e 2k @y (x,b)’

SoftMax(a | x, Q%) = (11.16)
whereT' is atemperature parameterdicating how stochastic we want to make the initial
policy. 1

Note that once we optimize tf@}vj in the policy description, they no longer form an
estimate of the Q-function. We now view them simply as a parameterization of the policy.
To be able to apply policy search methods for such a policy representation, we must
address two additional issues: First, to act according to our pShfyax(a | x, Q"),
agents must coordinate to sample an action according to the soft-max distribution in Equa-
tion (11.16). Second, for gradient ascent purposes, we need an efficient method for com-
puting the derivative of our stochastic poliepftMax(a | x, Q%) with respect to the pa-
rametersw.

11.3.3 Sampling from a multiagent soft-max policy

The standard approach for sampling from a soft-max policy at somesststéo com-

pute the value of the numerator for each actonThese values are then normalized, and

an action is chosen at random according to these normalized values. Sampling from our
multiagent soft-max policy may appear problematic, because the size of the joint action
space makes such action enumeration procedure intractable. Fortunately, we can again use
a variable elimination-style algorithm on our coordination graph to sample our multiagent

policy.
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Instantiating the current stateinto () is again easy: each agent needs to observe only
the variables irObs[;] and instantiate eacfy;, asQ*, appropriately. At this point, we
need to generate a sample from a soft-magpffunctions that depend only on the action
choice. In order to illustrate the general sampling procedure [Costedl, 1999], we
use an example that follows the same structure as the one we used for action selection in
Example 9.1.2:

Example 11.3.2Following our earlier example, our task is now to sample from the poten-
tial corresponding to the numerator SbftMax(a | x, QV). Suppose, for example, that,
after instantiating the state, the individual agent’s Q-functions have the following form:

Q* = Q1(ay, a2) + Q2(az, as) + Qs(ar, az) + Qu(as, as),
and that we wish to sample from the potential function for

e Q5 (@) — Qi(a1,a2) ,Q2(az,a4) ,Q3(a1,a3) ,Q4(az,a4)

To sample actions one at a time, we will follow a strategy of marginalizing out actions until
we are left with a potential over a single action. We then sample from this potential and
propagate the results backwards to sample actions for the remaining agents.

Suppose we begin by eliminatiny. Agent 4 can summarize its impact on the rest of
the distribution by combining its potential function with that of agent 2 and defining a new
potential:

f4(a2, a3) = Z eQQ(a2:a4)€Q4(a3,a4)_
ay

The problem now reduces to sampling from
te(m,a2)€Q3(a1,a3)f4(a27 a3)7

having one fewer agent. Next, agent 3 communicates its contribution giving:

fsar, az) = Z P05 £, (ay, az).
as
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SUMOUT (€, 4;)
1€ ={ey,...,en} is the set of functions.
/I A; variable to be summed out.
LET f =TI ¢
IFA = 0:
LETe=f.
ELSE:
DEFINE A NEW FUNCTIONe = > f; NOTE THAT
SCOPE[e] = Ul SCOPE[e;] — { X}
RETURN e.

Figure 11.3: SuMOUT operator for variable elimination, procedure that sums out a vari-

able A; from functions[ [, e;.

Agent 2 now communicates its contribution, giving

f2(a1) — Z te(aLaz)fg(al’ az).
asz

Agent 1 can now sample its action from the potenitéh;) o« f»(a;). Let us denote

this sample by:;.

We can now sample actions for the remaining agents by reversing the direction of the
messages and sampling from the distribution for each agent, conditioned on the choices of
the previous agents. For example, when agent 2 is informed of the action selected by agent

1, agent 2 can sample actions from the distribution:
P(as]al) x te(aT’GZ)fg(aT, as).

After agent 2 samples actiarj, agent 3 can sample from:

Plas|at,ab) oc e@3(a193) £, (a% ag).

Finally, after agent 3 samples actiefj, agent 4 can sample its actiarj according to:
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SAMPLEOUT (&, A4))
1€ ={e,...,en} is the set of functions that depend only dp

/I A; variable to be sampled.
RETURN A SAMPLE a; DISTRIBUTED PROPORTIONALLY To]'[jL:1 €j.

Figure 11.4: SAMPLEOUT operator for variable elimination, procedure that returns a sam-
ple of the variable4, distributed according t], .

* *
P(ay|al, a3, a3) e@2(a3,04) (Qalag,aa) g

The general algorithm has the same message passing topology as our original action
selection mechanism. The only difference is the content of the messages: The forward pass
messages are probability potentials and the backward pass messages are used to compute
conditional distributions from which actions are sampled. The generic variable elimina-
tion algorithm in Figure 9.2 can be used to obtain a centralized version of this algorithm,
all we need to do is use different operators, as in the example above. Specifically, we
substitute theELIM OPERATORWiIth SUMOUT from Figure 11.3, andARGOPERATOR
with SAMPLEOUT from Figure 11.4. The distributed version is analogous to the one in
Figure 9.4. The correctness of this approach is guaranteed by the correctness of variable
elimination:

Theorem 11.3.3For any orderingO on the variables, th& RGVARIABLE ELIMINATION
in Figure 9.2 procedure produces samples from the soft-max policy:

ARGVARIABLE ELIMINATION ({e7@F, ..., e7@}, ©, SUMOUT, SAMPLEOUT)
o1 2, Q) (x.a)
S et Sr@ eb)”
= SoftMax(a | x,Q"),

~Y

for each statex.
Proof: see for example the book by Lauritzen and Spiegelhalter [1988].

As with the basic variable elimination procedure in Section 4.2, the cost of this sampling
algorithm is linear in the number of new “function values” introduced, or in our multiagent
coordination case, only exponential in tinduced widthof the coordination graph.
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11.3.4 Gradient of a multiagent policy

The next key operation in our multiagent policy search framework is the computation of the
gradient of a multiagent soft-max policy function, a key operation RE&NFORCEStyle
[Williams, 1992] policy search algorithr.

First, recall that the globa)-function is the sum of the loc&);-functions:
g .
Q"(x,a)=> Q)7 (x.a),
j=1

and our soft-max policy is given by:

ot X5 Q)7 (x,a)
Zb e% >k Q‘;k(x,b) .

SoftMax(a | x, Q") =

As discussed in Section 11.3.1, most policy search approaches require us to compute
the gradient of the log of the stochastic policy. Consider the derivative of the log of our
soft-max policy with respect to a particular parametee w; of agent’s local Q-function:

o ) 6% Zj Q‘;VJ (x,a)
In [SoftM W) = 1 - :
awi 1 [ o aX(a ‘ X, Q )] awl n Zb e% Y@ k(x,b)
0 1 Wi 0 1 Wi
— 1 *Zij (xa) _ —1 TZ]‘QJ‘ (va)'
w; ner awi n ; €
(11.17)
a
Using the fact that&% Inf= 6“;:'f, Equation (11.17) becomes:
1y Wi x,b)
9 w 0 1 Wi b a?uieT 257
(‘9wz~ In [SoftMax(a | x, Q%) = ST > Qr(x.a) - ISR
k Db € ’

(11.18)

IMost policy search algorithms are of this style.
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MULTIAGENTPOLICYDERIVATIVE (QY, T, a*, i,w;,Z(x),0)
QY ={QY*,...,Qy "} is the set of local Q-functions.
/I T is the temperature parameter.
/I a* is the current action.
/I i is the agent we are considering.
Il w; is the parameter we are differentiating.
Il Z(x) is the partition functior (x) = 37, e X4 Qi(P:Wi) computed at state: .
/I O stores the elimination order.

/l Return the derivative®- In [SoftMax(a | x,Q")] computed at actioa*.
/ Collect set of functions to be summed to compute numerator of the second term in the righthand
side of Equation (11.19).
LET F = {et QD) o7Qs7(xb) 19QYi(x,b)}.
LET Num = VARIABLEELIMINATION (F,0, lSUMOUT).
/I We can now compute the desired derivative.
LET §(a) = 772 Qi(x,a,w;) — .
RETURN DERIVATIVE §(a*).

Figure 11.5: Procedure for computing the derivative of the log of our multiagent soft-max
policy: ;2- In [SoftMax(a | x, @")], computed at action*.

Using the fact thatd%ief = ef%, and the linearity of derivatives, Equation (11.18) be-
comes:

5 1 0 :
awi ln [SoftMaX<a ’ X, QW)] = ?811)2 Q;N7 (X; a)
D, et 5L 0 guix b)

o
Zb/ 6% Zj Qj ’ x,b7)

(11.19)

The first term in the righthand side of Equation (11.19) is just the local derivative of the
agent’s local Q-function. The denominator of the second term is the partition function of
our multiagent soft-max policy:

Z(x) =3 et 2@ (xb), (11.20)
b/

computed at state. We obtain the partition function as a side product of our efficient
sampling algorithm using the variable elimination algorithm in Figure 9.2.



11.3. COORDINATION IN DIRECT POLICY SEARCH 215

Therefore, the only term that remains to be computed is the numerator of the second
term in the righthand side of Equation (11.19). We can again use a variable elimination
procedure to compute this term. Specifically, this numerator can be rewritten as:

Eaj%a% Zvi(X,a)IZIe%Q;Vj(X’a). (11.21)
Note that the term inside the sum is the product of restricted-scope functions: the product of
7-Q(x, a), whose scope iScope[Q], with eache™?” ) whose scope iscope(Q)].
Thus, computing the numerator in Equation (11.21) is equivalent to computing the sum
over all action of a product of functions, which is exactly a partition function. This task
can again be performed efficiently using variable elimination, analogously to the sampling
method that relies on variable elimination.

Figure 11.5 shows the complete algorithm for computing the derivative of the log of
our multiagent soft-max policy with respect to a particular parametefhe derivation in

this section proves the correctness of this procedure:

Theorem 11.3.4For any ordering® on the variables, th&1ULTIAGENTPOLICY DERIVA-
TIVE procedure computes the derivative of the log of the soft-max policy with respect to
parameterw; € w; of agent’si local Q-function:

MULTIAGENTPOLICYDERIVATIVE (Q*, T, a*, i, w;, Z(x),0) =

0 -In [SoftMax(a | x, Q)]
computed at actiom*, for each statex, where the partition functior¥ (x) is defined in
Equation (11.20). 1

If we want to compute the derivative of the log of the policy with respect to every
parametetv € w using the algorithm in Figure 11.5, we would be applying variable elim-
ination once for each parameter. However, by using the clique tree algorithm [Lauritzen &
Spiegelhalter, 1988], it is possible to compute all of these derivatives in time equivalent to
about two passes of variable elimination. Specifically, we would start by building a clique
tree representation for our soft-max policy, conditional on the current stabdow note
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that we can interpret the second term in the righthand side of Equation (11.19) as the ex-
pectation of%a% i(x, a, w;) with respect to our soft-max policy. Given a clique tree, this
expectation can be computed efficiently by just using the calibrated potential in a clique
that includes the agent variables Agents[Q;], without any further variable elimination
steps.

11.3.5 MultiagentREINFORCE

In the previous sections, we presented efficient algorithms for sampling and computing the
gradient of a multiagent soft-max policy. We can now revisitrizgNFORCE described in
Section 11.3.1, to obtain a new collaborative multiagent policy search algorithm, where the
policy represents explicit correlations between the actions of our agents.

In Figure 11.5, we present an efficient algorithm for computing the derivative of the
log of our multiagent soft-max policy. We can now use this algorithm to compute an
REINFORCEStyle approximation to the gradient of the value of our multiagent policy using
the formulation in Equation (11.15). Using this estimate of the gradient, we can use any
of the standard gradient ascent procedures to optimize the parameters of our multiagent
soft-max policy.

We have presented a centralized version of our policy search algorithm. As in the case
of Q-learning, a global error signal must be shared by the entire set of agents in a distributed
implementation. Apart from this, the gradient computations and stochastic policy sampling
procedures involve a message passing scheme with the same topology as the action selec-
tion mechanism. We believe that these methods can be incorporated into any of a number
of policy search methods to fine tune a policy derived by a value function method, such as
Q-learning or by LSPI.

11.4 Empirical evaluation

We validated our coordinated RL approach on two domains: multiagent SysAdmin and
power grid [Schneideet al.,, 1999].
We first evaluated our multiagent LSPI algorithm on the multiagent SysAdmin problem
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MULTIAGENTREINFORCE(Q, w, T, L, Trhaz, O)
1Q={Q,...,Q,} isthe set of local Q-functions parameterizedvay
/I w is the current value of the parameters.
/I T is the temperature parameter.
/I L is the number of trajectories.
/I Return an unbiased estimate of the gradient of our multiagent soft-max policy:

VwV softMax(alx,Qw)-

/I For each trajectory.
ForR I=1T0L:
/I Initialization.
LET Ai(w)=0.
LET g§;(w)=0.
SAMPLE INITIAL STATE x(0),
/I For each step.
FOR t=0TO Thaz:
/I Sample action from soft-max policy, and get partition function for free.

t
LET [a®), Z(x®))] = MULTIAGENT SOFTMAX POL|CY({e%Q’f(t> feees e+ )}, 0)].
/I Execute action, and observe reward and next state.
EXECUTE ACTION a®), AND OBSERVE REWARDr(Y) AND NEXT STATE x(t+1),
/I Compute the derivative of the log of the policy for each parameterw.
FOR EACH AGENT AND EACH PARAMETERw; € W;, LET:

81(w;) = 6;(w;)+MULTIAGENTPOLICY DERIVATIVE (Q*, T, a® . i, w;, Z(x), O).
/I Update the gradient of the value.

LET A(w) = A(w) +~'r§(w), FOR EACH PARAMETERW € W.
RETURN GRADIENT A(w) = + >, Ay(w).

Figure 11.6: Procedure for the multiag&m®iNFORCEalgorithm for computing an estimate
to the gradient of the value of our multiagent soft-max policy.
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for a variety of network topologies. Figure 11.7 shows the estimated value of the resulting
policies for problems with increasing number of agents. For comparison, we also plot

the results for three other methods: our planning algorithm using the factored LP-based
approximation (LP); and the algorithms of Schneietieal. [1999], distributed reward (DR)

and distributed value function (DVF). Note, the LP-based approach is a planning algorithm,
i.e., uses full knowledge of the (factored) MDP model. On the other hand, coordinated RL,

DR and DVF are all model-free reinforcement learning approaches.

We experimented with two sets of multiagent LSPI basis functions corresponding to
the backprojections of the “single” and of the “pair” basis functions in Section 9.3. For
n machines, we found that aboit0n samples are sufficient for multiagent LSPI to learn
a good policy. Samples were collected by starting at the initial state (with all working
machines) and following a purely random policy. To avoid biasing our samples too heavily
by the stationary distribution of the random policy, each episode was truncatedtaps.

Thus, samples were collected froffin episodes each on steps long. The resulting
policies were evaluated by averaging performance @ueuns of 100 steps. The entire
experiment was repeatéd times with different sample sets and the results were averaged.
Figure 11.7 shows the results obtained by LSPI compared with the results of LP, DR, and
DVF. We also plot the “Utopic maximum value”, a loose upper bound on the value of the
optimal policy.

The results in all cases clearly indicate that multiagent LSPI learns very good policies
comparable to the LP approach using the same basis functionsjthautany use of the
model. Note that these policies are near-optimal, as their values are very close to the upper
bound on the value of the optimal policy. It is worth noting that the number of samples
used grows linearly in the number of agents, whereas the joint state-action space grows
exponentially. For example, a problem with agents has ovel05 trillion states and32
thousand possible actions, but required anl90 samples.

We also tested our multiagent LSPI approach on the power grid domain of Schneider
et al. [1999]. Here, the grid is composed of a set of nodes. Each node is either a Provider
(a fixed voltage source), a Customer (with a desired voltage), or a Distributor. Links from
distributors to other nodes are associated with resistances and no customer is connected
directly to a provider. The distributors must set the resistances to meet the demand of the
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Figure 11.7: Comparing multiagent LSPI with factored LP-based approximation (LP), and
with the distribute reward (DR) and distributed value function (DVF) algorithms of [Schnei-

deret al, 1999], on the SysAdmin problem. Estimated discounted reward per agent of
resulting policies are presented for topologies: (a) star with “single” basis; (b) star with
“pair” basis; (c) ring of rings with “single” basis.
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Figure 11.8: Comparison of our multiagent LSPI algorithm with the DR and DVF algo-
rithms of [Schneideet al, 1999] on their power grid problem: average cost over 10 runs
of 60000 steps an@h% confidence intervals. DR and DVF results as reported in [Schneider
et al, 1999].

customers. If the demand of a particular customer is not met, then the grid incurs a cost
equal to the demand minus the supply. At every time step, each distributor can decide
whether to double, halve or maintain the value of the resistor at each of its links. If two
distributors are linked, they share the same resistance and their action choices may conflict.
In such case, a conflict resolution schema is appleed, if distributor 1 is connected

to distributor 2, and distributor 1 wants to halve the resistance and distributor 2 wants to
double it, then the value is maintained. We refer to the presentation of Schetider
[1999] for further details.

Schneideeet al. [1999] proposed a set of algorithms, including DR and DVF, and ap-
plied them to this problem. In their set up, each distributor observes a set of state variables,
including the value of the resistance at each of its links, the sign of the voltage differential
to the neighbors, etc; then, it makes a local decision for each of its links. We applied our
multiagent LSPI algorithm to the same problem with two simple types of state-action basis
functions: “no comm.”, which is composed of indicators for each assignment of the state
of the resistor and the action choice, with a totaldahdicator bases for each end of a
link; and “pair comm.”, which has indicator bases for each assignment of the resistance
level, action of distributoé and action of distributoy, for each pair(z, j) of directly con-
nected distributors2( indicators per pair). Thus, our agents observe a much smaller part
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of the state than those of Schneidg¢rml. [1999]. The quality of the resulting policies are
shown in Figure 11.8. Multiagent LSPI uséd, 000 samples with different sample sets

for each run. The multiagent LSPI results with the “no comm.” basis set are sub-optimal.
Although some of the policies obtained with this basis set were near-optimal, most were
close to random and the resulting average cost was high (with large confidence intervals).
However, the very simple pairwise coordination strategy obtained from the “pair comm.”
basis set yielded near-optimal policies. The DR and DVF agents must communicate during
the learning process, but not during action selection. Our “pair comm.” basis set requires
a coordination step in both steps. These agents incur a lower average cost than the DR and
DVF agents for all grids and observe a much smaller part of the state space.

11.5 Discussion and related work

We propose a new approach to reinforcement learntogrdinated RLIn this approach,
agents make coordinated decisions and share information to achieve a principled learning
strategy. Our method successfully incorporates the cooperative action selection mecha-
nisms described in Chapters 9 and 10 into the reinforcement learning framework to allow
for structured communication between agents, each of which has only partial access to the
state description. A feature of our method is that the structure of the communication be-
tween agents is not fixea priori, but derived directly from the value function or policy
architecture.

We believe our coordination mechanism can be applied to almost any reinforcement
learning method. In this chapter, we applied the coordinated RL approagHdarning
[Watkins, 1989; Watkins & Dayan, 1992], LSPI [Lagoudakis & Parr, 2001], and policy
search [Williams, 1992]. Witld)-learning and policy search, the learning mechanism can
be distributed; agents communicate reinforcement signals, utility values, and conditional
policies. In LSPI, some centralized coordination is required to compute the projection of
the value function. The resulting policies can always be executed in a distributed manner.
In our view, a batch algorithm, such as LSPI, can provide an offline estimate @p-the
function. Subsequently)-learning or direct policy search can be applied online to refine
this estimate. By using our coordinated RL method, we can smoothly shift between these
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two phases, in collaborative multiagent settings.

We evaluate our coordinated RL methods, comparing the results both to our planning
algorithm, and to other RL approaches. In these experiments, we reliably learned policies
that were comparable to the best policies achieved by our planning algorithm with full
knowledge of the model, and that were better than other state-of-the-art RL approaches.
The amount of data required scaled linearly with the number of state and action variables
even though the state and action spaces were growing exponentially.

Our coordinated RL experiments involved discrete state spaces. These domains were
chosen primarily to compare learning performance with our planning algorithm. However,
the methods discussed in this chapter will also apply to collaborative multiagent planning
problems in continuous state spaces.

Learning in the context of collaborative multiagent problems has also been widely ex-
plored in the past. Claus and Boutilier [1998] partition methodsimtiependent learners
(IL), where each agent learns to optimize ignoring the existence of other agenjsjrdand
action learners(JAL), where agents learn the value of their actions in conjunction with
other agents through coordination. The policy search method of Pesh&in[2000] can
be seen as an example of IL, as the gradient is decomposed into an independent term for
each agent. On the other hand, reward or value sharing methods, such as those of Schnei-
deret al. [1999] and Wolperet al. [1999], enforce some coordination between agents
when learning the parameters of the value function. The method of Sallans and Hinton
[2001], discussed in more detail in Section 9.4, requires an approximate action selection
step. Our method seeks to optimize the global Q-function or policy, through an efficient
distributed agent coordination mechanism. This optimization is achieved with our coordi-
nation graph and a particular choice of approximation architeatetea sum of local);’s
for each agent, where ea€h uses a linear architecture in multiagent LSPI, and éaatan
use any approximation architecture in multiagent Q-learning and multisF@NEORCE
Our empirical evaluation demonstrates that such coordination can significantly improve the
quality of the policies obtained. Our approach will, of course, be most advantageous when
the true@-function can be approximated reasonably by such a linear combination of local
@-functions defined over subsets of the agents.

In this part of the thesis, we developed a suite of algorithm for coordination, planning
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and learning in large-scale systems. We believe that these methods will provide a strong
foundation for solving complex real-world dynamic decision-making problems involving

multiple agents.
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Part IV

Generalization to new environments
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Chapter 12
Relational Markov decision processes

Most planning methods, including the ones presented thus far in this thesis, are designed
to optimize the plan of an agent in a fixed environment. However, in many real-world
settings, an agent will face multiple environments over its lifetime, and its experience with
one environment should help it to perform well in another.

Consider, for example, an agent designed to play a strategic computer war game, such as
theFreecraftgame shown in Figure 12.1 (an open source version of the poplalarafi®)
game). In this game, the agent is faced with many scenarios. In each scenario, it must
control a set of agents (or units) with different skills in order to defeat an opponent. Most
scenarios share the same basic elemeasaiurcessuch as gold and woodnits, such as
peasants, who collect resources and build structures, and footmen, who fight with enemy
units; andstructures such as barracks, that are used to train footmen. To avoid competitive
multiagent settings, as described in Chapter 1, we are assuming that the Freecraft controlled
enemies are part of the environment and do not respond strategically to our policy choice.
Each scenario is composed of these same basic building blocks, but they differ in terms
of the map layout, types of units available, amounts of resources, etc. We would like the
agent to learn from its experience with playing some scenarios, enabling it to tackle new
scenarios without significant amounts of replanning. In particular, we would like the agent
to generalize from simple scenarios, allowing it to deal with other scenarios that are too
complex for any effective planner.

The idea of generalization has been a longstanding goal in traditional planning [Fikes

226
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Figure 12.1: Freecraft strategic domain with 9 peasants, a barrack, a castle, a forest, a
gold mine, 3 footmen, and an enemy; executing the generalized policy computed by our
algorithm.

etal, 1972], and later in Markov decision processes and reinforcement learning research [Sut-
ton & Barto, 1998; Thrun & O’Sullivan, 1996]. This problem is a challenging one, because

it is often unclear how to translate the solution obtained for one domain to another. MDP
solutions assign values and/or actions to states. Two different M@Bst(vo Freecraft
scenarios), are typically quite different, in that they have a different set (and even number)

of states and actions. In cases such as this, the mapping of one solution to another is not
obvious.

Our approach is based on the insight that many domains can be described in terms of
objects and the relations between them. A particular domain will involve multiple objects
from several classes. Different tasks in the same domain will typically involve different sets
of objects, related to each other in different ways. For example, in Freecraft, different tasks
might involve different numbers of peasants, footmen, enemies, etc. We therefore define
a notion of arelational MDP (RMDP) based on therobabilistic relational model (PRM)
framework of Koller and Pfeffer [1998]. An RMDP for a particular domain provides a
general schema for an entire suite of environments, or worlds, in that domain. It specifies
a set of classes, and how the dynamics and rewards of an object in a given class depend on
the state of that object and of related objects.

We use the class structure of the RMDP to define a value function that can be general-
ized from one domain to another. We begin with the assumption that the value function is
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approximated with our factored value function representation. Thus, the value of a global
Freecraft state is approximated as a sum of terms corresponding to the state of individual
peasants, footmen, gold, etc. We then assume that individual objects in the same class
have a very similar value function. Thus, we define the notionass-based value func-

tion, where each class is associated wittlass value subfunctiorll objects in the same

class have the value subfunction of their class. The overall value function for a particular
environment is the sum of value subfunctions for the individual objects in the domain.

A set of value subfunctions for the different classes immediately determines a value
function for any new environment in the domain, and can be used for acting. Thus, we can
compute a set of class subfunctions based on some a subset of environments, and apply
them to a new environment without replanning for it.

In addition to a computer game, there are many other domains where this relational
framework could be applied. In Chapter 1, we describe a few such application domains. For
example, in manufacturing settings, modern factories are often composed of cells, where
each cell is of one of a few “types”, or classes in our relational model. In sensor networks, a
large-scale sensing task is performed by a large collection of a few types of sensors. These
tasks could potentially be addressed effectively using relational MDPs to generalize from
small scenarios to the large-scale ones required in practice.

12.1 Relational representation

A relational MDP defines the system dynamics and rewards at the level of a template for
a task domain. Given a particular environment within that domain, it defines a specific
factored MDP instantiated for that environment.

12.1.1 Class template

As in the probabilistic relational mode(PRM) framework of Koller and Pfeffer [1998],
the domain in a relational MDP is defined viaeéhemahat specifies a set abject classes

C = {Cy,...,C.}. Each clasg” is associated with a set atate variablesY[C] =
{C.X4,...,C. X} that describe the state of an object in that class. As in a factored
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MDP, each state variabl€. X has adomainof possible value®om[C.X]. We define
X¢ to be the random variables defining the state of an object,ine., the assignment

to the state variable&’[C] of classC'. Each cell is of one of a few “types”, or classes in
our relational model. For each class, the schema also specifies aastoof variables
A[C] = {C.Ay,...,C.A,}. Each action variablé€’. A; can take on one of several assign-
mentsDom[C.4;], and we useA . to define the set of possible assignments to all action
variables of clas§’.

Example 12.1.1 (Freecraft classesJ he classes in our Freecraft domain might include:
Peasant, Footman, Resource, etc. The clas®easant may have a state variable Task
whose domain i®om[Peasant.Task = {Waiting, Mining, Harvesting, Building and a
state variable Health whose domain has three values, indicating the peasant’s health level.
In this case Xpeasant WoUld haved - 3 = 12 assignments, one for each combination of
values for Task and Health.

Additionally, a peasant can decide to collect resources, by mining or harvesting wood,
or to build a structure. Thus, the peasant cl&sasant is associated with a single action
variable whose domain Bom|[Peasant.A] = {Wait, Mine, Harvest, Builf. 1

12.1.2 Links

The schema also specifies a seliks L[C] = {L, ..., L;} for each clas§’ representing
links between objects in the domain. Each lifik. has arangep[C.L] = C’, indicating
that an object of clas§' is linked to one object of class’. In a more complex situation, a
link may relate a clas§’ to many instances of a claé8 simultaneously. We denote such
aset linkby p[C.L] = SetOf{C"}, i.e., every object of clas€’ is linked to zero, one, or
(possibly) many objects of clags.

Example 12.1.2 (Freecraft links) In our Freecraft example, a barrack can be built by
a peasant if enough resources are available. Thus, objects of Blassck might be
linked to Peasant objects —p[Barrack .BuiltBy] = Peasant. In addition a barrack is
linked to two instances of the resource claggBarrack.MyWood = Resource, and
p[Barrack .MyGold = Resource.
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The relationship between footmen and enemies is more complex, as multiple footmen
can attack an enemy at same time. In this case, an object of thekrlassy may be linked
to multiple objects of the clag®otman, which we denote by|[Enemy.My_Footmenh =
SetOf {Footman}. 1

12.1.3 A world

A particular instance of the schema is defined viaald w, specifying the set of objects
of each class, and the links between them. For a particular worlde useO[w][C] to
denote the objects of clagg andO[w] to denote the total set of objectsdn A statex of
the worldw at a given point in time is a vector defining the states of the individual objects
in the world. We usex, for an objecto to denotex|[X,], i.e., the instantiation irx to the
state variables of objeet Similarly, an actiora in the worldw definesa,, the assignment
to the action variables of objeat

The worldw also specifies the domain of possible values of the links between objects.
Thus, for each linkC.L, and for eactv € O[w][C], w specifiesDom,[o.L], the set of
possible values af.L. Each value./ € Dom,[o.L] specifies a set of objecté € p[C.L].
We assume that the domain of vall&sm,, [0. L] is fixed throughout time, but the particular
valueo./ of the link may change.

Example 12.1.3 (Freecraft world) Consider a Freecraft scenario containing 2 peasants,

a barrack, and a gold mine. In order to specify a world for this scenario, we would first
define two instances of claBeasant, which we denote b§)|w][Peasant] = {Peasantl
Peasant®, an instance of the barrack class, denoted®jw|[Barrack] = {Barrack3,

and, finally,O[w][Gold] = {Gold1}. If Peasantls responsible for building the barrack,

we would specify the linBarrack1BuiltBy = Peasantlwhose domain has a single value,
thus does not change over time. We describe a Freecraft domain with a changing relational
structure later in this chapter. &

12.1.4 Transition model template

This section presents the basic elements forming the relational representation of the transi-
tion model.
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Class transition model:  The dynamics and rewards of an RMDP are also defined at the
schema level. Each claésis associated with elass transition modeP® that specifies the
probability distribution over the next state of an objeah classC, given the current state

x, Of this object, the assignment to its action variakigsand the states and actions of all
of the objects linked to:

PYXL | Xo, Ao, Xer Aoy, -+ Xons Acr)- (12.1)

As discussed by Koller and Pfeffer [1998], in addition to depending on the state of linked
objectsL; € L]C], such arelational representation can recursively include dependencies on
objects linked to objects if;, e.g, objectsinL;.L;, for L; € L][C"] suchthap[C.L;] = C’,
as long as the recursion is guaranteed to be finite. We refer the reader to the presentation of
Koller and Pfeffer [1998] for further detalils.

In general X/, is a set of state variables. We can thus repregéntompactly using
a dynamic decision network (DDN), as in Section 8.1.1. In the graph for this DDN, the
parents of each state varialde X! for classC' will be a subset of the state and action
variables ofC' and of the objects linked to this class, which we denote by:

Parents(C. X)) C {X[C], A[C], X[C.L,], A[C.Ly], ..., X[C.Li], A[C.L]]}. (12.2)
The conditional probability distribution (CPD) far. X! will thus be given by:
POXi(C.X] | Parents(C.X))). (12.3)
Using this factored representation, the class transition probabilities become:

PYXy | Xey Ac, Xen,, Aoy - Xew, Acr,) = [ [ POY(C.X] | Parents(C.XT)).

Z (12.4)
Example 12.1.4 (Freecraft class transition model)n Freecraft, a peasant can choose to
build a barrack. If there are enough resources (gold and wood), this barrack will be built

with high probability in the next time step. Thus, the transition model for the status of a
barrack in the next time stefarrack.Status depends on its status in the current time
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step, on the task performed by any peasant that could buiBhitréck .BuiltBy. Task), and
on the amount of wood and golds

Aggregators: The transition model for a clagsis conditioned on the state of the objects
in C.L;. In general, whemw[C.L;] = SetOf{C"}, L; links an object of clas§’ to a set of
objects of clasg”’ (e.g, the set of footmen that can attack an enemy). Thus, our class
template must provide a compact specification of the transition model that can depend on
the state of an unbounded number of variables. We can deal with this issue using the idea of
aggregationKoller & Pfeffer, 1998]. Note that every objeotin C.L; belongs to the same
classC’. Thus, these objects have the same set of state and action variables. Intuitively,
aggregation summarizes the state of the objeclisiked to an objecb of classC. The
transition model will then depend on this summary, rather than on the state of every object
in C'.L; in isolation.

More specifically, we define @ounting functiorthat counts the number of objects in a
particular state:

Definition 12.1.5 (counting function) LetB = {o4, ..., 0, } be a set of objects of a class
C'. Also, letY C {X[C],.A[C]} be a subset of the state and action variables of cl@ss
We define theounting functior for some assignmegtto Y in a world statex and action

a by:

m

i(B,x,a,y) = Z]]‘((XONaOi)[Y] =),

=1
where(x,,, a.;,)[Y] is the instantiation to the variables ¥ in (x,,, a.; ), the state and
action of objecb; defined inx anda. 1

Using this notion of aggregation we can formalize the class transition probabilities in
Equation (12.1) for cases wheféL; is a set link to elements of clag$. In such cases,
the probability of X, will depend ont(C.L;,x,a,y), wherey is an assignment to the
variables inX¢/, Ac.. For simplicity of exposition, this notion of aggregation is only a
special case of the one defined by Pfeffer [2000]. The more general notion will also apply
in our relational MDP framework.

Example 12.1.6 (Freecraft aggregation)in our Freecraft example, the transition model
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for an enemy’s health depends on an aggregation of the footmen attacking it. Specifically,
the probability that the assignment Bhemy .Health transitions from Healthy to Dead
depends on:

t (Enemy .My _Footmen x, a, Footman.Health= HealthyA Footman.Action= Attack) ,

that is, thenumberof footmen inEnemy.My_Footmen who are healthy and attacking in
the current setting to the state variablesand to the action variables. 1

Dynamic relational structure:  The class-level transition model in Equation (12.1) is
defined in terms of the link§'. ;. As discussed in Section 12.1.3, in any particular world
a link o.L for objecto may take one of many values Idom,[o.L]. Thus, the relational
structure of the world may potentially change over time. To simplify our presentation, we
assume that this evolution is deterministic. Specifically, at every time step, the current
(joint) state and action will uniquely specify the particular vadueof o. L.

To allow agents or state variables to affect the evolution of links, we define the notion
of a selector variable:

Definition 12.1.7 (selector variable)If a variable B of classC' is a selector variable
C.B = Selector [C".L], for some linkC".L; then, in a worldw, the domain ob.B, where
o € O[w][C], is given by:

Dom|o.B] = Dom,,[0".L],

for someo’ € OJw][C’]. This instantiated selector variable is denoted by
0.B = Selector,[0’.L]. 1

In other words, the domain of a variaklg3 will be the domain of possible values of a link

o'.L of some (potentially different) objeet. Note that both state and action variables can

be selectors in this formulation. Using a selector action an object can, for example, choose
which object it will influence in the next time step. Such settings include a computer
network, where a machine can choose to send packets to one of a few other machines, and
Freecraft, where a footman can choose to attack one of several enemies.
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To simplify our models, we assume that an object can only have a selector variable
over its own links or the links of related objects. Specifically;,.i®8 = Selector,[0’.L] we
assume that either = o/, oro € Dom,[0o’.L]. For example, a computer selecting which
machine to receive packets from is an example whete o', as the machine is selecting
the computers that will influence its state. In Freecratft, if we allow a footman to select an
enemy to attack, we are considering the second easeDom,[0o".L], as the footman is
setting an object that influences this enemy. This restriction ensures that the links of each
objecto can only be influenced by its own state and action, or by the state and action of
objects inDom,,[o.L].

Returning to our dynamic relational structure, we assume that the value of a link is
deterministically specified by each state and action. Specifically, for each.linkthe
valueo./ at some time step will be deterministically specified by objeanhd the objects in
Dom,,[o.L]. We will not introduce further notation to represent the actual function specify-
ing the valuen./ of the link. We will simply assume that objects linked to every object
in Dom|o.L], and that our CPD will select the specific target according to the current state
and action. We can view this formulation as a form of context-specific structure, where
the context, specified by the current action and state, defines which linked abjects
influenceo in the next time step.

Pfeffer [2000] defines relations as first class objects, and thus considers uncertainty
about the target of a link. Using his formulation, we could define a more general notion
of relations that change over time. However, such models could significantly increase the
computational cost of our algorithm.

12.1.5 Reward function template

Finally, we must also define rewards at the class level. We assume for simplicity of notation
that rewards are associated only with the states of individual objects; adding dependencies
on linked objects is straightforward. We define a reward funcit6itX ¢, A) that repre-

sents the contribution to the reward of any objeaf'inWWe assume that the reward fach
objectis bounded byr° _, or equivalently,

max?

o
Rma:p

> RC<Xc,ac) >0, Vx¢c € Xg, Vag € Ag, VO € C.
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Example 12.1.8 (Freecratft class reward function)in Freecraft, we may have a reward
function associated with thEnemy class that specifies a reward of 10 if the state of an
enemy object is Dead:

10, if Enemy.Health= Dead

RE™™ (Enemy Health) = _
0, otherwise.

More elaborate models may include more global reward functions; for example, the player

may only receive a reward when all enemies are dead. Although such reward functions can
be represented compactly using a relational model, the efficiency of our planning algorithm

can be hindered by factors that depend on many objects simultaneously.

12.2 From templates to factored MDPs

Given a worldw, the RMDP representation uniquely definegraundfactored MDPII,,
whose transition model is specified (as usual) as a dynamic decision network (DDN) [Dean
& Kanazawa, 1988]. The random variables in this factored MDP are the state variables of
the individual object®..X, for eacho € O[w]|C] and for eachX € X'[C]. Similarly, the
action variables will be. A, for eacho € O[w][C] and for eactd € A[C].

Next, we must define the transition graph associated with the ground DDN of our fac-
tored MDP. This graph specifies the dependence of the variables at #imeon the vari-
ables at time. Consider the parents of a state variabl¥/, whereo is an instance of class
C,i.e, 0 € Olw][C]. In Equation (12.2), our template for the class transition probabilities
defines the set of parents for.X/, the class-level state variable corresponding.tg;.
Our worldw specifies the assignment to the link&”], i.e., the objects)’ that are linked
to 0. Once we set these assignments to the links into Equation (12.2), we obtain the set of
parentsParents(o.X!) of 0.X in our ground DDN.

A template for the conditional probability distribution (CPD) for the class state vari-
ableC. X! was specified at the class-level in Equation (12.3). Using this template, we can
specify the CPD fop. X :

PCXi(0.X! | Parents(0.X!)). (12.5)
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Example 12.2.1 (Freecraft ground DDN)In a Freecraft world with two peasants, the
random variables in the ground DDN include:

PeasantTask Peasantdask BarracklStatus etc.
The parents of the timee+ 1 variable Barrack1Statusare the time variables:

Barrackl1Status PeasantTrask Gold1Amount andVoodlAmount

The transition model is the same for all instances in the same class, as in Equa-
tion (12.1). Thus, all of the.Status variables for barrack objects share the same con-
ditional probability distribution. Note, however, that each specific barrack depends on the
particular peasants linked to it. Thus, the actual parents in the DDN of the status variables
for two different barrack objects can be different. That is, the parents of the status vari-
able of a particular barrack will only include the task variables of peasants linked to this
barrack. &

The reward function in our ground factored MDE, is simply the sum of the reward
functions for the individual objects:

R(x,a) =Y Y ROx[X,alA).
CeC 0cOw)[C]
In our simple Freecraft example, our overall reward function in a given state wilDbe
times the number of dead enemies in that state.

It remains to specify the actions in the ground MDP. The RMDP specifies a set of
possible action variables for every object in the world. In a setting where only a single
action can be taken at any time step (single agent case), the agent must choose both an
object to act on, and which action to perform on that object. In this case, the set of actions
in the ground MDP is simply the union of the possible actions for each object:

U Dom[A,].
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Footman < Enemy

. : ! my_enemy Health H
&>
Count

Figure 12.2: Schema for Freecraft tactical domain.

In a setting where multiple actions can be performed in parallel (say, in a collaborative
multiagent setting), it might be possible to perform an action on every object in the domain
at every step. Here, the set of actions in the ground MDP is a vector specifying an action

) Dom[A,].

Intermediate cases, allowing degrees of parallelism, are also possible. For simplicity of

for every object:

presentation, we focus on the multiagent case. Freecraft is an example of a multiagent
problem, where an action is an assignment to the action of every unit in the game.

Example 12.2.2 (Freecratft tactical domain)Consider a simplified version of the Freecraft
problem, whose schema is illustrated in Figure 12.2, where only two classes of units par-
ticipate in the gameC = {Footman, Enemy }. Both the footman and the enemy classes
have only one state variable each, Health, with domain:

Dom[Health = {Healthy, Wounded, De&d

The footman class contains one single-valued lipfEootman.My_Enemy = Enemy.
Thus, the transition model for a footman’s health will depend on the health of its enemy:

Footman /
P (XFootman | XFootman XFootman.My,Enem))’

that is, if a footman’s enemy is not dead, then the probability that a footman will become
wounded, and eventually die, is significantly higher.
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Figure 12.3: Resulting factored MDP for Freecraft tactical domain for a world with 2
footmen and 2 enemies.

A footman can choose deterministically to attack any enemy. thus, each footman is
associated with an actiofRootman. A that selects the enemy it is attackirigpotman. A =
Selector [Enemy.My_Footme. The actual value dEnemy.My_Footmen at some pointin
time will be deterministically specified as the union of the footmen who select to attack
this enemy. As a consequence, an enemy could end up being linked to a set of footmen,
p|[Enemy .My _Footmen = SetOf{Footman}. In this case, the transition model of the
health of an enemy may depend on the number of footmen who are not dead and whose
action choice is to attack this enemy:

pEnemy (X/

Enem

y | Xenemy s f§ (Enemy.My_FootmenX, A, —Footman.Health= DeadA Footman.A = this Enemy) .

Finally, we must define the template for the reward function. Here there is only a reward
when an enemy is dea®="*"™ (Xenemy ).
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We now have a template to describe any instance of the tactical Freecraft domain.
In a particular world, we must define the instances of each class and the links between
these instances. For example, a world with 2 footmen and 2 enemies has 4 objects:
{FootmanlFootman2EnemylEnemy2. Each footman is linked to an enemy:

Footman1lMy Enemy= Enemyl and Footman2My Enemy= Enemy?2

Each enemy can potentially be linked to both footmenm,,o [EnemyIlMy_Footmen =
Domyyo[Enemy2My_Footmen = {{0}, {Footman3}, {Footman2, {FootmanlFootman32}.
At each time step the action choices of the two footmen will specify the actual value of these
links.

The template, along with the number of objects and the links in this spedfie()
world, yields a well-defined factored MDH,, g, as shown in Figure 12.3.1

12.3 Relational value functions

In our relational setting, the state space is exponentially large, with one state for each joint
assignment to the random variablex of every object €.g, exponential in the number

of units in the Freecraft scenario). In a multiagent problem, the number of actions is also
exponential in the number of agents. Thus, it is infeasible to represent the exact value
function for such problems, and we must resort to an approximate solution.

12.3.1 Object value subfunctions

We again address the problem of exponential growth in the value function representation
by using our factored linear value function, where the value function of a world is approxi-
mated as a sum d¢dcal object value subfunctior@ssociated with the individual objects in

the model. Here, we associate a value subfundtipwith every object inu. Most simply,

this local value function can depend only on the state of the individual oXjgcA richer
approximation might associate a value function with pairs, or even small subsets, of closely
related objects. Each object value subfuncfigrcan be further decomposed into a linear
combination of a set adbject basis functions
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Definition 12.3.1 (object basis function, object value subfunction)Anobject basis func-
tion h¢ for objecto is a functionh? : T, ; — R, whose scope&cope[h¢] = T, ;, is a subset
of the state variables of this object, and of related objects; formally, we have that:

To,i g {Xoa X‘O.L17 s 7X0.Ll}-
An object value subfunctiony, for objecto is a functionV, : T, — R, such that:

Vo(To) = Y hiwi(T,),

h? eBasis|o]

whereBasis[o] is the set of basis functions associated with objedthus, the scope a1,
is given by:
T, = Scope|V,| = U Scopelh{]. 1

h¢eBasis|o]

Given a set of local value subfunctions, we approximate the global value function as:

Vo(x) = D Vo(x[T,)). (12.6)

0€0(w]

Example 12.3.2 (Freecraft object value subfunctions)n our Freecraft example, the lo-

cal value subfunctioWgpemy1for enemy object Enemy1 might associate a numeric value
for each assignment to the variable Enentydalth. We may use a richer approximation for

the footman class, where the functib,otmanifor Footmanl might be defined over the
joint assignments of FootmarHealth and EnemyHealth, where Footmanily_Enemy=
Enemyl. We represent the complete value function for a world as the sum of the local value
subfunctions for the individual objects in this world. In our example wasle=(2vs2) with

2 footmen and 2 enemies, the global value function, shown in Figure 12.4(a), will be:

Vove (F1.Health E; .Health F,.Health E,.Health) =
VFootman1F1-Health E, Health) + Vepemy{E: - Health)+
VEootman2F2-Health E;.Health) + VEnemyéEg.Health).
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Figure 12.4: Relational value function representation in Freecraft tactical domain: (a) Fac-
tored value function in the object level for the= 2v=2 world; (b) lllustrative values of the

local object value subfunctions, objects of the same class have similar values; (c) Class-
based value subfunctions; (d) Class-based value function instantiatecvstheorld.
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12.3.2 Class-based value functions

As for any linear approximation to the value function, the factored algorithms presented
thus far in this thesis can be used to compute the coefficients of the object value subfunc-
tions efficiently. Although this approach provides us with a principled way of decomposing
a high-dimensional value function in certain types of domains, it does not help us address
the generalization problem: A local value function for objects in a worldbes not help

us provide a value function for objects in other worlds, especially worlds with different sets
of objects.

To obtain generalization, we build on the intuition that different objects in the same
class behave similarly: they share the transition model and reward function in the relational
MDP. Although they differ in their interactions with other objects, their local contribution
to the value function is often similar. Consider our Freecraft example:

Example 12.3.3 (Freecraft class-based value functionfonsider the Freecraft world in
Example 12.3.2. If we apply an approximate MDP solution algorithm to this problem, we
obtain the actual numeric values of each object value function, such as the ones illustrated
in Figure 12.4(b).

As every footman behaves in a similar manner in the game, the numeric values of
VFootman1@NdVEggtman2are very similar, as are the values B nemy1andVenemy?
We can thus define new subfunctions for each cl&ss;man for footmen, and/gnemy for
enemies, as shown in Figure 12.4(c). We call these new subfunatiass;based value
subfunctionsas they are defined for classes of objects.

We can now use our class-based value subfunctions to represent the value function of
the2v2 world, as shown in Figure 12.4(d), by:

Vove(F1.Health E; .Health F,.Health E,.Health) =
Vrootman (F1.Health E; . Health) + Venemy (E;.Health)+

(12.7)

Note that every object of the claBsotman uses the same value subfunctidoiman, but
every individual footman uses this subfunction with a different argument: the contribution
of Footmanl depends on FootmaHgalth and EnemyHealth, while the contribution of
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Footman2 depends on FootmaH2alth and EnemyPRlealth. Thus, despite the fact that
these two objects share the same class value subfunction, at every state their contribution
to the global value function may be different. For example, in a state where Footmanl is
alive and Footman2 is dead, the first object will have a higher contribution to the value
function than the second.

In Equation (12.7), we show that the class-based value subfunctions give us a global
value function for thevs2 world. Importantly, this class-based representation can also
give us a value function for any instance of the Freecraft tactical domain. Thus, we can
generalize the value function obtained in a world with 2 footmen and 2 enemies to a world
with V footmen andV enemies, without replanning:

Vv (F1.Health E;.Health . . ., Fy.Health Ey.Health) =

(12.8)

assuming FEnemy=E;. 1

This example illustrates our generalization approach: We restrict our space of value func-

tions by requiring that all of the objects in a given class share the same local value subfunc-

tion. We can then generalize this type of value function to any world in our domain.
Formally, we define &lass value subfunctiol- for each class, where eath is de-

fined by a linear combination aflass basis function¥c = Y, wSh{. We assume that

the parameterization of this class value subfunction is well-defined for every ebject

C. This assumption holds trivially if the scope of eath is restricted to state variables

in X[C], as every instance of clagscontains these variables. When the class basis func-

tions can also depend on the state of linked objects, we must define the parameterization

accordingly:

Definition 12.3.4 (class basis functions, class value subfunctior) class basis function
h for classC is a functionh{ : T¢,; — R, whose scopeScope[h{]| = T, is a subset
of the state variables of this class, and of related objects, formally, we have that:

Tei C{X[C], X[C.L1], ..., X[C.L]}.
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A class value subfunctio for classC' is a functionV¢ : T — R, such that:

Ve(To) = > wh{(Te),

h¢ eBasis[C]

whereBasis[C] is the set of basis functions associated with clds3hus, the scope of-
is given by:
Tc =ScopeVe] = | ) Scope[h{]. u

h{ eBasis[C]
As with the class transition model defined in Section 12.1.4, our class value subfunctions
require aggregators to be defined appropriately wign links an object of clas§’ to a
whole set of objects of clags’. Additionally, as with the transition model, class value
subfunctions can depend recursively on the state of objects linked to the objéctts; jn
that is, the objects ia’.L;, C.L;.L;, C.L;.L;.Ly, etc.

12.3.3 Generalization

Our class value subfunctions can be used to defalass-based value functi@pecific for
each worldu. This value function is represented as the sum of the class value subfunctions
instantiated for each object un

Vo) =" > Ve[T.), (12.9)
|

CeC ocOw][C

where T, is the scope of the class value subfunctidns instantiated with the specific
objects in the links defined by the world This value function definition depends both on
the set of objects in the world and (when local value functions can involve related objects)
on the links between them.

Importantly, although objects in the same class contribute the same class subfunction
into the summation of Equation (12.9), the argument of the function for an object is the
state of that specific object (and perhaps of its related objects). In any given state, the
contributions of different objects of the same class can differ. Thus, as illustrated in Ex-
ample 12.3.3, every footman has the same local value subfunction parameters, but a dead
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footman will have a lower contribution than one that is alive.

Therefore, if we compute the coefficients of the class basis functions, we obtain a set of
class value subfunctions that allow us to generate a value function for any aaorldur
domain.

12.4 Discussion and related work

In this chapter, we present the new framework of relational MDPs. This model seeks to
address a longstanding goal in planning research, the ability to generalize plans developed
for some set of environments to a new but similar environment, with minimal or no re-
planning. An RMDP can model a set of similar environments by representing objects as
instances of different classes, building on the probabilistic relational models of Koller and
Pfeffer [1998].

In order to generalize plans to multiple environments, we specify an approximate value
function in terms of classes of objects and, in a multiagent setting, classes of agents. If we
optimize the parameters of this class-level value function, we obtain a set of class value
subfunctions that allow us to generate a value function for any world in our domain.

In the next chapter, we present an algorithm that estimates these parameters from a set
of sampled environments, allowing us to generalize from these worlds to other worlds in
our domain, without replanning. In particular, we can generalize to larger worlds than we
can solve even with our factored approximate solution algorithms.



Chapter 13

Generalization to new environments
with relational MDPs

In the previous chapter, we defined relational MDPs, a framework that provides a general
schema for representing factored MDPs for an entire suite of environments, or worlds, in a
domain. It specifies a set of classes, and how the dynamics and rewards of an object in a
given class depend on the state of that object and of related objects. We also used the class
structure of the RMDP to define a class-based value function that can be generalized from
one domain to another.

In this chapter, we provide an optimality criterion for evaluating the quality of a class-
based value function for a distribution over environments, and show how it can, in principle,
be optimized using an LP. Unfortunately, this formulation requires an optimization over all
possible worlds simultaneously. The number of possible worlds is usually too large for this
approach to be feasible. Furthermore, if we need to consider all possible worlds, then we
will not be achieving the type of generalization we are seeking. To address this problem,
we also show how a class-based value function can be “learned” by optimizing it relative
to a sample of “small” environments encountered by the agent. We prove that a polyno-
mial number of sampled “small” environments suffices to construct a class-based value
function that is close to the one obtainable for the entire distribution over (arbitrarily-large)
environments. Finally, we show how we can improve the quality of our approximation by
automatically discovering subclasses of objects that have “similar” value subfunctions.

246
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13.1 Finding generalized MDP solutions

With a class-level value function, we can easily generalize from one or more worlds to a
new one. To do so, we assume that a single set of class value subfungtiams good
approximation across a wide range of wordsAssuming we have such a set of value func-
tions, we can act in any new world without replanning, as described in Section 12.3.2.
We simply define a world-specific value function as in Equation (12.9), and use it to act.

In order for our generalization approach to be successful, we must now optiinize
over an entire set of worlds simultaneously. To formalize this intuition, we assume that
there is a probability distributiof’(w) over the worlds that the agent encounters. We want
to find a single set of class value subfunctigis } - thatis a good fit for this distribution
over worlds. We view this task as one of optimizing for a single “meta-level” MQE.,
where nature first chooses a wotdand the rest of the dynamics are then determined by
the MDPII,,,.

More formally, the state space Of..., is:
{xo} U J{(w.x) : xe X, }.

The transition model is the natural one: From the initial stgtenature chooses a world
w according toP(w), and an initial state i according to some initial starting distribu-
tion PY(x) over the states in. The remaining evolution is then done according.te
dynamics:

P((w,x) [ x0) = P(w) Pj(x)

P((W,x) | (w,x),a) = { 0, WA w;

P,(x' | x,a), otherwise.

In our Freecraft example, nature will choose the number of footmen and enemies, and
define the links between them, which then yields a well-defined MQR, 11, c.
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13.2 LP formulation

The meta-MDHI,.,, allows us to formalize the task of finding a generalized solution to an
entire class of MDPs. Specifically, we wish to optimize the class-level parametéss for
not for a single ground MDPL,, but for the entire meta-level MDR,,,, .

13.2.1 Object-based LP formulation

Consider first the problem of approximate planning for a single worléds each world is

a factored MDP, we can address this problem using the LP solution algorithms presented
thus far in this thesis, the ones in Chapter 5 for the single agent case, and in Chapter 9 for
multiagent problems.

Variables:  As described in Section 12.3.1, the value function for a particular world is

=2 D wihi(x[Tu)).

0€0|w] h¢€cBasis|o]

represented by:

As for any linear approximation to the value function, the LP approach can be adapted to
use this value function representation [Schweitzer & Seidmann, 1985]. Our LP variables
are now the coefficients of our object basis functions for each object:

{w{ | Vh{ € Basis|o], Yo € O[w]}. (13.1)

In our Freecraft example, there will be one LP variable for each joint assignmenttéalth
andE, .Healthto represent the componentsi,otmant Similar LP variables will be in-

cluded for the components ¥&qgtman2 VEnemy1 @"dVEnemy?2
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Constraints:  As before, we have a constraint for each global statnd each global
actiona:

YooY wihix[To)) =

0€0|w] h{eBasis|o]

Z R°(x[X, +’yZP "| x,a) Z Z wihd(x'[To,']).

0€0[w] 0€0|w] h¢eBasis|o]

(13.2)

Objective function:  Finally, our objective function is to minimize:

DD wl Y aolte)hi(t), (13.3)

0€0|w] hfeBasis|o] to€T,o

where theobject state relevance weighig are simply:

- 3w

Xr~o[to]

andq,, are the state relevance weights 1oy.

This transformation has the effect of reducing the number of free variables in the LP to
n (the number of objects) times the number of basis functions in each object value subfunc-
tion. However, we still have a constraint for each global state and action, an exponentially-
large number. As described in the previous chapter, by using our RMDP formulation, the
MDP associated with each world in our domain is represented compactly by a factored
MDP. The structure of the DDN representing the process dynamics is often highly fac-
tored, defined via local interactions between objects. Similarly, the value functions are
local, involving only single objects or groups of closely related objects. Thus, we can
use our factored LP decomposition technique to obtain the coefficients of the object-based
value function. Often, the induced width of the underlying factored LP in such problems
is quite small, allowing our techniques to be applied very efficiently. This induced width
depend both on the structure of the relational MDP, and on the values of the relations in the
particular worldw. Thus, it is possible that a compact relational MDP may be instantiated
into a highly connected world, with large induced width. In such cases, we may exploit



250 CHAPTER 13. GENERALIZATION TO NEW ENVIRONMENTS WITH RMDPS

context-specific structure, if possible, or need to use additional approximation steps, such
as the approximate factorization proposed in Chapter 6 and the future directions discussed
in Section 14.2.3.

13.2.2 Class-based LP formulation

In the previous section, we show how our factored algorithms can be applied to optimize the
object-based value function for a single ground MDP. However, in order to generalize

to new worlds, we must optimize the class-level parametergfdor the entire meta MDP

Hmeta .

Variables: We can address the problem of optimizing the class-level value function by
using a similar LP solution to the one we used for a single world. The variables in the
class-based linear programre simply the weights of the class basis functions:

{wC | VAC € Basis|C], VC € C}. (13.4)

In our example, there will be one LP variable for each joint assignmdrfaatiman.Health
andEnemy.Healthto represent the components)af,oman for the footman class. Similar
LP variables will be included for the components)gf.emy. In the2vs2 world, the basis
functions forFootmanlandFootman2will use the parameters Meootman, and the ones for
EnemylandEnemy2will use the parameters Venemy-

Constraints:  Recall that our object-based LP formulation in Equation (13.2) for world

w had a constraint for each statec X, and each action vecter € A, in this world.

In the generalized solution, the state space is the union of the state spaces of all possible
worlds, plus the initial state,. Our constraint set fofl,.. will, therefore, be a union of
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constraint sets, one for each wotdeach with its own actions:

Ywe Q, Vxe X, Vae A,

> Y ) 2

CeC h¢ eBasis[C] 0€0[w

> R(x[X,)] +VZP xa)d > Y wfhf ([T, );

0€0|w] CeC h¢ eBasis[C] 0€O[W][C]
(13.5)

where the class-based value function for warl represented by:

=> > > wlh{(x[T,)). (13.6)

CeC h¢ eBasis[C] 0€OW][C]

It is important to note that, as each world is represented by a factored MDP, and we can
represent the constraints in Equation (13.5) compactly for each world using our LP decom-
position technique.

In principle, we should have an additional constraint for the new siate

V(x0) > R(xo) +7 Y Pw)PS(x)Vu(x), (13.7)

w,xeXy,
whereR(xy) = 0, and the value function for a world), (x), is defined at the class level
as in Equation (13.6). However, as Equation (13.7) is the only inequality involirg),
and the objective of our LP is to minimize (a weighted combination of) the values of the

states, we can eliminate this constraint by definitig,) to have as its value the right hand
side of Equation (13.7).

Objective function:  The objective function of our class-based LP has the form:

V(xo)+ > Y alw, x)Vu(x)

w xeXy,
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As before, we require that the state relevance weighkte positive and sum to 1. By
substituting the definition of(x,) from Equation (13.7), our objective function becomes:

> [alxo)yPw)PY(x) + aw, x)] V(%)

w,xeX,

To simplify this objective function, we assume that
a(xg) =1/2, and a(w,x) = P(w)/2 - a,(x),

for some set ofvorld-specific relevance weights, (x) > 0, such thad |y a,(x) = 1.
In this case, we can reformulate our objective as:

Y. PW)/2lyPI(x) + au(x)]V. (),

w,xeXy,

Given the form of this objective, i?’(x) > 0,Vx, a particularly natural choice for the
world-specific state relevance weights is;(x) = P%(x). Using this choice of weights,
which will continue to use in this chapter, the objective function becomes:

Minimize: HTV;P(@ Z PY(x)V,(x);

XGXUJ

or equivalently:

Minimize: HT”ZP(W)Z Y wf afw), (13.8)

CeC h¢ eBasis[C]

where theclass basis function relevance weights(w) for a worldw are given by

of W)=Y Y PIxh{ ([T, (13.9)

0€0[w][C] xeXy

In some cases, we can further simplify the definition of the class basis function rel-
evance weight{' (w). For example, if the initial state distribution is uniform, the basis
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functions are normalized to sum to one;, ... h{(t,;) = 1 (e.g, indicator basis func-
tions), and the size of the domain of each basis fundfityy| is the same for all objects
of classC', then we can simplify Equation (13.9) as:

of (w) = 19,

|T0,i|
where|O|w][C]| is the number of objects of clagsin world w.

In some models, the potential number of objects may be infinite, which could make
the objective function unbounded. To prevent this problem, we assume that the probability
P(w) goes to zero sufficiently fast, as the number of objects tends to infinity. To understand
this assumption, consider the following generative process for selecting worlds: first, the
number of objects is chosen accordingi@); then, the classes and links of each object are
chosen according t8(w; | £). Using this decomposition, we have tHatw) = P(f) P(wy |
£). The intuitive assumption described above can be formalized as:

Assumption 13.2.1 The probability that a worldv hasn objects is bounded by:
P(t=n) < fﬁ;ﬁe_/\ﬁ", Vn,

for somex; > 0, and); > 0. 1

If this assumption holds, the objective function becomes bounded, as the reward function
grows linearly with the number of objects, while the probability of a world decays expo-
nentially with this number. Note that the distributidi() over number of objects can

be chosen arbitrarily, as long as it is bounded by some exponentially decaying function.
If, for example, we choos@(#) to be an exponential distribution with parameterthen

Ay = kg = A, and the expected number of objects in a world would be

13.3 Sampling worlds

The main problem with the class-based LP formulation presented in the previous section is
that the size of the LP — the size of the objective and the number of constraints — grows
with the number of worlds, which, in most situations, grows exponentially with the number
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of possible objects, or may even be infinite. Furthermore, there may be worlds that are too
large to solve, even with our factored approximation algorithms. Finally, this formulation
would not fulfill our generalization goal, as we actually need to consider all possible worlds.
A practical approach to address this problem is@onplesome reasonable number of
“small” worlds, and solve the LP for these worlds only. The resulting class-based value
function can then be used for worlds that were not sampled, and even for worlds that are
too large to solve with our factored planning algorithms.

A straightforward approach would be to sample worlds from the distributiarn). Un-
fortunately, this may lead us to sample very large worlds, albeit relatively low probability
due to Assumption 13.2.1. To address this problem, we restrict our samplifig, (@),
the distribution over worlds with at mostobjects, which we define in the natural way:

P(w)
Zw’eQén P(w,)

Pop(w) = , Yw € Qg (13.10)
where(); is the set of worlds with exactlyobjects, and2<,, = [ J_, €2; is the set of worlds
with at mostn objects.

We will start by sampling a séP-,, of m i.i.d. “small” worlds according taP-,(w).
We can now define our LP in terms of the worldsIn,,, rather than all possible worlds.
For each worldw in D<,,, our LP will contain a set of constraints of the form presented
in Equation (13.2). Note that in all worlds these constraints share the variafléisat
represent the weights of our class basis functions. The complete LP is given by:

Variables: {w¢ | Vh{ € Basis[C], VC € C};

S 1
Minimize: 5237 cn_ Ycee Doncepasisic) Wi af (W);

Subjectto: Vw € D, Vx € X,,, Va€ A, :
>_cec thesasis[C] Zoeo[w][q wi i (x[To]) >
Eoe(’)[w} RO(X[XOL a[AO]>+
V2w Po(X [ x,8) 3 occ ZhiceBasis[C] D 0eO[C] wi'h§ (x'[T,,]);
(13.11)
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where, by using our sampled worlds, the objective function in Equation (13.8) is approx-
imated by: 5223 S e > hCegasisic) Wi f (w). Our complete LP-based approxi-
mation algorithm for computing the class-based value function over the sampled worlds is
summarized in Figure 13.1.

The solution obtained by the LP with sampled worlds will, in general, not be equal to
the one obtained if all worlds are considered. However, we can show that the quality of
the two approximations is close, if a sufficient number of worlds are sampled. Specifically,
with apolynomialnumber of sampled worlds, we can guarantee that, with high probability,
the quality of the value function approximation obtained when sampling worlds is close
to the one obtained when considering all possible (unboundedly-large) worlds. In order to

prove this result we need two additional assumptions:

Assumption 13.3.1 The magnitude of each basis functighn is normalized tai:
|h¢)|, <1, VA € Basis[C], VC € C.
Further, we assume that the weights of our basis functions are bounded by:
C anax C .
}U)Z- ‘ < :, \V/hl € BaSlS[C], VC eC. 1

These assumptions guarantee that egchl’ has a bounded magnitude, which is necessary
to guarantee that the space of class-based value function templates is bounded. Note that we
are not assuming a bound on the instantiation of this class-based value function in a world,
on the contrary, our theoretical results will hold even in unboundedly-large worlds, where
this instantiation will also be unbounded. The assumption on the magnitude of the basis
functions can be guaranteed by appropriate construction. The bound on the basis function
weights can be enforced by using additional constraints in our LP, though the result of
this constrained problem may be suboptimal in the original one. However, in practice, the
results of our algorithm usually satisfy this bound, without additional LP constraints, even
when we sample worlds.

Under this assumption, we prove the following bound on the quality of our class-based
LP:
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CLASSBASEDLPA (PY, R, v, HY, D<,, 0%, @)
I P€ is the class-based transition model.
/I R¢ is the set of class-based reward functions.
/I ~ is the discount factor.
Il HC is the set of class basis functiof&” = {h{ | VA € Basis[C], VC € C}.
/I D<,, is a set of sampled worlds.
/I O* stores the elimination order for each sampled warld D<,,.
I/l o are the class basis functions relevance weights as defined in Equation (13.9).
/I Return the class basis function weightg“ } c<c computed by our linear programming-based
approximation over the sampled worlds.
/I Generate linear programming-based approximation constraints for each sampled world.
FOR SAMPLED WORLDw € D<y,:
/I Compute backprojection of basis functions for this world.
FOR EACH CLASSC; FOR EACH BASIS FUNCTION IN THIS CLASSh{ € BASIS[C];
FOR EACH OBJECT OF THIS CLASS IN THE WORLD € O[w][C]:
LET ¢¢ = Backproj, (h§ (To.:)).
/I Generate linear programming constraints for this world.
LET Q, = FACTOREDLP({(yg? — h?) | VhS € BASIS[o], Vo € O[w]}, R¥, O%).
/I So far, our constraints guarantee that

o> R Y P [xa) 3 Y w3 Y wfhi):

0€O|w] h¢eBasis|o] 0€O|w] h¢ eBasis[o]

to satisfy the linear programming-approximation solution in (13.11) for worlde must
add a constraint.
LET Q, =Q,U{¢, =0}.
/I Finally, we must introduce a set of equality constraints that ensure that objects of the
same class have the same global class basis function coefficients.
FOR EACH CLASSC; FOR EACH BASIS FUNCTION IN THIS CLASSh{ € BASIS[C];
FOR EACH OBJECT OF THIS CLASS IN THE WORLD € O[w][C]:
LET Q, = Q, U {w? = wf}.
/I We can now obtain the weights of the class basis functions by solving an LP.
LET {w%}cec BE THE SOLUTION OF THE LINEAR PROGRAM

. C C( ).
MINIMIZE : YoweDe, 2ocec 2nCeBasisic) Wi i (W);
SUBJECT T (), Vw € D<,,.

RETURN {w }ccc.

Figure 13.1: Factored class-based LP-based approximation algorithm to obtain a general-
izable value function.
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Theorem 13.3.2 Consider the following class-based value functions (each ajghram-
eters): V obtained from the LP over all possible worlfisby minimizing Equation (13.8)
subject to the constraints in Equation (13.5); avidbtained by solving the class-level LP
in (13.11) with constraints only for a sél.,, of m worlds sampled fron®-,,(w), i.e., only
sampled from the set of world@s.,, with at most: objects, where

LetV* be the optimal value function of the meta-MDR.,, over all possible world$). For

anys > 0 ande > 0, for a number of sampled worlds polynomial in(k, ﬁ, 1n3),

the error introduced by sampling worlds is bounded by:

1 0
+ 18€1n (s) Rmaw Ky

HV_V 1,Po )\ﬁ 1—’)/)\ﬁ’

< Hﬁ—v*

1,Po

with probability at least —d, where|| V||, n = >_ P(w)P°(x) |V, (x)|,andR?,

weN,xeX,, mazxr

is the maximum per-object reward.
Proof: See Appendix A.51

Our theorem states that if we sample a polynomial number of “small” worlds with at most

n(1 . . . . .
lg—;) objects, independently of the number of states or actions, we obtain an approxi-
mation to the optimal value function of the meta MDP that is close to the one we would

have obtained had we considered all possible (unboundedly-large) worlds in our optimiza-

In

tion. If, for example, we again choog&t) to be an exponential distribution, th%n%J

would lead us to sample worlds with a number of objects that is no largehit{an times
the expected number of objects in our domain.

The proof uses some of the techniques developed by de Farias and Van Roy [2001b]
for analyzing constraint sampling in general MDPs. However, there are some important
differences: First, our analysis includes the error introduced when sampling the objective
function, which is approximated by a sum only over a sampled subset of “small” worlds
rather than over all worlds as in the LP for the full meta-MDP. This issue was not previously
addressed. Second, and more important, the algorithm of de Farias and Van Roy relies on
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the assumption that constraints are sampled according to some “ideal” distribution (the
product of a Lyapunov function with the stationary distribution of the optimal policy). In
our algorithm, after each world is sampled according’tq(w), our algorithm exploits the
factored structure in the model to represent the constraints exactly, in closed-form, avoiding
the dependency on the “ideal” distribution. Finally, the number of samples in the result of
de Farias and Van Roy [2001b] depends on the number of actions in the MDP, which is
exponential in multiagent problems. They also present an equivalent formulation where
the state space is augmented with a state variable to indicate the choice of each action
variable. At every time step, the agent then sets one of these state variables. The number of
actions in this modified formulation is now equal to the size of the domain of each action
variable, and the theoretical scaling of the number of samples now depends on the log of
the number of joint actions, but multiplies the size of the state space by the number of
joint actions. The increased number of states will probably increase the number of basis
functions needed for a good approximation. Our factored LP decomposition technique
allows us to prove a result that has no dependency on the number of actions when each
world is represented as a factored MDP. Appendix A.5 also presents a more general (and
tighter) version of our result, where in addition to pickingndJ, the maximum number

of objectsn can be picked arbitrarily.

13.4 Learning classes of objects

The definition of a class-based value function assumes that all objects in a class have the
same local value subfunction. Specifically, our class-based representation forces every
objecto of a particular clasg€’ to have the same class basis function coefficient in every
world:

/

w? =w! =w’, Yo, € Ow][C], VhS € Basis[C], Vw.

3 3

However, in many cases, even objects in the same class might play different roles in the
model, and therefore have a different impact on the overall value. For example, if only one
peasant has the capability to build barracks, his status may have a greater impact. Thus,
we may often need to distinguish objects into subclasses. Distinctions of this type are not
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usually known in advance, but are learned by an agent as it gains experience with a domain
and detects regularities.

We propose a procedure that takes exactly this approach to find potential subclasses for
each class: Assume that we have been presented with7a sktvorlds. For each world
w € D, an approximate value function

Vo = Z w;)h?

0€0|w] h¢cBasis|o]

is computed as described in Section 13.2.1. If every okj@dttclassC (o € O[w][C]) is
similar, then they must have very similar coefficientsin every world inD. Otherwise,
we need a procedure to sglitinto subclasse§”’, C”, etc, such that objects in each subclass
have similar coefficients.

In order to differentiate objects into subclasses, we assume that each object in a world is
associated with a set of class-based featep]. For example, the features may include
local information, such as whether the object is a peasant linked to a barrack or not, as well
as global information, such as whether this world contains archers in addition to footmen.
We use these features, along with the basis function coefficints differentiate objects
of classC' into one of the subclasses.

Specifically, we can define our “training dat&®, for each clasg’, as
{{(FC o], w*) : Yo € Ow][C], Yw € D},

wherew? is a vector of basis function weights for objectvhose:th component isv;.

We now have a well-defined learning problem: given this training data, we would like to
partition the objects of clags into subclasses, such that objects of the same subclass have
similar coefficientsw? for each basis functioh? in the object value subfunction. Note

that this is not a standard learning task, we would like to find a rule to describe objects
that have similar coefficients, but we will not use these coefficients in our class-level value
function. Once the subclass definitions are obtained, the specific (sub)class coefficients are
optimized using our class-level LP.

There are many approaches for tackling our learning task. For eaciCtlasschoose
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1. Learning Subclasses:

e Input:
— A set of training world<D.
— A set of featuresFS [o].
e Algorithm:
(a) For eachw € D, compute an object-based value function, as described in Section 13.2.1.
(b) For each clas€’: Apply regression tree learning on

{{(FC o], w®) : Yo € OW][C], Yw € D}.

(c) Define a subclass of clagsfor each leaf, characterized by the feature vector associated
with its path.

2. Computing Class-Based Value Function:

e Input:
— A set of (sub)class definitiora
- Atemplate for{Ve = 3°,.c cgasisjoy @S b 1 C € C}.
— A set of training “small” worldsD,, with at mostn objects.
e Algorithm:
(@) Compute the parametefsv® : C € C} that optimize the LP in Equation (13.11) relative
to the worlds inD<,,.

3. Acting in a New World:

e |nput:
— Aset of class value subfunctiof¥c : C € C}.
— A set of (sub)class definitiona
— Any world w.

e Algorithm: Repeat

(a) Obtain the current state.
(b) Determine the appropriate classfor eacho € O[w] according to its features.

(c) DefineV,, according to Equation (13.12).
(d) Use the coordination graph algorithm to compute an actitrat maximizeR“ (x, a) +

Yoo P | x,a)V, (x).
(e) Take actiom in the world.

Figure 13.2: The overall generalization algorithm.
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to use decision tree regression [Breingral., 1984], so as to construct a tree that predicts
the basis function coefficients given the features. Thus, each split in the tree corresponds
to a feature inF¢[0]; each branch down the tree defines a subset of the objects of class
C whose feature values are as defined by the path; the leaf at the end of the path contains
the average coefficients for this set of objects. We use a squared error criteria to guarantee
that objects in a leaf have similar coefficients. As the regression tree learning algorithm
tries to construct a tree that is predictive about the basis function coefficients, it will aim to
construct a tree where the mean at each leaf is very close to the training data assigned to that
leaf. Thus, the leaves tend to correspond to objects whose basis function coefficients
are similar. We can thus take the leaves in the tree to define our subclasses, where each
subclass is characterized by the combination of feature values specified by the path to the
corresponding leaf. This algorithm is summarized in Step 1 of Figure 13.2. Note that the
mean subfunction at a leaf is not used as the value subfunction for the corresponding class;
rather, the parameters of the value subfunction are optimized using the class-based LP in
Step 2 of the algorithm. We present a case study of this algorithm in Section 13.5.1.

Once we have our subclass definitions, we define the class-based value function as in
Equation (12.9):

Vo)=Y > Vex[To). (13.12)

CeC 0eOw][C]
However, our set of class€snow includes all subclasses of each classand the class of
each objecb is now the subclass whose branch is consistent with the features of this object
FCol.

13.5 Empirical evaluation

In this section, we present empirical evaluations of our generalization algorithm on two do-
mains: First, we use the multiagent SysAdmin domain to evaluate the scaling properties of
our approach, and the effect of learning subclasses on the quality of our policies. Then, we
present results on the actual Freecraft game. Here, we evaluate the ability of our algorithm
to generalize to problems that are significantly larger than our planning algorithms could
address.
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13.5.1 Computer network administration

We first experimented with the multiagent SysAdmin problem described in Example 8.1.1.
In this problem, we have a single cla&Semp to represent computers in the network. This
class is associated with two state variablegComp] = {Comp.StatusComp.Load},
where

Dom|[Comp.Statu$ = {good faulty,dead}, and

Dom|[Comp.Load = ({idle,loaded process successiul

Each object of theComp class is also associated with an action variall€omp] =
{Comp.A}, whereDom|[Comp.A] = {reboot not reboot. Each object of clas€omp
has a single set link[Comp| = {Neighborg, such that

p[Comp.Neighbor$ = SetOf{ Comp},

i.e., every computer is linked to a set of other computers.
The class transition probabilities for the status variable are described as follows:

pComp-StalUs’ comp Status’| Comp.StatusComp. A, § (Comp.NeighborsStatus= Dead)) ,

that is, the status of a machine in the next time step depends on its status in the current
time step, on the action of its administrator (rebooting causes the machine to be good with
probability 1), and on the number of neighbors that are dead, as a dead machine increases
the probability that its neighbors will become faulty and eventually die. In our experiments,
we use a noisy-or to represent this relationship, where each neighbor has the same noise
parameters [Pearl, 1987].

The class transition model for the load variable is simply:

peemp-Load’ (comp.Load’ | Comp.Load Comp.StatusComp.A) ,

as processes take longer to terminate when a machine is faulty, and are lost when the
machine dies or the administrator decides to reboot it.
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The system receives a reward of 1 if a process terminates successfully. Thus, the class
reward template is simply:

R®°™(Comp.Load’) = 1 (Comp.Load = process successiul

A world in this problem is defined by a number of computers and a network topology
that defines the objects bomp.Neighbors For a worldw with n machines, the number
of states in the MDRI,, is 9" and the joint action space contai2ispossible actions.g,

a problem with30 computers has ovei?® states and a billion possible actions. We use a
discount factory of 0.95.

The formulation of our class basis functions was based on the “pair” basis defined in
Section 9.3. Each object of cla8omp is associated with two sets of basis functions:
The first set contains an indicator function over each joint assignmeé@mip.Statusand
Comp.Load The second set includes indicators o@emp.StatusandComp’.Status for
eachComp’ € Comp.Neigbourghs

For this problem, we implemented our class-based LP generalization algorithm de-
scribed in Chapter 13 in Matlab, using CPLEX as the LP solver. Rather than using the
full LP decomposition presented in Chapter 4, we used the constraint generation extension
proposed in by Schuurmans and Patrascu [2001], described in Section 4.5, as the memory
requirements were lower for this second approach.

We first tested the extent to which value functions are shared across objects. In Fig-
ure 13.3(a), we plot the value each object gave to the assignment to the indicator basis
function 1(Comp.Status= working), for instances of the ‘three legs’ topology. Clearly,
these values cluster into three classes. This is the type of structure that we can extract with
our subclass learning algorithm in Section 13.4. We uSéd?T'® to learn decision trees
for our class partition. Our training daf2c°™ should be of the form:

{{F5°™[o],w’) : Vo € O[w][Comp], Vw € D},

where FS°mP[o] is some set of features evaluated for objeirt world w.
In our ‘three legs’ network example, we associated each instance ofGiagsgs with a
single featurei(o,w) that measures the number of hops from the center of the network to
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Figure 13.3: Results of learning subclasses for the multiagent SysAdmin problem: (a)
training data; (b) classes learned for ‘three legs’; (c) advantage of learning subclasses.

computero. For this particular case, the learning algorithm partitioned the computers into
three subclasses illustrated in Figure 13.3(b). Intuitively, we name these sub8asses
Intermediate, andLeaf. In Figure 13.3(a), we see that the basis function coefficient for
the classServer (third column) has the highest value, because a broken server can cause
a chain reaction affecting the whole network, while the coefficient of the tleas(first
column) is lowest, as it cannot affect any other computer.

We then evaluated the generalization quality of our class-based value function by com-
paring its performance to that of planning specifically for a new environment. For each
topology, we computed the class-based value function wsimpled networks of up 2o
computers. We then sampled a new larger network ofize 32, and computed for it a
value function that used the same factorization, but with no class restrictions. This value
function has more parameters — different parameters for each object, rather than for entire
classes. These parameters are optimized for each particular network. This process was
repeated foB sets of networks.

First, we wanted to determine if our procedure for learning classes yields better ap-
proximations than the ones obtained from the default classes. Figure 13.3(c) compares the
max-norm error between our class-based value function and the one obtained by replanning
in each domain, without any class restrictions. The graph suggests that, by learning classes
using our decision tree regression procedure, we obtain a much better approximation of the
value function than we would have, had we replanned.



13.5. EMPIRICAL EVALUATION 265

[0 Class-based value function
46 Il 'Optimal’ approximate value function
= T . .
S [ Utopic expected maximum value 10
Q4.4 T 5
3 g
o =] .
) "a-) T T T T I
= 3 0.00001 0.0001 0.001  0.01 0.1 1
g g
Z 5
5 5 0.1
35 =
s £
e =
9} I 0.01
g 5
£ 8
=
i 0.001
Ring Star Three |egs Standard deviation of class parameters
(a) (b)

Figure 13.4: Generalization results for the multiagent SysAdmin problem: (a) generaliza-
tion quality (evaluated b0 Monte Carlo runs ol 00 steps); (b) adding noise to instanti-
ated object parameters.

Next, we evaluate the quality of the greedy policies obtained from our class-level value
function, as compared to replanning in each world. The results, shown in Figure 13.4(a),
indicate that the value of the policy from the class-based value function is very close to
the value of replanning, suggesting that we can generalize well to new problems. We also
computed a utopic upper bound on #agectedsalue of the optimal policy by removing
the (negative) effect of the neighbors on the status of the machines. Although this bound is
loose, our approximate policies still achieve a value close to the bound, indicating that our
generalized policies are near-optimal for these problems.

In practice, objects may not have exactly the same transition model as the one defined
by the class template. To evaluate the effects of such uncertainty, we used a hierarchical
Bayes approach. Thus, rather than giving each object the same transition probabilities as
the class, we sampled the parameters of each object independently from a class Dirichlet
distribution whose mean is determined by the class parameter. Figure 13.4(b) shows the
error between our class-based approximation versus the value function we obtain for re-
planning with theparticular instantiated objectswithout class restriction. Note, the error
grows linearly in a log-log scale, that is, only polynomially with the standard deviation of
the Dirichlet, indicating that our approach is robust to such noise.
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Figure 13.5: RMDP schema for Freecratft.

13.5.2 Freecraft

We also evaluated the quality of our class-based approximations on the actual Freecraft
game. For this evaluation, we implemented our methods in C++ and used CPLEX as the
LP solver. We created two tasks, which assess our policies in two different aspects of
the gamestrategic domain- evaluating long-term strategic decision making, tadical
domain- testing coordination in local tactical battle maneuvers. Our Freecraft interface,
and scenarios for these and other more complex tasks are publicly available at:

http://dags.stanford.edu/Freecraft/ .

For each task we designed an RMDP model to represent the system by consulting “do-
main experts”. In this model, we have 6 classes:

C = {Peasant, Wood, Gold, Barrack, Footman, Enemy}.
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The state and action variables of each class are:

X[Peasant] = {Task, A[Peasant] = {Action}.

An object of the clas®easant can have one of 4 tasks,
Dom[Peasant.Task = {Waiting Harvesting Mining, Building},

and one of 4 actionsDom[Peasant.Action] = {Wait, Harvest Mine, Build}. At every
time step, a peasant’s task will be set according to its action, with high probability.
The amount of gold or wood is discretized into 3 levels. The valuatl. Amountat
each time step increases with a probability that depends monotonically on the number of
peasants whose taskMining. The class transition model fd¥ood is analogous.

In our model, the status of a barrack takes one of 2 val{i@abuilt, Built}. A barrack
will transition from unbuilt to built with high probability, if enough gold and wood are
available, and the task of a peasant linked to this barraBkiisling.

The state variablEootman.Healthis discretized into 5 “health points”, a footman with
no health points is considered “dead”. If a dead footman takes aEbotman.Create
a barrack is built, and there is enough gold, this footman’s health points will be set to
its maximum level. At every time step, a footman’s health points may decrease, if it is
attacked by an enemy who is not dead. In addition, the footman’s second action variable,
Footman.Attack is used to select which enemy this footman is attacking in the next time
step, as described in Example 12.2.2.

Objects of clas&nemy are described similarly to those of cldssotman. The state
variableEnemy.Healthis discretized into 5 “health points”. At every time step, an enemy’s
health points may decrease with a probability that increases monotonically with the number
of footmen whosd-ootman.Attack action variable selects this enemy. In our Freecraft
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Figure 13.6: Freecraft problem domains: (a) tactical; (b) strategic.

model, only theEnemy class is associated with a reward function:
RE"™™ — 1 (Enemy.Health= Dead) .

After solving a number of small problems, we learned thatRBasant class needed
to be divided into 2 subclasses: Peasants that are linked to objects of th8atessk,

i.e,, peasants that can build a barrack, are defined to belong toRias®r, while other
peasants are included in the stand@edsant class.

Figure 13.5illustrates our complete relational MDP representation for the general Freecraft
domain. We use this relational representation to obtain class-level value functions. After
planning, our policies were evaluated on the actual game. To better visualize our results,
we direct the reader to view videos of our policies at a website:

http://robotics.stanford.edu/~guestrin/Research/Generalization/ .

This website also contains more details of our RMDP model. It is important to note that
our policies were constructed relative to this very approximate model of the game, but
evaluated against the real game.

Tactical domain: In thetactical domain also described in Example 12.2.2, the goal is
to take out an opposing enemy force with an equivalent number of units. At each time step,
each footman decides which enemy to attack. The enemies are controlled using Freecraft’s
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hand-built strategy. We modelled footmen and enemies as described above. To encourage
coordination, each footman was also linked to a “buddy” in a ring structure.

Our class value function fdfFootman was defined by a set of indicators over the as-
signments of this footman’s health, his buddy’s health, and the health of the enemy that
attacks this footman. Additionally, the class value functionEoemy was defined by a
set of indicators over the assignments of this enemy’s health, the health of the footman this
enemy is attacking, and the health of the enemy that attacks this footman’s buddy.

We solved this model for a world with 3 footmen and 3 enemies, illustrated in Fig-
ure 13.6(a). The resulting policy demonstrates successful coordination between our foot-
men: initially all three footmen focus on one enemy. When the enemy becomes injured,
one footman switches its target. Finally, when the enemy is very weak, only one foot-
man continues to attack it, while the other two tackle a different enemy. Our full policy is
fairly complex, with action choices depending both on the state of the footmen and of the
enemies. Using this policy, our footmen defeat the enemies in Freecraft.

The scope of our class value function fewotman includes the health of the enemy.
Unfortunately, the scope of the backprojection of this function includedHedth and
Attackvariables of all footmen, as every footman can choose to attack this enemy. Thus,
the size of the backprojection grows exponentially in the number of objects in the world.
Therefore, we cannot solve large models using our standard factored LP approach. It may
be possible to exploit CSlin this model, as the CPD of an enemy only depends on a footman
in contexts where the footman’s action chooses to attack this enemy. However, solving a
factored MDP with this formulation requires extensions to the CSI methods presented in
this thesis to address the aggregation in the enemy’s CPD. Although some such extensions
are discussed by Pfeffer [2000], we have not yet pursed them in the context of MDPs.

Fortunately, when executing a policy, we first instantiate the state at every time step.
Thus, after instantiation, the factors become significantly smaller, and action selection is
performed efficiently. Thus, even though we cannot execute Step 2 in Figure 13.2 of our
algorithm for larger scenarios, we can generalize our class-based value function to a world
with 4 footmen and enemies without replanning, using only Step 3 of our approach. The
policy continues to demonstrate successful coordination between footmen, and we again
beat Freecraft's policy. However, as the number of units increases, the position of enemies
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becomes increasingly important. Specifically, one of our footmen may choose to attack an
enemy that is not close to the footman’s current position. As our footman moves towards
that enemy, it is attacked by other enemies along the way, wasting valuable health points.
Currently, our model does not consider this feature, and in a world with 5 footmen and
enemies, our policy loses to Freecraft in a close battle.

Strategic domain: The goal in thestrategic domains to kill a strong enemy. The player
starts with a few peasants, who can collect gold or wood, or attempt to build a barrack, a
task requiring both gold and wood. All resources are consumed afterBalchaction.

With a barrack and gold, the player can train a footman. The footmen can choose to attack
the enemy. When attacked, the enemy loses “health points”, but fights back and may Kkill
the footmen.

In addition to the standard links in our RMDP model, we included links between every
peasant and a “central” object of the new subcBg#der defined above. Each footman
was also linked to a “buddy” in a ring structure, as described above. Our local value
subfunctions for each class were composed of indicators for the assignment of the state
variables of each triple of linked objects in our model.

We solved a world with 2 peasants, 1 barrack, 2 footmen, and an enemy. The resulting
policy for this instance of the strategic problem is quite interesting: the peasants gather
gold and wood to build a barrack, then gold to build a footman. Rather than attacking the
enemy at once, this footman waits until the peasants collect enough gold to build a second
footman. Then, these two footmen attack the enemy together. Unfortunately, the stronger
enemy is able to kill both of these footmen, becoming quite weak in the process. When
the next footman is trained, rather than waiting for a second one, it attacks the now weak
enemy, and is able to kill him.

As with the tactical domain, planning in large instances of the strategic domain is in-
feasible, as every peasant can influence the amount of the gold and wood. Fortunately, at
every time step, every peasant’s task and the amount of gold are observed. Thus, the instan-
tiated Q-function is very compact, and action selection can be performed very efficiently.
Therefore, we can use our generalized value function to tackle a world with 9 peasants and
3 footmen, without replanning.
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Interestingly, the policy in the larger scenario is qualitatively different from the one in
the smaller scenario: As before, the 9 peasants coordinate to gather resources, and build
a barrack. However, rather than attacking with 2 footmen, as in the smaller scenario, the
policy now waits for 3 footmen to be trained before attacking. The 3 footmen are able
to kill the enemy, and only one of these footmen dies. This problem shows successful
generalization from a problem with abolft® joint state-action pairs to one with ovep'?
pairs.

13.6 Discussion and related work

We present an algorithm that is able to generalize plans to new environments represented by
relational MDPs. Such a generalization has two complementary uses: First we can tackle
new environments with minimal or no replanning. Second it allows us to generalize plans
from smaller tractable environments to significantly larger ones that could not be solved
directly with our planning algorithm. Our theoretical analysis proves that, by solving a
linear program over a sampled set of “small” worlds, we obtain a solution that is close to
the one we would have obtained if we had sampled all possible worlds. This LP can be
solved by our factored LP decomposition technique, allowing us to obtain the weights of
our class-level basis functions very efficiently. Finally, we present an approach for learning
subclass structure by finding regularities in the value functions of a set of small worlds.

We present empirical evaluations of our generalization algorithm, demonstrating the
two complementary uses of generalization: First, in a multiagent network management
task, we showed that the quality of the generalized policies are very close to those obtained
by replanning in each world, without class restrictions in the value function. We have
also empirically demonstrated that our approximations can be significantly enhanced by
learning subclasses of objects.

Second, we demonstrated in the actual Freecraft game that our class-based value func-
tions allow us to generalize plans from smaller tractable environments to significantly larger
ones that could not be solved directly with our planning algorithm. This real strategic com-
puter game contains many characteristics present in real-world dynamic resource allocation
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problems. Our generalized policies for this the Freecraft domain demonstrated the long-
term planning, and elaborate coordination between agents required to solve such general
resource allocation problems.

13.6.1 Comparisons and limitations

Several other authors have considered the generalization problem, first in traditional plan-
ning [Fikeset al, 1972], and later in stochastic domains [Sutton & Barto, 1998; Thrun

& O’Sullivan, 1996]. Several approaches can represent value functions in general terms,
but usually require it to be hand-constructed for the particular task. Others have focused
on reusing solutions from isomorphic regions of state space [Parr, 1998; Hausiratht
1998; Dietterich, 2000]. By comparison, our method exploits similarities between objects
evolving in parallel. It would be very interesting to combine these two types of decompo-
sition, as discussed in Section 14.2.8.

The work of Boutilieret al. [2001] on symbolic value iteration computes first-order
value functions that generalize over objects in a world. However, it focuses on computing
exact value functions, which are unlikely to generalize to a different world. Furthermore, it
relies on the use of theorem proving tools, which adds to the complexity of the approach.

Methods in deterministic planning have focused on generalizing from compactly de-
scribed policies learned from many domains to incrementally build a first-order policy
[Khardon, 1999; Martin & Geffner, 2000]. Closest in spirit to our approach is the recent
work of Dzeroskiet al. [2001] and of Yooret al. [2002] that extends these determinis-
tic approaches to stochastic domains. Their methods find regularities in exact policies or
Q-functions obtained for small environments. These approaches thendustive logic
programming (ILP) methods [De Raedt (ed.), 1995] to obtain relational representations of
the policy or Q-function. We thus view these methods as attempting to find generalized so-
lutions from the compact policies or value functions obtained from goal-based algorithms,
such as those described in Section 7.8.2, where a policy or value function can sometimes
be represented compactly using a propositional description.
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Our procedure for discovering subclasses by finding structure in the factored value func-
tion is, in some sense, analogous to the ILP approaches. Once we have learned these sub-
classes, we perform a global planning step, taking into account many problem domains
simultaneously. More fundamentally, we are attempting to find an approximate factored
value functions that generalize across environments, rather than similarities between parts
of exact policies or value functions. The comparison between our generalization approach
and those of Reroskiet al. [2001] and of Yooret al. [2002] is analogous to the compar-
isons between our factored planning algorithms and the planning methods of Kushmerick
et al. [1995] and of Blum and Langford [1999], presented in Section 7.8.2. In multiagent
settings, however, exact compact propositional descriptions of the policy or of the value
function are often very difficult to obtain. Thus, we expect that the algorithmszefd@ki
et al. [2001] and of Yooret al. [2002] will be less successful in these settings.

The key assumption in our method is interchangeability between objects of the same
class. Our mechanism for learning subclasses allows us to deal with cases where objects in
the domain can vary, but our generalizations will not be successful in very heterogeneous
environments, where most objects have very different influences on the overall dynamics
or rewards. Additionally, the efficiency of our LP solution algorithm depends on the con-
nectivity of the underlying problem. In a domain with strong and constant interactions
between many objecte.g, RoboCup), or when the reward function depends arbitrarily on
the state of many objectg.g, Blocksworld), the solution algorithm will probably not be
efficient, as discussed in Section 7.8.2.

Although our experiments show that we can successfully apply our class-based value
functions to new environments without replanning, there are domains where such direct
application would not be sufficient to obtain a good solution. In such domains, our gen-
eralized value functions can provide a good initial policy, which could be refined using a
variety of local search methods.

We have assumed that relations only change deterministically over time. In many do-
mains €.g, Blocksworld or RoboCup), this assumption is false. In Chapter 10, we showed
thatcontext-specific independencan allow for dynamically changing coordination struc-
tures in multiagent environments. Similar ideas may allow us to tackle stochastically
changing relational structures, as discussed further in Section 14.2.9.
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13.6.2 Summary

This part of the thesis presents: RMDPS, a relational representation for MDPs; a class-
based value functions that, once optimized, can be instantiated to generate approximate
solutions to new environments without replanning; an efficient LP-based algorithm for
optimizing the weights of these class-based basis functions by considering a polynomial
sample of “small” environments; and a method for discovering subclass structure that can
improve the quality of our approximations. Our empirical results support both RMDPs as a
model for generalization in dynamic environments, and our LP-based algorithm for learn-
ing the parameters of the class-level value function from a set of sampled environments.
The choice of learning algorithm is, of course, orthogonal to our RMDP representation.
However, we believe that our combined methods will provide a strong framework for ob-
taining generalized approximate solutions to large-scale stochastic planning domains.
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Chapter 14
Conclusions

This thesis demonstrates that, by exploiting problem-specific structure, we can scale up
automated methods for planning under uncertainty to complex large-scale domains. This
chapter provides a summary of the methods and algorithms presented in this thesis, along
with a discussion of some limitations of our work and future questions that remain open.

14.1 Summary and contributions

This sections presents a high-level summary of our results, emphasizing the connections
between the parts of the thesis.

14.1.1 Foundation

This thesis provides a formal framework for exploiting problem specific structure in com-
plex planning problems under uncertainty. Factored MDPs [Bougliat., 1995] allow us

to represent such structured problems very compactly. Unfortunately, even with this com-
pact representation, optimal planning is still intractable [Mundhedrat, 2000; Liberatore,
2002; Allenderet al,, 2002]. We thus focus on approximate solutions for such problems.
Specifically, we choose a linear approximation architecture [Bellatal.,, 1963], where

276



14.1. SUMMARY AND CONTRIBUTIONS 277

the value function is approximated as linear combination of a set of basis functions:
V(x) = wih(x).

This architecture provides simple and often effective methods for obtaining approximate
solutions for planning problems. More specifically, in the context of factored MDPs, we
focus on factored value functions [Koller & Parr, 1999], where each basis funetimn
restricted to depend only on a small set of state variaBles

V(x) = Zwihi(x[CiD.

Factored value functions are sometimes able to represent near-optimal approximations of
the true value function very compactly, even in some exponentially-large problems, as
demonstrated in this thesis.

This thesis builds on this basic factored representation of the MDP and of the value
function to design very efficient planning algorithms and multiagent coordination strate-
gies. Additionally, we extend our approach to address multiagent reinforcement learning
problems where a model of the world is not known, and to obtain multiagent coordination
structures, which may vary with the state of the system. Finally, we describe a relational
representation for MDPs, which allows us to generalize solutions devised from a sample of
small worlds to larger worlds, without replanning.

Our algorithms leverage on factored LPs, a novel LP decomposition technique, analo-
gous to variable elimination in cost networks [Bertele & Brioschi, 1972], that reduces an
exponentially-large LP to a provably equivalent, polynomial-sized one. This algorithm,
described in Chapter 4, is a central element in almost every method in this thesis.

14.1.2 Factored single agent planning

The basic factored MDP representation addresses single agent problems. For such prob-
lems, we have developed three planning algorithms, which build on our factored LP de-
composition technique. These algorithms follow the structure described in Figure 14.1.
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Figure 14.1: Overview of our framework for efficient planning in structured single agent
problems.

We assume that the world is modelled by a factored MDP and that a set of (factored) basis
functions has been selected. Offline, one of our planning algorithms is used to compute the
weightsw of our basis functions. Then, online, the agent follows a closed-loop policy, by
observing the current statefrom the real world, computing the greedy action:

arg max Q% (x,a) = argmax R(x,a) + v Z P(x'| x,a) Zwihi(x’) :

This greedy action can be computed efficiently using the backprojection algorithm in Sec-
tion 3.3. Once the maximizing action is obtained, the agent executes this action in the real
world, observes the next state, and the process is repeated.

We proposed three algorithms for optimizing the weightef the basis functions: ap-
proximate policy iteration, LP-based approximation, and the factored dual algorithm. Our
approximate policy iteration algorithm is motivated by error analyses showing the impor-
tance of minimizingl ., error. This algorithm is more efficient and substantially easier to
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implement than previous methods based onAherojection. Our experimental results
suggest that ouf., method also performs better in practice. Both of these algorithms re-
qguire a default action assumption, stating that an action only modifies the CPDs of a few
state variables.

Our factored LP-based approximation algorithm is simpler, easier to implement and
more general than the policy iteration approach. Unlike our policy iteration algorithm, the
LP-based approximation algorithm does not rely on the default action assumption stating
that actions only affect a small number of state variables. Although the LP-based approx-
imation algorithm does not have the same theoretical guarantees as max-norm projection
approaches, empirically it seems to be a favorable option. Our experiments suggest that
approximate policy iteration tends to generate better policies for the same set of basis func-
tions. However, due to the computational advantages, we can add more basis functions
to the LP-based approximation algorithm, obtaining a better policy and still maintaining a
much faster running time than approximate policy iteration approach.

The complexity of our planning algorithms is only exponential in the induced width of
a cost network formed by the backprojections of the basis functions, rather than exponen-
tial in the number of variables. Thus, these algorithms will be very efficient in sparsely
connected factored MDPs that can be well-approximated by basis functions whose scope
is restricted to small sets of variables.

We also present the factored dual algorithm. This novel formulation provides an ap-
proximate version of our factored LP decomposition technique. We can thus potentially
address problems with large induced width. Additionally, this formulation provides an
anytime version of our factored planning approach by incrementally improving the approx-
imation of the LP decomposition. Although we currently cannot provide theoretical bounds
on the quality of this approximation of our factored LP decomposition, we believe that this
novel factored dual approach may provide effective solutions to many complex problems
that could not be solved, even with our other factored planning algorithms.

Our experimental results on single agent problems demonstrate polynomial scaling for
problems with fixed induced width, as expected by our complexity analysis. For some
small problems, where the optimal solution can be computed exactly, we show that the ac-
tual long-term reward received by the policies obtained by our approximate methods using
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Figure 14.2: Overview of our algorithm for efficient planning and coordination in struc-
tured multiagent problems.

simple basis functions are withis?; of those obtained by the optimal policy. For larger
problems, we compute bounds on the quality of our policies showing that our solutions do
not degrade significantly as the problem size increases.

14.1.3 Multiagent coordination and planning

In this thesis, we also address planning under uncertainty problems involving multiple col-
laborating agents. We approximate the value function for such problems using the same
factored value function representation described above. Unfortunately, our approximate
dynamic programming algorithms do not apply in these multiagent problems, as the poli-
cies can no longer be represented compactly by a decision list. Fortunately, the computation
of the weights of the approximate value function can be performed by using a simple ex-
tension of the factored LP-based approximation algorithm. Similarly, our factored dual
algorithm is also appropriate for solving such multiagent problems, thus allowing us to
tackle some domains with large induced width.
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As outlined in Figure 14.2, we approach multiagent problems by modelling the system
as a multiagent factored MDP, and then selecting a set of factored basis functions. The
weights of our factored value function are then computed offline by one of these two fac-
tored planning algorithms. As in the single agent case, the multiple agents then follow a
closed-loop policy, where the maximizing joint action is computed online for eachsstate
visited by the system according to:

arg max Q% (x,a) = argmax R(x,a) + vy Z P(x' | x,a) Z w;ihi(x)

wherea is a joint action defining the specific action of each agent. Unfortunately, the
number of joint actions is exponential in the number of agents. Furthermore, this maxi-
mization requires a centralized optimization procedure, which, as discussed in Chapter 1,
is not desirable in many practical real world problems.

In Chapter 9, we address the action selection problem by proposirgpthrdination
graphsframework, a novel, simple, distributed message passing algorithm based on vari-
able elimination. This procedure leads to the selection of the optimal maximizing action
in multiagent problems, while only requiring agents to observe a small set of state vari-
ables, and to communicate with a small number of other agents. This limited observability
and communication properties should increase the applicability of our methods to many
complex problems, such as the application to the RoboCup presented &t Kok003].

Interestingly, the communication structure between agents is not defipedri, as
in many existing methods, but is derived directly from the structure of the factored MDP
and of the factored value function. The communication bandwidth required between agents
is exactly the induced width of the coordination graph derived from our formulation. We
thus present an unified view of multiagent coordination and value function approximation:
A particular factored value function structure induces a particular coordination structure
between agents. If the we choose to increase the scope of the basis functions, for exam-
ple, we can probably increase the quality of our approximations. On the other hand, this
new representation will probably form a coordination graph of higher induced width, thus
requiring more communication between agents.

It is interesting to compare the complexity of our planning and coordination algorithms.
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Our factored LP-based approximation algorithm is exponential in the induced width of a
cost network formed by the backprojection of our basis functions. In contrast, our coor-
dination graph is formed by the same backprojections, but where the state of the system
has been instantiated. Thus, the induced width of the coordination graph depends only on
the action variables of our system. Therefore, our coordination step can be exponentially
faster than our planning algorithm. This difference allows us to coordinate agents even in
very highly connected complex environments, where our planning algorithms are infeasi-
ble, such as the larger game scenarios described in Section 13.5 that can only be solved by
generalizing solutions from smaller problems.

Our multiagent experimental results again demonstrate polynomial time scaling for
problems with fixed induced width, and near-optimal policies in small problems that can be
solved exactly. For larger problems, with simple basis functions, we obtain solutions that
are within5% of a loose upper bound on the quality of the optimal policy. We also compare
our methods to state-of-the-art algorithms of Schneadat. [1999], demonstrating that, at
least for these problems, our solutions are a6t better than those obtained by previous
approaches. Finally, a (more general) alternative to our factored LP algorithm is to sample a
subset of the exponential number of constraints presentin our LPs, as analyzed by de Farias
and Van Roy [2001b]. When compared to our closed-form factored LP algorithm, uniform
sampling of constraints yielded policies whose quality degraded significantly as the prob-
lem size increased. As discussed by de Farias and Van Roy [2001b], sampling methods
can be quite sensitive to the choice of sampling distribution. Thus, these sampling results
could potentially be improved with a different sampling distribution, though, in general, it
may be difficult to find such distribution. Even when provided with more expressive basis
functions and significantly more running time, the policies obtained by the uniform sam-
pling approach degraded on larger problems to at [g&stlower levels than the policies
obtained by our approach with less expressive basis functions.



14.1. SUMMARY AND CONTRIBUTIONS 283

14.1.4 Context-specific independence and variable coordination struc-
ture

Unlike previous approaches, our algorithms can exploit both additive and context-specific
structure in the factored MDP model, by using a rule-based representation instead of the
standard table-based one. Many real-world systems possess both of these types of structure.
Thus, this feature of our algorithms will increase the applicability of factored MDPs to more
practical problems.

We demonstrated that exploiting context-specific independence, can yield exponential
improvements in computational time when the problem has significant amounts of CSI.
However, the overhead of managing sets of rules make it less well-suited for simpler prob-
lems. We also compared our approach to the work of Bouttieal. [2000] that exploits
only context-specific structure. For problems with significant context-specific structure in
the value function, their approach can be faster due to their efficient handling of the ADD
representation used by their algorithm. However, there are many problems with significant
context-specific structure in the problem representation, rather than in the value function,
that require exponentially-large ADDs. In some such problem classes, we demonstrated
that by using a linear value function, our algorithm can obtain a polynomial-time near-
optimal approximation of the true value function.

By exploiting context-specific structure in multiagent settings, we also provide a prin-
cipled and efficient approach for planning in multiagent domains, where the required inter-
actions between agents may vary from one situation to another. We show that the task of
finding an optimal joint action in our approach leads to a very natural communication pat-
tern, where agents send messages along a coordination graph with a dynamically changing
structure that is determined by the value rules representing the value function. This coor-
dination structure changes according to the state of the system, and even according to the
actual numerical values assigned to the value rules. Furthermore, the coordination graph
can be adapted incrementally as the agents learn new rules or discard unimportant ones.

We show empirically that our results scale to very complex problems, including high
induced width problems, where traditional table-based representations of the value function
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Figure 14.3: Overview of our coordinated reinforcement learning framework.

blow up exponentially. In problems where the optimal value could be computed analyti-
cally for comparison purposes, the value of the policies generated by our approach were
within 0.05% of the optimal value. Our experiments also verify the variable coordination
property of our approach, demonstrating that the coordination structure can vary signifi-
cantly according to the state of the system.

14.1.5 Coordinated reinforcement learning

Thus far, we have assumed that the system we are tackling has been modelled by a fac-
tored MDP. In many practical problems, this model is not kn@priori. In such cases,
the agents must learn effective policies through their interactions with the environment by
applying reinforcement learning strategies. In this thesis, we demonstrate that many of the
existing RL algorithms that have been successfully applied to single agent problems can
be generalized to collaborative multiagent settings by applying simple extensions of our
factored value function representation, along with our multiagent coordination algorithm.
This overall framework, which we call coordinated reinforcement learning, is outlined
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in Figure 14.3. Rather than selecting basis functions over a subset of the state variables, we
now define parametric local Q-functiony™ (x, a) over state and action variables, which
are then used to approximate the global Q-function:

QW<X’ a) = Z Q:VZ (X’ a)'

In contrast to the factored value function, the lo€dl" functions may depend arbitrar-

ily on any set of state variables, including state variables defined over continuous spaces.
Furthermore, we no longer require that the underlying model be represented by a factored
MDP. We do require that the scope of eagfi’ be restricted to depend only on a small set

of action variables; this assumption allows us to apply our coordination graph algorithm to
select the maximizing action. Note that we could also utilize a rule-based representation of
each@;". In such cases, we would have a varying coordination structure both during the
learning process and during action selection.

In this thesis, we applied the coordinated RL framework to generalize three existing
single agent RL algorithms to multiagent problenigiearning [Watkins, 1989; Watkins
& Dayan, 1992], LSPI [Lagoudakis & Parr, 2001], and policy search [Williams, 1992].
With @-learning and policy search, the learning mechanism can be distributed. Agents
communicate reinforcement signals, utility values, and conditional policies. In LSPI some
centralized coordination is required to compute the projection of the value function. The
resulting policies can always be executed in a distributed manner. We believe the coordi-
nation mechanism can be applied to almost any reinforcement learning method.

We present two types of experimental comparisons involving our multiagent version
of LSPI: First, we compare the multiagent LSB&rning algorithm to our factored LP-
basedplanningalgorithm, which assumes full knowledge of the factored model. In these
problems, the quality of the solutions obtained by the planning algorithm tended to be
only slightly better policies than that of multiagent LSPI, when using comparable sets of
basis functions. The amount of data required by the multiagent LSPI algorithm scaled
linearly with the number of state and action variables even though the underlying space
was growing exponentially. We also compare multiagent LSPI to the learning algorithms
of Schneideret al. [1999]. Our multiagent LSPI algorithm obtained better policies both
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on the SysAdmin problem used in this thesis, and on the power grid problem described by
Schneideet al. [1999]. Finally, our experiments demonstrate that coordination between
agents can significantly improve the quality of the policies obtained by our approach.

14.1.6 Generalization to new environments

We have also tackled a longstanding goal in planning research, the ability to generalize
plans to new environments. Such a generalization has two complementary uses: First,
we can tackle new environments with minimal or no replanning. Second, it allows us to
generalize plans from smaller tractable environments to significantly larger ones that could
not be solved directly with our planning algorithm.

Our generalization approach builds on a novel relational representation of the MDP,
where a domain is represented in terms of related objects of various classes. We achieve
generalization by defining a value function at the level of object classes. Specifically, every
object of classC' shares the same set of basis function weights Using this class-
level representation, we can obtain a value function for any world our domain by
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instantiating the class-level basis functions with the state of each specific objettis
world:

WY Y T =Y Y Y afifT)

CEC 0cO[W][C] CEC 0€O[W][C] hi€Basis[C]

By backprojecting this value function, we obtain a Q-function for this world:
QY (x.a) = Ru(x,a +VZP %,V (%),

In single agent problems, we can obtain the policy by simply selecting the action that
maximizes@fjo at the current state. In multiagent problems, we can use our coordination
graph algorithm to select this maximizing action.

We also present an optimization algorithm for determining the weightsf our class-
level value function. We propose an optimality criteria, where the weightare optimiz-
ing simultaneously for all worlds. For each particular world, we could optimize these
weights using one of our efficient planning algorithms. However, optimizing for all worlds
simultaneously is both infeasible, and does not fulfill our generalization goal, as all worlds
must be considered. Instead we propose a formulation, where the parametars opti-
mized over a set of sampled worlds. We prove that, by sampling a polynomial number of
“small” worlds, we obtain an estimate of the class-level value function that is close to the
one we would obtain had we planned for all worlds simultaneously.

We first assumed that set of classes of objects had been predefined in the model. We
then describe a learning method for dividing objects into classes. This method first solves a
few sampled environments, where each object belongs to an unique class. We can then use
standard learning methods, such as decision tree regression, to find similarities between the
value functions of different objects. We can then use the result of this learning algorithm
to divide objects into a small set of classes.

Our overall generalization approach is outlined in Figure 14.4. We use a relational
representation of the MDP, a sample of small worlds, and the class definitions, perhaps
obtained by our learning method, to formulate a compact linear program to optimize the
class-level parametens® offline. Then, online, when faced with a new world, we can
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instantiate our class-level value function, obtaining a Q-function for this new world, thus
yielding a policy without any replanning.

Our relational MDP formulation of the generalization problem could be applied in con-
junction with any algorithm for optimizing the class-level parametefs Although we
believe that our class-level LP provides an effective method for performing such optimiza-
tion, other algorithms could also be applied. For example, our coordinated RL approach
could be used to optimize these parameters in settings where the factored MDP model is
not knowna priori. Other methods could also be applied when the value function represen-
tation depends non-linearly on the parametets Finally, for simplicity, we have assumed
that our class-level value function provides an effective policy for new worlds, without any
replanning. We could, of course, use the class-level value function as a good starting point
from which the specific policy for this new world is optimized.

Our experimental results support the fact that our class-based value function generalizes
well to new plans, and that the class and subclass structure discovered by our learning
procedure improves the quality of the approximation. Specifically, on a set of simulated
problems, we show that the performance of the policy obtained from our generalized value
function was withinl % of the policy obtained when replanning in each world, without any
class restrictions. Furthermore, we successfully demonstrated our methods on Freecratft,
a real strategic computer game that contains many characteristics present in real-world
dynamic resource allocation problems. Here, we were able to generalize from a small
environmentto a very large, highly-connected environment that could not be solved directly
by our factored algorithms.

14.2 Future directions and open problems

We now outline some directions that remain open, which we feel could lead to fruitful
research topics, and provide some initial thoughts on how these directions could be pursued.



14.2. FUTURE DIRECTIONS AND OPEN PROBLEMS 289

14.2.1 Basis function selection

The success of our algorithms depends on our ability to capture the most important structure
in the value function using a linear, factored approximation. This ability, in turn, depends
on the choice of the basis functions and on the properties of the domain. The algorithms
currently require the designer to specify the factored basis functions. This is a limitation
compared to the algorithms of Boutiliet al. [2000] that are fully automated. However, our
experiments suggest that a few simple rules can be quite successful for designing a basis.
First, we ensure that the reward function is representable by our basis. A simple basis that,
in addition, contained a separate set of indicators for each variable often did quite well.
We can also add indicators over pairs of each variable; most simply, we can choose these
according to the DBN transition model, where an indicator is added between varigbles

and each one of the variablesmarents(X;), thus representing one-step influences. This
procedure can be extended, adding more basis functions to represent more influences as
required. Thus, the structure of the DBN gives us indications of how to choose the basis
functions. Other sources of prior knowledge can also be included for further specifying the
basis.

Nonetheless, a general algorithm for choosing good factored basis functions still does
not exist. However, there are some potential approaches: First, in problems with CSlI, one
could apply the algorithms of Boutilieat al. for a few iterations to generate partial tree-
structured solutions. Indicators defined over the variables in backprojection of the leaves
could, in turn, be used to generate a basis set for such problems. Second, the Bellman
error computation, which we perform efficiently as shown in Section 5.3, not only provide
a bound on the quality of the policy, but also the actual state where the error is largest. This
knowledge can be used to create a mechanism to incrementally build the basis set, adding
new basis functions to tackle states with high Bellman error. Finally, the recent work of
Poupartet al. [2002] and Patrascat al. [2002], building on our factored algorithms, at-
tempts to greedily construct a set of basis functions in order to improve the quality of the
approximation. Such approaches provide some basic groundwork for the design of auto-
mated basis function selection mechanisms. Such mechanisms could significantly extend
the applicability of our methods.
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14.2.2 Structured error analysis

If a factored MDP can be divided into completely independent parts, then it is clear that
a factored value function spanning each part separately will be able to represent the op-
timal value function. Intuitively, if a system is formed by weakly interacting parts, then
we expect that it may be possible to approximate its true value function with a factored
representation. It would thus be interesting to prove a theoretical bound on the quality of
the solutions obtained by our factored algorithms that depends explicitly on the structure
of the underlying factored MDP. A potential avenue for proving such bounds could use the
error analysis of de Farias and Van Roy [2001a], which allows us to introduce a Lyapunov
function, weighing the approximation differently in different parts of the state space. We
could thus select a Lyapunov function that is compatible with the structure of the factored
MDP, weighing weakly interacting parts appropriately. The structure analysis developed
by Boyen and Koller [1999] for approximate inference in DBNs could provide intuitions on
how to obtain such a Lyapunov function. Such a bound could be useful both in understand-
ing when a factored MDP can be effectively approximated, and how to select appropriate
basis functions to obtain good approximations.

Another interesting, related, theoretical direction is to analyze when our class-level
value functions will provide a good (or even exact) solution to new environments. We
can again view this problem as one of bounding the quality of the solutions obtained by
the LP-based approximation algorithm, though we are now solving the metaIVjRP
However, there are other situations where different types of generalization bounds could be
obtained. For example, in some cases that contain significant amounts of symmetry, it may
be possible to prove that a class-based value function is equal to the object-based value
function we would obtain had we not imposed class restrictions. In the tactical Freecraft
problem in Example 12.2.2, if we only had class-based basis functions between an enemy
and its related footman, then, by symmetry, this class-based solution will be equal to an
object-based solution that allows each enemy to use different parameter values. This type
of analysis could also provide automated methods for designing the class structure of the
relational MDP.
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14.2.3 Models with large induced width

A central element governing the efficiency of our planning algorithms is the induced width
of the underlying cost network formed by the backprojection of our basis functions. A very
important open direction is the design of algorithms that can tackle problems with large
induced width. We have proposed two approaches in this thesis: In problems with large in-
duced width, but with significant amounts of context-specific structure in the model, we can
apply our rule-based factored LP decomposition to obtain approximate solutions efficiently.
Alternatively, in problems where the backprojection of each basis function depends on a
small set of variables, but where the induced width of the underlying cost network is still
very large, we can apply our approximately factored dual algorithm described in Chapter 6.

However, there are practical problems that do not fall into one of these two cases. For
example, when a variabl&; in the DBN has a noisy-or CPD depending on many other
variables in the previous time step, neither our rule-based algorithms, nor our approximate
factorization, will be able to tackle this problem. An example of such a variable is the
Gold variable in our Freecraft model, whose CPD depends on the state of every peasant in
the model. We could address the Freecraft problem by generalizing solutions from smaller
game scenarios. Nonetheless, it is still important to design algorithms for handling high
induced width models in problems where generalization is not effective.

There are many possible solution paths for tackling problems with large induced width.
Many of these directions build on successful algorithms for approximate or exact inference
in graphical models with large induced width. For example, as discussed in Section 6.3,
we can relate our approximately factored dual algorithm to the belief propagation algo-
rithm [Pearl, 1988; Yedidi&t al, 2001]. Similarly, combining sampling or conditioning
techniques, where a subset of the variables are instantiated, with exact inference has lead
to successful algorithms for inference in graphical models [Hoetial.,, 1989; Casella &
Robert, 1996; Doucaeidt al., 2000; Bidyuk & Dechter, 2003; Allen & Darwiche, 2003]. We
could follow a similar path by combining the sampling approach of de Farias and Van Roy
[2001b] with our LP decomposition technique. Interestingly, we can view our class-level
LP formulation as a special case of such a procedure, where a set of worlds is sampled,
and our LP decomposition technique is applied exactly for each of these worlds. Finally,
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Pfeffer [2000] and Poole [2003] have recently developed methods that can handle sets of
similar objects simultaneously, without generating a propositional representation of the
world. These methods could perhaps also be incorporated into our factored LP decompo-
sition technique, thus handling worlds with a very large number of objects.

14.2.4 Complex state and action variables

We have assumed that each state, or action variable takes on one of a few discrete values.
Although our coordinated RL approach can also handle continuous state variables, we feel
that this is an important issue, which requires further investigation. We can attempt to han-
dle continuous state variables by using discretization algorithms [Chow & Tsitsiklis, 1991;
Rust, 1997], reducing the continuous problem to a discrete one. More interestingly, we
could attempt to design discretization methods that are compatible with our factored LP
decomposition technique, discretizing the intermediate factors generated by our maximiza-
tion algorithm, rather than the state variables themselves. Such approach could introduce
an explicit link between discretization complexity and the structure of a factored MDP.
Similar types of discretization have been applied in DBNs by Kozlov and Koller [1997].

Models containing continuous action variables transform the action selection step into
a general nonlinear optimization problem [Isidori, 1989]. Such problems are often very
difficult to solve. An obvious approach to address this issue is to apply standard local
search or gradient ascent algorithms to perform the optimization. Unfortunately, these
approaches are usually prone to local maxima problems. A more interesting direction could
be to attempt to exploit structure in our coordination graph. Specifically, we can use the
same type of discretization of intermediate factors described above. This would allow us
to perform the action selection step using a discretized dynamic programming algorithm,
thus minimizing the influence of local optima.

Additionally, some problems may include discrete state or action variables that have
very large domain sizes, for example, the action variable of a footman in Freecraft that se-
lects among many enemies, or variables obtained when a continuous variable is discretized,
such as the amount of gold in a Freecraft scenario. In such cases, even problems with rel-
atively small induced width may be difficult to solve. We could address this problem by
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exploiting a structured decomposition of domain values using a similar representation to
the rule-based one used for CSI [Geiger & Heckerman, 1996; Friedman & Singer, 2000;
Sharma & Poole, 2003]. Alternatively, we could use sampling methods, such as the ones
analyzed by de Farias and Van Roy [2001b], to consider only a subset of the assignments
in the domain of such variables.

In our implementation, we have used indicator basis functions over assignments of the
domain of small sets of variables. Such a representation will be infeasible in problems with
large domain sizes. In such problems, we may need to use basis functions that generalize
over possible domain values. For example, a basis function over a discretized variable
may have values that depend polynomially on the assignment of the original continuous
variable.

14.2.5 Model-based reinforcement learning

Coordinated RL is a model-free approach, that is, it attempts to obtain successful policies
without explicitly building a model of the environment. Model-free algorithms do not need

to make strong assumptions about the underlying structure of the world. Unfortunately,
as no model of the world is maintained, it is often difficult to bound the quality of the
current solution, or design effective exploration strategies. Model-based approaches, on
the other hand, build a parametric model of the world and use this model to explore the
environment effectively [Moore & Atkeson, 1993; Kearns & Singh, 1998; Brafman &
Tennenholtz, 2001]. Furthermore, if the model parameterization is a good approximation
of the underlying world, then model-based methods can be very effective. An interesting
future direction is to design algorithms that effectively explore the environment, assuming
that the underlying system can be modelled by a factored MDP. Kearns and Koller [1999]
and Guestriret al. [2002c] propose algorithms for exploring the environment in order

to learn effective policies, assuming that the structure of the underlying factored MDP is
known, but that the model parameters are unknown. Although these algorithms provide
initial methods to address the factored model-based RL problem, a general solution that
effectively learns both the structure and the parameters of a factored model is still an open
problem.
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14.2.6 Partial observability

We have assumed that the underlying planning problem is fully observable, that is, each
agent can observe the state variables relevant to their local Q-function. In more general
formulations, the agents may be only able to make noisy observations about the world, for
example, using sensors. Such problems can be formulated as a partially observable Markov
decision process (POMDP) [Sondik, 1971]. Exact solutions for POMDPs are intractable,
even when the number of states is polynomial [Maddral., 1999; Bernsteirt al., 2000].
Typically, exact algorithms can only solve problems with tens of states [Cassainalra

1997; Hansen, 1998]. Recent approximate methods have scaled to POMDPs with many
hundreds of states Pineatial. [2003].

Designing efficient POMDP solution algorithms that exploit problem structure is an
exciting area of future research. One possible direction to tackle this problem is to ex-
ploit a factored representation of the POMDP [Boutilier & Poole, 1996], perhaps by using
factored value function approximation methods [Guesgtiml., 2001c]. Another option
relies on projecting the space of possible beliefs over the state of the system into a lower
dimensional space [Roy & Thrun, 2000; Poupart & Boutilier, 2002; Roy & Gordon, 2002].
We believe that an effective method for solving structured POMDPs could combine these
two approaches by using a structured representation of the beliefs that is compatible with
the structure of the factored POMDP, in a similar manner that our factored value function
is compatible with the structure of the factored MDP. This decomposition would be anal-
ogous to the one we used to decompose the dual variables in our factored dual algorithm
in Chapter 6. We believe that such approach could provide an effective method for solving
large-scale POMDPs.

14.2.7 Competitive multiagent settings

This thesis has focused on long-term planning problems involving multiple collaborating
agents that have the same reward function. However, many practical problems involve
competitive settings, where the agents have different reward functions. Such stochastic
dynamic systems involving multiple competing agents can be modelled sginbastic
games a generalization of MDPs, which was first proposed by Shapley [1953], and later
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studied by, among others, Littman [1994] and Brafman and Tennenholtz [2001]. As with
standard MDPs, stochastic games suffer from the curse of dimensionality, as the number of
possible strategies grows exponentially in the number of agents.

Many existing algorithms tackle stochastic games by using model-free reinforcement
learning algorithms in two-player zero-sum settings. Specifically, Littman [1994] focused
on exact solutions, while Van Roy [1998] and Lagoudakis and Parr [2002] present approx-
imate solutions for such problems, by using linear approximations of the value function.

In recent years, there has been increasing interest in designing algorithms that exploit
structure ingraphical gamesstructured representations of competitive multiagent settings
that do not evolve over time [Littmaet al, 2002; Leyton-Brown & Tennenholtz, 2003;
Blum et al, 2003]. This formulation can also be generalized to finite horizon problems
represented by competitive extensions of influence diagrams [La Mura, 1999; Koller &
Milch, 2001].

We believe that, by using factored value functions, we could exploit structure in factored
models to solve two-player zero-sum problems efficiently, using extensions of the tech-
niques developed in this thesis. Furthermore, by combining factored MDPs with graphical
games, one could attempt to address infinite horizon problems involving multiple agents.

We can view our collaborative multiagent planning algorithm as an approximate method
for obtaining best-response policies when the opponent is “nature”. Stochastic games pro-
vide equilibrium strategies, where each agent plays a best-response policy, assuming the
other agents are perfectly rational. In many settings, such as exponentially-large factored
problems, agents can only perform approximate optimizations, and may thus not be per-
fectly optimal. We believe that often, in such settings, rather than defining the problem as
one of attempting to respond optimally to rational agents, one should attempt to respond
effectively to opponents that can be classified as belonging to certain classes of opponents.
In such settings, one could use our methods, or extension to POMDPSs, to obtain good
strategies that attempt to respond well to opposing agents sampled from a distribution over
the classes of possible opponents.
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14.2.8 Hierarchical decompositions

Many researchers have examined the idea of dividing a planning problem into simpler
subproblems in order to speed-up the solution process. There are two common ways to
split a problem into simpler pieces, which we will caktrial decompositiomnd parallel
decomposition

In a serial decompositionexactly one subproblem is active at any given time. The
overall state consists of an indicator of which subproblem is active along with that sub-
problem’s state. Subproblems interact at their borders, that is, at states where we can enter
or leave a subproblem. For example, imagine a robot navigating in a building with multiple
rooms connected by doorways: fixing the value of the doorway states decouples the rooms
from each other and lets us solve each room separately. In this type of decomposition, the
combined state space is the union of the subproblem state spaces, and so the total size of
all of the subproblems is approximately equal to the size of the combined problem.

Serial decomposition planners in the literature include the algorithms of Kushner and
Chen [1974] and Dean and Lin [1995], as well as a variety of hierarchical planning algo-
rithms. Kushner and Chen were the first to apply Dantzig-Wolfe decomposition to MDPs,
while Dean and Lin combined this decomposition with state abstraction. Hierarchical plan-
ning algorithms include MAXQ [Dietterich, 2000], hierarchies of abstract machines [Parr
& Russell, 1998], and planning with macro-operators [Subral, 1999; Hauskrecht
et al, 1998].

By contrast, in goarallel decompositioymultiple subproblems can be active at the same
time, and the combined state space is the cross product of the subproblem state spaces. The
size of the combined problem is therefore exponential rather than linear in the number
of subproblems. Thus, a parallel decomposition can potentially save significantly more
computation than a serial one. For an example of a parallel decomposition, suppose there
are multiple robots in our building, interacting only through a common resource constraint
such as limited fuel or through a common goal such as lifting a box which is too heavy
for one robot to lift alone. A subproblem of this task might be to plan a path for one robot
using only a compact summary of the plans for the other robots.

Parallel decomposition planners in the literature include the algorithms of Singh and
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Cohn [1998], Meuleaet al. [1998] and Yost [1998]. Singh and Cohn’s planner builds the
combined state space explicitly, using subproblem solutions to initialize the global search.
So, while it may require fewer planning iterations than naive global planning, it is limited
by having to enumerate an exponentially-large set. Meuétal’s planner, which was
further improved by Yost [1998], is designed for parallel decompositions in which the only
coupling is through global resource constraints. More complicated interactions such as
conjunctive goals or shared state variables are beyond its scope.

Recently, Guestrin and Gordon [2002] propose a planning algorithm that handles both
serial and parallel decompositions, providing more opportunities for abstraction than other
parallel-decomposition planners. The approach of Guestrin and Gordon builds a hierarchi-
cal representation of a factored MDP that is analogous to the hierarchical decomposition of
Koller and Pfeffer [1997] for Bayesian networks. In addition, Guestrin and Gordon [2002]
propose a fully distributed planning algorithm: at no time is there a global combination
step requiring knowledge of all subproblems simultaneously, contrasting with the factored
planning algorithms presented in this thesis, which require the offline solution of a global
linear program. This approach also allows for the reuse of solutions obtained in one sub-
system in other similar subsystems. We can view this property as generalization within a
planning problem, while our relational models provide generalizations between planning
problems.

Unfortunately, the approach of Guestrin and Gordon [2002] requires a tree decomposi-
tion of the environment into subsystems. This tree structure is analogous to the triangulated
clusters required in our factored dual algorithm. Thus, this decomposition will be infeasi-
ble in problems with large induced width. We believe that the approximate factorization
described in Chapter 6, or one of the methods for tackling problems with large induced
width described above, could be used to obtain approximate versions of the decomposition
of Guestrin and Gordon [2002].

Such approximate decompositions could then be combined with other existing decom-
position methods. For example, the algorithms of Meuletal. [1998] and Yost [1998]
allow us to introduce more global resource constraints than our local decomposition tech-
nique. These methods could potentially be combined with the decompositions of Guestrin
and Gordon [2002] to approximately represent systems involving both global constraints
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and local structure.

It would also be interesting to explore the combination of our parallel decomposition
with the serial decomposition algorithms of Dietterich [2000], Parr and Russell [1998],
Suttonet al. [1999], Hauskrechet al. [1998], and Andre and Russell [2002]. The al-
gorithm of Andre and Russell [2002], for example, would potentially allow us to intro-
duce temporal abstractions into our factored model. When combined with our relational
representation, we could obtain a hierarchical decomposition that allows us to generalize
temporally-extended value functions. These two types of generalization could yield effec-
tive approximation methods for handling complex systems, using hierarchical, serial and
parallel decompositions.

14.2.9 Dynamic uncertain relational structures

Our relational MDP assumed that, in a particular world, relations are either fixed, or change
deterministically with the actions of different agents. In general domains, relations may
change stochastically over time, though, as we are tackling fully observable problems, the
values of the relations will be observed by the agents at every time step. Extending the
relational MDP model to allow for changing relational structures is straightforward. The
PRM framework of Koller and Pfeffer [1998] allows for relational uncertainty, the same
framework could be applied to relational MDPs.

Note, however, that if the relational structure changes, then our definition of the objects
in the scope of an instantiated class basis function may also change. In our SysAdmin
problem, we had basis functions between pairs of neighboring objects in the network. If
the structure of the network changes, the neighbor of a particular machine may change,
and its contribution to the global value function will now depend on the state of a dif-
ferent machine. In such cases, we may need more elaborate methods for computing the
backprojection of our basis functions. Specifically, the state in the current time step spec-
ifies a distribution over assignments to the relations in the next time step. For each one of
these relational assignments the scope of our class basis function is well-defined. Thus,
the backprojection of a class basis function will be a weighted linear combination of the
backprojections obtained for each possible assignment to the relations in the next time step.
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More importantly, we must adapt our planning algorithm to tackle such varying rela-
tional structures. Such problems will often have very high induced width. For example,
consider a model of multiple robots exploring a building after an earthquake. The state of
one robot could potentially be influenced every other robot. However, at every time step, a
robot’s state only depends on robots that are within a certain radius. Clearly, the induced
width of such a problem will be very large, involving the state of all robots. However,
there is a significant amount of context-specific structure in this problem. Generally, we
could address relations that change over time by exploiting context-specific independence.
However, CSI may not be sufficient to tackle such problems. In these cases, the other
approaches for tackling problems with large induced width suggested above, such as sam-
pling, conditioning, or approximate factorizations, could be used to address problems with
dynamically changing relational structure.

14.3 Closing remarks

We believe that the framework described in this thesis significantly extends the efficiency,
applicability, and general usability of automated methods in the control of large-scale dy-
namic systems. However, many issues remain to be studied before automated methods
can be deployed in practical settings. In this chapter, we outline a few open directions
that particularly relate to our approach. There are, of course, many other more general
open questions that must be addressed before effective general-purpose methods can be de-
signed for tackling large-scale complex systems. Ultimately, we hope that such automated
methods will aid users in the solution of many real-world long-term planning tasks.



Appendix A

Main proofs

A.1 Proofs for results in Chapter 2

A.1.1 Proof of Lemma 2.3.4

There exists at least a setting to the weights — the all zero setting — that yields a bounded
max-norm projection errofp for any policy Gp < R,...). Our max-norm projection
operator chooses the set of weights that minimizes the projection®ftrdor each policy

7). Thus, the projection errgs) must be at least as low as the one given by the zero

weightsgp (which is bounded). Thus, the error remains bounded for all iteratioms.

A.1.2 Proof of Theorem 2.3.6

First, we need to bound our approximationf.):
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o0

Moving the second term to the right hand side and dividing through-byy, we obtain:

()
Voo —BwOl| < 1 |ToBw® —HWO| = A
Y Y

300
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For the next part of the proof, we adapt a lemma of Bertsekas and Tsitsiklis, [1996, Lemma
6.2, p.277] to fit into our framework. After some manipulation, this lemma can be refor-
mulated as:

2
IV = Vel <7V = Voo ll o + ﬁ Ve = HWO | (A.2)

The proof is concluded by substituting Equation (A.1) into Equation (A.2) and, finally,
induction ont. 1

A.2 Proof of Theorem 4.3.2

First, note that the equality constraints represent a simple change of variable. Thus, we can
rewrite Equation (4.2) in terms of these new LP variabdgsas:

¢ > maxz uiz, (A.3)

where any assignment to the weightsimplies an assignment for eaatj:. After this
stage, we only have LP variables.

It remains to show that the factored LP construction is equivalent to the constraint in
Equation (A.3). For a system with variables{ X1, ..., X,,}, we assume, without loss of
generality, that variables are eliminated starting frdmdown to X;. We now prove the
equivalence by induction on the number of variables.

The base case is = 0, so that the functiong;(x) andb(x) in Equation (4.2) all have
empty scope. In this case, Equation (A.3) can be written as:

6> u (A4)

In this case, no transformation is done on the constraint, and equivalence is immediate.
Now, we assume the result holds for systems withl variables and prove the equiva-
lence for a system withvariables. In such a system, the maximization can be decomposed

into two terms: one with the factors thab notdepend onX;, which are irrelevant to the
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maximization overX;, and another term with all the factors that dependkgnUsing this
decomposition, we can write Equation (A.3) as:

¢ > max E Ug?;
. J

> max E ug! + max g ug | . (A.5)
1, Ti1 ¢ T 7
l: Xi¢Z,; Jj: Xi€Z;

At this point we can define new LP variable$ corresponding to the second term on
the right hand side of the constraint. These new LP variables must satisfy the following

constraint: ,

g ZMAxX Y UG (A.6)

j=1
This new non-linear constraint is again represented in the factored LP construction by a set
of equivalent linear constraints:

¢
ug > Zuaxi)[zj],Vz, T (A.7)
=1

The equivalence between the non-linear constraint Equation (A.6) and the set of linear con-
straints in Equation (A.7) can be shown by considering binding constraints. For each new
LP variable createds, there arel.X;| new constraints created, one for each valuef

X;. For any assignment to the LP variables in the righthand side of the constraint in Equa-
tion (A.7), only one of thesgX;| constraints is relevant. Thatis, one Wh@ézl u?;ﬂ?i)[zj]
is maximal, which corresponds to the maximum o¥er Again, if for each value ot more

than one assignment 18, achieves the maximum, then any of (and only) the constraints
corresponding to those maximizing assignments could be binding. Thus, Equation (A.6)

and Equation (A.7) are equivalent.

Substituting the new LP variableg into Equation (A.5), we get:
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which does not depend oN; anymore. Thus, it is equivalent to a system with 1
variables, concluding the induction step and the prodf.

A.3 Proof of Lemma5.3.1

First note that at iteratiotr+ 1 the objective functiop® ! of the max-norm projection LP
is given by:
¢(t+1) = HHW(t—H) - (Rﬂ(t-u) + ’}/PW(HI)HW(H_I)) ||oo

However, by convergence the value function estimates are equal for both iterations:

1) _ ®),

w
So we have that:
Cb(t“) = HHW(t) - (Rﬂ(tﬂ) + 7P7r<t+1>HW(t)) HOO
In operator notation, this term is equivalent to:
¢(t+1) — ”Hw(t) _ Zr(tH)HW(t)HOO-
Note thatr**1) = Greedy[Hw"] by definition. Thus, we have that:
,];r(t+1)HW(t) = T*Hw®.

Finally, substituting into the previous expression, we obtain the result:

oY = |[Hw" — T*Hw®|| . »
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A.4 Proofs for results in Chapter 6

A.4.1 Proof of Lemma6.1.1

The non-negativity condition is stated directly in the dual LP in (6.2).
To prove the condition in Equation (6.5), consider the constraint induced by the constant
basis functiom,:

X

D ba(X)ho(x) =Y a(x)ho(x) + 7Y du(x) D Plx|x,a)ho(x) ;

yielding:

S 0ux) = Y a) +7 Y 6u(x) S Px | ¥, d).

X x/,a’

Using the facts tha} | a(x) = 1, and) | P(x | x/,a’) = 1, we obtain the result. §

A.4.2 Proof of Theorem 6.1.2

Item 1: Clearly ¢2(x) > 0 for all x anda. We must now show that for an arbitrary basis
functionh;:

Y hhi(x) =Y a(x)hi(x) +7 ) ¢h(x) D Plx| X, a)hi(x).

X

Substituting the definition of? in Equation (6.6) into the second term on the righthand
side of this constraint:

EDLACID DI ENBLACY

= ’yz Z Z’ytp(a’ | x')P,(x" = x' | x© = x")a(x") Z P(x | x',a")h;(x) ;

x',a’ t=0 x" X

= >SN a3 AR =X | X0 =x")p(a | X)P(x | X, d) .

x"  x t=0x',a’
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As the transition probabilities of our randomized policy are definedPpix | x') =
Yoopld | x)P(x | x',a"), we obtain:

Y W (x)D P(x | % d)hi(x)

= Z a(x”) Z hi(x) Z”ytHPp(x(tH) =x | x@ =x");

t=0

x//

= Y a) Y hilx) (Z P = x | x© = x")) P (x = x | X = x">] ;
X | \t=0

x//

_ ZOZ(X”) Z hi(x) <Z ’Yth(X(t) =x | x(0) — X”)) - ]l(X” _ X)] ;

1"

= D hx)hi(x) = > a(x)hi(x) ;

X

concluding the proof of ltem 1.

Item 2: For k basis functions, there akeconstraints in the dual formulation to the lin-
ear programming-based approximation formulation (not including positivity constraints).
Thus, any non-singular basic feasible solution to the dual will have at inosin-zero
variablesj.e. k state-action pairs such that(x) > 0. Item 2 holds ifk is smaller than the
number of states.

Item 3: Consider a simple MDP where every statéransitions to an initial state,
with probability 1,i.e., the transition probabilities are defined by(x, | x’,a) = 1 for all
x’ anda.

Now consider the approximate dual LP induced by an approximation architecture with

only one basis function, the constant functign Lemma 6.1.1 specifies the only feasibility

1
IX[[A[(1=)?

solution. The randomized poligydefined in Equation (6.7) becomes the uniform policy:

constraints on the dual variables. Let us seledtx) = clearly a feasible

pla|x) = ﬁ for all x.

We now compute the visitation frequencies fasccording to Equation (6.6):

Forx # x,, we have that:
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x) = ) Y el 0)F(xY =x[x¥ =x)ax);

t=0 x’

= Zp(a | x)P,(x© = x | x¥ = x)a(X)

35 a1 0P (x0 = x | x0 = x)a(x) ;

t=1 x’/

= pla|x)a(x);

asP,(x® =x | x9 = x') = 0, for all x # %, for all ¢ > 0.

The visitation frequency fox, is given by:

dhxo) = D> A'pla|x0)P(x? =xo | xV =x)a(x);

t=0 x’/

= pla]xo)alxo) + 303 A'p(a | x0) Po(x = x0 | x9 = x)a(x)

t=1 x’/

= pla | xo)a(xo) + pla | xq) thZa(X/) :

t=1 x/
vp(a | xo) .

= pla|xo)a(xo) + 1=~

asP,(x) = x, | x© =x') =1, forallt > 0.

Thus,¢?(x) # ¢.(x) for all x anda, concluding the proof of Item 3.1

A.4.3 Proof of Lemma6.1.4

First note that, by standard primal-dual resuétg)( [Bertsimas & Tsitsiklis, 1997]), a dual
variable is positiveg,(x) > 0, if and only if the primal constraint corresponding to the
statex and the action is tight:

Zwihi(x) = R(x,a) + 72 P(x'| x,a) Zwihi(x’).
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Now consider the optimal solutio® to the primal LP in (2.8). The greedy policy with
respect to this solution is given by:

Greedy[V¥](x) = arg max | R(x,a) + Y P |xa)> @ihi(x)|.  (A8)

If the constraints for some stateand for all actions: are loose, then the corresponding
dual variablep, (x) is equal to O, for all actions in all optimal dual solutions corresponding
to the primal solutionw. Thus, according to Definition 6.1.3 our policies in can select any
(randomized) action for this state, includiGgeedy[V¥](x).

We must now consider state&swvhere our primal constraints are tight for at least some
actiona. If the constraints are tight for exactly one action, then this is exactly the greedy
action in Equation (A.8). Moreover, the corresponding dual variable for this agiot) is
strictly positive, in all optimal dual solutions corresponding to the primal solutiofihus,
according to Definition 6.1.3 all of our policies must select the acBoeedy[V¥](x) at
statex. In cases where, for some statethe primal constraints are tight for more than one
action, then therg max, in Equation (A.8) is not unique, and there is a basic feasible dual
solution for each possible maximizing actior

A.4.4 Proof of Theorem 6.1.6

Let ¢? be the true state-action visitation frequencies of pglicBy Theorem 2.2.1, we can
decompose these frequencies into:

PP (x) = pla | x)¢(x),

~ P (x
where¢?(x) = Z‘ifa(;ﬁ,)(x).

Now note that we can decompose our optimal soluﬁgm the approximate dual in a
similar manner:

a(x) = pla | x)o(x),

for any policy inPoliciesOf [¢,], asp(x) = % if > b (x) > 0, and zero otherwise.

We can now define the difference between these two sets of visitation frequencies:
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X
$X & ( );

= pla | x)e’(x);

x) = Gu(x) — ¢h(x)
= pla]|x) (
(

where we define?(x) = ¢(x) — ¢°(x).

As the ¢? are the true visitation frequencies of poligy by Theorem 2.2.1 we know
that this is a feasible solution to the exact dual LP. Thus, we have that:

¢ (x) +v2¢ﬂ ) P(x | x),
whereP;(x | x') = pla | X')P(x | X/, a). In matrix notation, we have that:
(bﬁ =o+ v(bﬁP,;.
As ¢ = ¢ — ¢/, we have that:
a—eﬁ:oH—W(qAﬁ—eﬁ) P;.

Rearranging, we finally get:

@ = (9-a—vop) (1—7Bp)"
= (A) (=P (A.9)

Let ¢* be an optimal solution to the exact dual LP. &sis feasible in the approximate
dual LP in (6.2), we have that:

Y Gu(x)R(x,a) = Y r(x)R(x

Similarly, ¢? is a feasible solution to the exact dual LP in (6.1), thus:

Y da(X)R(x,0) = > ¢h(x)R(x,0) > > H(X)R(x, a). (A.10)
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From the definition of?, we have that:
Y R(x,a) = Y P(x)R(x);
= D o)R(x) = Y P (x)Rp(x);

X

whereR;(x) = 3, p(a | x)R(x,a). In matrix notation, we have that:
(/)R = (8)"R; — ()R,
Substitutings” from Equation (A.9), we have that:
()8 = 3By — (B16.) (I=7Fp)" By,
Note thatV; = (I —vP;)~" R;. Thus:
()8 = 3By — (816.)" Vs
Rearranging, we obtain that:
Y AR, a) + Y Alda(x) Va(x):
| = > Gu(x)R(x,a);

> Z $a(x) R(x, a);

> XZ ¢4 (x) R(x, a)

= Z Sa(X)R(x,a) = > Alda] (%) V5(x); (A.11)

where the inequalities are substitutions from Equation (A.10).

By the strong duality theorem for LPs, we have that:



310 APPENDIX A. MAIN PROOFS

Y 0uXR(xa) = Y ax)VE(x);

X

S eiRxa) = 3 ab)V(x);

X

Y R(x,a) = Y a(x)V(x).

X

Substituting these results into Equation (A.11), we first obtain:

; GL(x)R(x,a) + Z Alda)(x) Vo(x);
| = Y a)Va(x) + Y AlR(x) Va(x);
> i ¢a(X)R(x, a); x
= XZ a(x)V*(x); (A.12)

X

yielding Equation (6.9) when we note that, for each stgt&*(x) > V;(x) by the opti-
mality of V*.

Substituting the strong duality results into Equation (A.11) again, we also obtain:

> Gix)R(x,a) = > ax)V*(x);
> Y Gu(x)R(x,a) = Y Alda)(x) Va(x);

X

= D al)V¥(x) = D Al (x) Va(x). (A.13)
Equation (6.10) now follows by noting that Equation (A.13) holds forﬁ@PoliciesOf[qua],
and thatV/¥(x) > V*(x) for every statex (as shown by de Farias and Van Roy [2001a]).
1
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A.4.5 Proof of Theorem 6.1.7

First, note that, by the feasibility (ifa in the approximate dual formulation, we have that,
for any set of weightsv:

Z ba(X) Z w;ih;(x) = Z a(x) Z w;h; (x)+7 Z b (X') Z P(x|x,d) Z w;h;(x)

where this equation is just a weighted combination of the flow constraints in Equation (6.3).
Rearranging, we obtain:

> PalX) 2 wihi(x)
= 2 (%) 20 wihi(X) = 72w b (X)) 22, P(x | X5 a') 305 wihi(x) = 0.

(A.14)
Theorem 6.1.6 says that we must bound:
(Alg)Vs =D Aldal(x) Va(x),
or equivalently:
Alga]) V5 =D du(x) Vil Z a(x Z du(x) Y Plx | x,d)V5(x).

Subtracting Equation (A.14), we obtain:

(AlDa) V5 = 0 $alx) Val(x) = 3y wilis(x)] = 3, a(x) V(%) = X, wihi(x)]

VY O (K)o P(x | X a') [Va(x) = 3, wii(x)] ;
(A.15)

for any set of weightsv.
We can now prove the first part of our theorem by choosing the set of weights that
define the minimum in Equation (6.11), and thus noting that:

Zwl i <5A Vx.

Substituting into Equation (A.15), we obtain:
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|

’+Z|oz N+

(Alg)TV; < ,‘?[

Z du(x') Y Plx|xd)

concluding the proof of the first part of the theorem.

For the proof of the second part, we multiply each term in Equation (A.l%y

(AlB)TVs = E Ga(3) 155 V() = g wihi(x)] = L () £33 DVp(3) = L, i ()]
=Y D b () Lo PO | X)) 155 V() — &, )

Substituting the weighted max-norm erag?’l/L in place of eacQ— Va(x) — >, wihi(x)],
we obtain:

ARV, < lz $u(0) L(x

)|+ lax)Lx)

= [Z a(x)L(x) + > a(x)L(x
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where we remove the absolute values in the second equality because all terms are non-
negative. Using the Lyapunov condition in Equation (6.14), we can change

<%> N ;ga,@a) ;mx | %', L(x),

which is equal to

into the larger

which is equal to

obtaining:

ATV, < e

+(1- 1) DN xxa/>L<x>] ;
(5 30010 + 3 et

i (‘1 . ) v 2 ulod) S PGx ] %, a'>L<X>] |

! 4!
,a

00,1/L
P

As the Lyapunov function is in the space of our basis functions, we can use Equation (A.14)
with weightsw?’ to substitute the term:

(1 - ) Z Ga(¥) L(x) + (—1 - ) 72 fu (x) gmx | %, a')L(x)

with 72 3" «a(x)L(x), obtaining:



314 APPENDIX A. MAIN PROOFS

(Alda])TV;

IN

e/t Gf—z + 1) > a(x)L(x);

X

o0, 2
65 I/LE Z Oé(X)L(X),

thus concluding our proof. i

A.4.6 Proof of Lemma6.2.4

By contradiction: assume that there exists a set of global visitation freque}q,céi:e)ssat-
isfying the flow constraints in Equation (6.3), such t@@(x) and .’ are not consistent

flows, and:
Y3 Gux)R(xa) > D> Y ¢L(x)R(x, a). (A.16)

Let i, be the marginal visitation frequencies associated witas defined in Equations (6.23)
and (6.24).

Eachy, is guaranteed to be non-negative, by the non-negativit;}aoﬂ' he derivation
in Section 6.2.2 shows that, must satisfy the factored flow constraints.

As ¢ andy; are consistent flows, Equation (6.25) implies that:

> D dix)R(x ZZ D mWHR(WS)

=1 a wicDom[W}]

Similarly, 71, anda, are consistent flows by definition, yielding:

POPBEACOLIC ZZ Do AlWRWS).
a % =1 a w?eDom[W¢|
Substituting these two equations into Equation (A.16), we obtain:
ZZ > mWDRW) <D > Ra(WHRI(W):

Jj=1 a w$eDom[W?] Jj=1 a w¢eDom[W]

contradicting the optimality ofi;. 1
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A.5 Proof of Theorem 13.3.2

We start the proof of our Theorem 13.3.2 with a lemma that measures the effect of sampling
on the objective function:

Lemma A.5.1 Consider the following class-based value functions (each kwiparame-
ters): V obtained from the LP over all possible worl€élsby minimizing Equation (13.8)
subject to the constraints in Equation (13.5); avidbtained by solving the class-level LP
in (13.11) with constraints only for a sél.,, of m worlds sampled fronf-,,(w), i.e., only
sampled from the set of worlds.,, with at most. objects, for any» > 1. For anyd > 0
ande > 0, if the number of sampled worlds is:
] 2
£)

m> 2 ”(ﬁfﬂ In(2k + 1) +1n§

then:

Eq M Eq M < % Az {sn + (n(l —e)+ %ﬁ) e_’\’i”] , (A.17)

max

with probability at leastl — £; whereEq, [V] = > weaxex, Pw)PY(x)V.(x), and R;
is the maximum per-object reward.

Proof:

As described in Section 13.2.2, we can decompose the probability of a world into:

P(w) = P(#)P(wy | 1).

Substituting this formulation into the left side of Equation (A.17), we obtain:

Bo[V] ~Ba [7] - 5 3 Pl - )P |2 = 07200 () — V().

i=1 we; xeX,,
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or equivalently:

Eo [V] - Ea [V] = SN ST Pl = )P | £ = )P ) (Vol0) = Vulx)

=1 we); xeX,

> Y Pl i)P |2 = )P (Ralx) ~ D).

j=n+1weQ; xeX,,

N—
_|_

We will bound each term in Equation (A.18) in turn.

Let us start by considering the first term on the righthand side of Equation (A.18), which
we can rewrite as:

YN Y =P 1= P (V00 - ) =B, [P-V] Y0 P

=1 we); xeX,, W e,

(A.19)
In addition, recall that our class-based LP minimizes:

Ep, V= )  PPxV.(),

wE’DSn,XEXw

which is a sample-based approximation to the expectdiion, V], and that) is an op-
timal solution to this linear program?, on the other hand, satisfies the constraints for all
worlds, including of course the constraints for world<in,,. Thus,V is clearly a feasible
solution for our class-level LP, consequently:

o, [7] < o, [7].

As we want to boundtq_, [17 — )7], and we now know thaEp_, [)7 — 17] < 0,itis
sufficient to bound:
Eq., |V - V| ~Ep., [V-V].

If the weights of our approximationgand) were fixed, we could use Hoeffding’s inequal-
ity to bound these terms, as they are a difference between an expectation and the sample



A.5. PROOF OF THEOREM 13.3.2 317

mean. However, our LP picks the basis function weights after the worlds are sampled, and
thus Hoeffding’s no longer holds, as an adversarial could pick weights that maximize the
error. Fortunately, we can compute such a bound for the worst possible (most adversar-
ial) choice of weights, with high probability, using the framework of Pollard [1984]. This
framework bounds the number of ways that the weights can be picked by using a covering
number. A union bound is the used to combine the probability of a large deviation for all
possible choices of weights. Pollard [1984] then proves a Hoeffding-style inequality using
this covering number:

P(3%,%: Bo, [V-V|-Ep., [V-V]>¢)

752771

< 2E [N (¢/16, LW, D.,)] eIV,
(A.20)

wherew andw are the parameters af and V), respectively,\ (c/16, L™, D.,,) is the
covering numbeof a linear function withk parameters [Pollard, 1984]; and the span norm
||-|| ¢ is defined to bg|V|| ¢ = maxy V(x) — min, V(x).

The bound of Pollard [1984] thus depends on the covering number of our linear function
parameterized byy. We can bound this covering number as a function of the number of
basis functions, the maximum value of each basis, and the magnitude of the weights, using
the result of Zhang [2002] Theorem 3:

1 ~ 2
A (£/16, L%, D) < K Gazn | WHl) wln(%ﬂ), (A.21)
- 19

where

= ma a ax |Ow]|[C1 [|KE]] .
asn=mgx max max O] A
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Using Assumption 13.3.1, we obtain the following bounds:

IN

n;

2kRY,..

1—~"
-9, < 5=

max

Q<n

El
|
B
A

IN

s 1—7v

By substituting these bounds into Equation (A.20), we obtain the bound:
EQSn [9 — i}\i| — EDgn |:)7 — 9] < g,

for a number of sampled worlds:

[ w1y ] (1)
with probability at least — g Recasting as
2nRY, ..
=)
we obtain: i
Eo., [17 - 17] ~Ep., [17 - 17} < 5%, (A.22)

for a number of sampled worlds:

m>2 ”(g)j In(2k + 1) + 1n§ (;)2 (A.23)

with probability at least — g which is the number of samples that appears on the statement

of this lemma.
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Substituting Equation (A.22) into Equation (A.19) we obtain:

Bo., [V-9] 3 PW) < (Bo, [V-V] B, [V-7]) 3 P

W’EQS" w’EQSn

2 [o]
5% Z P(W)).

(1 - ,}/) UJ/Gan

We can bound the teri’ P(w') by using Assumption 13.2.1:

UJ’EQSR

Y. PW) = Y ) Pl=0Pwlt=1d);

w'EQSn =1 wEQi

= ) P(i=1)
=1
=1

n
/ Kzﬁe”\ﬁxd:c;
0

ﬂ _ = Mn
= N [1 e ﬁ}. (A.24)

IN

IN

Concluding the bound of the first term on the righthand side of Equation (A.18) as:

YY) / 2nRy,,. —\in
Eo., V-V 3 P(w)ge(?_y)i—i[l—e x| (A.25)

W/EQSn
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We can now focus on the second term on the righthand side of Equation (A.18):

S Y S PP = D) (Bl - D)

j=n+1lweQ; xeX,,

< 3 S Y Pe-pPwli— )PP

Jj=n+1we; xeX,

~

1&;—'LL

Y
o0

2ijax
< }: D D Pl=0)Pw|t=j)Px)=—"
Jj=n+1we; xeX, 7
2R >
— max . P — .
1_7422 jP(E=3),
Jj=n+1

Where the first inequality bounds the differerigg(x) — V,(x) by the max-norm term
. This max-norm term is bounded in the second mequalltgiﬁy;—x, as every

oo

world in 2, has at mos}y objects, and thus each value function is boundeéifég, and
the difference between two value functions is no larger thames this bound.

We can now focus o} 7% | j P(4 = j). Using Assumption 13.3.1, we obtain the
following bound:

Y iPE=4) < ) jre™
j=n+1 j=n-+1
< / x/iﬁe_’\”mdx;
I (A.26)
A A

We thus conclude the bound on the second term on the righthand side of Equation (A.18)

by:
2R Ly
—maz — i, A.27
M{n+AJ€ (A2D)

Our final result follows from the sum of Equation (A.25) and Equation (A.27), and
rearranging the termsi
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In order to prove our main result we use a theorem by de Farias and Van Roy [2001b]
that considers linear systems with large number of constraints that are represented approx-
imately by a sampled subset of these constraints. Our class-level LP is an example of such
a system. If we solve an LP only considering this subset of the constraints, some of the
other constraints may be violated. Their theorem bounds the “number” of such constraints
that are violated:

Theorem A.5.2 (de Farias and Van Roy [2001b])Consider a (satisfiable) set of linear
constraints:
alw+0b, >0, Vz € Z,

wherew € R* and Z is a set of constraint indices.
For anyé > 0 ande > 0, and

m > é (klng—kln%),
€ € )

a setZ of mi.i.d. random variables sampled froBaccording to a distribution) satisfies:

o YU b <0) <
{w| alw+b.>0, V2€Z} ez

with probability at leastl — 2. 1
We can now prove our main theorem:

Theorem A.5.3 Consider the following class-based value functions (each wiparam-
eters): V obtained from the LP over all possible worlfisby minimizing Equation (13.8)
subject to the constraints in Equation (13.5); avidbtained by solving the class-level LP
in (13.11) with constraints only for a sél.,, of m worlds sampled fron®-,,(w), i.e., only
sampled from the set of worlds,, with at most. objects, for anyn > 1. LetV* be the
optimal value function of the meta-MDR,.,, over all possible world$). For anyd > 0

)

ande > 0, if the number of sampled worlds is:

2
1 <kln 12 —HnZ—L) +2 |7(@) w ln(2k+1)+ln§
£

e i B = R
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the error introduced by sampling worlds is bounded by:

o 1
+ Olfinaa 1 {571 + (n(l —€)+ )\—) e‘Aﬁ”] ;
#

H)?—lﬁ 1,Pq 1—79 N

s”?-v*

17PQ

with probability at leastl — &; where [V||, ,, = >, cqxex, P(W)PI(x) [V.(x)], and
RO

max

is the maximum per-object reward.

Proof:

For any vectoV, we denote its positive and negative parts by:
YVt =max(V,0), and V- = max(-V,0),

where the maximization is computed componentwise.

Let P+, R+, andZ,- be, respectively, the transition model, reward function, and Bell-
man operator associated with, the optimal policy of the meta-MDH,,... As noted by
de Farias and Van Roy [2001b], Theorem 3.1, we have that:

Hﬁ—v*

I
>
=
~
|
2
3
1
~
|
2
i
N
|
=)
3

)

1,Po

b

AN
=
~—
~
|
=2
3
I
~
|
=2
&
<
|
=
:‘*

+2((I - ’ypﬂ'*)i} - R‘rr*)7:| ;

(Po)T (I = 4Ppe) ™ [(T = 4P )V = R +2(V = T V)|
(Po)T(V=V")+2(Po)" (I =yPr) (V=T V)" (A28)

The left side of Equation (A.28) is exactly the term we are bounding in this theorem. We
will obtain this bound by bounding each term on the righthand side of Equation (A.28) in
turn.

Let us first consider the teriP,)T (V — V*), which is equivalent to:

(Po)T (V- V") =Eq [17] — Eq [V].
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We can bound this term using the result in our Lemma A.5.1:

1) * $) * 2lz$na:p Ky 1 —\in
< J— _ j— J— #
Eq [V} Eq [V ] Eq [V] Eq [V ] + 1=~ )\u {5n+ (n(l 8) + Aﬁ) e } ,

with probability at leastt — g As V satisfies the constraints for all worl@sin Equa-
tion (13.5), we have thay > V¥, componentwise (as shown by de Farias and Van Roy

[20014a] for general MDPSs). Thus:

(Pa)T(V=V") = Eq|V]~Ea D'

< 2Ry 1
< o] -mab e R o (0o ) )

2R°, Ky 1\ _,
“ Ymaz ™ 1 = |
1,P9+ [y {an—l—(n( s)—l—Aﬁ)e }
(A.29)

Equation (A.29) gives us a bound on the first term on the righthand side of Equa-
tion (A.28). We must now bound the second term in this equation. ¢t die the visi-
tation frequencies of*, the optimal policy of the meta-MDP for the worlds$h For the
starting-state distributiof,, we have that:

where ¢ are the state visitation frequencies of the optimal policy in the MIDPfor
world w. That is, the optimal visitation frequency for a particular world and state in this
world factorizes into the probability of selecting this world definedHgytimes the optimal
visitation frequencies for this world. In matrix notation, we have that

(@)= (Po)" (I —vPr) ™
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and thus, returning to the second term on the righthand side of Equation (A.28), we have
that:

2(Po)™ (I —yPr) NV = T V)~
= 2" (V- T V)
= 2 Y P (T - V)] 1 (Vx) < (T2)(x))

weN,xeX,
<2 Y PLEX| T - 1) < (T20)).
<2 3 P@OLE) [IR .+ |rPe v V| 1 (e < @)
<2 S P (0) [t + e Bl | 1 (5, ) < (7272) ).
=2 3 e pneo 1 (R < (T2R))

weN,xeX,

(A.30)

where the first inequality replaces the difference between the one-step lookahead value
T“’)7 and the value functio,, with the maximum difference; the second inequality sim-

ﬁrw 17w : and the bound on
each max-norm term in the third inequality uses Assumptlon 13.3. 1, whers the num-

ber of objects in worldv.

ply relies on the triangle inequality for each term‘

By moving out the constant terﬁffﬂ%, the summation term in Equation (A.30) be-
comes:

> ]P0 (Vi) < (T V)(x) (A3D)

weN,xeX,

As described in Section 13.2.2, we can decompose the probability of a world into:

P(w) = P(#)P(w; | 1).
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Substituting this formulation into Equation (A.31), we obtain:

Y Y i Pe= P = et (W) < (L)),

=1 we; xeX,,

or equivalently, by separating the summation into one term for worlds with uptgects,
and another term for larger worlds, we obtain:

S Coco, Sex,, 1 Pl = )P | £ =1)65(x)1 (Vu(x) < (TEW)(x)) +
S i1 Suen, Soxex, J PlE= )P | £ =)o x)1 (Vo) < (T2W)(X))
(A.32)

Let us start by considering the first term in Equation (A.32). We can apply Theo-
rem A.5.2 to bound this term with high probability. In particular, we choose our sampling
distributiony<,, to be

Van(w,x) = (1 —7)P<p(w)dy,(x);
= L= w)or(x
- Zw’eﬂgn P(w’)P( )¢w( )

We thus have that:

ZZ Y i PE=i)Pw |t =)L ()1 (%(x) < (Zr“;iw)(x))

i=1 we; xeX,

< 03T Y PE— P = et (R < (TET.))

i=1 we; xeX,,

. Z P(w)é’ ()1 <)7w(x)<(’2;°117w)(x))§

w€Q<n xeX,

) Zwefk n Y Y vt (M) < (T2V.)(0)

weN<y, xeX,,

< Z P(W") en, (A.33)

LUIEQS,L
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where the first inequality simply substitutewith »n; and the second inequality uses Theo-
rem A.5.2, recasting ass(1 — ). By using the bound in Equation (A.24), we obtain the
bound:

Z PW)en < /;ﬁ [1—e "] en, (A.34)

w’EQSn ¢

with probability at least — g if the number of sampled worlds is:

4 12 4

Note that our algorithm does not sample directly from this distributiap). How-
ever, we do sample worlds frofi-,,(w), and then represent the constraints for all states
and actions in this world, in closed form, by using our factored LP decomposition tech-
nique. Thus, each one of our sampled worlds corresponds to an i.i.d. sample foim
our constraint set (plus many additional constraints), thus guaranteing the condition of the
Theorem A.5.2.

Now, let us consider the second term in Equation (A.32).

> XY PP |t = 6ot (R < (TH)00)

j=n+1we); XGXoJ

< ZZZ]P P(w | =)o (x);

j=n+1we; xeX,,
0o

= Y JiP@E=1). (A.35)

j=n+1

By using Equation (A.26), we bound this term by:

i jPE=7) < i—z {n+ AH e M, (A.36)

j=n+1
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We can finally obtain a bound for the terms in Equation (A.28):

[P-v| < BT @ V)2 (P P - T D)
~ 2R° K 1 Y
< RS £ maz M 1— il i
< HV Y R ey {5n+ (n( €) + )\ﬁ> e } +
4R° Ry Y Ry 1 Y
“lmar | B8 1) o=hn By = em A.37
o L\ﬁ[ e ]aer—)\ﬁ [n%—)\ﬁ}e , (A.37)

where we substituted the intermediate results in Equations (A.29), (A.30), (A.34), and (A.36),
into Equation (A.28). The proof is concluded by rearranging the terms in Equation (A.37).
|

The simplified version presented in Theorem 13.3.2 is obtained by choosing:

e
Ao |

yielding:
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elimination order, 167
episodic problems, 207
exploration policy, 200
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approximately factored, 114
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code, 56
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multiagent approximation, 168
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cluster set, 105
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flow constraint, 93
factored, 104
fully observable, 4

generalization, 5, 226, 246
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linear programming
exact, 24
LP-based approximation, 31
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Markov decision processeeMDP, 4, 20
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multiagents, 3
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non-serial dynamic programming, 51, 161
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policy iteration, 28
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reinforcement learning, 5, 194
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relational MDP, 11, 227, 228
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function, 121
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one-step lookahead, 125
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selector variable, 233
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exact, 24
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transition model, 20
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