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Abstract

Many real-world systems are naturally modeled as hybrid stochastic processes, i.e.,
stochastic processes that contain both discrete and continuous variables. Examples
include speech recognition, target tracking, and monitoring of physical systems. The
task is usually to perform probabilistic inference, i.e., infer the hidden state of the
system given some noisy observations. For example, we can ask what is the probability
that a certain word was pronounced given the readings of our microphone, what is
the probability that a submarine is trying to surface given our sonar data, and what
is the probability of a valve being open given our pressure and flow readings.

Bayesian networks are a compact way to represent a probability distribution.
They can be extended to dynamic Bayesian networks which represent stochastic pro-
cesses. In this thesis we concentrate on hybrid (dynamic) Bayesian networks. Our
contributions are three-fold: theoretical, algorithmic, and practical.

From a theoretical perspective, we provide a novel complexity analysis for infer-
ence in hybrid models and show that there is a fundamental difference between the
complexity of inference in discrete models and in hybrid ones. In particular, we pro-
vide the first NP-hardness results for inference in very simple hybrid models. From an
algorithmic perspective, we provide a suite of new inference algorithms, designed to
deal with non-linearities present in many real-world systems, and to scale up to large
hybrid models. We show that our algorithms often outperform the current state of
the art inference algorithms for hybrid models. Finally, from a practical perspective,
we apply our techniques to the task of fault diagnosis in a complex real-world physical
system, designed to extract oxygen from the Martian atmosphere. We demonstrate

the feasibility of our approach using data collected during actual runs of the system.
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Chapter 1

Introduction

1.1 Bayesian Networks

Any intelligent agent must be able to perform reasoning under uncertainty. This is
definitely the case for humans: One does not know whether the lottery ticket that
one can buy will be a winner; one does not know what the weather will be like in two
weeks; one does not know one’s current blood pressure and so on.

Probability theory is the method of choice for dealing with uncertainty in many
science and engineering disciplines such as control, physics and economics. Probability
theory is well understood and seems to model extremely well many phenomena in the
physical world. It provides us with a simple and clean semantics of how to maintain
our beliefs in face of partial information and how to update them when presented
with new evidence. It is therefore somewhat surprising that for many years the Al
community did not use probabilistic models. Perhaps the most important reason for
this phenomenon was the lack of compact ways to represent probability distributions
and to reason with them.

The situation dramtically changed in the 1980s with the introduction of Bayesian
nelworks [Pea88]. Bayesian networks represent a probability distribution using a
graphical model of a directed, acyclic graph (DAG). Every node in the graph cor-
responds to a random variable in the domain and is annotated by a Conditional

Probability Distribution (CPD), defining the conditional distribution of the variable
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given its parents.

As we shall see in Chapter 2, Bayesian networks often allow for a compact and
natural representation of probability distributions. Combined with a suite of inference
and learning algorithms, Bayesian networks, or models based on Bayesian networks,
have become a popular tool for reasoning about uncertainty. They have been success-
fully used as models for a wide variety of complex domains, such as medical diagno-
sis [MSH*91, PPMH94], determining the needs of software users [HBH*98], predict-
ing the likelihood of meeting attendance [HKKJ02], visual figure tracking [PRCM99],
troubleshooting for Microsoft Windows [HBR94], filtering junk email [SDHH98], and
music parsing [Rap02].

Perhaps the most fundamental issue for Bayesian networks is the problem of infer-
ence. We are given a Bayesian network that represents some probability distribution
and are required to answer some probabilistic query, often in the form of computing
P(X | E =e), i.e., the probability distribution over some random variables X given
some evidence F = e. For example, in medical diagnosis, we can query the proba-
bility of a certain disease given the observed symptoms; in the meeting attendance
domain, we can query the probability that Alice would attend a meeting given that
she 1s not at her office now and the meeting is scheduled to last for 2 hours; and in
the troubleshooting domain, we can query the probability that the printer cable is
disconnected given that the printer is not printing.

As one might expect, much of the work on Bayesian networks has focused on
the inference problem. The overwhelming majority of this work considers the case of
discrete Bayesian networks, i.e., networks that contain only discrete random variables.
Much progress has been made on the inference problem, and by now it is fairly well
understood for discrete networks.

On a very high level, the work on the inference problem can be divided into two
main classes: exact inference and approximate inference. Exact inference algorithms
are designed to give an exact answer to the probabilistic query. By now we have
a few exact inference algorithms and we understand the relations between them.
Furthermore, we have a good understanding of the complexity of exact inference and

how it relates to the structure of the network, i.e., the structure of the DAG. In
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particular we know that for “simple” network structures, exact inference can be very
efficient.

Approximate inference i1s designed to give an approximate answer to the proba-
bilistic query, with the understanding that often the exact probability is not crucial.
For example, in the medical diagnosis domain, if the exact probability for cancer
given the symptoms is 84.3%, then from a practical point of view, it probably would
not matter if our approximate inference algorithm would estimate it as 83.6% or as
85% instead of the exact value. Once again, approximate inference is fairly well un-
derstood, although not as well as exact inference. Nonetheless, we have a large set
of approximate inference algorithms which are often useful when exact inference is
intractable, and a growing understanding of their computational complexity and their
performance with respect to various properties of the network.

However, discrete networks are sometimes inadequate, since many important do-
mains have continuous attributes as well as discrete ones. Examples include the visual
figure tracking domain, where variables such as location and velocity are continuous,
and the music parsing domain, where the features extracted from the audio signal
are often continuous. In addition, in this thesis we shall often motivate our work
using the domain of fault diagnosis for physical systems. In this domain, we have a
model of a physical system and a set of measurements recorded by various sensors,
and we are asked to diagnose the system. In probabilistic terms, we need to answer
questions such as “what is the probability that sensor S;7 is malfunctioning given its
readings and readings from other sensors?” or “what is the probability that a certain
valve is open given the sensor readings?” Obviously, physical systems contain discrete
variables such as a valve being open or closed and a pump working or idle, as well as
continuous variables such as pressures, flows and temperatures.

One can always discretize the continuous variables by partitioning their domain
into some finite number of subsets, and by doing so transform the model to a discrete
one. However, as we shall see in Chapter 3, this simple approach is often very prob-
lematic and might lead to unacceptable performance. Our approach is different: We

treat the continuous variables as continuous without trying to discretize them.
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Figure 1.1: A simple example of a hybrid Bayesian network

1.2 A Hybrid Network

Figure 1.1 shows an example of a simple hybrid Bayesian network, i.e., a network
that contains both discrete and continuous variables. The discrete variables in the
network are represented by rectangles and the continuous variables are represented as
ovals. This particular example models the flow of some liquid out of a container. It
does so by representing the direct probabilistic dependencies in the domain (we shall
define this formally in Chapter 2).

The flow of the liquid, represented by the random variable Flow, is influenced by
two random variables: Level, representing the liquid level in the container, and the
discrete variable Valve, representing whether the valve that lets the liquid flow out
of the container is open or closed. In addition, we have the variable Sensor that
represents a the value shown on a flow sensor measuring the liquid flow out of the
container. Finally, we have the discrete variable Okay that represents whether the
flow sensor is working properly or not.

As an example for a probabilistic query, assume that we observe that the flow
sensor indicates that there is no flow, and we ask what is the probability that the valve
is closed. Stated more formally, we are looking for P(Valve=Closed | Sensor = 0).
Note that the position of the valve does not directly influence the flow sensor, but
these variables are not independent — if the sensor indicates that there is no flow,

there 1s a higher likelihood that the valve is closed.
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As another example, suppose that we are given the additional information that
the flow sensor is faulty. Given this information, the position of the valve becomes
irrelevant for the measurement — since the sensor is faulty it does not represent the
actual flow and therefore we should not use it to make inferences on the position of

the valve. Thus, we would expect that:
P(Valve=Closed | Sensor = 0, Okay=False) < P(Valve=Closed | Sensor = 0)

It is important to realize that the reasoning in these examples comes directly
from the joint probability distribution over the domain variables. In other words,
there is no need to create special reasoning rules — all the information that we
need is encoded in the joint probability distribution. Thus, if we can represent the
probability distribution and answer the probabilistic queries about it, we get this type

of sophisticated reasoning “for free” using the probabilistic approach.

1.3 Classification of Hybrid Models

We can classify hybrid models along two axes: the expressive power of the CPDs,
and static vs. dynamic models. Along the first axis there are two criteria for the

classifications:

e Does the model allow non-linear relations between the continuous
variables? A linear relation means that the variable X is some linear combi-
nation of its parents plus some Gaussian noise. For example, it is reasonable
to model the flow sensor in our example of Figure 1.1 as Sensor = Flow + V.
Here V ~ N (0, 0?) represents some white Gaussian noise, corresponding to the
noise of the sensor. On the other hand, it is obvious that in some cases the true

dependencies are non-linear.

e Does the model allow discrete nodes to have continuous parents? In
our example we do not have such a dependency, but consider a discrete sensor

that indicates whether the liquid level is too low (much like the low gas level
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warning light in a car). In this case it would be natural to have the discrete

sensor variable be influenced by the continuous liquid level variable.

The most popular class of hybrid models are known as Conditional Linear Gaus-
stans (CLGs). These models answer the two questions with a negative answer: CLGs
allow only linear relations between the continuous variables and do not allow discrete
nodes to have continuous parents. The reason for the popularity of these models
is their mathematical convenience. In CLGs, given any assignment to the discrete
variables, the distribution over the continuous variables is a multivariate Gaussian.
Thus, the joint probability distribution is a mixture of Gaussians, and can be handled
using analytical tools. In this thesis we discuss CLGs in great detail, but also devote
some chapters to hybrid models that violate the CLG restrictions.

The second axis for the classification is static vs. temporal models. Our example
in Figure 1.1 is static, as there is no temporal aspect to the model. However, in many
applications we are interested in stochastic processes, rather than static distributions.
This is certainly the case for fault diagnosis as we would like to deal with the system
over time. For example, we expect to get a sequence of measurements from each sensor
and we would like to use past readings as well as current readings for our diagnosis.
Bayesian networks can be extended to Dynamic Bayesian Neltworks (DBNs) that
represent stochastic processes. Hybrid DBNs that impose the linearity restrictions of
CLGs are called Switching Linear Dynamic Systems (SLDS). The later chapters in
this thesis discuss hybrid DBNs (both linear and non-linear) and their application for

fault diagnosis.

1.4 Contributions

In this thesis we concentrate on the inference problem for hybrid networks from three
different points of view: a theoretical point of view, an algorithmic point of view, and
a practical point of view.

From a theoretical point of view, very little is known about hybrid Bayesian
networks, beyond the obvious fact that by being a generalization of discrete Bayesian

networks, they must be at least as hard. In this thesis, we provide a novel complexity
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analysis for CL.Gs. We show that there is a fundamental difference between inference
in CLGs and inference in discrete networks. In particular we show that for simple
network structures where exact inference in discrete models can be done in linear
time, even approximate inference in hybrid models is NP-hard.

From an algorithmic point of view, the state of the art algorithm for exact in-
ference in CLGs is Lauritzen’s algorithm [Lau92, LJ01]. Lauritzen’s algorithm is
based on the clique tree algorithm [L.S88, SS90, HDY6], originally developed for dis-
crete Bayesian networks. Unfortunately, although the generalization of clique trees to
CLGs seems straightforward initially, this common perception is wrong, and in many
cases Lauritzen’s algorithm is intractable even for simple network structures (which
is not surprising in view of our theoretical analysis). For approximate inference, the
most popular framework is based on stochastic sampling. This framework applies
to every class of hybrid models and not just CL.Gs. However, algorithms based on
sampling might take a long time to converge to a reliable answer, and are not suited
to real-time applications.

In this thesis we provide a large set of new inference algorithms for hybrid models.
In most cases our main concern was to come up with tractable inference algorithms

that can scale up to large hybrid models. In particular, our contributions are:

e We provide a clear and coherent presentation of Lauritzen’s algorithm and dis-

cuss its computational complexity.

o We present a determinstic any-time algorithm for inference in CLGs. Our al-
gorithm can be used even in cases where Lauritzen’s algorithm is not tractable.
We show empirically that our algorithm outperforms stochastic sampling based

algorithms.

o We show how non-linear relations between continuous variables can be handled
using numerical integration techniques by finding a Gaussian approximation to
the resulting distribution. We provide a simple, general and efficient algorithm

to do so.

o We provide the first systematic way to deal with networks that involve discrete

nodes with continuous parents, again using numerical integration techniques.
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In particular, we show how Lauritzen’s algorithm can be generalized to these
networks. We provide performance guarantees to our algorithm, namely that it
finds the correct first two moments of the posterior distribution up to numerical

integration errors.

e We provide techniques for inference in large hybrid DBNs. While the classical
inference algorithms for SLLDS do not scale up, our proposed algorithm can be
used in models that contain tens or even hundreds of variables. Our algorithms
can be easily combined with our numerical integration techniques to handle

non-linear relations between continuous variables.

Finally, from a practical point of view, hybrid models used in practice are limited
to relatively simple models with a very small number of discrete variables. In this
thesis we show a real-world application of a hybrid model with a much richer and more
complex model. In particular, we focus on the fault diagnosis domain where we tackle
a complex real-world physical system, originally designed to extract oxygen from
the Martian atmosphere. We show that our algorithms can perform fault diagnosis
practically in real time, even when some useful sensor readings are missing. It is
important to emphasize that much of our results is based on real data, collected
during actual runs of the system prototype, and not only on synthetic data generated

from our own model.

1.5 Outline

Chapters 2 and 3 provide an overview of discrete and hybrid Bayesian networks. In
Chapter 2 we provide a formal definition of Bayesian Networks and then describe
inference methods in discrete networks. We discuss in detail both exact and approx-
imate inference, as these algorithms form the basis on which we build later in the
thesis. In Chapter 3 we provide a quick overview of the normal distribution and
then define and discuss CLG models. We give a detailed description of Lauritzen’s
algorithm for exact inference in CLGs and discuss its computational complexity. We

conclude by discussing the popular approximate inference algorithms for CLGs.
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In Chapter 4 we provide some new complexity results for CL.Gs and discuss their
implications. We show that, unlike discrete models, approximate inference even in
CLGs with a very simple network structure is NP-hard. However, in practice it
is possible to use domain specific properties to our advantage. In Chapter 5 we
present an efficient approximate inference algorithm that takes advantage of skewed
distributions, which are common in many domains, including fault diagnosis (due to
the low probability of faults). We compare our algorithm with other existing inference
algorithms for CLGs.

In Chapters 6 and 7 we relax the CLG assumptions and show how we can perform
approximate inference in non-linear models using numerical integration techniques.
In Chapter 6 we show how to extend our algorithm from Chapter 5 to handle models
with non-linear dependencies between the continuous variables. In Chapter 7 we show
how to extend Lauritzen’s algorithm to models with discrete nodes with continuous
parents and discuss the issues that come up if we want to extend the algorithm from
Chapter 5 to these models.

We next turn our attention to dynamic models. In Chapter 8 we provide an
overview of both discrete and hybrid dynamic Bayesian networks and some current
relevant inference algorithms. In Chapter 9 we discuss how to scale up these algo-
rithms to much larger and more complex models. In particular, we discuss the issues
that come up when the model contains a large number of variables and when there
are non-linear dependencies between the continuous variables.

Finally, in Chapter 10 we present a large, complex, non-linear physical system,
designed to extract oxygen from the Martian atmosphere. We discuss various issues
that come up when trying to model such a system as a hybrid dynamic Bayesian
network. We then apply many of the algorithms presented earlier in the thesis to
track the state of the system and perform fault diagnosis on real data collected during
actual runs of a prototype of the system. Chapter 11 contains discussion of some open
questions and concluding remarks.

Some of the material in this thesis has appeared previously in conference papers.
The material in Chapter 4 and parts of Chapter 5 appeared in [LP01]. Chapter 6

is mostly new, although a preliminary high-level version of these ideas appeared
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in [LMS*02]. The first two sections of Chapter 7 closely follow the presentation
in [LSKO1]. Chapter 9 is loosely based on [LPKBO00] although the presentation was
completely re-written and many ideas in the chapter go beyond the content of the
paper. Finally, parts of Chapter 10 are based on [LMS*02], although most of the

results in the chapter are new.



Chapter 2
Bayesian Networks

This chapter contains background material about Bayesian networks, which are a
compact way of representing a probability distribution [Pea88]. We begin by defining
Bayesian networks and then provide an overview of some of the inference algorithms.
In this chapter we concentrate on discrete models, i.e., models in which all the random
variables are discrete. In the rest of the thesis we shall concern ourselves with hybrid

models, i.e., models that contain continuous variables, as well as discrete ones.

2.1 Notation

We denote random variables by upper case letters (e.g., A, B;, X), and the actual
value of these variables by the corresponding lower case letters (e.g., a, b;, ). We
denote sets of variables by bold-face upper case letters (e.g., A, B;, X) and their
values by the corresponding lower case letters (e.g., a, b;, ). We use Dom(X) to
denote the set of all possible values that X can take.

When we talk about hybrid models, containing both continuous and discrete vari-
ables, we often use the convention of assigning discrete variables letters from the
beginning of the alphabet (e.g., A, B, C', D) and assigning continuous variables let-
ters from the end of the alphabet (e.g., W, X, Y, 7). We use A to refer to all the
discrete variables in the model and T' to refer to all the continuous ones.

We use the notation P(X) to denote the probability distribution for X. The

11
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probability distribution is a mass function in the discrete case and a density function
in the continuous case. We use the notation P(X = z) (or P(z) as a shorthand)
the denote the probability that X takes the value z. As usual, P(X | Y) refers to
the conditional distribution of X given Y and P(X | y) refers to the conditional
distribution of X given Y = y.

We denote the expectation of X under the distribution P as Fp[X]. Similarly, we
note the expectation of some function f(X) as Ep[f(X)]. When the distribution un-
der the which the expectation is taken is clear from the context we use the shorthand
notation K[X].

In Bayesian networks we use the notation Par(X) the denote all the parents of X

in the graph (this will become clear when we define Bayesian networks in Section 2.2).

2.2 Representation

Bayesian networks (or Bayes nels) are a compact representation of a joint probability

distribution over a set of variables X. A Bayes net consists of two parts:

o A directed, acyclic graph G, where each node corresponds to one random vari-

able X; € X.

e A set of Conditional Probability Distributions (CPDs), one for each node in the
graph G.

The graph G encodes the structure of the joint probability distribution in terms of
conditional independencies: every node is independent of its non-descendants given
its parents. Fach node X; directly depends on its parents Par(X;), and the set of
CPDs parameterizes this dependency. In the case of discrete Bayes nets, the CPD for
node X; encodes a probability distribution for X; given every possible combination
of its parents.

The joint probability induced by a Bayes net is defined via the Chain Rule. Assume

the Bayes net has n nodes, representing n random variables X, ..., X,,. Then:

P(X1s s Xo) = [T P(X: | Par(X))) (2.1)

=1
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Figure 2.1: A simple Bayes net, modeling John’s weekends. The nodes in the network
are Weather (W): Sunny, Cloudy, Rainy; Deadline (D): True, False; Climbing (C):
True, False; Slippery(S): True, False and Injured (I): True, False.

Before we continue, let us examine an example based on the way a certain Stanford
student called John (the name was changed to protect the innocent) spends his week-
ends. Two factors influence John’s plans for the weekend: the Weather (W) which
can be Sunny, Cloudy, or Rainy and whether John has a Paper Deadline (D). Based
on these factors, John decides whether to go Climbing (C) or not. Furthermore, the
Weather also influences the probability of the rocks to be Slippery (S). Depending
on whether John goes climbing and whether the rocks are slippery, John has a cer-
tain probability to get Injured (I). Note that if John decides not to go Climbing, the
probability of Injured does not depend on the rocks being Slippery.

John’s weekend adventures are modeled in the Bayes net shown in Figure 2.1. The
Bayes net structure encodes the conditional independencies, while the CPDs encode
the actual parameters of the distribution. For example, although the probability of
Injured is not independent of Weather, it is independent of Weather given its parents
Climbing and Slippery. As another example, note that Weather and Deadline are
independent (contrary to the conventional wisdom according to which paper deadlines
are more likely to happen when the weather is nice). The CPDs encode the parameters

of the probability distribution: for example P(W = Sunny) = 0.7 and P(C = True |
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W = Sunny, D = True) = 0.3. Note also that the fact that Injured is independent of
Slippery given that John decides not to go Climbing is not encoded in the structure
of the Bayes net but rather in the CPD of the node Injured.

Let us examine a few simple examples for probabilistic inference using a Bayesian
network. Suppose we want to know the probability of a certain atomic event, e.g.,
Weather=Sunny, Deadline=False, Climbing="True, Slippery==False, Injured=False.

We can easily compute this using the chain rule from Equation 2.1

P(W = Sunny, D = False,C = True,S = True, [ = False) =
P(W = Sunny) -
P(D = False) -
P(C = True | W = Sunny, D = False) -
P(S = True | W = Sunny) -
P(I = False | C = True, S = True) =
0.7-0.8-0.8-0.1-0.7=0.03136

Obviously, if we can compute the probability of every possible atomic event we
can answer every query. For example, if we are interested in the probability of John

getting Injured while the Weather is Sunny then:

P(W = Sunny, I = True) = Y P(W = Sunny,D=d,C =c¢,S=s,1= True)

d,c,s
= > P(W = Sunny) -
d,c,s
P(D =d)-
P(C=c|W = Sunny,D =d) -
P(S =s| W = Sunny) -
P(I =True |C =¢,S =35)

Where d, ¢ and s can each be either True or False. Note that we sum 8 differ-

ent events here, and in general the number of terms we have to consider might be
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exponential in the size of the network. We will return to this issue when we discuss
inference in Bayes nets. Also note that by being able to compute the marginal we
automatically know how to compute conditional distributions since any conditional
distribution is the ratio of two marginals: P(X |Y) = P](j((}’,}),)

We are now ready to formally define a Bayesian network.

Definition 2.1 A Bayesian network B over the random variables X = {Xy,..., X,,}
is a pair (G,0). G is a directed acyclic graph with one node for every variable X;. 6 =
{61, ...,0,} is a sel of conditional probability distributions where 0; is the conditional
probability distribution P(X; | Par(X;)). The joint distribution represented by B is
given by the chain rule in Equation 2.1.

2.3 Exact Inference

Almost every system that uses Bayesian networks must be able to perform probabilis-
tic inference, i.e., find the distribution over some variables under certain conditions.
Given a Bayes net over the variables X we typically need to compute the distribu-
tion P(Q | e) where Q,E C X. Q are called the query variables and E = e is the
evidence or observations. Since we can express the conditional distribution as ratio
of two marginals, we start our discussion by assuming that E = (. Unfortunately,

even in this limited case inference in Bayesian networks is NP-hard.

Theorem 2.2 Given a Bayesian network over X and some variables Q@ C X then
in general computing P(Q) is NP-hard, even if |Q| = 1.

This theorem was proven by a relatively simple reduction from the SAT prob-
lem [GJ79] into the problem of Bayes net inference [Co090]. However, in many cases
we can take advantage of the structure of the Bayes net or its parameters to per-
form probabilistic inference or approximate probabilistic inference efficiently. In this

section and the next one we discuss some of these methods.
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2.3.1 Variable Elimination

As we have already seen, we can perform probabilistic inference by summing up the
relevant terms, each of which we can compute using the chain rule. For example,
assume that using the Bayes net in Figure 2.1 we would like to compute the marginal

probability distribution of Injured. Then:

P(I) = > Pdw,s,cl)

w,d,s,c
= ; P(d)P(w)P(c | w,d)P(s | w)P(I]c,s) (2.2)
Note that the expression involves two types of terms — constants and functions.
For example the term P(s | w) is a number while the term P(1 | ¢, s) is a function
over the variable I. The functions, also called factors, can be represented as tables,
where each row of the table corresponds to a specific instantiation of the function
variables. For example, the function P(I | ¢, s) for the specific values ¢ = True and

s = False can be represented as:

1 ‘ P(I'| ¢ =True, s = False)
False 0.9
True 0.1

Alternatively we can think of all the terms in the Equation 2.2 as functions involv-
ing the variable w, d, s, ¢ as well as the variable /. Under this view the term P(I | ¢, s)

is represented as the factor fr:
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1 ¢ S
False | False | False | 0.95
False | False | True | 0.95

False | True | False | 0.9

fi(I,¢,s) = False | True | True | 0.7
True | False | False | 0.05
True | False | True | 0.05

True | True | False | 0.1

True | True | True | 0.3

To evaluate Equation 2.2 we need to be able to perform two operations:

e Multiplying factors together

e Performing summation over some of the variables in the factor

To multiply the factors fi(Y1),..., k(Y ) we need to create a factor f over the
variables Y where Y = U,Y;, i.e., over the union of the variables of the & original
factors. Consider some table entry in f, corresponding to some assignment y. In
each of the original k factors there is precisely one entry consistent with y. The table
entry in f is defined to be the product of these k tables entries in f1, ..., fz.

To sum some of the variables Y1 of the factor f(Y) we need to create a factor f’ of
the remaining variables Y, =Y —Y';. Consider a table entry in f(Y') corresponding
to the assignment y. y is consistent with one table entry in f’, denoted as y,.
We define the value of f'(y,) as the sum of the matching table entries from f, i.e.,
f'(y2) =y, [(Y1:92).

We shall soon consider some examples of multiplication and summation, but we
can already make one crucial observation. If we want to evaluate Equation 2.2 as it
is written we need to multiply five factors together resulting in f, a factor over all
five variables d,w, ¢, s, I. In general, if we follow the pattern of Equation 2.2 in any
Bayesian network, we will always end up with a factor over all the variables in our

domain, whose size is exponential in the number of variables. Clearly, we will not
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be able to use this approach for large Bayes nets with hundreds of variables or even
medium Bayes nets with tens of variables.
The key observation to making Bayes net inference tractable is that we can re-

write Equation 2.2 by re-arranging the terms and pushing the summations inside:

P(I) = ZP(I | e,s) > P(w)P(s | w)zd:P(d)P(c | w,d) (2.3)

Let us examine the evaluation of Equation 2.3. We start by evaluating the product

P(d)P(c | w,d). We first represent P(d) and P(c | w,d) as the factors f; and f.:

False | Sunny | False | 0.2
False | Sunny | True | 0.7
False | Cloudy | False | 0.8
False | Cloudy | True | 0.95
False | Rainy | False | 0.95
fe(e,w,d) = False | Rainy | True | 0.99
True | Sunny | False | 0.8
True | Sunny | True | 0.3
True | Cloudy | False | 0.2
True | Cloudy | True | 0.05
True | Rainy | False | 0.05
True | Rainy | True | 0.01
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The result of multiplying these factors together is:

19

¢ w d
False | Sunny | False | 0.16
False | Sunny | True | 0.14
False | Cloudy | False | 0.64
False | Cloudy | True | 0.19
False | Rainy | False | 0.76
file,w,d) = False | Rainy | True | 0.198
True | Sunny | False | 0.64
True | Sunny | True | 0.06
True | Cloudy | False | 0.16
True | Cloudy | True | 0.01
True | Rainy | False | 0.04
True | Rainy | True | 0.002

As an example, the first line corresponds to the first line of each of the factors f;

and f. and accordingly 0.8-0.2 = 0.16. We next evaluate }_; P(d)P(c | w,d) =3, f1.

The result is the factor f,:

c w
False | Sunny | 0.3
False | Cloudy | 0.83
falc,w) = False | Rainy | 0.958
True | Sunny | 0.7
True | Cloudy | 0.17
True | Rainy | 0.042

For example, the second line in f; corresponds to the third and fourth lines from

f1 and accordingly 0.64 + 0.19 = 0.83. We are left with the following expression:

P(I)=)Y_P(I]¢,s)> Pw)P(s| w)fac,w)
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Note that we have eliminated the variable d, which will not appear in any of our
computations from now on. The early elimination of variables is the key to avoiding
the creation of exponentially large factors.

We can continue in the same fashion. We convert P(w) and P(s | w) into factors
and multiply them together with f(¢, w), resulting in the factor f5(c, s, w). We then
eliminate w, resulting in the factor fi(c,s). The next step is to convert P(I | ¢, s)
and multiply it with f4(c,s), resulting in f5(¢, s, I). Finally we sum out ¢ and s from
[5 leading to the answer fs(/) (note that the entries sum to 1, as expected from a
marginal distribution):

|
fe(I) = False | 0.910272
True | 0.089728

To sum up, we performed the following computation:

fl(devc) = P(d)P(C | wad) (24)
fale,w) = Efl(c, d,w) (2.5)
d
fo(w,es) = fale,w)P(w)P(s | w)
( 75) = ng(w,c,s)
fs(e,s,0) = fale,s)P(i| ¢, s)
fe(i) = Zf5csz

The largest factor we had to deal with was fs, having 3 variables and 12 entries.
This is much better than directly using Equation 2.2 which led to a factor with
5 variables and 48 entries. In larger networks the savings are usually even more
significant.

We are now ready to state the variable elimination algorithm [BB72, ZP94]. We
first convert all our CPDs into a set of factors F. As long as F contains variables
which do not appear in the query we choose such variable Y and eliminate it. The

elimination is done by extracting all the factors to which Y belongs, multiplying them

together, summing out Y and returning the result to 7. When the only variables left



CHAPTER 2. BAYESIAN NETWORKS 21

Variable Elimination (P ={P,...,P,} a set of CPDs, Q query variables)
1. Let f; be the factor representation of F,

2. Let F={fi,....,[.} (a set of factors)

3. Let X be the set of random variables used in F

4. Let Y =X-Q

5. While (Y #0)
6. Choose some variable Y € Y and set ¥ « Y — {V}
7. Extract from F all factors fi,...,fr mentioning Y
8. Let [=T[IL, [
9. Let f’ be the result of summing out y from f

10. Add f" to F
11. End-while

12. return [[;cr f

Figure 2.2: The Variable Elimination Algorithm

in F are query variables, we multiply all the remaining factors together and return
the resulting factor as our query result. Figure 2.2 shows the pseudo-code of the
variable elimination algorithm.

The complexity of the variable elimination algorithm is determined by the size of
the factors that are generated along the way. This in turn depends on the elimination
order that we choose. For example, if we first eliminate the variable C' then we get a
factor over W, D, C, I, which is larger than any factor we actually had. Unfortunately,
although one can use some simple greedy heuristics in choosing the elimination or-
der [Kja90, HD96], finding the optimal elimination order, i.e., the one resulting in
the smallest factors, is NP-hard [ACP87]. Furthermore, in some networks, even the
optimal elimination order leads to factors which are exponential in the size of the
Bayes net. In these cases we cannot use exact inference methods and must resort to
approximations. Still, the variable elimination algorithm, and especially the clique
tree algorithm which is based on it, are in general the best known methods for ex-
act inference in Bayesian networks and can be used for inference in many non-trivial

networks used in practice.
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Handling Evidence

It is easy to generalize the variable elimination algorithm to deal with evidence. An
observation such as X = z can be expressed as adding an indicator function 1,(X)
when using the chain rule. For example, assume we want to compute P([) with the

observation S=True. We can then write:

P(LS = True) = Z P(devsvcv ]) ' 1True(5)
w,d,s,c
— Z P(d)P(w)P(c |w,d)P(s | w)P(I |c,s)- 1True(5)
w,d,s,c

I7pye(s) is 1if s=True and is 0 otherwise, effectively removing all the terms which
are not consistent with the evidence. To add the evidence into the variable elimination
algorithm, we simply translate the indicator function into a factor over the observed
variable with 1 for the entry consistent with the evidence and 0 elsewhere, and add

it to F. In our example, we convert 1. ,.(s) into the factor 1E:

S
fSE = False | 0
True | 1

The result now is the factor

-
False | 0.2161025
True | 0.0288975

Note that the entries do not sum up to 1, but rather to 0.245. The reason is that
the result represents P(/,S = True) and 0.245 is the probability P(S = True). If
instead we are interested in the conditional probability P(/ | S = True) we simply
need to divide the result by P(S = True) = 0.245, i.e., we need to normalize the
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P(d) P(W) e,
P | w.d) P(s| ) Aules Ci C, C,

(a) (b)
Figure 2.3: (a) Graphical illustration of the variable elimination computation of Equa-

tion 2.4 through Equation 2.9 (b) The clique tree

factor to sum up to 1. The normalized result is:

1|
False | 0.882051
True | 0.117949

We note that there are more efficient ways to handle evidence when doing variable
elimination. Instead of adding an extra factor we can modify the factors coming from
the CPDs to account for the evidence, often leading to computations which are more
efficient in time in space. We took the approach of adding an extra factor since it 1s

the approach used for clique tree inference, which we discuss next.

2.3.2 Clique trees

The clique tree algorithm [1.S88, SS90, HD96], also known as the join tree, the cluster
tree and the junction tree algorithm, is an inference algorithm which is based on the

variable elimination algorithm. It has two main advantages:

o If we want to compute more than one marginal we need to run the variable
elimination algorithm multiple times. By using clique trees we can compute
multiple marginals while performing at most twice as many computations as

are needed for one marginal using variable elimination.

e The data structures used by clique trees usually lead to more efficient implemen-

tations of the algorithm than direct implementations of variable elimination.
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Let us take another look at the way we evaluated Equation 2.3 using variable
elimination, as is summarized in Equation 2.4 through Equation 2.9. The compu-
tation had two interleaving steps. In the first step (Equation 2.4, Equation 2.6 and
Equation 2.8) we multiplied some factors together. These factors were either CPDs
or factors generated by earlier computations. In the second step (Equation 2.5, Equa-
tion 2.7, and Equation 2.9) we marginalized the results of the first step to smaller
factors, which we later used. We can think of the two steps as one operation, taking
a few factors as output and producing some other factor as input. It is convenient
to visualize this using a graphical illustration — Figure 2.3(a) shows the graphical
illustration for Equation 2.4 through Equation 2.9.

A clique tree tree can be viewed as a graph induced by the variable elimination
computation. Each node in the graph corresponds to an operation of multiplying
factors together, and is associated with the variables used in this factor. Each edge
in the graph corresponds to a factor generated by summing out some variable — it
connects the node in which the factor originated and the node in which the factor was
later used. Each edge is associated with the variables used in the summed out factor,
which in turn are the intersection between the variables of the two nodes it con-
nects. As an example, the clique tree in Figure 2.3(b) is induced by the computation

illustrated in Figure 2.3(a).

Definition 2.3 A Clique Tree over a Bayesian network B with the random variables
X is an undirected acyclic graph T = (V, F). Fach node C; € V in the graph, also
called a clique or a cluster, is associated with some variables X; C X . Fach edge in
the graph is associated with the non-empty intersection of the variables of the cliques
it connects. Fach clique C is associated with a factor ®(C) called a potential and
each edge S is associated with a factor ®(S) called a sepset over their variables. The

clique tree obeys two properties:
o For every CPD in B over the vartables Y C X there exists a clique C; such
that Y g XZ

o Let C; and C; be two cliques such that X € X, N X ;. Then every node along
the path connecling C; and C; has X in its domain. This property is known as
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Figure 2.4: Building a clique tree from a Bayes net (a) The Bayes net (b) The
moralized graph (¢) A triangulated graph (d) A clique tree

the running intersection property.

Using a Clique Tree

Performing probabilistic inference using a clique tree can be viewed as a message
passing algorithm. We start by discussing how to compute the marginal distribution of
a certain clique, called the root node, and later extend the message passing algorithm
to compute the probability distribution of all the cliques.

The initialization step is incorporating the CPDs into the clique tree. We first
convert the CPDs into factors and for each such factor we choose a clique C' that
contains all the variables in the factor. We then initialize the potential of each clique
to be a product of the CPDs associated with it. If no CPD belongs to some clique we
set its potential to have the value 1 at every entry. Now all the relevant information
is in the tree, and we can use it to compute the distribution of the root node.

The computation associated with the variable elimination algorithm can be per-
formed as a message passing algorithm, where messages are passed along the tree
starting with the leaves and going towards the root as is illustrated in Figure 2.3(b)
(where Cj3 is the root). In this scheme, each node C needs to send a message to its
neighbor C” along the path to the root. To do so, it first needs to receive messages
from all its other neighbors, multiply them together with its own potential and sum

out all the variables that are not in C".
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For example, assume we want to compute the distribution of C5 in Figure 2.4(d).

We can use the following sequence of messages:

Step | From Clique | To Clique Operation
0 Initialize potentials from CPDs
1 4 C fiz = 2n (I)(Cl) ; (I)(OQ) — fi2- (I)(CQ)
2 on Cs fiz = Xp ®(Cy) ;o O(C3) & faz- ©(Cs)
3 Cy Cs fos = Zp®(Co) 5 O(Cs) « foz - @(Cs)
4 Cs Cs f3s — Ec,(; q)(OS) ; cI)(C5) — f35 - CI)(C'5)
Note that this is not the only possible order. For example we can reverse steps 1

and 2, but we cannot reverse steps 3 and 4 (C5 can send the message to C5 only after
receiving messages from both Cy and Cy).

Assume now that we want to compute the marginal distribution for every node
in the clique tree, not just the root. We can repeat the process we just outlined
for every node in the tree, but we can do better. Continuing our last example of
Figure 2.4(d) let us assume that, having computed to marginal probability of C5, we
are also interested in computing the marginal probability of (5. We have already
done a big part of the work — steps 1,2,3 of the computation are also useful for
computing the distribution of C's. Our goal is to reuse this work rather than repeat
it for Cs.

Naively, one might think that all we need to do is to create the message f53 =
> ®(C5) and multiply ®(Cs) by it. Unfortunately this is incorrect. The reason is
that ®(C’5) was already multiplied by the message f35. Let us note the original factor
(C5), and let Ppnew(Cs) be the factor
in (5 after multiplying by f35. What we need is to send from C5 to C3 the message

in C5 (before multiplying it by fs5) by q)orig

2B q)orig(05)7 but by using the current potential of Cs we would get the message
B Pnew (Cs).

Fortunately there is a very simple solution to our problem:

. B (EB q)orig(05)) < s _ 2B (q)orig(OS) : f35) 2B Pnew(Cs)
%: q)OUg(CS) - f35 B I35 B f3s

(2.10)
bil

The division of factors o is defined just like a product of factors — we create a
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Message Passing in a Clique Tree from (4 to (; along the sepset §
1. Let f1=Y¢_s®(Cy) /% Sum out Cy */
2. Let fy= @J&) /* Divide by the last message sent */
3. Let ®(5)=fy /* Store the message */
4. Let ®(Cy) = ®(Cy)- f» /* Multiply (3 by the messagex/

Figure 2.5: Sending a message in the clique tree

Calibration of a Clique Tree
1. Initialize each potential as the product of the relevant CPDs
2. Initialize each sepset by a factor with all entries set to 1
3. Let () be all directed pairs of adjacent nodes (C;, C;)
4

. While Q # 0
5. Let (C;,C;) € Q s.t. C; got messages from all its
neighbors except perhaps ()
6. Send a message from (; to (; using the protocol of Figure 2.5

7. Let Q = Q — {<OZ,C]>}
8. end-while

Figure 2.6: The Calibration Algorithm

factor over the union of the variables but instead of multiplying the relevant entries
we divide them. Furthermore, for the purposes of dividing factors we define % =0.
From Equation 2.10, we see that all we have to do in order to send a message
backwards in the tree is to save the message we sent towards the root. Recall that we
associated each edge with a sepset — a factor of the variables of the edge. We now
use the sepsets to store the messages sent across it in the tree. Figure 2.5 summarizes
the operation of sending a message from one node to another node in a clique tree.
We are now ready to present the Calibration algorithm, shown in Figure 2.6. Using
the message passing protocol of Figure 2.5 each node sends a message to each one
of its neighbors after receiving a message from all its other neighbors, for a total of
2n — 2 messages if we have n nodes connected by n — 1 sepsets. Note that it is always
possible to send all 2n — 2 messages — for example we can choose a node as a root,
send all n — 1 messages towards the root and then send n — 1 messages from the root
towards the leaves. Sending the messages towards the root is called an upward pass

or an upstream pass. Sending the messages to the leaves is called a downward pass
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or a downstream pass.

Theorem 2.4 After running the calibration algorithm each potential in the tree con-
tains the correct marginal distribution over its variables. Furthermore, the sepsets

contain the correct marginal distribution over their variables.

Proof: We first show that the potentials have the correct marginal distribution.
Recall that we have already seen that by performing an upward pass we get the
correct marginal distribution in the root. It is therefore enough to show that the
calibration algorithm of Figure 2.6 multiplies each potential by the same factors it
would have been multiplied by if it were the root in an upward pass.

The proof goes by induction on the number of the message. For the first message
the claim is trivial since dividing by a sepset whose entries are all set to 1 does not
change the message. For the k’th message going from C; to C; there are two cases. In
the first case C; did not yet send a message to C; and the sepset is still set to 1’s. In
this case the division does not change the message and using the induction hypothesis
we have the correct message. In the second case, C; already sent a message to C;.
Using the argument of Equation 2.10 we get that the message being sent is the same
message we would have sent in an upward pass.

It is left to show that the sepsets have the correct marginal distributions. Let
S be a sepset between C; and C; and WLOG assume that () sent a message to C}
after C; sent a message to ;. S will be set to the marginal distribution of C; when
it sent the message. By this point (; must have received messages from all its other
neighbors and we assumed it also received the message from C;, therefore C; already
received all its message and contained the correct marginal distribution. It follows
that the message from C; to €, which is stored in 5, has also the correct marginal

distribution. 1

Clique trees as a probability distribution

Clique trees are more than just a more efficient way of implementing the variable

elimination algorithm. Just like Bayes nets, clique trees are also a graphical model
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that represents a joint probability distribution [Pea88] which is the product of the
potentials divided by the product of the sepsets.

Definition 2.5 A clique tree T = (V, E) over the variables X represents a joint
probability distribution P(X) given by:

_ HC;‘EV (I)(CZ)

P =, n ()

(2.11)

Note how this view leads to an alternative way to justify the clique tree algorithm
in Figure 2.6. Initially we mutiply all the CPDs into the cliques and all the sepsets
are set to be 1. Thus, after the initialization step, the distribution represented by the
clique tree is the product of the CPDs, which is indeed the distribution represented by
the Bayes net. It is easy to verify that Equation 2.11 is invariant to message passing
as described in Figure 2.5, i.e., whenever we pass messages in the tree we maintain
the correct joint distribution represented by 7. Therefore at the end of the message
passing algorithm 7 represents the probability distribution represented by the Bayes

net.

Handling evidence

We introduce evidence into a clique tree by the same technique of indicator functions
that we used for variable elimination. If we have some evidence e = eq, ..., e we can
treat it as multiplying the tree by the indicator functions 1., (X1),..., 1., (Xz). We
convert the function 1.,(X;) into a factor f¥(X;), find a clique that contains X; and
then multiply it by the factor fZ(X;). If we calibrate the tree, each clique will now
contain the marginal distribution of its variable after observing the evidence. To get
the conditional distribution given the evidence we simply need to re-normalize the

cliques (and the sepsets).

From a Bayes net to a clique tree

We conclude by examining the process of building a clique tree from a given Bayes

net B more closely. To build a clique tree from B we can simply run the variable
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elimination algorithm, without actually computing the factors, as it is enough to just
determine which factors involve which variables. However, it is convenient to view
this process in a different way, leading to some insights about how to choose a good
elimination ordering. The idea is to transform B into an undirected graph G over
the same random variable. Each edge in G corresponds to two variables that appear
together in at least one factor. The factors generated during the variable elimination
algorithm correspond to the maximal cliques in G (by definition of G, a set of variables
is in one factor iff it is in a clique in G).!

The Graph G is constructed in two steps: moralization and triangulation. In
the moralization step we build the graph Gy by connecting every two variables that
appear in the same CPD in B (and thus appear together in some factor). Obviously
every edge in B becomes an undirected edge in Gps. In addition, if X; and X; are
both parents of some node X in B then we also add an edge between them (since
they appear together in the CPD for X;).? As an example, Figure 2.4(a) is some
Bayes net B, and Figure 2.4(b) shows the moralized graph. Note for example that
the nodes F, F, G were married.

Although Gys contains a clique for every CPD in B, it is not necessarily enough,
since we have to generate intermediate factors as we eliminate the variables. Thus,
when building the graph G, we must add enough edges to Gy such that, for some
chosen elimination order, variables appearing together in some intermediate factors
will also be connected in G.

The simplest way to construct G is to initially set G «— Gp;. We then pick some
elimination order. When we eliminate some variable X; we add edges between all
its neighbors in G that were not already eliminated, i.e., we create a clique over X;
and 1ts non-eliminated neighbors. The reason is simple: when we eliminate X; we
multiply all the factors in which it appears. The variables in these factors are exactly
the neighbors of X; that were not yet eliminated. When multiplying them together,
we force them to be in the same factor, and therefore we need to put them in the

same clique.

IThis construction is the source of the name “clique tree”.
2Connecting, or marrying, the parents leads to the name moralization.
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The process we described will result in a graph G that is chordal. Intuitively,
a chordal graph is a graph in which every cycle of length four or more contains a
“shortcut” — an edge between two non-adjacent nodes. Thus, all the cycles in G are

broken up into cycles of length three, and therefore G is also called triangulated.

Definition 2.6 An undirected graph G is chordal or triangulated if all cycles of
length bigger than three have some chord in them, i.e., an edge that is not a part
of the cycle, connecting two nodes of the cycle. In other words, G does not have a

subgraph thal is isomorphic to a cycle of length k > 3.

The reason we end up with a chordal graph is simple: Suppose that at some point
G contains a cycle of length four or more, and let X; be the first eliminated variable
in this cycle. When eliminating X; we add an edge between its neighbors, which were
non-adjacent nodes on the cycle. As the following theorem states, the converse is also

true. For details, and an algorithm to extract an elimination order from a chordal

graph, see [TY84].

Theorem 2.7 Let G = (V, E) be some undirected graph which contains some moral-
ized graph Gy = (V, Ear) as a subgraph, i.e., Eyr € E. Then the mazimal cliques in
G correspond to a set of factors that can be used for variable elimination for Gy iff

G s chordal.

The process of taking an undirected graph and making it chordal by adding edges
to it, is called triangulation. Thus, the second phase of the algorithm is triangulating
G. Figure 2.4 shows an example where the moral graph shown in Figure 2.4(b) was
triangulated, resulting in the graph in Figure 2.4(c).

Finding the optimal triangulation, i.e., one that induces small cliques is NP-hard
— this is not a surprise since finding the optimal elimination order is NP-hard. How-
ever, one can use some simple heuristics which tend to produce good triangulation on
many real-life Bayes net. One such simple heuristic is triangulating the graph using
an elimination order where at each time we greedily eliminate the variable that adds
the smallest number of new edges to G [Kja90]

To summarize, transforming a Bayes net into a clique tree can be done in following

steps, illustrated in Figure 2.4:
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e Building the moralized graph Gy;.

e Triangulating the moralized graph by using either variable elimination or some

different algorithm.

e Finding the maximal cliques in the triangulated graph. Since the graph is
triangulated this step is easy; there is an efficient algorithm to find the maximal
cliques in a triangulated graph [TY84]. In our case, if we triangulate the graph
using variable elimination we can simply record the cliques created during the

elimination process, while discarding cliques which are subsets of other cliques.

o Connecting the cliques in a way that preserves the running intersection property.
To do so, we need to connect cliques that have the most variables in common.
This can be done by using the maximal spanning tree algorithm [CLLR90], where
the weight of each edge is the number of random variables in its (non-empty)

domain, i.e, an edge that connects cliques with the variables X; and X ; has a

weight of | X; N X|.

2.4 Sampling Techniques

As already mentioned, exact inference in Bayesian networks is often intractable since
the problem is NP-hard [Co090]. When the factors involved in the variable elimination
algorithm or clique tree algorithm become too large to handle efficiently, we must look
for alternative approaches. The obvious alternative for exact inference is approximate
inference, where we settle for an answer that is only approximate. Although in general
even approximate inference in Bayesian networks is NP-hard [DL93], there are many
important cases in which exact inference is not tractable but there exists an efficient
approximate inference algorithm that leads to provably good approximations.

In this section we concentrate on sampling based approximate inference algo-
rithms. The idea behind sampling methods is to randomly pick assignments of the
random variables (these assignments are called samples) and then estimate various
properties of the joint distribution using these samples.

More formally, assume we have some joint distribution P(X) and we want to
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evaluate the expectation of some function f under this distribution, i.e., we are in-
terested in evaluating Fp[f(X)]. It is important to note that the formulation is very
general. In particular given some evidence e = ey, ..., ¢,, we can reduce the problem
of computing the probability P(e) to this form. We define the indicator function
le(X) as

L(X) = T 1.(X)

(Recall from Section 2.3 that the indicator function 1., (X) is 1 if X agrees with e;

and 0 otherwise). We can now write:
Ple) =3 lo(z)- P(z) = Ep[lo(X)]

We now return to the problem of estimating E[f(X)]. Define the random variable
Y = f(X), and then E[Y] = E[f(X)]. We will assume that o3 < oo where o7 et
Var(Y).

Assume now that we have a sequence of N ii.d. (independent, identically dis-
tributed) samples &[1], 2[2], ..., £ N] drawn from the distribution P(X) and let y[i] =
f(x[7]). Consider the sum:

SISO W)

Using the Central Limit Theorem, for large N the sum has a normal distribution
with mean E[f(X)] and variance % Therefore the sum converges to E[f(X)] and
the rate of convergence is proportional to 1/v/N. In other words, we have a way to

answer general probabilistic queries by drawing i.i.d. samples from the distribution:

E[f(X)] = - > f(=[i])

=

2.4.1 Importance Sampling

In the previous section we discussed the problem of estimating E[f(X)], where the

expectation is over the joint distribution P(X). However most problems also involve
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some observations e and we are interested in the expectation under these observations,
i.e., we want to estimate E[f(X) | e]. To make the problem well defined, we assume
that P(e) > 0.

The most straightforward way to solve this problem using sampling methods is

called rejection sampling. We can write:

Ef(X)1e(X)]

BLIX) el = Z g

We now have two expectations that we can compute using our standard sampling
method. For example, in order to compute F[f(X)1.(X)], we generate samples,
discard all the samples that do not agree with e, and use the remaining samples to
estimate the expectation. The problem with this approach is that the convergence
rate may be very low. Out of N samples we expect only P(e) to be consistent with
the evidence; thus, effectively we only use N P(e) samples to compute our expecta-
tion. Often P(e) is very low (especially if the dimension of e is high) in which case
rejection sampling is very inefficient. Furthermore, if e contains at least one contin-
uous variable, then the probability of sampling exactly its value is zero, and we will
discard all our samples.

To overcome this difficulty it is desirable to draw samples directly from P(X | e),
but this is not always possible. More generally, it is often the case that we have some
distribution P(X) that we cannot sample from. Importance Sampling is a general
way of dealing with this problem, based on a very simple observation. Let Q(X) be
some arbitrary distribution where (@) > 0 whenever P(x) > 0. Then:

P(z)
Q(z)

Eelf (X)) = Y f@)Pe) = Y f2) 2B o) - kg [f(X)—] (2.12)

Let «[1],...,2[N] be N ii.d. samples drawn from ). Define w[i] = g(z—[[i% and
then:

Pl
Q(]

Sometimes we cannot even compute P(«) and instead we can only evaluate P'(@)

Bolf(X)] % 7 3@l G = 5 3 faliufi (2.13)
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where P'(x) = ¢P(x) and ¢ is some unknown constant, i.e., we can only evaluate
P(x) up to some unknown constant. In this case we cannot use the estimator of

Equation 2.13, but we can use a slightly different estimator. We define the weights

w(e) = %. Notice that each weight is an unbiased estimator for ¢:

Bolw] = Y w(@)Q() = 3 L&)

i)~ e - e =

Rewriting Equation 2.12 we get:

P(x)
Q)

T Q@) _ Folwf(=)]

flx
Q) =2 - Fajw]

Ep[f(X)] =2_ f(=)

Therefore, given N i.i.d. samples &[1], ..., [ N] from @, we get the following esti-
mator for Ep[f(X)]:

¥ LI, wli] S wi]

Eplf(X)] ~ (2.14)
Note that if ¢ is known to be 1, we can replace %Zw[z] by 1 and return to
Equation 2.13. The estimator of Equation 2.14 is a biased estimator because of the
division. On the other hand, it usually has a smaller variance than the estimator of
Equation 2.13 and thus is often preferred in practice even when ¢ is known.

No matter whether we choose to use Equation 2.13 or Equation 2.14, the obvious
question one has to answer in order to use importance sampling is how to choose
the distribution ). Since in typical cases the estimator is either unbiased or has a
relatively small bias compared to its variance, a reasonable criterion to choose () is to
minimize the variance of the estimator. Analysis of the estimator’s variance (see for
example [Gew89, Liu96]) shows that the variance of the estimator is related to the
variance of the weights w[:] — in general the lower the variance of the weights the
lower the variance of the estimator is.

In one extreme case, () = P and the variance of the weights is 0. The analysis
therefore implies that the actual distribution P would be a good choice as the impor-

tance distribution, and in general we would like () to be as “close” as possible to P. If
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@ 1s very different from P the variance of the weights will be very high, and intuitively
a very small number of samples will account for almost the entire probability mass.
All the other samples will contribute very little to our estimation and will be almost
irrelevant. Thus, in the worst case, only a small fraction of our N samples would be
useful, making importance sampling very inefficient compared to sampling from the

correct distribution.

Likelihood Weighting

Likelihood Weighting (LW) [SP89] is the most popular way to apply importance sam-
pling for inference in Bayesian networks. Assume we have a Bayes net B over the
variables X and some evidence e where E C X. We would like to generate samples

from the posterior distribution:

Plz|e)=

It is not easy to evaluate the conditional distribution P since we do not usually
know the normalization factor P(e). However, evaluating P'(x) = P(x,e) is easy:
It is 0 if & and e are inconsistent and otherwise we can compute it directly from B
using the chain rule. We therefore have a function P’ which is equal to P up to some
unknown constant, and we can use the estimator of Equation 2.14.

It remains to define the sampling distribution (). Given the Bayes net B we con-
struct a new Bayes net B’ by disconnecting all the evidence nodes from their parents,
and set their CPD to be a deterministic CPD, with the value from e. For example, if
the node X was observed with the value “True” then X will have no parents and its
CPD will be P(X = True) = 1. B’ represents the sampling distribution (). Note that
when sampling from B’, we let the evidence nodes influence the distribution of their
descendents in the original Bayes net but they do not influence the distribution of
their ancestors. It is obvious that, in general, B’ does not represent the true posterior
distribution given the evidence e, but intuitively it should be a better approximation
to the posterior than the prior distribution, because it accounts for at least some of

the changes induced by the evidence.
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Consider some sample @ consistent with e. Let Pg(X | Par(X)) be the distribution
of X given its parents in B and let Pg/(X | Par(X)) be the distribution of X given
its parents in B’. For every @ consistent with the evidence e we can use the chain

rule and get:

P'(@) _ [T.ce Ps(z | Par(X)) _ [Toce Pz | Par(X)) [1.¢e Ps(z | Par(X))
Q(x)  Tlees Por(z | Par(X))  Iliee Por(a | Par(X))[loge Por(z | Par(X))

For the observed nodes X € E the CPD in B is deterministic, and therefore
Pg(z | Par(X)) = 1. For the hidden nodes Pg/(x | Par(X)) = Pg(z | Par(X)).
Therefore:

= [I Ps(z | Par(X))

rEe

In practice there is no need to construct B’ and we can sample directly from B.
We process the nodes in topological order. If the node is unobserved, we sample a
value for it based on its CPD and the value already sampled for its parents. If the
node is observed, we set it to its observed value and multiply the sample weight w by
Ps(x | Par(z)). It is easy to verify that, at the end of this process, we indeed have
w = [l,ee Pa(z | Par(z)).

Recall that, in general, the efficiency of importance sampling depends on how
close the sampling distribution (represented by B’ in likelihood weighting) is to the
true posterior distribution. In the best case all the evidence is in root nodes, in which
case B’ represents exactly the posterior distribution. In this case we sample from the
correct distribution and get the best rate of convergence. On the other hand, if all the
evidence is in leaf nodes we sample from the prior distribution, and the effectiveness
of the sampling process depends on how well the prior distribution approximates the
posterior distribution. In this case, we can get a very low convergence rate, especially
if the evidence is unlikely, making the posterior distribution very different from the

prior distribution.
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2.4.2 Markov Chain Monte Carlo and Gibbs Sampling

The main competitor of LW is Markov Chain Monte Carlo (MCMC). MCMC is a
sampling method that is much less sensitive to the probability of the evidence, and
can still work well even if the evidence is unlikely. MCMC is based on the theory of
Markov Chains, and therefore we provide a short introduction to Markov chains.

A Markov chain is a stochastic process, evolving in discrete time steps. We use
X° X' ... to denote the state of the process at the various time steps. For our
purposes, we limit ourselves to finite chains, i.e., chains where the number possible
states is finite. The distribution for X° is the initial distribution. The distribution
of X"*! given the past depends only on X". The conditional distribution P(X"*' |
X") is called the transition probability. If the transition probability does not depend
on n then the process is called a stationary process. For our purposes it is enough to

consider only stationary processes.

Definition 2.8 An invariant or a stationary distribution of a Markov Chain is a
distribution that persists forever, once il is reached, i.e., 7 is an stationary distribution

iff for every state @ we have:

r(e) =Y w(@)P(X' =2 | X' = ) (2.15)

x

As an example, consider the Markov Chain from Figure 2.7. It has just one
variable with three states {1,2,3}. For example P(X'*' = 1 | X' = 1) = 0.25,
P(X"*' =1 ] X* = 2) = 0, and so on. As the reader can verify, the Markov
Chain has a stationary distribution = where: #(X =1) = 0.2, #(X = 2) = 0.5 and
©(X =3)=0.3.

Often we are interested in Markov Chains that have a unique stationary distribu-
tion 7. Furthermore, we want the process to converge to 7, regardless of the initial
distribution. To characterize such Markov Chains, we define the concept of regular

chains.

Definition 2.9 A finite Markov Chain is regular if there exists some k such that for

every two states @, and x4 the probability of being in state &, and getting to state
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0.25 0.7

Figure 2.7: A 3-state Markov Chain

xy in exactly k steps is larger than zero, i.e., it is possible to get from every state to
every state in exactly k steps. For finite chains, the reqularity condition is equivalent

to a property called ergodicity, which we do not define for the general case.’
We are now ready to state the fundamental theorem of Markov Chains:

Theorem 2.10 An ergodic Markov Chain converges to a unique stationary distribu-

tion © regardless of the initial distribution.

For the proof of Theorem 2.10 and more details, see for example [TK98, Nea93].
As an example, the Markov Chain in Figure 2.7 is ergodic, since it is possible to
get from every state to every state in exactly two steps, and therefore the stationary
distribution 7 given above is unique.

Markov Chain Monte Carlo is an algorithm that uses Markov Chains in order to
generate the samples for approximate inference. The idea is to construct an ergodic
chain such that the stationary distribution is the distribution from which we want to
sample. We then run the chain and use its sequence of states as our samples. There

are two issues that need to be addressed:

3The formal definition of ergodic chains is more complicated as it also applies to infinite state
spaces, but since we are only concerned with finite state spaces, we can identify regular chains with
ergodic chains.
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e How to construct an ergodic chain that has the desired stationary distribution?

e How to use the samples generated from the chain

We answer the second question first. We start by choosing some random assign-
ment to X° from the initial distribution. We then let the chain run for N steps after
which the distribution over the state of the chain should be close to the stationary
distribution. This initial phase is called the burn in phase. We now pick the state of
the chain as our first sample. We can let the chain perform one more transition and
use it as our next sample, but in general these two samples will be correlated, and not
i.1.d. as we desire. Alternatively, we can let the chain run for M more steps before
picking the next sample, in order to reduce the correlation between the samples. The
samples we collect over the run of the chain are then used to estimate the desired
quantity (just like the samples from LW). Note that the larger M is the weaker the
correlation between our samples is, but we pay a penalty in terms of computational
cost. In practice M is often chosen to be 1 unless the cost of generating the samples
is low compared to the cost of actually using the samples.

We now turn our attention to the task of constructing a Markov Chain with some
desired stationary distribution. This task may sound difficult, but in many practical
cases it is possible to do so quite easily. The general technique of constructing these
Markov Chains is called the Metropolis algorithm [MRR*53]. Here we concentrate
on a more specific technique, called Gibbs sampling [GG84] which is often convenient
to use with Bayesian networks.

Gibbs sampling starts by generating some random sample, consistent with the
evidence (e.g., with likelihood weighting). We now run the Markov Chain — in step
k we randomly choose some unobserved variable X; and sample a value for it, given
the current assignment to the other variables (in fact it is enough to consider only

CPDs that involve X;). Formally, we sample from
P(XZ | xl[kL ) xi—l[kL xi+1[k]7 R xn[k])

Sampling X; can be done very efficiently: Since all the Markov blanket is known

we only need to create a factor over X; and multiply the relevant values from the
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CPDs into it.

A sufficient (although not necessary) condition to ensure that Gibbs sampling
results in an ergodic Markov Chain is that whenever we sample X; there is a non-zero
probability for it to be assigned to any one of its possible values (this ensures that
we have a positive probability to get from any state to any state in n moves). In
particular, if there are no zero entries in the CPDs the chain is ergodic. Furthermore,
if the chain is ergodic it is easy to verify using Equation 2.15 that the stationary
distribution of the chain is the posterior distribution P(x | e).

The crucial factor in analyzing Markov Chains is the mizing rate, i.e., the rate
with which a chain converges to the stationary distribution. Recall that we start the
chain with the burn in phase — if the mixing rate is very low the burn in phase
must be very long to avoid generating samples from the wrong distribution. Thus,
we might need to generate a very large number of samples without being able to use
them. Furthermore, when the mixing rate is low, the samples we generate after the
burn in phase are very correlated and we might need a very large number of them in
order to get a reliable estimate. As an example, consider again the chain in Figure 2.7
but now assume that the probabilities of staying in states 1 and 2 are 0.9999 and the
probabilities of leaving them are just 0.0001. If we start in state 1 we will need on
expectation 5000 samples in order to move into any other state. Intuitively, it is clear
that we need many samples in order to have approximately the right proportion of
the samples drawn from states 1 and 2.

Unfortunately, the task of determining the mixing rate of a Gibbs sampler on some
given Bayesian network is quite difficult. It is not even simple to decide whether the
chain has mixed given a certain burn in trajectory. Thus, the questions of when
we can start using the samples and how many samples are needed for a reliable
estimate are hard and make the use of Gibbs sampling a non-trivial task. Nonetheless,
note that the performance of Gibbs sampling does not degrade when the evidence is
unlikely. Thus, Gibbs sampling often works well in situations were exact inference is

not possible and likelihood weighting performs poorly.
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2.5 Most Probable Explanations

So far we discussed the problem of finding the marginal probability distribution over
some variables given some evidence. We now consider a different problem, called
the Most Probable Fxplanation (MPE) problem. In the MPE problem, we are given
a Bayes net B and some evidence E = e and are asked to find the most likely
configuration of the remaining variables given the evidence, i.e., the best explanation
for the evidence. An important generalization of the MPE problem is to find the K

most probable explanations for some K > 1.

2.5.1 Finding the MPE

We first note that, even without evidence, the most likely value of a certain variable
A, i.e., the value a; that maximizes P(A = a;), is not necessarily a part of the MPE
assignment (and thus we cannot use simple greedy algorithms that pick the most
likely value one variable at a time). For example, consider a very simple Bayesian

network A — B where both A and B are binary and their CPDs are:

A\ B\A:a A=a
al06 ; b| 0.5 0.2
al04 bl 05 08

The most likely value for A is a but the MPE in this case is A = a, B = b with
probability 0.4 x 0.8 = 0.32 (the most likely assignment involving A = a has the
probability 0.6 x 0.5 = 0.3 < 0.32).

It is easy to adapt the variable elimination and clique tree algorithms to the MPE
problem. We first consider the case of E = ). Given a Bayes net B over the variables

X = Xyq,..., X, we can write:
Jmax P(Xy,....X,) = max H P(X; | Par(X;)). (2.16)

Note the similarity between Equation 2.16 and Equation 2.2, where the summation

operation is replaced by a maximization operation. Indeed, we can use the same
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technique we used for variable elimination and push the maximizations inside. For

example, if we want to find the MPE for the Bayes net from Figure 2.1 we can write:

max P(W,D,S,C,I)=max P(I
W.D,S,C\I S,C,I

€, §)max P(W)P(S | W)max P(D)P(C | W, D).
(2.17)

Note again the similarity between Equation 2.17 and Equation 2.3. Thus we
can use the variable elimination algorithm to solve the MPE problem where the
summation operations are replaced by maximization operations. Since the clique tree
algorithm is based on the variable elimination algorithm, we can use the same idea of
replacing summations by maximizations in Figure 2.5 and get a version of the clique
tree algorithm that solves the MPE problem. Evidence can be handled in the usual
way of multiplying the potentials by indicator functions.

The calibration algorithm for MPE is called maz-calibration, and the potentials
in the clique tree are called maz-potentials. Each entry in the max-potential repre-
sents the probability of the most likely assignment for the network variables that
is consistent with the particular entry. A sepset S between the cliques C; and
(5 1s the result of maximizing out the variables which are not in the sepset, i.e.,
maxc, —c, C1 = maxe,_c, Ca. The proofs are very similar to the proofs of the stan-
dard clique tree algorithm and can be found in [Daw92] or [Jen96].

After performing max-calibration it is an easy task to extract the MPE assignment
from the clique tree. We arbitrarily choose one of the cliques as root and find the
MPE using a downstream pass. Suppose we order our cliques as (', Cs, ..., C, where
(1 is the root. We first choose the most likely assignment for the variables in clique
C'y. When we get to clique C; we choose the most likely assignment that is consistent
with our partial assignment over Cy,...,C;_1 (ties are broken arbitrarily). It is easy
to verify that this algorithm will result in an assignment which is the MPE. Assume
first that @ is the unique MPE with probability p. Then the projection of @ to the
max-potential of C'y must have probability p that must be larger than any other entry
in the max-potential, and therefore will be chosen by our algorithm. The situation
in the other cliques is similar and thus the result returned by the algorithm must
be . This argument generalizes to the case of non-unique MPE, showing that the

algorithm must choose one of the MPE assignments — the key insight is that because
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Finding K most likely assignments

1. Build tree and perform max-calibration

2 Find MPE @,

3. Initialize heap with (P(@g),xo, X)

4. For:1=1.K do
Extract top heap element (P(z),z,))
Report & as :-th instantiation
Partition ) — {#} into subsets )i,....Y]
For each non-empty ); j =1..

9. Find most likely assignment «; € ); and P(x;)

10. Imsert (P(x;),x;,);) into heap

0 N O O

Figure 2.8: Finding the K most likely instantiations. X' represents all the possible
instantiations.

of the way we order the cliques the algorithm will end up with a consistent assignment

and 1t 1s easy to verify that no other assignment can be more likely.

2.5.2 Finding the K Most Likely Explanations

It is possible to generalize the max-calibration algorithm to generate the K most
likely assignments rather than just the single most likely assignment [Nil98]. Assume
we have a max-calibrated tree with the cliques (1, ..., (), sorted in a way such that
every clique on the path between C; and C; appears between C; and € in our order
(we can easily find such an order, for example using DFS traversal of the tree).

Let X be the set of all possible instantiations, and let A be the set of instantiations
that were already generated by the algorithm (initially A = ). The idea of the
algorithm shown in Figure 2.8 is to partition X' — A into subsets Ji,...,),, where
for each subset Y; we also keep the the most likely instantiation within it @; € Y.
Note that the most likely instantiation in X' — A must be the most likely instantiation
among the candidates @4,...,®,,. Thus, we keep all the candidates in a heap sorted
by the likelihood of the instantiations, such that at each step the top element in the
heap represents the next most likely instantiation. In each step we extract the top

element ; from the heap and report «; as the next most likely instantiation. We
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then refine our partition scheme by partitioning V; — {@;}. For each new subset we
find the most likely assignment and insert it to the heap.
The obvious question is how to define the partition scheme. A good partition

scheme must have two properties:

e The number of subsets m is not too large

o It is easy to find the most likely instantiation in every subset }Y;

Note that these properties tend to be conflicting. At one extreme, if we keep
all the instantiations in one set, we get the first property but not the second; on
the other if we keep small subsets such that each contains just one instantiation we
have the second property but not the first. Therefore the heart of the algorithm is
identifying a good partition scheme and a way to maintain it. Nilsson [Nil98] suggests
to associate each subset Y with some clique C;. ) is defined by an assignment y to
all the variables in the cliques C1,...,C;_1 and by a set F of forbidden assignments
to the variables in C; — C;_;. We denote such a subset V = Assign(:,y,~F). It
is important to make sure that the subsets have an empty intersection. If we have
another subset )’ = Assign(y,y’, ~F’) for some j < 7 then either y is not consistent
with ¥’ or y belongs to one of the forbidden assignments in F.

As an example consider the tree in Figure 2.4(d) and assume all the variables
a binary. A possible subset ) that corresponds to C3 can be defined as Y =
Assign(3, (c, e, f,g,h),~{a}), i.e., the instantiations Y = {(A, B,c, D,e, f,g,h) | A ¢
{a}}. A subset )’ that corresponds to Cy can be V' = Assign(2, (e, f,g,h),—{c}). It
is easy to verify that ) and )’ have an empty intersection since every instantiation in
Y has F = f and every instantiation in )’ has F = f. As another example, consider
the subset Y = Assign(2, (e, f,g,h),={c}). V" has an empty intersection with )
since every assignment in )" has F' = [ while every assignment in )’ has F = f. )"
also has an empty intersection with ) since every assignment in Y has C' = ¢, but
C' = cis a forbidden assignment in }”.

The question of course is how to come up with a partition. Recall that at each
iteration of the algorithm we have the most likely assignments in each one of our

subsets. Among these candidates we find the most likely assignment «; € ), and
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then partition ); — {@;}. Thus, for some subset ) there are two operations that need
to be explained: how to find the most likely instantiation & € )} and how to partition
Y — {x} in a way that makes sure that the new subsets have an empty intersection.

We first explain how to find the most likely instantiation for J = Assign(z,y, —F).
The assignment to all the variables in Cy,...,C;_1 is given by y. In C; we greedily
choose the most likely assignment that is consistent with the C;_; assignment and
does not appear in the set of forbidden assignments F. We then continue with the
cliques Ci4q, ..., (), at each time choosing the most likely assignment consistent with
our current partial assignment, resulting in the answer @ (the proof is similar to
the argument at the end of Section 2.5.1). To compute the likelihood of @ we note
that Equation 2.11 also holds for max-calibration, since it is invariant to the message
passing protocol (Figure 2.5) just like regular calibration. Thus we can compute the
probability of & using Equation 2.11 in time linear in the number of cliques.

We next turn our attention to the task of partitioning V — {@}, where again
Y = Assign(i,y,~F). We will use the notation &% to denote the assignment @
restricted to the variables in C;. In particular, note that when @ € Assign(t,y, ~F)

we have g¢1C

subsets. The first is Assign (i, 201 =F') where F' = F U {&%~%-1}. In other

words, we add the assignment we used in @ to the set of forbidden assignments in C,

i-1 = y. Partitioning Y — {@} involves the creation of n — ¢ + 1 new

creating a subset that agrees with y but is different from @ on the assignment in C;.
Obviously, this is not enough: We may have some instantiations that agree with @ in
C,...,C; but are different in some other C; for some 5 > 2. Thus, for every 7 > 1 we
add the subset Assign(j, &1 %-1 —g%~C-1) je., all the instantiations that agree
with  on C4,...,C;_; but are different in C}.

As an example, consider again the tree in Figure 2.4(d) and let Y be the set
Y = Assign(3,(c,¢, f,g,h),~{a}). Assume that the most likely assignment in Y
turned out to be ® = (a,b,c,d, e, f,g,h). We partition the set J — {&} into three

subsets:

o Assign(3,(c,e, f,g,h),~{a,a})
[ ASSign(4, <&7 C, é) .f7g7 h>7 ﬁ{b})
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o Assign(5, (a,b,c.¢, f,g,h),~{d})

Since our variables are binary, the first set is empty and is discarded. The second
set contains the assignments (@, b,c,d, €, f,g,h) and {(a,b,c,d, €, f,g,h). The third
set contains just the assignment (a,b,c,d, e, f,g,h). Thus, we created a partition for
Yy —{z}.

At every step of the algorithm we create at most n = |C'| new subsets. Thus,
in order to generate the K most likely assignments, we create no more than nk
assignments. If we are careful about the way we find the most likely assignment
in some Y and compute its probability, we can perform these operations in O(|X)
where | X | is the number of variables in the Bayes net. Thus, the operations in lines
7-9 in Figure 2.8 can be done in O(nK|X|). Since inserting an element to the heap
and extracting an element from the heap can be done in time O(N log N) where
N is the number of heap elements, the operations in lines 5-6,10 can be done in
O(nK log(nK)). In addition, we need to create and max-calibrate the tree which can
be done in O(|7|) where |T| is the total size of the tree (including the potentials).
Thus, the total complexity of the algorithm is:

O(|T|+ nK|X|+ nKlog(nK))



Chapter 3
Hybrid Bayesian Networks

So far, we considered models that include only discrete variables. However, many
real-world domains also include continuous variables as well as discrete ones. These
domains are known as hybrid domains. Fxamples for such domains include: target
tracking [BSLKO1], where the continuous variables represent the state of one or more
targets and the discrete variables might model the maneuver type; visual tracking
(e.g., [PRCM99]), where the continuous variables represent the positions of various
body parts of a person and the discrete variables the type of movement; and speech
recognition [Jel97, ch.9] where a discrete phoneme determines a distribution over the
acoustic signal. In this thesis, we later focus on another such domain, namely fault
diagnosis where a physical system contains continuous variables such as flows and
pressures and discrete variables such as failure events.

In this chapter we discuss models that represent a probability distribution over
both the discrete and the continuous variables. We begin with a short review of the
normal distribution which forms the basis for almost all the models used throughout
this thesis. We then discuss Bayesian networks that include continuous variables and
focus on Bayes nets that represent a probability distribution which is a mixture of

(Gaussians.

48
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3.1 The Normal Distribution

The family of normal distributions (also called Gaussian distribution or just Gaus-
stans) is by far the most important family of distributions in probability and statistics
as well as many other disciplines. There are three main reasons that account for the

popularity of the normal distribution:

e The normal distribution comes up in the Central Limit Theorem. If X,..., X,
are 1.i.d. random variables and we define Y = >, X; then, under some weak
technical conditions, the distribution of Y converges to a normal distribution

when n — oo.

e Normal distributions or distributions that are well approximated by the normal
distribution arise naturally in many real-world situations and play a key role in

fields such as physics, biology and social sciences.

e The mathematical theory of this family is simple and tractable. The family
is closed under operations such as summation, multiplication and conditioning

that also have an analytical closed form.

In the univariate case, the normal distribution is characterized by two parameters
— the mean p and the variance o?. For mathematical convenience we parameterize
the distribution using the variance, which is the square of the standard deviation.

The density function has the form:

P(X) :./\/(X;m(ﬂ) = \/21_770 exp (—%) (3.1)

Note that we use the notation N (X; i, %) to denote that the variable X has the

normal distribution with mean p and variance o2

Sometimes we will also use the
notation NV (y, o?) without explicitly noting the random variable.

Intuitively the mean parameter p controls the location of the Gaussian, i.e., the
value for which the Gaussian gets its maximum value. The variance parameter o>
controls how peaked the Gaussian is: the smaller the variance, the more peaked the

Gaussian. More formally, the mean and variance correspond to the first two moments
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% (note

Figure 3.1: Univariate Gaussians: (a) y=0, o*=1 (b) p=1, 0*=1 (c¢) up=0, o*=
the different scale on the Y axis)

of the normal distribution, i.e., p = E[X] and o? = E[X?*] — F[X]*. Figure 3.1 shows
some examples of Gaussians with different values for the mean and variance. Note
that the density can be larger than 1 (unlike the probability distribution of discrete
variables); the constraint is that the integral over the density function is 1.

In the multivariate case, the normal distribution is characterized by two param-
eters — the mean vector and the covariance matrix. More precisely, the random
variables X = Xj,..., X, are said to have a normal distribution N (X; u, %) (where

p is a vector of size n and ¥ is a symmetric positive-definite matrix of size n x n) if:

PIX) = N (Xi.9) = e e (—g(e — )Y@ — ) 62

Figure 3.2 shows two examples of two-dimensional Gaussians. Intuitively, the
contours of multivariate Gaussians look like ellipsoids around the mean y where every
ellipsoid has some constant density. The mean vector determines the center of the
ellipsoids and the covariance matrix determines their shape. In general, ¥, ; represents
the variance of X; and ¥, ; = X, (for 7 # j) represents the covariance between X; and
X;. Once again the mean vector and covariance matrix correspond to the first two
moments of the normal distribution, i.e., p = E[X]and ¥ = E[X XT]|— E[X]|E[X]".

We now give a short overview of some of the important properties of the normal
distribution. For more details and proofs for the theorems, see almost any introduc-

tory textbook for statistics and probability. In particular, see sections 5.7 and 6.7 in
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the textbook by Stone [Sto96].

Theorem 3.1 Let X = Xi,..., X, have a joinl normal distribution N (z;p,Y).
Then X; and X; are independent ¢ff ¥;; = 0.

If all the non-diagonal elementsin ¥ are zero then all the variables are independent
from each other and we say that the Gaussian is spherical. Figure 3.2(a) and (c) show
a spherical Gaussian where X and Y are independent while Figure 3.2(b) and (d)
show an example where X and Y are correlated (note the different scale of the Z-axis).

We often consider joint normal distributions over {X,Y} where X € IR" and
Y € IR™. We shall use the following notation:

P(X,Y):N((ZX),B’;’E ;’Y‘:D (3.3)

Here px € IR", py € IR™, ¥ xx is a matrix of size n X n, ¥ xy is a matrix of size

nxm,Ixy = E;X is a matrix of size n x m and Yyy 1s a matrix of size m X m.

Theorem 3.2 Let {X,Y} have a joinl normal distribution defined in Fquation 3.3.

The marginal distribution over Y is a normal distribution N (Y; py, Xyy).

One of the most important properties of the family of normal distributions is that

it is closed under linear combinations.

Theorem 3.3 Let X = Xy, ..., X,, have a joint normal distribution N (X; p, X). Let
Bo € IR, B = (B1,..., 3n) € IR" where B # 0 and let o, > 0. Define Y to be the
random variable Y = o + BT X + W where P(W) = N (0,0%,). Then:

e The conditional distribution P(Y | @) is normal:
P(Y |2) =N (Y; B+ p 0%
o The distribution of Y is a normal distribution P(Y) =N (Y; puy,o0%) where:

py = 50-|-,3T,U
oy = oy +B'EB
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Figure 3.2: Two-dimensional Gaussians: (a), (¢) Independent variables (b), (d) Cor-
related variables (with the correlation coefficient p = 0.9). In all cases the variances of
both X and Y are 1. The contours in (¢) and (d) correspond to 1, 2, and 3 standard
deviations.
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o [urthermore, the joint distribution over {X,Y} is a normal distribution where:

Cov(Xi,Y) =) 8,3,
J

The converse to the last theorem is also true: the result of conditioning is a normal

distribution where there is a linear dependency on the conditioning variables.

Theorem 3.4 Let {X,Y} have a joinl normal distribution defined in Fquation 3.3.
The conditional distribution P(Y | X) is a normal distribution N (Y; py, X5y )

where
py = py +SyxSxx (- px)
Yvy = Syvy - SyxExxIxy

In particular, if we use Theorem 3.4 when |Y| = 1 we get the following corollary:

Corollary 3.5 Let {X,Y} have a joinl normal distribution defined in Fquation 3.3.
The conditional distribution P(Y | X) is a normal distribution N (Y; Bo+ BTX, 02) :

Bo = py —SyxYxxhx
B = SyxYxx
o’ = Yyy — YyxYx¥xExv

3.2 Linear Gaussians

3.2.1 Definition of Linear Gaussians

We can view Corollary 3.5 as a way to convert a multivariate Gaussian into a Bayesian
network. We order the variables in some order Xy, ..., X,,. We then use Corollary 3.5

to find the conditional distribution

i—1
P()(Z |X1,...,X¢_1) :N (Xi;ﬂi,0‘|‘z/3i,ij70'Z’2) . (34)

i=1
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Figure 3.3: A linear CPD P(Y | X) =N (V;X —4,1)

We create an edge from X; to X; (1 < j < 1) iff 8;; # 0. The CPD of X is
called a linear CPD and has the form of Equation 3.4 (after dropping all the zero
Bi;’s). Note that a linear CPD for root nodes is simply a univariate Gaussian. A
Bayes net in which all the CPDs are linear is called a linear Gaussian (LG). Thus,
every multivariate Gaussian can be represented as a linear Gaussian. The converse
is also true. Every Bayes net with linear CPDs represents a normal joint distribution

which can be recovered using Theorem 3.3.

3.2.2 Canonical Forms

We can perform inference in LGs in many ways. One is to simply convert the LG
into a multivariate Gaussian and do the operations on it. The other is to adapt
the variable elimination algorithm or the clique tree algorithm from Section 2.3.1.
The main difference is that the factors cannot be represented as tables anymore.
Naively we might think that we can represent factors as Gaussians, but this is not the

case. The reason is that linear CPDs are not Gaussians, but are rather a conditional
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distribution (unless the number of parents is zero). Figure 3.3 shows an example of
the CPD P(Y | X) = N (Y;X —4,1). The shape of the function is a ridge along
the line X — 4 and the width of the ridge is determined by the variance of P(Y | X),
which is 1 in this case.

To deal with the problem of representing linear CPDs, we use a different represen-
tation called canonical form or canonical characteristics [Lau92, Mur98|. A canonical
form represents a function of the form e?® where () is some quadratic function. More
precisely, we define C (X; K, h, g) (or C (K, h,g) where we omit the random variables)

as:
de

1
C(X; K, h,g)™ exp <—§XTKX +RTX + g) (3.5)

We can represent every Gaussian as a canonical form. Rewriting Equation 3.2 we

get:

1 1 Ty-1
WGXP (‘5(5’3_#) % (5‘3_.“))

1 1
= o (@ e uT e - T o ()51 ) )

Thus, N (p, %) = C(K, h,g) where:

K = Y!
h = Y 'u
1 — n
g = —5n' S —log ((2m)"*[5]'7)

However, canonical forms are more general than Gaussians: If K is not invertible,
the canonical form is well-defined, but it is not the inverse of a legal covariance matrix.
In particular we can represent CPDs such as the one shown in Figure 3.3 as canonical
forms (recall that N (YV; X —4,1) = \/% exp [—%(Y — (X - 4))2])

It is possible to perform various operations on canonical forms:

e A canonical form C (K, h,g) can be initialized by setting K =0, h =0, g = 0.
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e Multiplication is easy. Using Equation 3.5 we get:
C(Ki,hi,01) C (K3, hy,92) = C (K1 + Ky, by + hy, 91 + g2) (3.6)

e Division is defined in a similar way to multiplication:

C ([(17 h’lagl)

=C(K;—Ky,hi — h — .
C (K3, hy,92) C U = Koy n = 4) D

e Canonical forms can be extended to be defined over a superset of their variables

by increasing the dimensions of K and h and setting the extra entries to zeros.

e Let C(X,Y; K, h,g) be some canonical form over {X,Y } where
K K h
e e N (3.8)
[(YX ](YY hY
We define the marginalization of the variables Y as [C(X,Y; K, h,g)dY re-
sulting in a function over X. The integral is finite iff Kyy is positive definite,

i.e., 1t is the inverse of a legal covariance matrix, in which case the result is a

canonical form C (X; K', k', ¢') given by [Lau92]:

K' = Kxx— KxyKyYyKyx
K = hx— KxyKyyhy

1 ; ;
g = g—|—§(|Y|log(27r)—1og|]&yy|—|—h§c[&yyhy)

e [t is possible to enter evidence into a canonical form, i.e., set the values of some
of its variables. The result is a canonical form over the unobserved variables.
Assume the canonical form C (K, h,g) is given by Equation 3.8, then setting
Y = y results in the canonical form C (X ; K', k', ¢') given by [Mur98]:

K' = Kxx

K = hx — Kxyy
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g = g+hyy-— %yT[(YYy (3.9)

Since we can perform all these operations with canonical forms, we can adapt
the clique tree algorithm from Section 2.3.1 to linear Gaussians, representing the
factors as canonical forms. There are two issues that must be addressed. The first
issue is that it is not always possible to marginalize canonical forms. Fortunately,
this is not a problem. Recall that the need to marginalize comes up when sending
a message from clique C; (over the variables X;) to clique C; (over the variables
X ;). We need to compute the marginal over the variables X; N X, i.e., we need
tosumout Y = X, — X ;. Let C (K, h,g) be the canonical form of the clique of C;
just before sending the message to C; and let C (K, k', g’) be the canonical form of
the correct marginal distribution over ;. When sending the message to C;, C; has
already received messages from all its neighbors (except perhaps for C;), thus all the
factors which contain Y in their domain were already multiplied into C}. It is quite
easy to show that this implies that Kyy = K%y, i.e., the submatrices of K and K’
for Y are the same. Since the marginal distribution of C; is a Gaussian, K’ is positive
definite and therefore K3y is also positive definite. It follows that Kyy is positive
definite and therefore the marginalization operation is possible.

The other issue is that, unlike the discrete factors, when we instantiate evidence,
the evidence variables are no longer a part of the canonical form. It is easy to adapt
the clique tree algorithm to this case: We can directly instantiate the evidence in
every clique and every sepset that contains any observed variables, and then reduce
the dimension of these cliques and sepsets so that they do not include the observed

variables.

3.2.3 Conditional Forms

Although canonical forms can be used as the representation in the clique tree algo-

rithm, they have two problems:

e They cannot represent deterministic linear relations, such as Z = X —2Y, since

the covariance matrix Y is not invertible.
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e They are numerically unstable, and often lead to serious numerical errors.

The second problem is a serious concern that led to an alternative representation

to canonical forms introduced in [LJ0O1]. We call this representation conditional forms.

Definition 3.6 Let X = H U T be a set of continuous variables where HNT = ),
|H| =r and |T| = s. A conditional form [w,a, B, C|(H | T') represents a conditional
distribution P(H | T') of the following form:

PH|T)=w-N(H;a+ BT,C)

where a is a vector with dimension r, B is a matriz with dimensions r x s and C s

a malriz with dimensions r X r.

If ¢ = 0 then the conditional form represents a deterministic relation between
H and T. Furthermore, we can easily represent a linear CPD P(X | Par(X)) using
conditional forms (where H = X and T = Par(X)). Finally, it T =  then B
is redundant and the conditional form represents a multivariate Gaussian. All the
operations involved in the clique tree algorithm can be performed using conditional
forms [L.JO1], leading to a variant of the algorithm that uses conditional forms as its
main representation.

Conditional forms do not have the numerical problems that canonical forms suffer
from, and thus should be preferred when implementing the clique tree algorithms for
linear Gaussian networks or conditional linear Gaussian networks (discussed in the
next section). However, the operations on conditional forms are more complex and
add an extra layer of complication to the algorithms. We shall therefore explain the
algorithms in the context of canonical forms, keeping in mind that the discussion

carries over to conditional forms as well.

3.3 Conditional Linear Gaussians

LGs form the basis for more sophiticated models which we shall explore throughout

this thesis. In this section, we discuss one such model, namely Conditional Linear
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Gaussians (CLGs). CLGs are Bayesian networks that combine both discrete and
continuous variables, and thus let us represent a richer class of distributions than

either LGs or discrete Bayes nets.

3.3.1 Definition of CLGs

Definition 3.7 A conditional linear Gaussian (CLG) is a Bayesian network con-
taining both continuous variables (denoted as I') and discrete variables (denoted as

A), with the following restrictions:

o A discrete node cannot have a continuous parent; thus, all the CPDs for discrete

nodes can be represented as in discrete BNs.

o The CPD of any continuous variable is a linear CPD given any combination of
the discrete parents. More formally, if a node Y has the parents { Xy, ..., X3} C
I' and D = {Dy,...,D;} C A, we define its CPD using the following parame-
ters: for every d € Dom(D), we have Bao,. .., Baxr and o3. The CPD is then
defined as:

k
PY |2,d) = N (Y; Bao + Zﬂd,m,aé) .
=1

Note that, if all the discrete variables are given, then the CPDs of the continuous
variables are all linear CPDs. Thus, given any assignment of the discrete variables,
a CLG 1s reduced to a LG and therefore represents a normal distribution. It follows
that the joint distribution represented by a CLG is a mixture of Gaussians where
every mixture component corresponds to an instantiation of the discrete variables.

As an example of a simple CLG consider the network in Figure 3.4(a). Throughout
the thesis we will use the convention that, in hybrid Bayesian networks, discrete
variables are depicted as squares or rectangles while continuous variables are depicted
as circles or ellipses. This is a very simplified model of a room temperature sensor.
The variable T' is the room temperature with the prior distribution N (7'; 20, 25), i.e.,
T has a mean of 20°C' with a standard deviation of 5°C". The discrete variable OK
indicates whether the sensor is working properly or is faulty. With probability 0.9,

OK 1is True. The actual reading of the sensor R depends on the temperature and on
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ok|] (T)
(R

(a)

Figure 3.4: An example of a CLG: (a) The model — the sensor reading R depends
on the temperature T" and on the sensor’s state (b) The joint distribution of 7', R

the sensor’s state. If the sensor is working properly, R is approximately equal to the
actual temperature — it adds some Gaussian noise with standard deviation of 1°C.
However if the sensor is faulty, its reading does not depend on the actual temperature
and instead typically shows values around 30°C' with a large uncertainty (standard

deviation of 15°C'). The behavior of the sensor can be modeled using the following

CPD:
N (R;T,1) OK = True

P(R|OK,T) =
(#] ) { N (R;30,225) OK = False

The resulting distribution of 7', R, after marginalizing out OK, is shown in Fig-
ure 3.4(b). The distribution is a mixture of two Gaussians. The peaked Gaussian
represents the case of OK=True (note that the density of this Gaussian goes beyond

the scale of the Z-axis) and the other Gaussian corresponds to OK = False.
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3.3.2 Representation of Factors

As usual, we are interested in the problem of probabilistic inference, and once again
we take the approach offered by the clique tree algorithm. We shall develop a version
of the clique tree algorithm which is suited for CLGs, proposed in [Lau92] and often
called Lauritzen’s algorithm. The key decision in adapting the clique tree algorithm
into CLGs is how to represent the clique potentials and the sepsets, and in particular
how to represent the functions over continuous variables.

Figure 3.4(b) shows an example of a distribution over a continuous variable, and in
this case the marginal distribution is a mixture of Gaussians. In general, the marginal
distribution over a subset of variables {D, X} (where D C A and X C I') can be
expressed as a mixture of Gaussians over X for every assignment to ID. The sum
of the probabilities of the mixture components for a certain DD = d represents the
probability P(D = d). Note that if D are all the discrete variables in the network
then for every D = d we get a single Gaussian rather than a mixture. This leads to
a natural way to represent an intermediate function over { D, X'} as a table with one
entry for every possible assignment to DD. Fach entry contains a mixture of Gaussians
over the continuous variables.

A mixture of Gaussians over the variables X can be represented as a set of pairs
(wi, N (X5 p;, X;)) where w; is the weight of the i-th mixture component. If 3=, w; =
1 we say that the mixture is normalized in which case it represents a probability
density function: with probability w;, X has the normal distribution N (X g;, ¥;).
Alternatively, we can also represent a mixture using canonical forms as defined in
Equation 3.5. In this case the weight w; becomes a part of the canonical form by
incorporating it into the parameter g;, i.e., we add log w; to g;.

Unfortunately this natural representation has two serious problems:

o The size of the representation is not fixed, and might vary during the actual run
of the algorithm. For example, a function over one continuous variable can be
as simple as one weight and univariate Gaussian, and as complex as a mixture

with as many as |Dom(A)| components.

e Some of the operations used in the clique tree algorithm are not defined. In
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Figure 3.5: Collapsing a mixture of two Gaussians

particular, dividing two mixtures of Gaussians does not result in a mixture of
Gaussians and does not have a closed form. Furthermore, marginalization is

not defined for mixtures of canonical forms.

We now consider an alternative approach to the mixture representation. We still
represent a function over {D, X} as a table with one entry for every assignment to
D, but now every entry contains just one canonical form rather than a mixture. We
refer to this data structure as canonical factors. Canonical factors have an obvious
problem: We just stated that the marginal distribution over continuous variables can
be a mixture of Gaussians, but canonical factors do not allow us to represent mixtures
(unless all the relevant discrete variables are included in their domain). How will we
then represent mixtures if the discrete variables are not in the domain of the function?
The answer is that we will not. We shall approximate the mixtures that we cannot
represent with just one Gaussian. An example is shown in Figure 3.5, showing a
mixture of two Gaussians. Instead of representing the actual density, we shall keep
just one Gaussian which will be the result of collapsing the two original Gaussians.

How should the collapsing operation be defined? Recall that Gaussians are pa-

rameterized by their first two moments: the mean vector and the covariance matrix.
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The best we can do to approximate a mixture is to come up with a Gaussian which
has the same mean vector and covariance matrix as the entire mixture. The following

theorem [Liau96] tells us how to collapse a mixture of Gaussians.

Theorem 3.8 Let () be the density function of a normalized mizture of n Gausstans

(wi, N (p;, 5:)). Let P =N (p,X) be a normal distribution defined as:

p o= sz’lh (3.10)

S o= Y wili+ ) wilp — w)(p - p) (3.11)

Then P has the same first two moments (means and covariances) as ). Further-
more, P minimizes the KL-divergence belween () and any normal distribution, i.e.,
for any other normal distribution P' = N (p',%') we have D(Q || P) < D(Q || P')
with equality iff P' = P

Proof: It is easy to verify that P and () have the same first two moments by directly
computing the first two moments of (). To prove the second part of the theorem we

write

pQIP) = Q@) Qf""))dw

Pla)
Ja@n P(ﬂw
= D(Q| P) —|—/Q(a: (log P(x) — log P'(x))de

Since both P and P’ are Gaussian distributions, both log P and log P’ are quadratic
polynomials. We can therefore write log P(x) — log P'(x) = T Az + b7z + . How-
ever, () and P have the same first two moments, and therefore the expectation for

any quadratic polynomial is the same with respect to ) and P. Therefore

/Q )(log P() — log P'(z (m_/P )(log P(2) — log P'(@))da = D(P || P')
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Thus, we have
D@QIP)=D@QI| P)+D(P | P)=D@Q| P)

with equality iff P = P’. 11

Note that the covariance matrix, as defined by the collapsing operation, has two
terms: the weighted average of the covariance matrices of the mixture components
and a second term which corresponds to the distances between the means of the
mixture components — the larger these distances are, the larger the “space” between
the mixture components, and thus the larger the variances in the new covariance
matrix.

When approximating a mixture of Gaussians by one Gaussian, the quality of the
approximation depends on how close the mixture density was to a single multivariate
Gaussian and in general can be quite bad. However, there are two reasons why this

can be considered a reasonable representation when using the clique tree algorithm:

o As we shall see, the results of using the clique tree algorithm will have the correct
first two moments for the continuous variables and the correct distribution over
the discrete variables. For many applications this is enough to answer many

questions of interest.

o If we insist on finding the exact marginal distributions without any collapsing,
we can always add the relevant discrete variables to the cliques and sepsets
(with the cost of extra space and running time). Thus we can view the canon-
ical factors representation as a flexible representation, offering a spectrum of

approximations trading off efficiency and accuracy.!

Having chosen a representation for the potentials and sepsets, we need to verify
that we can perform the various operations required by the algorithms. With the
important exception of marginalization, which we shall soon discuss, all these oper-
ations are a natural generalization of the operations defined on discrete factors and

the operations defined for canonical form:

! Unfortunately, as we shall see, even the most efficient approximation is often still impractical.
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o We can extend the domain of the canonical factor by adding discrete variables
(just like in discrete factors) and by adding continuous variables to every canon-

ical form (as defined in Section 3.2.2).

e We multiply (divide) canonical factors by multiplying (dividing) the relevant

entries (just like in discrete factors) as defined in Equation 3.6 and Equation 3.7.

e Let {d,z} be a set of observations (where d is discrete and @ is continuous).
We instantiate d by setting the entries which are not consistent with d to zero.

We instantiate & by instantiating every canonical form with this evidence.

It remains to discuss marginalization. We can marginalize continuous variables by
marginalizing each of the canonical forms. Marginalizing discrete variables is more
subtle, and involves combining a few canonical forms into one. More precisely, assume
we have a canonical factor defined over {A, B, X} (where A,B C A and X CT)
and we want to marginalize it to a canonical factor over A, X. For every value
A = a, we need to find the entries consistent with @ and combine them into one. The
operation of combining a few canonical forms is equivalent to the collapsing operation.
However, the collapsing operation was defined for a mixture of Gaussians and not for a
mixture of general canonical forms. Indeed, combining canonical forms into one is well
defined iff the canonical forms have finite first two moments, i.e., can be represented as
Gaussians. Note that, even when the collapsing operation is well defined, we only find
an approximation to the marginal distribution, as we collapse a mixture of Gaussians
into just one Gaussian. Marginalization that involves collapsing Gaussians is called
weak marginalization (as opposed to strong marginalization that does not involve any

approximations). The following definition and theorem summarize this discussion.

Definition 3.9 Marginalization of canonical factors can be either strong or weak.
Strong marginalization does not involve any approximations. It can be performed in

one of the following cases:

o Only continuous variables are marginalized
o The factor is defined over discrete variables only

o All the canonical forms are identical
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Figure 3.6: (a) A CLG (b) The moralized (and triangulated) graph (c) Resulting

clique tree (d) A clique tree with a strong root (e) Yet another clique tree

If none of these conditions hold then the marginalization is weak.

Theorem 3.10 The weak marginalization operation is well defined iff all the canon-
ical forms can be represented as Gaussians. In this case, the weak marginalization
operation can be carried out using Theorem 3.8. Weak marginalization involves col-
lapsing and resulls in an approximation to the true marginal distribution, preserving

the first two moments.

We end this section by noting that we can replace the canonical forms by condi-
tional forms (defined in Section 3.2.3), leading to conditional factors. The discussion
regarding canonical factors applies to conditional factors as well. In particular, Def-
inition 3.9 applies to conditional factors. The analog of Theorem 3.10 is that weak
marginalization in conditional factors is well defined only when T' = (), in which case
every entry in the conditional factor represents a multivariate Gaussian. The result-
ing clique tree algorithm will be very similar to the one described next, but will be
much more numerically stable [LLJO1]. Again, in order to simplify our discussion, we

shall present the algorithm in the context of canonical factors.
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3.3.3 Message Passing in Strongly Rooted Trees

Not being able to combine general canonical forms forces us to restrict the elimination
order in the variable elimination algorithm or the clique tree algorithm. As an exam-
ple, consider the network in Figure 3.6(a). After moralization the graph is already
triangulated as shown in Figure 3.6(b). If we now extract the maximum cliques and
build the clique tree, we get the graph shown in Figure 3.6(c). Unfortunately, at this
point we are stuck and cannot send any message in the tree. For example, the clique
over {B, X,Y} contains the CPDs for P(B) and P(Y | B, X). It does not contain
the CPD for X and therefore the canonical forms over { X, Y } represent a linear CPD
and not a Gaussian. It follows that we cannot marginalize out B and thus we cannot
send the message. For similar reasons we cannot send the message from the clique
over {A,C.Y, Z}.

One way to make sure that message passing is possible is to create clique trees
which are strongly rooted. In a strongly rooted tree it is possible to choose a clique
R (called a strong root) such that there will be no weak marginalization when send-
ing a message towards R. As an example, the clique tree in Figure 3.6(c) is not
strongly rooted while the clique tree in Figure 3.6(d) has a strong root (the clique
{A, B,C,Y}). Not having to perform weak marginalization on the upward pass means
that, when sending a message towards the root, either there are no continuous vari-
ables on the sepset or there was no need to sum out any discrete variables. The

following definition formalizes this idea:

Definition 3.11 A clique R in a clique tree T is a strong root if every two adjacent
cliqgues C7 and Cy such that C1 is closer to R than Cy satisfy

(ChNC) CA V (Co—Cy)CT

We defer the discussion of how to create a strongly rooted tree to the next section
and continue our discussion of message passing. When a tree is strongly rooted,
it is possible to calibrate it using a message passing algorithm. We first run an
upstream pass towards K. This pass is possible since there is no weak marginalization

involved. We then run the downward pass. This time we will have to perform weak
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Calibration of a Strongly Rooted Tree
1. Pick a strong root R
2. Initialize canonical factors in potentials and sepsets
3. Multiply potentials by the CPDs
4. Enter evidence
5. Discrete: in any potential
6. Continuous: in all potentials and sepsets;
remove observed variables from tree
. Send upstream messages towards /i using Fig. 2.5 protocol

0 ~

. Send downstream messages towards leaves using Fig. 2.5 protocol

Figure 3.7: Calibration of a strongly rooted tree

marginalization but it will always be possible. The reason is that in the downward pass
we always send messages from cliques that already received all their messages, and
therefore represent a probability function. Thus, the canonical forms must represent
Gaussians and can be collapsed.?

As in discrete clique trees, it is possible to introduce evidence into the tree. Dis-
crete evidence can be introduced in the tree by multiplying one of the potentials by
the relevant indicator function (as in the case of discrete clique trees). Continuous
evidence can be introduced by instantiating every relevant potential (as in the clique
tree for linear Gaussian). The calibration algorithm, including evidence instantiation
is shown in Figure 3.7. Note that evidence can also be introduced after calibrating
the tree, in which case the continuous evidence also needs to be instantiated in the
sepsets.

So far, we have motivated strongly rooted trees as a way to make sure that all
the operations on the canonical factors are well defined, and in particular that no
collapsing is performed unless the canonical forms represent Gaussians. However,
it is possible to find clique trees which are not strongly rooted but in which mes-
sage passing is still possible. For example, consider the clique tree in Figure 3.6(e).

The tree is not strongly rooted, but after multiplying in the CPDs, the clique over

2When using conditional factors, T = 0 for the strong root R and for any other clique C, T
contains the continuous variables that appear on the sepset between C' and its neighbor on the path
to R. All the other continuous variables in the clique are in H.
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{A, B, X, Y} represents Gaussians over {X,Y} (since the CPDs of P(X | A) and
P(Y | A, X) were already multiplied in). Thus, we can weakly marginalize this clique
and send the message over {A,Y} to the clique {A,C,Y,Z}. Now it is possible to

weakly marginalize the clique {A,C,Y, Z} and send a message back to the clique
{A, B, X,Y}. Thus, we have the following theorem:

Theorem 3.12 Having a strong root is a sufficient, but nol a necessary condition
for the operations of the message passing algorithm to be well defined in hybrid clique

trees.

The reason we use strongly rooted trees is that it ensures that message passing is
not only well defined, but also leads to the exact results. In general, this is not the

case when using trees that are not strongly rooted.

Theorem 3.13 Let 7 be a clique tree and R be a strong root in T . After instantiating
the evidence and running an upstream pass followed by a downstream pass the tree
is calibrated and every potential contains the correct (weak) marginal. In particular,
every clique contains the correct probability distribution over the discrete variables

and the correct mean and variance of any continuous variable.

Before proving the theorem we present a useful lemma.

Lemma 3.14 Let X and Y be two sets of random variables with some joint distri-
bution P(X,Y) with | X|=mn and |Y|=m. Let P(Y | X) =N (Y;a+ BX,C)
where a is a vector of size m, B is a malriz of size m x n and C' is a matriz of size
m x m. The first two moments of P(X,Y) depend only on the first two moments of
P(X) and not on the distribution P(X) itself.

The proof for the lemma is in Appendix A.1. We are now ready to prove Theo-
rem 3.13.
Proof: Consider the algorithm in Figure 3.7. Since every CPD has a potential that
contains all its variables, then all the multiplications in line 3 are exact, and after
performing them the product of the potentials is indeed the correct joint distribution.

Similarly 1t is easy to show that the evidence instantiation in lines 4-6 is also exact,
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using similar arguments to purely discrete and purely continuous clique trees. Note
that, since all the sepsets are initialized to C(0,0,0), there is no need to perform
any operations on the sepsets other than removing the observed variables from their
domains. It is therefore left to show that the message passing leads to the correct
weak marginals in every clique.

The upward pass is simple — all the marginalization operations involved are
strong marginalizations, and therefore all the operations are exact. Thus, the upward
pass is equivalent to running the variable elimination algorithm for the variables
in the strong root, and its correctness follows from the correctness of the variable
elimination algorithm. The result of the upward pass is the correct (strong) marginal
in the strong root R.

The downward pass involves weak marginalization, and therefore its correctness
is not immediate. However, we can still show that it results in the correct (weak)
marginals in the cliques. The proof is by induction on the distance of the clique from
the strong root R. For R itself we already know that we have the correct marginal.
Assume now that we have two cliques V' and W such that W is the first node on the
path from V to R. Let S be the sepset between V and W. We need to show that
after sending the message from W to V', V has the correct weak marginal.

We denote the variables in V and W as V and W and the sepset variables as
S=VNW. Also,let W; = W —S and V; = V — 5. Next we denote the potentials
of W and V' (before sending the message) as (W) and ®(V') and we denote the factor
on the sepset S (before sending the message) as ®(.5). Finally, we denote by ®(V')’
the potential in V after sending the message from W to V', and by ®(S)’ the message
itself, i.e., ®(S)" = Yy, (W) where the summation may also involve some integrals.

We first show that after sending the message from W to V., V agrees with W on
the marginal distribution of S. Since, by induction, W has the correct weak marginal,

this will prove that ®(V')" represents the correct weak marginal for S.

;cp(vy = ;cp(m : 2((55)) - 2((?) (V) = a5 PO =) 312)
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Note that Y2y, ®(V) = ®(S5) holds because the sepset S has the strong marginal
of V' computed on the upward pass. If S is not the strong marginal of V' then the
two cliques will not agree on the distribution of § after sending the message.

It is left to show that ®(V')’ is the correct weak marginal for all the variables in
V', i.e., that the first two moments for V' are correct given that the first two moments
for S are correct. We first observe that every entry in the canonical form in ®(V)’
must represent the correct conditional Gaussian distribution P(V'y | §). The reason
is that during the upstream pass all the information about the variables in V'; was
already sent to V without any weak marginalization (the rest of the tree cannot have
any information about the variables V' since they are not present in the sepset 5).
It follows that every entry in ®(V)" represents a Gaussian over {S,V;} with the
correct first two moments for S and the correct P(Vy | S). Using Theorem 3.4 we
can write P(V; | S) as a linear function plus some Gaussian noise, and then directly

use Lemma 3.14 to get the desired result. I

Note that, if the tree is not strongly rooted, the proof breaks down in two places:
The upward pass is not exact and Equation 3.12 does not hold. Indeed, in general,
if a tree is not strongly rooted, running the message passing algorithm will not lead
to the correct first two moments and the tree will not be calibrated, even if all the
operations are well defined. In fact, message passing in trees that are not strongly

rooted may lead to illegal covariance matrices as shown in the next section.

3.3.4 Ill Defined Message Passing

In this section, we give an example of message passing in a clique tree without a
strong root that leads to illegal covariance matrices, and in particular to a negative
variance. Consider the CLG in Figure 3.8(a). The CPDs of the discrete variables are

uniform and the CPDs of the continuous nodes are defined as follows:

PIX | 4) = {N(O,Q) A=0

N(0,6) A=1
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Figure 3.8: (a) A simple CLG (b) A clique tree without a strong root

N(X,001) B=0

PY1B,X) = {N(—X,().Ol) B=1

Assume we use the clique tree in Figure 3.8(b), which is not strongly rooted,
and assume we have the evidence Y = 4. Let us follow the results of the message
passing algorithm. To make the presentation easier to follow, we present some of the
intermediate results in moments form rather than canonical form.

Let us assume that the message passing algorithm first sends a message from
the clique {A, X'} to the clique {B, X, Y}. Since the cliques share only the variable
X, we collapse the prior distribution of X using Theorem 3.8 and get the message
M, = N (X;0,4). When we multiply the potential in {B, X, Y} by this message we

get a mixture of two Gaussians with equal weights:

N(X,Y;(O),[4 ! ]) when B =10

0 4 4.01

N(X,Y;(O),[ o }) when B =1
0 —4 4.01
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After instantiating the evidence Y = 4 we get a new mixture of two Gaussians:

N (X;3.99,0.00998)  when B =0
N (X;—3.99,0.00998) when B =1

The weights of the Gaussians in the new mixture are still the same. The reason is
that Y had the same marginal in the original mixture A" (Y;0,4.01) for both B =0
and B = 1, and therefore the evidence had the same likelihood for the two Gaussians.

We now need to send a message back to the clique {A, X}. To do so, we need
to collapse the two Gaussians. The result of the collapsing is the message My =
N (X;0,15.93). Note that, in this example, the evidence caused the variance of X to
increase.

To incorporate the message M; into the clique {A, X'} we need to divide it by the
message M;. We then multiply each entry in the potential of {A, X'} by the result of

€ division, 1.e. ;. 1n particular, 10r = we nee O periorm € operation:
the division, i.e., by 4. In particular, for A =1 d to perform the operati

N (0,6) - NV (0,15.93)
N (0,4)

This operation can be carried out in canonical forms C (K, h,g), and for our
purposes it is enough to consider only the second order coefficient K. Recall that in

general K = ¥X7! and therefore, for 0 = 6 we get K = é, for 0% = 15.93 we get

- 1 - 1 .
K = —5 and for 6 =4 we get K = . Thus the new K is equal to
! + ! b 0.0206
6 1593 4
However, K < 0 does not represent a legal Gaussian — if we use the inverse

1

. 2 _ ___
transformation we get 0% = Z0.0208"

which is not a legal variance. Thus, doing message

passing in a clique tree that is not strongly rooted is not safe.
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3.3.5 Strong Triangulation and its implications

Since strongly rooted trees prove to be useful for inference in CLGs, the next natural
question is how to construct strongly rooted trees from a given CLG. To address this

question we first define strongly triangulated graphs.

Definition 3.15 We say that a chordal graph is strongly triangulated if it corresponds
to an elimination order where all the continuous variables are eliminated before the

discrele ones.

Recall from Section 2.3.2 that the nodes in a clique tree correspond to the maximal
cliques in a triangulated graph. Theorem 3.16 ([Lei89] theorem 2’ statement (i::)’)

tells us that the same connection holds for strongly rooted trees.

Theorem 3.16 A clique tree has a strong root iff it represents the maximal cliques

of a strongly triangulated graph.

In other words, in order to create a strongly rooted tree, we simply use an elimi-
nation order where the continuous variables appear before the discrete ones. We now
turn our attention to the computational implications of strong triangulation. Using

Theorem 3.16 we can prove an important property of strongly rooted trees.

Definition 3.17 A continuous connected component is a set of continuous nodes X
such that if X1,Xy € X then there is a path between X; and X3 in the moralized
graph where all the nodes on the path are continuous. A maximal continuous con-
nected component is a continuous connected component which is not a proper subset
of any larger continuous connected component. The discrete neighbors of a continu-
ous connected component X, denoted as DN(X), are all the discrete nodes which are

adjacent to some node X € X in the moralized graph.

For example, all the continuous nodes {X,Y, Z} in Figure 3.6(b) are in one contin-
uous connected component, and all the discrete nodes are its neighbors. The following
theorem states the relation between continuous connected components and strongly

rooted trees.
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Figure 3.9: CLGs on which strong triangulation leads to exponential trees

v

Theorem 3.18 Let X be a maximal continuous connected component and let D =
DN(X). Then when using strong triangulation and building a clique tree T, there
exists a clique in T that contains all the nodes in D in its domain and at least one

node X € X.

Proof: The proof is by induction on n = |X|. If n = 1 then all the discrete
neighbors are adjacent to one continuous node X. Due to strong triangulation we
must eliminate X before any one of the nodes in D, and when doing so we create a
clique that contains {X, D}.

For some n > 1, let Y € X be the first node to be eliminated from {X, D}
(again, due to strong triangulation, no node from D can be eliminated before). When
eliminating Y, we add edges from all its discrete neighbors to all its continuous
neighbors, thus if D € D was adjacent to Y it will be adjacent to X — {Y'} after
the elimination of Y. In addition we connect all the continuous neighbors of Y; thus,
X — {Y} is still a continuous connected component. We are left with a continuous
connected component with size n — 1 which still has D as discrete neighbors, and we

can use the induction hypothesis. 1

As an example, consider again the CLG in Figure 3.6(a). Since all the continuous
variables are in one connected component, all the discrete variables must end up in
the same clique in a strongly rooted clique tree together with one of the continuous
nodes, as indeed is the case in Figure 3.6(d).

Unfortunately, the size of canonical factors is exponential in the number of discrete
variables, and therefore Theorem 3.18 implies that, in many cases, strong triangula-

tion leads to clique trees which are intractable, even when the structure of the CLG 1s
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very simple. For example, in the networks shown in Figure 3.9(a) and Figure 3.9(b)
all the discrete nodes will end up in one clique, making the respective clique trees
exponentially large.

At this point the reader may wonder whether strong triangulation is necessary
after all, given the heavy computational penalty we have to pay for it. Perhaps we
should be looking for a data structure other than canonical or conditional factors that
avoids the problems caused by weak marginalization, and perhaps we can use it in
trees which are not strongly triangulated but on which we can still prove a theorem
similar to Theorem 3.13. Alternatively, perhaps we should give up on our goal of
exact inference in CLGs and develop an approximate inference algorithm on which
we can prove an approximation version of Theorem 3.13. Answering these important
questions (unfortunately with a negative answer) is one of the main contributions of

this thesis, discussed in Chapter 4.

3.4 Approximate Inference in CLGs

As we have seen, exact inference in CLGs is harder than exact inference in discrete
Bayesian networks. It is therefore not surprising that in many cases people resort to

approximate inference algorithms in CLGs, which we discuss in this section.

3.4.1 Discretization

Discretization is an approach that aims to transform hybrid models into discrete
ones. The idea is to partition the domain of every continuous variable into some
finite number of sets. For example, given a continuous variable such as age, we can
partition its domain to 6 sets 0-10, 10-20, 20-35, 35-50, 50-70 and 70+. We represent
the continuous variable for age by a discrete variable that takes one of 6 possible
values. We then discretize the CPDs accordingly and end up with a discrete model
which we can solve using techniques from Chapter 2.

Unfortunately, discretization has some problems. The first problem is how to

partition the continuous domain. A good discretization scheme should have a fine
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Expectation Propagation
1. Initialize the approximations 1
2. Compute the (unnormalized) joint q::]jiﬂ
3. Do until convergence of i
4. Choose some ﬂ

5. Set ¢7' =4

6. Multiply éz_i and #; and minimize KL-divergence to get ¢ within
family

7. Set tNZ = qu/z

8. Set q=¢

Figure 3.10: The Expectation Propagation algoritm

resolution where the posterior probability mass lies, but before we actually perform
the inference we do not know the posterior distribution. In order to deal with this
problem, [KK97] suggest an approach in which we start with some rough discretization
and then iteratively refine it by finer partitions of areas where most of the probability
distribution lies.

A more serious problem is that discretization is very problematic when we need
to approximate distributions over more than a handful of discretized variables, since
the representation of the resulting grid is exponential in the number of variables.
For example, the number of parameters to represent a Gaussian over d variables is
O(d?). If we discretize each one of these variables into m values, then we need O(m?)
parameters to describe their joint probability distribution. Thus, not only did we
introduce extra approximations into our joint probability distribution, we also ended
up with an exponential representation rather than a polynomial one. The situation
only becomes worse if we need to approximate a mixture of Gaussians rather than a
single Gaussian, since deciding on a good discretization scheme becomes even more

challenging.

3.4.2 Expectation Propagation

One can view the clique tree approach as first deciding on some representation of

a family of probability distributions and then finding the best approximation of the
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Al A2 An

Figure 3.11: A CLG used as an EP example

joint distribution within the chosen family. For example, consider the distribution
of Z in the Bayes net from Figure 3.6(a). It is easy to see that the distribution of
7 1s a mixture of Gaussians, with one mixture component for every combination of
A, B, and C (since Y has a different distribution for every value of B the same is
also true for 7). However, the structure of the clique tree in Figure 3.6(d) dictates
that the distribution for Z would be expressed as a mixture of Gaussians with one
mixture component for every combination of just A and €. Thus, the structure of
the tree does not allow us to represent the correct joint distribution, and instead we
try to find the best approximation which can be expressed using the tree (this is done
using the collapsing operation which finds the best single Gaussian approximation to
a mixture of Gaussians).

In general we have a set of functions 1,15, ...%, whose product [];{; is the joint
probability distribution (in our case these could be the CPDs and perhaps some
indicator functions for the evidence). Our problem is that [];¢; is too complex to
represent. Instead, we choose some family of representations and try to find the
family member that best approximates the true joint [[;#;, e.g., by minimizing the
KL distance. The key issue is how to find the best approximation within our family
of distributions. Lauritzen’s algorithm is a way to do so, but it puts some severe
restrictions on the family of distributions. Namely, the family must correspond to
some strongly triangulated tree, which is often exponential in the size of the problem.
Thus, the family of representations necessary for Lauritzen’s algorithm is often too
complex by itself, and there is a need for a different approach.

Fxpectation propagation (EP) [Min01] is an alternative approach for finding a
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family member that is a good approximation to the joint probability distribution.
Instead of treating each term ¢; exactly and then approximating the joint that includes
the t;’s, EP first approximates ¢; with some #; and then uses the product [];{; as the
approximation for the joint distribution. The algorithm then iteratively improves the
approximations for ¢;. Assume ¢ = [, {; is our current approximation. To improve our
approximation for £;, we first remove {; from ¢ and define ¢~ = [T%i ;= % We now

* and the exact #; and project the result to our family of distributions,

combine ¢~
leading to a new approximation ¢’. We can now update our approximation {; to
be the contribution leading from ¢~* to ¢, i.e., {; « qu/1 An important property
of the algorithm is that, if our family of distributions is in the exponential family,
then the term approximations are also in the same family. The algorithm is given in
Figure 3.10.

As an example, consider the CL.G in Figure 3.11. We assume that all the discrete
variables are binary and that Yi,... Y, are given. We are interested in the distri-
bution of X. It is easy to see that this distribution is a mixture of 2" Gaussians,
since every combination of the discrete variables induces some different multivariate
Gaussian over {X,Y7,...,Y,}. When n is large we cannot solve this problem using
Lauritzen’s algorithm, since according to Theorem 3.18 every strongly triangulated
tree must have a clique that contains all the discrete variables.

Instead, we can use the EP approach. We set the terms ¢; to correspond to the
product of the CPDs P(A;) and P(Y; | A;, X). In this example, suppose that we
decide to approximate the distribution of X as a single Gaussian, in which case we
can represent ¢(X) as well as #;(X) using a canonical form. Line 1 of Figure 3.10
involves setting #;(X) = C(X;0,0,0) as well as the prior {o(X) = #,(X) = P(X)
which there is no need to approximate. In line 2, we simply let ¢ = P(X) be the
prior (in canonical form). The division in line 5 is easy using canonical form. In line
6 we multiply ¢; and ¢, resulting in a mixture of two Gaussians over X, after Y; is
instantiated to its observed value. We then let ¢’ be the result of collapsing the mixture
into one Gaussian. The division in line 7 is again simple using canonical forms. Note

that, after convergence, we can easily compute other quantities of interest, such as

the probability of the evidence or the distribution of the discrete variables A; using
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our approximation to the joint distribution.

It can be shown [Min01] that the EP iterations are guaranteed to have a fixed
point when the approximations are in an exponential family. EP often leads to good
approximations, especially when the joint distribution can be well approximated by a
member of the chosen family. Unfortunately, the algorithm can also behave arbitrarily

badly, which is not surprising given the analysis in Chapter 4.

3.4.3 Sampling Approach

As in discrete Bayes nets, we can use the sampling approach as an approximate
inference algorithm. In particular, we can take the LW algorithm from Section 2.4.1
and apply it on hybrid BNs without any modifications. In fact, the resulting algorithm
has a big advantage, because it does not rely on the linearity of the CPDs, and can
be applied to non-linear hybrid BNs as well as to CLGs.

In the case of CLGs, we can improve on the LW algorithm by using a technique
called Rao-Blackwellization (RB). Recall that the reason we had to resort to approx-
imate inference was that we could not compute analytically the distribution over the
random variables in our domain (in the case of CLGs the mixtures are too large).
Sampling methods approximate this distribution by generating a set of assignments
to the random variables and use them to estimate various properties of the posterior
distribution.

The key observation for Rao-Blackwellized sampling is that it not always necessary
to sample values for all the random variables in our domain: Sometimes, given an
assignment to some subset of the variables, the distribution over the other variables
becomes tractable and we can deal with it analytically.

Formally, RB suggests to partition our domain into two mutually exclusive subsets
X = X1UX,. For our purposes, we shall assume that the Bayes net does not contain
any edges from variables in X5 to variables in X;. Each sample, called a RB-sample,
consists of an assignment @; to the variables in X and a distribution P(X, | @1).
In some cases we use weighted sample, in which case we also associate each sample

with a weight.
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Rao-Blackwellized sampling is based on the following observation. Assume that
we want to estimate the expectation of some function f(X) given some evidence

FE = e. Then:

Epxiolf(X)] = > Plei, 2| e)f(z1,2)
= D _Plzi]e)) Plxy|zi,e)f(z1,22)

= > P(x1| €)Epx,jz el f (21, X2)]

where some of the sums can be replaced by integrals. Thus, if we can efficiently
compute the expectation term, there is no need need to sample X 5. Instead if we have
a set of RB-samples drawn from P(X | e) with the assignments {@,[1],..., &,[N]}

we can use the following estimate:

1

N
N ZEP(X2|Z1[i],e)[f(w1[i]v XZ)]

=1

Epxje)lf(X)] =

As usual, it is often hard to sample X from the posterior distribution P(X | e).
However, we can view the term Ep(x,|a,.e)[f(21, X2)] as a function of @, and this
view automatically justifies the use of LW or MCMC as a way to generate samples
for X ;. For notation convenience, for the remainder of this section we partition the
evidence F as F = E; U F, where F; C X; and F, C X,.

When using LW, recall that the weight of the particle corresponds to the likelihood
of the evidence given the rest of the sample. The variables in E; are handled in the
usual way. We sample the nodes in topological order and whenever we get to a node
E; € Eq, we multiply the sample weight by P(e; | Par(F;)). For E; we first compute
the probability distribution P(X s | 1) and then use it to compute P(es | 1). Thus,
the weight of the sample is set to be [[g.cg, Pe; | Par(E;))P(es | 1). In addition we
also condition the sample’s distribution on the evidence e, i.e., the distribution that
we keep with the sample is over X3 — E5 and can be written as P(Xy — E5 | @1, €3).

For MCMC, recall that the transition distribution is determined by the posterior
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distribution, which is influenced by the likelihood of the evidence. We create an RB-
sample for each possible successor state &%, i.e., successor state k is defined by an
assignment @}, a weight defined as w* = [[g.cp, P(ei | Par(E;))P(e; | @f), and a
probability distribution over the remaining variables P(X,;— E; | %, e;). We then re-
normalize the weights of the possible successor states to get a probability distribution
over the states, and choose one of them as the next state according to this probability
distribution. If we use Gibbs sampling, the successor states are simply all the possible
values of some X € X, i.e., all the assignments that agree with &; on the values of
the variables in X1 — {X}.

In the case of CLGs, there is a very natural choice for the partition of the ran-
dom variables: Sample the discrete variables and handle the continuous variables
analytically. The reason is that, given an assignment to the discrete variables, the
distribution over the continuous variables is a Gaussian which we can handle analyti-
cally in polynomial time and space. Although it is more expensive to generate an RB
sample than it is to generate regular samples, each RB sample contains much more
information — it takes many regular samples with the same discrete assignment to
be a good approximation of one RB sample.

As an example, assume we want to compute the mean of some continuous vari-
able Z given some evidence E = e. We first partition the evidence into e = e; U ey
where e; 1s over the discrete variables and ey is over the continuous ones. We now
generate N samples corresponding to NV assignments over the discrete variables X
{&1[1],...,&1[N]} with the weights {w[1],..., w[r]} (if we use MCMC all the weights
are set to 1). We then compute the posterior mean of 7 given the evidence ey as
11z[1] = Ep(x,jaiies)[Z]. Note that this operation can be done efficiently in closed
form — given the assignment @1[¢] the distribution over X is a Gaussian and there-
fore it is easy to condition it on the evidence ey and compute the mean pz[7]. Our

final estimate is: ) .
> wli]pz[1]
> w[z]

The Rao-Blackwellization technique is not limited to CLGs (although CLGs are

Hz ~

one of the most natural models in which it can be applied). Also, even in CLGs,
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we can use different partitions from the discrete and the continuous variables. For
example, we can decide not to sample a certain discrete variable and represent all the
Gaussians associated with its different values analytically as a mixture of Gaussians.
In general, we can think of a spectrum whose two extremes are exact inference on
one side and full sampling on the other. RB gives us points along the spectrum by
trading off the number of variables we sample and the complexity of exact inference

on the remaining variables.



Chapter 4
Theoretical Analysis

Although CLG models are commonly used, surprisingly little formal work has been
done on analyzing their complexity. Obviously CL.Gs are a generalization of discrete
Bayesian networks, and therefore are at least as difficult. However, it is not obvious
whether network structures which are easy in the discrete case remain easy for CLGs.
In fact, we saw in Theorem 3.18 that the complexity of Lauritzen’s algorithm is often
exponential in the size of the network even for network structures that are simple
in the discrete case. In particular, in the discrete case inference can be done in
linear time if the network is a polytree, but Lauritzen’s algorithm might still lead to
exponentially large cliques. Therefore, it is natural to ask whether we can perform

inference efficiently in polytree CLGs.

Al A2 A3 An B

L e T
(=) =¥

Figure 4.1: Network used in proof of Theorem 4.1

84
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4.1 Hardness Results

For the purposes of our analysis, we assume we are working with finite precision
continuous variables. We will restrict ourselves to queries involving only a single
discrete variable. These are the simplest queries one can ask, and therefore, only if
we can answer these queries efficiently would it make sense to consider more general
queries. Thus, we are interested in solving questions of the form, “given some evidence
E, what is the probability distribution of some discrete variable A?”, or phrased as a
decision problem, “given some evidence FE, is the probability that a discrete variable

A takes on a value d greater (smaller) than a?”

Theorem 4.1 The following problem is NP-hard:

e Instance: A polytree CLG T with binary discrete variables and some evidence
E=ce.

e Question: What is the posterior probability P(A | e) for some discrete variable
A?
Furthermore, unless P=NP there does not exist any polynomial approximate inference

algorithm with absolute error smaller than 0.5.

Proof: Consider the NP-complete Subset Sum problem [GJ79]. We are given a
multiset S = {s1, 2, ..., 8, }, where each element s; € S is a non-negative integer, and
a positive integer L. The question is whether there exists a subset S’ C S such that
the sum of elements in S’ is exactly L.

We reduce this problem to a polytree CLG model, shown in Figure 4.1. The
discrete variables (shown as squares) are binary over {0,1}. The decision problem in
the CLG is whether P(B =1 |Y = L) > 0.5 or not. All the discrete variables have

a uniform prior and the CPDs of the continuous variables are:

0,0’) A1:0
s1,0%) Ay =1
217 ) A’L:O
21"’527 ) Azzl

N(
PX1 —
) { N(
For:=2,3,..,n: P(X;) = { E
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(a) (b)
Figure 4.2: An example of the reduction for S = {1,3,4} (a) P(X3) (b) P(Y) as a

mixture of Gaussians

PY) = N(L—-+2n,1) B=0
| M(X,,0?) B=1

1
2Cn(n+1) '
now we can simply assume C' = 2.

We choose o = (' is a constant that will be discussed later, but for

Before showing the details of the proof, it is helpful to consider a simple example.
Assume that S = {1,3,4} and L = 5. We build a network with the four contin-
uous nodes X7, X3, X3,Y and the four discrete nodes Ay, Ay, A3, B. The marginal
distribution of X3 is shown in Figure 4.2(a). Each mode of X3 corresponds to some
combination of Ay, A; and Az, which in turn corresponds to some subset S’. For
example, the mode at X3 = 5 corresponds to the combination A; =1, A, =0,A43 =1
which in turn corresponds to the subset S’ = {1,4}. Note that there are two subsets
that sum up to 4 ({1,3} and {4}) which is the reason for the bigger mode at X5 = 4.

The distribution of Y is a mixture corresponding to the possible values of B
as shown in Figure 4.2(b). For B = 1 we get a contribution from the marginal
distribution of X3 (represented by the solid line) and for B = 0 we get a Gaussian with
amean at L and a much larger variance (represented by the dashed line). Intuitively, if

we observe Y = L, the posterior distribution of B depends on whether this observation
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was more likely to have come from the solid line or the dotted line. If the solid line
is above the dotted line at Y = L then the observation was more likely to have come
from one of the mixture components of X5, and P(B=1|Y = L) > 0.5. Similarly,
if the solid line is below the dotted line at Y = L then P(B=1|Y =1L) < 0.5. In
our example L. = 5 and the solid line is above the dotted line, since there exists a
subset whose elements sum up to 5, thus P(B=1|Y =5) > 0.5.

We now turn to the task of formalizing the last intuition. Our goal is to show
that there exists a subset S” whose elements sum up to Liff P(B=1|Y = L) > 0.5.
Since P(B) is uniform P(B=1|Y = L) > 0.5 iff:

P(B=1|Y=1L) P(Y=L|B=1)P(B=1) PY=L|B=1)

1
PB=0|Y=L) P(Y=L|B=0P(B=0) PY=L|B=
First, we compute P(Y = L | B =0):

Let a* = (ay,ay, ..., a;) be some assignment to (A, Ag, ..., Ag) (a; € {0,1}). Also,
let S(a*) = Sk L aisi. It is easy to show that for 1 < k < n:

P(Y=L|B=0)=

P(X; | a*) = N (Xy; S(ab), ko?)

For the first direction, we assume that 35" C S whose elements sum to L, and
show that P(B =1 |Y = L) > 0.5. Define a” as a; = 1 iff s; € S’. Clearly
S(@)=L,and P(Y =L | B=1,a")=N(L,(n+ 1)o?). Thus,

PY=L|B=1) > P(Y=L,a"|B=1)

= Pla"|B=1)P(Y=L|B=1,a")
1 1

" V2x(n+1)o
2Cn
27/ 27

[N

ﬁ
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and in this case

PY=L|B=1) _¢
> \aln > 1
PY=L|B=0)~2m """~

Conversely, we assume that there does not exist such S C S and show that
P(B=1|Y = 1) <0.5. Since S’ does not exist, we get that, V,a” S(a”) is an
integer different from L, and therefore Va" |L — S(a™)| > 1. In this case we get:

PY=L|B=1) = Y. P@" |B=1)P(Y=L|B=1,a")

P R (N €t 10 )
- ;QTL V2r(n+1)o p( 2(“"'1)‘72)
o L V20n ( -1 )

2 or P \2(n+ 1)o?

IN

Therefore:
PY=L|B=1) < V2Cne"  2Cn

- 1
PY=L|B=0) = 0  &o-on°

We can now explain the role of the constant €. By making C' large enough,
P(B =1]Y = L) gets arbitrarily close to 1 if S’ exists and arbitrarily close to 0
if it does not. We could then use a hypothetical approximation algorithm A with
an absolute error of € < 0.5 to answer the decision problem: Construct a problem
instance where P(B =1 |Y =L)< 05—¢cor P(B=1|Y =1L)>05+c¢
depending on the existence of S’, and answer “yes” iff the algorithm answers that
P(B=1]Y =1)>0.5.

To see why this is correct, let P4 be the probability distribution generated by A,
such that for every discrete event |P — P4| < €. Assume that S’ exists, and therefore
P(B=1|Y =1L)>05+c¢ Then

PAB=1|Y=L)>PB=1|Y=L)—¢>05+¢c—c=0.5

Similarly, we can show that if S" does not exist then P4(B=1]Y = L) < 0.5.

Therefore, unless P=NP, there does not exist a polynomial time approximate inference
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A

QH\/@@

Figure 4.3: Network used in proof of Theorem 4.2

algorithm with an absolute error smaller than 0.5. 11

In the network shown in Figure 4.1 all the discrete variables are ancestors of the
continuous variable Y, and therefore the marginal distribution of Y is a mixture
with exponentially many components. One might conjecture that if we restrict the
marginals over the continuous variables to be “simple”, i.e., to contain at most K
components, then the inference problem becomes easier. The following theorem tells

us that this is not the case, even for K = 2.

Theorem 4.2 The following problem is NP-hard:

o Instance: A polytree CLG T with binary discrete variables such that every

continuous node has at most one discrete ancestor, and some evidence E = e.

e Question: What is the posterior probability P(A | e) for some discrete variable
A?

Furthermore, unless P=NP there does not exist any polynomial approximate inference

algorithm with absolute error smaller than 0.5.

Proof: The reduction is very similar to the previous proof, but we have to use a
different network structure. We use the structure shown in Figure 4.3. Again, all the

discrete variables are binary with uniform distribution, and:

P(Xo) = N((LUZ)
For1 <i<n: P(X;) = N(M,o))
{ N(XZ'—XZ'_l,O'%) Az:()

fortsesm PN =\ M = X = suo?) A=1
i T A1 T S, 04 ¢ =
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PY) = {N(L—\/%,U B=0

N(X,,o?%) B=1

where M = 3. s;. Our query is P(B | Z" = 0,Y = L), where Z* = 0 is a notation
for 7, =0,..., Z = 0.

The intuition behind the structure is that by setting the evidence Z; = 0 and
by having o1 be very small, 7, will force X; to be close to either X;_; or to
Xi_1 + s depending on the value of Aj, resulting in a similar situation to that of
Theorem 4.1. In fact, if we could make X; have exactly the distribution N (Xj_1, ko?)
or N (Xg_1 + sx, ko?) then we could simply use the proof of Theorem 4.1. Although
we cannot get exactly to the desired distribution we can get very close by choosing
oy to be very large and oy to be very small. Namely, we can get exactly the desired

variance and be within ¢ away from the mean. For some ¢ > 0 we choose:

2

€ o

szaz—; 03202 1—|——2
n-M

01

By induction we can prove that V1 <k <n
P(X, | a*, Z* = 0) = N(ju, ko?)

where |y, — S(a*)| < £ (see Appendix A.2 for the details of the derivation). We are
now almost in the situation of Theorem 4.1. Instead of P(X, | @*, Z* = 0) having the
distribution N'(S(a™), no?), it has the distribution N (p,,, o), where |p, —S(a™)| < e.
If we choose ¢ = 2, we can easily modify the inequalities from Theorem 4.1 and prove

the desired result. 1

From the reductions we get an immediate corollary regarding the problem of

finding the MPE assignment to the discrete variables in a CLG.

Corollary 4.3 The following problem is NP-hard:

o Instance: A polytree CLG T with binary discrete variables such that every

continuous node has at most one discrete ancestor, and some evidence E = e.
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e Question: What is the most likely assignment of the discrete variables in T

given e ?

Proof: This is a direct result of the reduction used in Theorem 4.2. If there exists
a subset, then the most likely instantiation must correspond to such a subset and
involve B = 1. If there does not exist such a subset, then any instantiation involving
B = 0 1s more likely than any instantiation involving B = 1. It follows that the most

likely instantiation has B = 1 iff there exists a solution to the subset sum problem. I

4.2 Discussion

The fact that exact inference in polytree CLGs is NP-hard may not be very surprising
by itself. Possibly the most popular CL.G models are switching linear dynamic systems
(SLDS), discussed in Section 8.6. An SLDS is a temporal model but, as we shall
see in Chapter 8, it has a close relation to static CLGs, and in particular CLGs
with the structure of the network in Figure 4.1 (although SLDSs are slightly more
complex, as the discrete variable A; often depends on the discrete variable A;_;). The
continuous variable at the end of the chain has all the discrete variables as ancestors,
and therefore its distribution is a mixture of exponentially many Gaussians. It was
therefore believed that inference in this case is hard, although no proof was ever given.

The results in this chapter go beyond giving a formal proof for the previously
known intuition. First, we concentrate on queries involving just discrete variables
whose posterior distribution is easy to represent (but not to infer). Thus, although it
is very reasonable to assume that it is hard to represent the exponential mixture over
the continuous variables, the case for the discrete variables is less obvious. Second, in
Theorem 4.2, the prior distribution of every continuous variable is either a Gaussian
or a mixture of two Gaussians. Thus, it is somewhat more surprising that the seem-
ingly benign structure of the continuous variables can produce an NP-hard decision
problem. However, perhaps the most important and least obvious fact proven by our
analysis, i1s the fact that even the simplest type of approximate inference with an

absolute error smaller than 0.5 is intractable. Consequently, one should not expect to
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find a polynomial approximate inference algorithm with a useful error bound without
further restrictions on the structure or the parameters of the CLGs.!

As a technical note, we observe that the proof of the NP-hardness theorems was
based on a reduction from Subset Sum, which can be solved using a pseudo-polynomial
algorithm, i.e., an algorithm which is polynomial both in n = |S| and in m = max,es.
The consequence is that the Subset Sum problem is hard only if the magnitudes of
numbers in the set S are exponential in n. Thus, when we reduce the problem into a
CLG, we get a network in which the variance is exponentially small compared to the
means. Although we believe that the problem remains NP-hard even if the means

are bounded by a polynomial, we do not currently have a proof for this case.

!Knowing this fact in advance might have saved the author some time ...



Chapter 5
Enumeration Algorithm

In the previous chapter we saw that inference for very simple CL.Gs is NP-hard, and
that even approximate inference is not tractable. Given these results, one might
conclude that inference in CLLG models is a lost cause. Fortunately, the problems
we are faced with in practice are often simpler than the ones used in NP-hardness
reductions, as they have some special structure or special features which can be
exploited by carefully designed algorithms to allow efficient inference.

In this chapter, we concentrate on domains where the probability distribution of
the discrete variables is skewed, i.e., a small number of assignments to the discrete
variables dominate the rest. The advantage in this case is that we can well approxi-
mate an exponentially large mixture using a much smaller mixture of Gaussians.

The property of a skewed distribution is fairly common in practice and appears in
many different domains. Consider, for example, the fault diagnosis domain. Discrete
variables correspond to the various possible faults, and a priori each one of them has
a skewed distribution (since faults are unlikely). We first have the null hypothesis,
corresponding to the event of no new faults happening (note however, that the null
hypotheses may contain faults that happened in the past and are likely to persist).
Assuming we have n discrete variables, we then have n hypotheses corresponding to
the occurrence of a single new fault, O(n*) hypotheses corresponding to a pair of
new faults, O(n*) hypotheses corresponding to three new faults, and so on. The key

insight 1s that a combination of many new faults is extremely unlikely. In practice,

93
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Figure 5.1: Total probability mass taken up by hypotheses of up to k faults out of 50
possible faults for different fault probabilities

it is often the case that a prior: the null hypothesis combined with the single new
fault hypotheses and the pair of new faults hypotheses completely dominate the other
hypotheses.

The last observation is demonstrated in Figure 5.1. Here we assume that we have
n = 50 binary fault variables Aq,..., Aso where P(A; = 1) = p. The graph shows
the total probability mass taken up by all the hypotheses of up to k faults for various
values of p. For example, for p = 0.99, hypotheses with two or fewer faults account
for 0.986 of the probability mass and hypotheses with three or fewer faults account
for 0.998 of the probability mass. Thus, when p is very close to 1, it is reasonable to
hope that by generating only O(n*) hypotheses (for a small k), we will get a good
approximation for the exponentially large mixture.

Unfortunately, this observation does not have a direct implication on the size of
the mixtures we wish to approximate, since we care about the posterior distribution
rather than the prior one. In general, assignments which are likely a priori may not

be likely a posteriori, and vice-versa. This is especially the case when dealing with
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hybrid domains. Recall that in the hybrid case the likelihood of the evidence, which
corresponds to the density function, is not bounded. Thus, even a hypothesis which
is very unlikely a prior:, might have an extremely likely evidence and become the
most likely hypothesis a posteriori. Furthermore, the evidence might “balance out”
the prior likelihoods leading to a situation where we no longer have a small set of
hypotheses that dominate the rest.

Nonetheless, in practice the situation appears to be better. It is usually the case
that even a posteriori there is a small number of hypotheses that dominate the rest. It
is also the case that, on expectation, hypotheses which are likely a priori remain likely
a posteriori, and thus concentrating on these hypotheses is a reasonable heuristic,
which we shall explore in this chapter. In the fault diagnosis domain, the idea of
concentrating on likely hypotheses with a small number of faults is very natural, and
was used in [dKW8T], although the probabilistic model there was discrete and some
strong independence assumptions were made.

We note that the phenomenon of a small number of hypotheses that dominate the
rest is not unique to the fault diagnosis domain. As another example, the situation
also arises in visual tracking, where given the past evidence most of the hypotheses
are very unlikely. For example, given that two people are having a conversation, it is

unlikely that one person would start jumping while the other would start dancing.

5.1 Inference Algorithms

We begin by presenting a general framework for our enumeration algorithm as well
as other methods such as Rao-Blackwellized sampling. For simplicity, we will assume
that the CLG has just one continuous connected component. If this is not the case we
can apply our algorithm in every continuous connected component and then use mes-
sage passing over the discrete variables. One can think of this as building a strongly
rooted clique tree where for every continuous connected component we have precisely
one clique with all the continuous variables and their discrete neighbors. We use one
of the algorithms discussed in this chapter to approximate the distribution within

each such clique and then calibrate the tree using message passing. However, we note
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that in many examples of interest, including the RWGS discussed in Chapter 10, the
continuous nodes indeed form one continuous connected component.

We will denote the discrete variables as A, the continuous variables as T' and
their discrete neighbors as Apy C A. The joint distribution P(A,T') is a mixture
of Gaussians with one Gaussian corresponding to each assignment of the discrete
variables. Some of these Gaussians might be identical — every two assignments over

A that agree on the variables in Apy have the same Gaussian.

5.1.1 The Setup

Consider the general query of the form P(Q A, Qr | ea,er) where Q,, ea are discrete
and Qp,er are continuous. The distribution is a mixture of Gaussians, but note
that, if Apy € QA U FE, then for each combination of @, U E A we get a mixture of
Gaussians rather than a single Gaussian. Thus, instead of approximating P(Q A, Qr |
ea,er) it is simpler to approximate P(QA,Apn,Qr | ea,er). The reason is that,
by including Apy, we make sure that for every combination of the discrete variables
we have just one Gaussian. Note that the addition of Apy to the query does not
cost us anything, since in any case we still need to generate Gaussians for the possible
assignments to Apy. Once we have P(Q A, Apn, Qr | ea, er) it is easy to answer our
query by marginalizing out the extra variables. We can use weak marginalization if we
only care about the first two moments, but we can also keep the original Gaussians
without collapsing them, potentially leading to a mixture of Gaussians for every
combination of the discrete query variables.

For example, consider the network in Figure 5.2. Here A = {A, B,C, D, E}, T =
{X,Y, 7} and Apy = {D, E}. Assume that Q, = {A, F}, Qr = {X}, EA = {C}
and Er = {7}, i.e., we are interested in P(A, F, X | ¢,z). For every combination
of {A, E'} we have a mixture of Gaussians corresponding to the possible values of D.
Since A ¢ Apn, we get different Gaussians only for different values of F, i.e., all the
combinations of {A, £} that share the same value for £ have the same Gaussians in
their mixtures. Nonetheless, the weights of the mixture components are different for

different values of A. When we add Apy to the query we need to approximate the
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Figure 5.2: A CLG example

distribution P(A, D, E, X | ¢, z).

Finally, in order to find P(QA,Apn,Qr | ea,er) it is convenient to first approx-
imate P(QA,Apn,Qr, Er | ea). Thus, in our example we will try to approximate
P(A,D,E, X, Z | ¢). This distribution is a mixture of Gaussians where the variables
of each Gaussian are Qr U Er. Conditioning on Er = er can be done one mixture
component at a time, in a way similar to conditioning RB-samples on evidence (see
Section 3.4.3). We multiply the weight of the mixture component by the likelihood
of the evidence and then condition the Gaussian on the evidence. If we re-normalize
the mixture weights we get P(QA,Apn, Qr | ea, er).

We are now ready to discuss inference algorithms to evaluate P(Q 4, Apwn, Qr, Er |
ea). In fact, we have already encountered this problem, and discussed it in Chap-
ter 3. Obviously, if Lauritzen’s algorithm is feasible for our particular problem then
we can simply use it. However, in this chapter our goal is to tackle problems where
Lauritzen’s algorithm leads to clique trees which are too large, and we have to resort
to approximate inference techniques.

We shall present three possible algorithms. The first two are based on RB-
sampling, and were already discussed in Section 3.4.3. We then discuss our new
algorithm, which is an alternative to the sampling approach. All the algorithms are
based on the observation that, given an assignment to the discrete variables, the
distribution over the continuous variables is a Gaussian. Thus, all the algorithms

treat the discrete and continuous variables in an asymmetric way: We keep a set of
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weighted particles where every particle is defined by an assignment to the discrete

variables and a probability distribution over the continuous ones.!

5.1.2 Rao-Blackwellized Likelihood Weighting

Our first algorithm to approximate P(QA,Apn,Qr, Er | ea) is Rao-Blackwellized
Likelihood Weighting. Recall that the variables of the CLG are partitioned into two
sets X1 and X, where we sample X1 and then keep a distribution P(X, | ). Here
we choose X1 = A and X, =T, i.e., we sample the discrete variables and given a
sample &1 of A we keep a multivariate Gaussian over X 3. When sampling from A we
use LW with the evidence ea. Alternatively, if the network structure of the discrete
variables is simple we can perform probabilistic inference and sample directly from
P(A | ea). Note that, after generating a sample A = §, we can remove from § every
discrete variable not in @, U Apy and similarly we can remove from the Gaussian

every variable not in Qp U Er.

5.1.3 Rao-Blackwellized MCMC

Our second algorithm for approximate inference in CL.Gs is Rao-Blackwellized MCMC,
and in particular Rao-Blackwellized Gibbs sampling. Recall that in Gibbs sampling
we need to find the conditional distribution of some discrete variable A; given the
rest of the variables in A and the continuous evidence. Let §_; be an assignment to

the discrete variables Aq,..., A;_1, Aiy1, A,. We can then write:
P(Ai=a|d_;er) x Pler | A; = a,0_)P(A; = a|d_;)

It is easy to compute P(A; = a; | d_;), just like in Gibbs sampling for discrete
networks. To find P(er | A; = a,d_;) we build the Gaussian that corresponds to the
discrete instantiation and then find the likelihood of the evidence. Having computed
Pler | A =a,0_;)P(A;, = a | §_;) for all the possible values of A; we normalize the
probabilities, which leads to a probability distribution over the next state.

'In the context of RB-sampling methods, the particles are identical to the RB-samples.
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5.1.4 The Enumeration Algorithm

Recall the intuition of first considering the hypotheses which were likely a priori.
RB-LW is one way to apply this idea in the context of sampling. Our third and final
algorithm applies this intuition in the context of deterministic search rather than
sampling. With this method the algorithm uses all its running time to consider as
many distinct hypotheses as possible without the duplicate hypotheses that come up
when using sampling method.

As afirst step, assume we wish to enumerate the most likely instantiations of P(A |
ea). An important observation is that we can ignore all the continuous variables in
the BN for the purposes of the enumeration: We only care about the discrete problem
of enumerating from P(A | ea). We can therefore use the algorithm presented in
Section 2.5.1 to enumerate the K most likely assignments of P(A | ea). For each
such instantiation we compute the relevant multivariate Gaussian and set its weight
to be P(d | ea)P(er | §).2 Note that, although we create a clique tree to generate
our samples, the tree has only discrete variables and thus there is no need for strong
triangulation as with Lauritzen’s algorithm. Thus, if the structure of the discrete part
of the Bayesian network is simple (as in fault diagnosis, where many fault variables
are independent and merely influence some continuous variables) then the resulting
clique tree will be simple, and the enumeration can be done efficiently.

It is sometimes possible to do better than this. Recall that we are not interested
in enumerating the instantiations of A per se. What we are interested in are the
instantiations of @, UApy. Thus, it would be useful the marginalize out of our clique
tree all the variables in A — (@, U Apy). Unfortunately, the problem of generating
the K most likely hypotheses for a subset of the variables can be significantly more
difficult than generating the K most likely hypotheses for all the variables [Par02].
However, in some cases, if the network structure is truly simple the clique tree over
QA UApy is still relatively small and then it is possible to generate efficiently the K
most likely samples for Q@ U Apy.

In fact, it is even enough to enumerate just the instantiations of Apy without

2These weights need to be re-normalized in order to serve as a probability distribution.
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Q. since for every such instantiation we can use discrete Bayes net inference to
find P(Qa | Apn). We can view this as another instance of Rao-Blackwellization
where we add variables Q , — Apy to the set of unsampled variables. In other words,
for each assignment to Apy we keep a probability distribution over the continuous
variables as well as over @ . This idea can lead to significant savings sometimes, but
again we are faced with the potential of larger clique trees, so using the idea is not
always possible. In any case, in all the examples considered in this thesis, we always

have @, C Apn, and therefore Q, — Apn = 0.

5.1.5 The Single Representative Algorithms

The RB-LW and RB-MCMC algorithms can be viewed as having two sources of
randomness: which particles are generated and how many times each given particle 1s
sampled. Recall that it is possible to generate duplicate samples of the same particle
and that the effect of the duplicate samples is to increase the weight of the particle.
In other words, the weight of a particle corresponding to the assignment & given the

evidence e is
# of times & was sampled

P .
# of total samples (e|z)

We can view the first term as an estimator for the prior probability P(«). Under

this view, our enumeration algorithm modifies the sampling algorithms in two ways

o Generating the particles in a deterministic way rather than by sampling.

# of times & was sampled s
# of particles generated

o Avoid generating duplicate samples. The term

replaced by P(x).

This view naturally leads to an intermediate algorithm, which we call the single
representative algorithm. The single representative algorithm keeps the first source
of stochasticity but avoids the second: It generates the particles stochastically as in

the sampling approach, but ignores the duplicate particles and uses P(@) instead

# of times & was sampled
of -

# of particles generated -
algorithms:

In fact, we define two different single representative
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e Single Representative RB-LW — in this version the particles are generated
using LW sampling as in Section 5.1.2.

e Single Representative RB-LW — in this version the particles are generated
using MCMC sampling as in Section 5.1.3.

To summarize, the single representative algorithms generate the particles using
either LW or MCMC, but unlike the sampling algorithms, duplicate samples are
ignored — the weight of each particle is set to be p(¢)P(e | €). Note that computing
P(x) is easy under the assumption that all the parents of a sampled variables are
also sampled — in this case computing P(x) reduces to multiplying the relevant CPD
entries. This is the case in all our examples since we sample all the discrete variables
and there are no discrete variables with continuous parents.

Unlike RB-LW and RB-MCMC, The single representative algorithms are biased.
However, the hope is that the added bias is compensated by the reduction in the
variance, which stems from the fact that the randomness of the sampling process does
not influence the (unnormalized) weight of a particle once the particle is generated.
The single representative RB-LW is an intermediate algorithm between RB-LW and
our enumeration algorithm, and therefore examining its performance can help us to

understand better the difference in performance between the two algorithms.

5.1.6 An Optimization Trick

All the algorithms that we described share a common procedure: Given an assignment
to Apn they need to generate a multivariate Gaussian over the continuous variables.
Although it is certainly possible to generate each Gaussian independently, it might be
possible to speed up significantly the process by using previously generated Gaussians.

As an example, consider a large CLLG where we have some discrete variable A
that influences some continuous variable X, where X is a leaf. Assume we already
created a multivariate Gaussian P; for some assignment of Apy = d; and we would
like to construct a new Gaussian P, corresponding to some assignment d,, where
and 9, represent the same assignment except for the variable A. Since no continuous

variables other than X are influenced by A, the Gaussians P; and P, would be exactly
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Optimization of Gaussian generation
{(P1,01),...,(Pn,0n)}: Previously generated Gaussians
0: A new assignment of Apn
1. Let best=1
2. Let Xpest =1 /* Every continuous variable */
3. Fori:=1to N
4. Let A be variables with different assignments in 4; and 4
5. Let X be the continuous descendants of A
6. If (|X| < |Xbest|)
7. Let best =1
8. Let Xbest =X
9. End-if
10. End-for
11. Let P = Copy(Ppest)
12. Recompute moments for Xpest in P using Theorem 3.3

Figure 5.3: Speeding up Gaussian generation using previously created Gaussians

the same except for the moments that involve X, i.e., the mean and variance of X
and the covariances between X and other variables. Thus, instead of creating P,
from scratch, it seems reasonable to start with P, and change it only for X using
the equations from Theorem 3.3. Using this idea we generate only O(n) entries in
the covariance matrix instead of O(n?) entries (where n is the number of continuous
variables).

In general assume that we generated a Gaussian P for the discrete assignment
Apny = 6; and we would like to use it in order to generate a Gaussian P for the
discrete assignment Apy = d3. Let A be the set of variables which have different
values in 8; and d,. If we start with P; we only have to recompute the means,
variances and covariances for continuous variables which are descendants of some
variable in A. Thus, if we have enough space to keep at least some of the generated
Gaussians in memory we can use them to speed up our algorithm, using the algorithm
shown in Figure 5.3. Among the N previously generated Gaussians we find the
Gaussian Pp, ., that is “best” for our needs, in the sense that our Gaussian and P,

have the largest number of continuous variables that share the same moments. We
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Figure 5.4: Network used for the experiments in this chapter

then copy the Gaussian in order not to change the previously generated Gaussian,
and make the necessary changes in the copy.

One might wonder how useful this idea is. The answer is that the computational
gain depends on the domain and on the way we generate Gaussians, but it can be very
significant. Consider for example the fault diagnosis domain and assume we are using
the enumeration algorithm to generate the Gaussians systematically. After generating
the most likely hypothesis, corresponding to zero faults, we would start generating
single fault hypotheses. Each one of these differs from the no-fault hypothesis by just
one discrete variable. In many cases this single variable represents a sensor fault, in
which case it typically influences a single leaf continuous variable (representing the
sensor reading). In this case |A| =1 and better yet, | X| =1 and we get a dramatic
speedup. A similar situation arises when we generate hypotheses corresponding to
two faults, since each one of the two-faults hypotheses differs from some single fault
hypothesis by just one variable. When we used this idea on a large real-world network
in Chapter 10 we achieved a speedup factor of 16, i.e., we were able to consider 16

times as many hypotheses using the same computation time.

5.2 Empirical Comparison

In the last section we described five algorithms: RB-LW, single representative RB-LW,
RB-MCMC, single representative RB-MCMC, and our enumeration algorithm. To
compare these algorithms, we generated random Bayesian networks with a structure
shown in Figure 5.4. This structure resembles the one used for the NP-hardness

reduction, but the discrete variables are not independent a priori. The domain of all
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the discrete variables is {0,1}; the evidence in all the experiments was Xyg.

Note the dramatic difference between the clique tree used by the enumeration
algorithm and the strongly rooted tree used by Lauritzen’s algorithm. Since all the
continuous variables are in one continuous connected component, any strongly rooted
tree must have a clique that contains all the discrete variables, and therefore the size
of the tree is exponential in n (where n is the size of the network, and in our case
n = 20). In contrast, when we ignore the continuous variables, the discrete variables
form a simple chain, and all the cliques in the tree contain only two discrete variables.
Thus, the size of the tree used for the enumeration algorithm is only O(n).

We chose to run experiments on this particular network because we were able to
use a special ad hoc algorithm to compute the distribution over the discrete variables.
Recall that

P(A | zg0) x Pz | A)P(A)

where A = {A;,..., Ayp}. To evaluate this expression we enumerate all the instan-
tiations @ of A. Computing P(a) is easy since all we have to do is to multiply the
relevant CPD entries. Since P(Xy9 | @) is a Gaussian, in order to compute P(zq | @)
it 1s enough to compute the mean and variance of Xy9. This can be done efficiently:
Given an assignment to A, we first compute the mean and variance of Xy, from it we
compute the mean and variance of X3, from it the mean and variance of X3, and so
on. Note that because of the simple network structure, there is no need to compute
the full covariance matrix.

Thus, for every assignment @ we can compute the (unnormalized) probability
P(a | ) efficiently. Once this is computed for every a we normalize the result
to get the exact posterior distribution P(A | z3). Therefore, although A has 22°
possible instantiations, using this method we were still able to compute the exact
posterior distribution in a matter of seconds. This enabled us to compare the various
approximate inference algorithms to the exact posterior distribution.

The parameters of the network were set as follows. We set P(A; = 1) = p and
for 2 <1 <20 we set P(A; = A;_1) = p. The value of p determines how skewed the

distribution is: There is one assignment with probability p?°, 20 assignments with
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probability p*?(1 —p), (220) assignments with probability p'®(1 —p)?, and so on. Thus,
we are in the same situation illustrated in Figure 5.1.

The other parameters in the network are in the CPDs of the continuous vari-
ables X;’s. Recall that the linear CPD of X; is defined as P(X; | A; = k, X;_1) =
N (Xi;am + ﬁi,kXi—hUZk) where k € {0,1} (for i = 1 the parameters 3;; do not
exist, as X; does not have a continuous parent). We sampled values for «;j us-
ing a uniform distribution over [0, M| (where we varied M between 100,000 and
1,000,000) and values for 3;  using a uniform distribution over [0, 2]. For all ¢ and k
we set o, = 1.

We ran our experiments for various combinations of M and p. For each such
combination we generated 200 sets of parameters for the Bayesian network. We
sampled an instantiation from each one of the Bayes nets and used the sampled value
for Xy as its observed value. We then computed the true posterior distribution over

the discrete variables. We compared our algorithms using two criteria:

e Ll-error over the discrete variables between the correct distribution P and the

distribution P’ generated by the approximation algorithm:

> |P(A=a)-P(A=a)

o Whether the most likely assignment according to the approximation algorithm

was one of the three most likely assignments in the correct posterior distribution.

It 1s hard to come up with a fair comparison between the algorithms in terms of
the number of particles, because in general duplicate samples are much cheaper than
generating the particle for the first time — once we generate a duplicate sample there
is no need to create the Gaussian again, but just increment the counter of the particle.
Thus, if we compare the algorithms relative to all the samples including duplicates,
we give the enumeration algorithm an unfair advantage since all its particles are
distinct Gaussians and are more expensive to compute than duplicate particles. On
the other hand, if we count only distinct Gaussians and ignore the duplicates we give

the sampling algorithms an unfair advantage, because we ignore the time used to
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Figure 5.5: Results of the various algorithms on random networks with p = 0.9 and
M = 100000 (a) L.1 norm (b) Percentage of runs where the most likely hypothesis
generated by the algorithm is one of the three most likely assignments

generate duplicate particles. Therefore, in order to make a fair comparison between
the algorithms we measured their performance relative to the running time.

The results for different M’s and p’s were quite similar. Figure 5.5 shows the
results for M = 100,000 and p = 0.9. Figure 5.5(a) shows the L1-error which is always
between 0 and 2 (0 being good) and Figure 5.5(b) shows the top-3 criterion, i.e., the
percentage of runs where the most likely assignment according to the algorithm was
one of the top 3 most likely assignments in the correct posterior distribution (1 being
good). The line for single representative RB-MCMC was almost on top of the line for
RB-MCMC and is therefore not shown in the graphs. The reason for this phenomenon
will be discussed later in the context of RB-LW, where we shall see that when the
performance of the sampling algorithm is poor, it is very similar to the performance
of the single representative algorithm.

The most striking observation in Figure 5.5 is the poor performance of both RB-
MCMC and single representative RB-MCMC, which indeed was the case in all the
experiments we ran. The reason is that the space of discrete assignments has many

local maxima which are hard to get out of. For example, assume we have just 2 nodes
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where
P(Xi| A1 =0) = N(Xy;0,1)
P(Xz | Ay = 07X1) = N(Xz;lel)
P(XQ |A2:1,X1) - N(XQ,X1—|—15,1)
Further, assume that the evidence is X3 = 15 and that our initial assignment

for MCMC is A; = 1, Ay = 0. The most likely assignment is A; = 0, Ay = 1, but
it may take the chain a very long time before generating this sample. The reason
is that when using Gibbs sampling we change one variable at a time, and therefore
we can only consider transitions to A; = 0,43 = 0 or A1 = 1,A; = 1. Both of
these assignments are much less likely than our initial assignment, and therefore the
probability of transitioning into either one of them is extremely small.> Thus, the
mixing rate of the chain is very small and the performance of MCMC will be poor. The
problem is much worse when we have 20 nodes instead of 2, since there are many more
local maxima, i.e., assignments from which taking any single transition significantly
reduces the probability of the evidence. The algorithm is likely to get stuck in one of
the local maxima and not get to the likely assignments in any reasonable time. Since
the performance of the MCMC algorithms was consistently poor, we ignore it for the
rest of this section and concentrate on the enumeration algorithm, RB-LW and single
representative RB-LW.

Figure 5.5 shows that among the remaining three algorithms, the enumeration
algorithm had the best performance, RB-LW had the worst performance and single
representative RB-LW was in between. To further explore the differences between

the algorithms, we tested the performance of the algorithms relative to the likelihood

3For our initial assignment the mean of X5 is 10, for the assignment A; = 0, Ay = 0 the mean of X5
is 0 and for the assignment A; = 1, A; = 1 the mean of X5 is 25. Thus, for the initial assignment the
evidence Xy = 15 is 5 standard deviations away from the mean, for the assignment A; =0, A, =0
it is 15 standard deviations away from the mean, and for the assignment A; = 1,43 = 1 it is
10 standard deviations away from the mean. Therefore, although our initial assignment is quite
unlikely, it 1s still much more likely than the other two candidates.
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Figure 5.6: L1 norm as a function of the prior likelihood of the discrete assignment

(a) Prior of 0.0015 (b) Prior of 0.000167 (c) Prior of 0.0000185

of the discrete events. To do so we used random networks with p = 0.9 and M =
100,000 and sampled assignments to both the discrete and continuous variables. We
then partitioned our samples into subsets based on the likelihood of the discrete
assignments, and used 35 such samples in every subset. We tested the performance
of the algorithms for each subset separately. For RB-LW and single representative
RB-LW we performed 10 runs for each one of the assignments. Note that we have one
assignment ({A; = 1,..., Ay = 1}) with probability 0.9%° ~ 0.122, 20 assignments
with probability 0.9'? - 0.1 ~ 0.0135, (220) assignments with probability 0.9'® . 0.1% ~
0.0015, (230) with probability 0.9'7 - 0.1% ~ 0.000167, and so on. Further note that,
although the first subset has just one discrete assignment, it is possible to generate
more than one sample, since the sample also includes the assignment to the continuous
variables. Figure 5.6 and Figure 5.7 show the results of these experiments.

As expected, all three algorithms perform better when the likelihood of the discrete
event is higher. The reason is that discrete events with high likelihood are enumerated
early on and are more likely to be sampled early in the sampling process. However,
note that the degradation in the performance of RB-LW and single representative RB-
LW is much more severe than the degradation in the performance of the enumeration
algorithm. The reason is that when the discrete event is unlikely a priori, the sampling
approaches often spend a lot of time in generating duplicate samples of the likely
assignments. On the other hand the enumeration algorithm does not waste any extra

time on the likely assignments after they have been generated and can efficiently
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Figure 5.7: Top 3 percentage as a function of the prior likelihood of the discrete
assignment (a) Prior of 0.0015 (b) Prior of 0.000167 (c) Prior of 0.0000185

spend its time on generating more and more unlikely assignments.

Figure 5.7 demonstrates another interesting phenomenon. When the performance
of the algorithms is poor, the performance of RB-LW and single representative RB-
LW is very similar, as can be seen in Figure 5.7(c) and the left side of Figure 5.7(b).
In these cases, both algorithms are significantly outperformed by the enumeration al-
gorithm. However, when the results of the sampling algorithms become more reliable,
single representative RB-LW works much better than RB-LW until its performance
is similar to the performance of the enumeration algorithm, as can be seen in Fig-
ure 5.7(a) and the right side of Figure 5.7(b). We conjecture that the reason for this
phenomenon is that when the performance is poor, it mostly stems from not sam-
pling the correct discrete instantiations. Since both RB-LW and single representative
RB-LW generate the samples in an identical way, when we do not have the correct
assignments in one we are likely not to have the correct assignments in the other.
However, when the performance is better, the correct samples are generated and then
the question is whether they have the correct weight or not. By eliminating the sam-
pling noise for the sample weights, single representative RB-LW effectively behaves
like the enumeration algorithm in this case, and thus significantly outperforms the
RB-LW algorithm.

In our final set of experiments we tested the performance of the algorithms relative
to how skewed the distribution is. Recall that when the parameter p is closer to 1,

the distribution is more skewed and a smaller number of hypotheses account for more
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Figure 5.8: L1 norm as a function of the parameter p (a) p = 0.99 (b) p = 0.9 (¢)
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probability mass. As shown in Figure 5.8 and Figure 5.9, the closer p is to 1, the
better the three algorithms perform, as expected. Furthermore we see that no matter
what the value of p is, the enumeration algorithm always has the best performance
and that single representative RB-LW outperforms RB-LW.

In conclusion, our results seem to indicate that avoiding the stochasticity of RB-
LW is a useful idea in skewed distributions. The enumeration algorithm, which is
fully deterministic, works best. The single representative RB-LW, which is stochastic
in its choice of particles but deterministic in determining their weight, enjoys some

of the performance improvement, but not all of it.

5.3 Discussion

In this section we discuss three issues relating to our enumeration algorithm: its
relation to RB-LW, bounding the error of the approximation and a comparison with
Lauritzen’s algorithm.

In our presentation so far, we viewed the enumeration algorithm as a very close
relative to RB-LW, namely as a deterministic alternative to LW. Although this is
certainly a reasonable view, it is not the only one, and it can be argued that RB-LW
and the enumeration algorithm are fundamentally different. At a very basic level,
Rao-Blackwellized LW, like any other sampling method, is motivated by the weak

law of large numbers — when the number of samples grows it gets more and more
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accurate and at the limit it is exact. Our algorithm is a biased estimator that cannot
be directly motivated by the law of large numbers, and thus, it can viewed as a very

different alternative to sampling.

5.3.1 Error Bounds

An important issue is bounding the error of our approximation. One possible ap-
proach is to bound the probability mass of hypotheses which were not generated. We
can partition the set of instantiations of Apy into A U B where A represents the in-
stantiations that were generated so far and B represents the instantiations that were
not generated so far. The unnormalized probability mass of hypotheses which were

not generated so far is:

S P(5 | ea)Pler | 6)

deB
To bound this sum, we need to bound the densities P(Er | §) (which may be
larger than 1) over the possible instantiations of Apy (or preferably, over the possible
instantiations of Apy consistent with some assignment in B). If we can find such a

bound K, then we can write:

ST P(5 | ea)Pler |8) < Y P(6 | en)K = (1 ~S P | eA)) K

6eB éeB dcA
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Given K. this bound can be computed efficiently based on our enumeration of
instantiations in A. Note that the bound decreases monotonically when we generate
instantiations, since by doing so we move them from B to A. The big question, of
course, is how to compute a bound K. One possible approach is to bound the density
of the Gaussian P(Er | d). Assume that we can find the density at the mean of
this Gaussian. No matter what the evidence is, its density cannot be larger than the
density at the mean, and thus, we get an upper bound. Furthermore, we will take the
approach of trying to bound K with respect to all the possible assignments of Apy,
and not just those consistent with B.

Under these assumptions, we can bound K efficiently if the network is a polytree
and |Er| = 1. Consider a univariate Gaussian NV (¢, a?). The density of this Gaussian

at the mean y is \/2170 . Thus, in order to find an upper bound on the density P(Er | d),

we need to find a lower bound on the variance of Er for every assignment §. This
can be done easily by traversing the tree in topological order and greedily finding the
smallest variance of every continuous variable.

However, if we want to bound the density of Er when the network is not a polytree
or when FEr has more than one variable, we must consider the covariances between
variables, and the problem becomes more difficult. Using a simple reduction from
3-SAT we can show that finding the smallest variance of a single variable (over all
the possible instantiations of Apy) in general networks is NP-hard. Currently, we do

not know what is the complexity of finding the upper bound K in two cases:

e Polytrees where |Er| > 1

e Networks with cycles but with a low tree width. In other words, these are
networks for which we can build a clique tree with a small number of variables

in every clique when we do not perform strong triangulation.

The second case is quite interesting, and finding an efficient algorithm in this case
would make the enumeration algorithm more reliable, as it would give an indication

on the quality of the approximation.
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5.3.2 Comparison with Lauritzen’s algorithm

We conclude this chapter by comparing the enumeration algorithm to Lauritzen’s
exact inference algorithm. If we give our algorithm enough time it would enumer-
ate all the possible discrete instantiations in every continuous connected component,
and would come up with the exact answer. Thus, for simple networks, where it is
possible to enumerate all the discrete instantiations of the various continuous con-
nected components, the complexity of our algorithm is comparable to the complexity
of Lauritzen’s algorithm. Both algorithms enumerate the same number of hypotheses,
either directly using the enumeration algorithm or by creating a Gaussian factor as

in Lauritzen’s algorithm. The two main differences are:

e Our algorithm creates Gaussians over all the continuous variables in the con-
tinuous connected component, as opposed to Lauritzen’s algorithm where only
some of the continuous variables are in the strong root. The disadvantage of
our approach is that it creates larger Gaussians. However, by doing so our algo-
rithm computes the exact distribution rather than weak marginals and avoids
the costly operations involved in the message passing algorithm, such as matrix

inversion.

e Our algorithm has the overhead of creating the clique tree for the discrete vari-
ables and enumerating the instantiations from it. However, in most cases this
extra complexity is negligible compared to the operations involved in manipu-
lating the Gaussians. Furthermore, if we know in advance that we have enough
time to enumerate all the instantiations, there is no need to enumerate them
by their prior likelihood, and we can completely avoid the overhead involved in

enumeration by the prior.

Thus, when both algorithms have enough computational resources to come up with
the exact answer their performance is comparable and can differ only by a polynomial
factor. The choice between the algorithms will depend on the particular network
structure, implementation details and whether we need weak or strong marginals.

However, our algorithm is not designed for small networks where Lauritzen’s al-

gorithm is tractable, but rather for large networks. In this case, our algorithm enjoys
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two important advantages:

e Our algorithm is an anytime algorithm — it can give some answer (albeit an

approximate one) whenever we request it.

e Our algorithm has a much better space complexity. Recall that Lauritzen’s
algorithm often results in exponentially sized cliques even for simple networks
such as the polytrees discussed in Chapter 4. In contrast, our storage require-
ments are dictated by the size of the query and are often exponentially smaller.
For example, if our query involves only discrete variables then we can just keep
a factor over these discretes and update it as we generate more Gaussians, with-
out keeping the Gaussians that we generate. As another example, if we want to
know the first two moments of some continuous variables X then we can keep
a single Gaussian P over X — at every iteration we simply collapse P and the
current Gaussian generated by the enumeration algorithm. However, if we want
the true marginal over X, we may have to keep a mixture of Gaussians over

X, and our space requirements will be significantly larger.

Thus, in many real life networks where Lauritzen’s algorithm is impractical, we
can use our enumeration algorithm and get at least an approximate answer. We shall

do exactly that in order to perform fault diagnosis on a real life physical system in

Chapter 10.



Chapter 6

Non-linear CPDs

So far, we have concentrated on CL.G models, where all the continuous CPDs are linear
CPDs. Unfortunately many real world domains have non-linear dependencies between
their variables. The RWGS, discussed in Chapter 10, contains many examples of
such non-linear dependencies. In this chapter, we concentrate on non-linear CPDs
for continuous variables. In Chapter 7, we will also consider non-linear CPDs that
involve continuous parents of discrete children.

In the presence of non-linear CPDs, the resulting joint distribution is no longer
a mixture of Gaussians, but rather a mixture of distributions which in general are
non-Gaussian and cannot be represented in closed form. For simplicity, we start our
discussion with a purely continuous model, without any discrete variables. As we shall
see, in the presence of discrete variables we can use the techniques from Chapter 5.

One very standard approach when the joint distribution is non-Gaussian is to
approximate it as a Gaussian, and the task is to find a Gaussian distribution which
is as close as possible to the original distribution. We first discuss the traditional
approach, the Frtended Kalman Filter, and then see how it can be improved by

viewing the problem as a numerical integration problem.

115
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Extended Kalman Filter for static BNs
1. Sort nodes in topological order Xi,..., X,
2. For 1 =1..n do
3. If CPD of X, is not linear
4. Approximate CPD as linear using Taylor series expansion
5. Compute first two moments of P(Xi,...,X;) using Theorem 3.3

Figure 6.1: The extended Kalman filter adapted for static Bayesian networks

6.1 Extended Kalman Filter Approach

The Frtended Kalman Filter (FEKF) [BSLKO1] is an algorithm that was developed
in the context of dynamic models rather than static networks. However, the same
approach can also be used for static Bayesian networks, and we shall present it in
this context.

Let Y be some variable in the Bayes net with parents X and assume that X
have a known Gaussian distribution P(X) = N (X; u,Y). We further assume that
the CPD of Y is Y = f(X) where f is a non-linear deterministic function. The
assumption that f is deterministic does not restrict the generality of the method,
since we can always add any source of stochasticity as extra variables to f. For
example, if Y = /X2 + X2 + W where P(W) = N (W;0,0%/) then we can view f
as a deterministic function with 3 variables Y = f( X7, X3, W).

Our task is to find a Gaussian approximation for P(X,Y). The approach taken
by EKF is to replace the function f by a simpler function f, le., Y = f(X) The idea
is that f is simple enough so that finding the Gaussian approximation to P(X,Y)
becomes easy. The most popular choice for f is a linear function, with the appealing
property that once we make a linear approximation, the distribution P(X,Y) is
indeed a Gaussian and can be computed using Theorem 3.3. EKF uses what is perhaps
the most standard linear approximation for f(X) — the Taylor series expansion

around the mean of X:

Y~ f(X) = f(#) + V(X —p) (6.1)



CHAPTER 6. NON-LINEAR CPDS 117

The Taylor series approximation is the basis for the EKF algorithm shown in
Figure 6.1. We sort the nodes in topological order X,..., X,, and increasingly build
a multivariate Gaussian over the nodes in this order. Note that, when we get to the
node X;, we already have a Gaussian approximation for all its parents and therefore
we can use the Taylor series expansion as defined in Equation 6.1.

The only small addition that we need to make is to compute the covariances
between the node X; and other nodes that appear before it in the topological order
but are not directly its parents. Let Z be such a node. One simple way of finding
Cov(Z,Y)isto to add Z as a parent of Y, i.e., represent Y as Y = B+, 5: X, + 57+
W where 7 = 0 and then use Theorem 3.3. The only problem with this approach
is that when we get to the later variables we will end up with many parents, and
the algorithm will become inefficient. We will discuss an alternative approach in
Section 6.2.5.

It is important to emphasize that using the Taylor series approximation does
not lead to an optimal first order approximation, in the sense that the resulting
Gaussian approximation to the distribution P(X,Y) might be sub-optimal. For
example, consider the function Y = X? with P(X) = N (X;0,1). The mean of Y
is easy to find, since E[Y] = E[X?] = 1. The variance of Y is also easy to compute
in closed form, since Var(Y) = E[Y? — E[Y]* = E[X*] - E[X?*?* =3 - 1% = 2.
Thus, the best Gaussian approximation for P(Y') is NV (1,2). The first order Taylor
series approximation at the mean value X = 0 is Y = 0, leading to the Gaussian
approximation for P(Y') as NV (0,0), i.e., a delta function where all the mass is located
at Y = 0. Obviously, this is an extremely poor approximation.

EKF has two serious disadvantages. The first is its accuracy (or lack thereof).
The quality of the approximation depends on how well f approximates f in the local
area around the mean of X (the size of this local area is determined by the variance of
X). The EKF approximation is a good approximation only if the second and higher
order terms in this area are negligible. In many practical situations, this is not the

case and using the EKF leads to a poor approximation (as we have just seen for the

case of Y = XZ).
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The second problem with EKF is the need to compute the gradient. Some non-
linear functions may not be differentiable (e.g., the max function), preventing the
use of EKF. Furthermore, even if f is differentiable, computing the derivatives may
still be hard, depending on f and the way it is represented. The function f may
not be given explicitly as an analytical function, but rather as a lookup table or as
a function implemented in some programming language, and in general f might be
a black box that simply generates a value for some given inputs. If this is the case,
it seems that there is no simple way to compute the derivatives of the Taylor series
expansion without resorting to numerical differentiation methods.

To improve the accuracy of EKF, it is possible to extend it by taking into account
higher order terms in the Taylor series expansion, but the formulas involved tend
to become much more complex. The first complication is that we must compute
many more partial derivatives (for example, for the second order approximation we
must compute the Hessian). The second complication is that even after computing f
the resulting distribution is still not a Gaussian — we cannot use Theorem 3.3 and
must derive a different, and more complicated, set of formulas. In practice, even the
second order approximation is not commonly used and higher order approximations

are almost never used.

6.2 Numerical Integration

6.2.1 Problem Formulation

The extended Kalman filter uses what may be considered an indirect approach of first
simplifying the non-linear function and only then computing the resulting distribu-
tion. A more direct approach is to try to directly approximate the distribution result-
ing from the original non-linear function. Again we start with the case of Y = f(X)
where f is a non-linear deterministic function and the goal is to approximate P(X,Y)

as a Gaussian. We note that all the quantities we are looking for can be expressed as
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integrals:
E[Y] = /_Zf(a:)P(a:)da: (6.2)
E[Y?Y] = /_Zf?(m)P(m)dm (6.3)
E[XY] = /_Z:z:if(:n)P(w)da: (6.4)

Note that we use the notation o, f(@)d@ to represent the integral of f over all of
IR"™. If we could evaluate these integrals, we would have the correct first and second
order moments of P(X,Y), and thus we would be able to construct the best Gaussian
approximation to the resulting distribution. Dealing with non-linear continuous CPDs
can therefore be reduced to an integration problem, and the question is how to solve
the integrals.

We first note that it is sometimes possible to solve the integrals in closed form,
leading to an efficient and optimal way of computing the best Gaussian approxima-
tion. In fact we already saw an example when we considered the function ¥ = X2
Equation 6.2 reduces to computing E[X?], Equation 6.3 reduces to computing F[X?],
and Equation 6.4 reduces to computing E[X?], all of which have closed form formulas.

Unfortunately, in most cases there are no closed form solutions and we must resort
to numerical integration techniques. There i1s a vast literature on these techniques,
many of which can potentially be used for our purposes. Our particular integrals
always have the form of a product between a Gaussian and some other function,
and thus are particularly suitable for the Gaussian Quadrature and Fract Monomials

methods [DR84].

6.2.2 Gaussian Quadrature

We begin our discussion with one dimensional integrals. Gaussian quadrature ap-
proximates integrals of the form [* W (z)f(z)dz where W(z) is a known non-negative
function (in our case a Gaussian). Note that the approach is general since we can

always set W(X) = 1. Based on the function W, we choose n points z4,...,z, and
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n weights wy, ..., w, and approximate the integral as:
b n
[ W)@y = Y wif(a;) (6.5)
a =1

The points and weights are chosen such that the integral is exact if f is a poly-
nomial of degree 2n — 1 or less. Consider for example the case of n = 2, and assume
that the integration rule is chosen such that it is exact for fo(z) = 1, fi(z) = =z,
f2(z) = 2% and f3(z) = z°. Since we can represent any polynomial of the form

f(z) = ag + a1 + ax? + azz® as a linear combination f = 3, o, fi(z) we get:

bW(;z;)f(;z;)d:z; = b W(z) Eaifi(;t:)dx = Z%’ bW(;z;)fz(;r:)d:L'
/ [ w3 o

In addition, we have:
Yowif(xy) =D w; Y aifiz;) =D i Y w;fi(x)
7=1 7=1 7 7 7=1

Therefore, if our integration rule is exact for fy, ..., f3 then it is exact for general
polynomials of degree 3 or less. In order for the rule to be exact for fy,..., f5 it
must be the case that for + = 0,..,3 we have fab W(z)fi(x)dz = wi fi(x1) + wa fi( z2).
Assuming W(z) = N (0,1), a = —o0, and b = oo, we get the following set of four

non-linear equations

o0

w; + wy = NZUOl =1
W T, + waxTy = N (z;0,1)zdz =0
U)l.’I}%—FwQ{ES = N z;0,1) zidr =1

Wy TS + woxy = / N (2;0,1) 2°dz = 0

The solution for these equations (up to swapping z1 and z3) is wy; = wy = 0.5,
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x1 = —1 and x93 = 1. Thus, for n = 2 we get the following integration rule

/_O:ON(;E; 0,1) f(z)dz ~ 0.5f(—1) + 0.5£(1)

In general we get a set of 2n non-linear equations, and the existence of a solution
is not at all obvious. Fortunately, it is possible to construct a different set of equa-
tions based on a set of orthogonal polynomials with respect to W [Atk89], and come
up with an efficient procedure to solve the equations and generate the integration
points [PTVF88]. The resulting integration rules are very accurate and efficient.

We can already point out one of the major advantages of the numerical integration
approach compared to the EKF approach. Recall that, for the extended Kalman filter
we relied on a Taylor series expansion, and had to compute the relevant derivatives.
There is no such need in this case — all we need is to evaluate the function f over a
set of points. This property is particularly advantageous if f is not differentiable or
is given implicitly as a C function or a lookup table, where it is easy to evaluate f on
a given point but hard to compute its derivatives.

Suppose now that the integral is in IR? rather than IR and that the weight function
is V' (0, I) (we show how to relax this assumption and use any Gaussian as the weight
function in Section 6.2.4). We can still use the Gaussian Quadrature method by
using our points as a grid of n? points, with the resulting rule still being accurate for
polynomials of degree 2n — 1 or less. This approach can work reasonably well if d 1s
small, but obviously it is not practical for integrals in high dimensions. Indeed, the
problem of numerical integration is much harder in high dimensions, but fortunately

we can still do much better than using n? points, by choosing a different set of points.

6.2.3 Exact Monomials and the Unscented Filter

To avoid the exponential number of points of the Gaussian Quadrature method for
multi-dimensional integrals, we can try to choose the points directly in IR? instead
of using a grid of points chosen in IR [DR84]. Our goal would be to find rules which
are exact for some m monomials, and in particular we will consider the sets of all

monomials of degree p or less, i.e., monomials of the form [%_, z¢* where the powers
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a; are nonnegative integers and Ele a; < p. Such rules are said to have precision or
degree p (formally, there should also be a monomial of degree p+1 for which the rule is
not exact). Note that the integration rule that uses a combination of one-dimensional
Gaussian Quadrature rules of precision p is exact for a much larger set of monomials,
namely monomials of the form [J%, 2! where a; < p. For example, if we combine
one-dimensional Gaussian Quadrature rules of precision 2, we will get a rule which
is exact for all monomials of precision 2, but is also exact for some higher degree
monomials such as z2z2 (however, it will not be exact for the degree 3 monomial z?).

In general there are (d;p) distinct monomials of precision p or less. When we use n
points there are n + nd parameters that we can choose (n weights and nd coordinates

for the points). Therefore one can expect that in order to achieve precision p, one

1

would have to use n > T

(d‘;p) points. However this is not the case. Since we get
a set of non-linear equations there is no guarantee that a solution exists. On the
other hand, it is often possible to find rules that use significantly fewer points than
di—l(d;p), called hyperefficient rules. For example, for p = 3 we have a rule that
uses only 2d + 1 points, i.e., 2d* + 3d + 1 free parameters, and is exact for all O(d?)
monomials of degree three or less.

McNamee and Stenger [MS67] present a suite of exact monomial rules for fully
symmetric weight functions. We say that a function W is fully symmetric if W(x) =
W (y) for every y that is obtained from @ by permutations and/or changes in the sign
of the coordinates of @. For example, the weight function N (0, 7) is fully symmet-
ric. McNamee and Stenger develop rules for precisions 3, 5, 7, and 9 and a general
procedure to find rules for precision p = 2k + 1 with O(p—glﬁ) points. Here we show
the rules for precisions 3 and 5 with the weight function NV (0, ) as examples. In the

next section we will show how the points can be transformed to general Gaussians.

Definition 6.1 A4 point u = (uq,...,u,,0,...,0) € IR where 0 < u; < ujyq will be
called a generator and denoted as [+u] or [fuq,...,Fu,|. It represents the set of
points that can be obtained from w by permutations and changing the sign of some

coordinates.

For example, the generator [0] contains the point 0 € IR?, and the generator
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[+£1,+1] in IR® represents the set of points

{ (1,1,0),(-1,-1,0),(1,-1,0),(—1,1,0),(1,0,1),(=1,0,—1),
(1,0,-1),(-1,0,1),(0,1,1),(0,—1,-1),(0,1,—1),(0,—1,1) }

We will use the shorthand notation f[£uy, ..., £u,]for thesum >, o1y, 4o f(2),
i.e., the sum of f applied to the points represented by the generator [tuy, ..., +u,].
We shall consider integration rules that are based on some set of generators, i.e., rules

of the form:

Z wy, fug] (6.6)

Consider some monomial f = [, z!* with at least one odd a;. Every generator
[+uyg] is symmetric, i.e, if @ € [tuy] then there exists a y € [+u] which is the same
as @ except that the sign of the ith coordinate is switched. We have f(x) = —f(y)
and therefore, when summing all the points we get f[+u;] = 0, and the result of the
integration rule is Y-, wg f[ug] = 0. Consider now the integral [0, W () f(x)dx. If

the weight function W (@) is fully symmetric, then in particular it is symmetric for

z;. We get:
oo o0 o0 d
/ W(z)f(z)de = / / W (e) [] 2% day - - - dag
—00 —00 —00 i—1
= /Oo /OO xy (/OO W(a:)a:;]dxj> dry - drj_ydrjyy - dry
—00 —00 ;s —00
pumy / .. / :C;L" . del DY d:C]_ld:E]_}_l DR d:L'd
e T
= 0

It follows that if our weight function is fully symmetric and the integration rule is
of the form of Equation 6.6, then it is exact for every monomial with at least one odd
power. Thus, we only have to consider monomials in which all the powers are even.

Let us develop a precision 3 rule with 2d + 1 points.! Our rule will be developed

Tt is also possible to derive a rule with just 2d points but our rule will be more numerically
stable.
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for the fully symmetric function W = N (0, I), and will have the form:

/°° N (20, 1) f(@)dz ~ wo f[0] + wi f[+4] (6.7)

— 00

The only monomials of degree 3 or less without any odd power are f(&) =1 and
f(x) = 2. All the monomials f(x) = z? lead to the same equation, and we end up

with just two equations for f(x) =1 and f(x) = z?

wo + 2dw; = /OON(a:;O,])dazzl

— 00

2w, u? :/ N (z;0,1)zide =1

The parameter v is a free parameter; after choosing some u # 0 we get wo = 1— i

and wy = Although we get a precision 3 rule for every value of u # 0, dlfferent

oz
choices of u do lead to different approximations. Small values of u lead to more local
approximations which are based on the behavior of f near the mean of the Gaussian
and are less affected by the higher order terms of f. Julier and Uhlmann [JU97]
suggest to choose u = /3, but in general different values of u can lead to better or
worse approximations depending on the function f.

For precision 5, we will look for a rule of the form:
/ N (20, 1) f()dz ~ wof[0] + wy f[+u] + ws f[+u, +u] (6.8)

Note that we get 1 point from the generator [0], 2d points from the generator
[+u] and 2d(d — 1) points from the [+u, +u] generator, for a total of 2d* 4+ 1 points.
This time we have to make sure the rule is exact for monomials of precision 5 or less
without any odd powers. Due to the symmetry of the generators, it is enough to
consider the monomials f(x) = 1, f(z) = 2%, f(x) = z] and f(x) = zjz3. We get

the following set of equations:

N
Y

\\

2wiu? +4(d — Nwyu® = (;0,1)zide =1

— 00
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2wiut +4(d — Nwou* = /OO N (2;0,1)z}de =3

dwqu? = / N (2;0,1)zizsde =1
For example, in the second equation we have the term 4(d — 1)wqu® because there
are 4(d — 1) points with the first coordinate being +u in the generator [tu, fu]. If
we divide the third equation by the second we obtain u? = 3 and the other values

follow immediately. We get v = /3, wo = 1 + d21_87d, wy = % and w, = 31—6.

The technique of exact monomial rules provides a new and useful perspective on
the Unscented Filter (UF) [JU9T] which was suggested as an alternative to EKF for
tracking non-linear dynamic systems. The UF can be extremely accurate, even in
cases where the EKF leads to a poor approximation [JU97]. We point out that the
Unscented Filter is exactly our precision 3 rule from Equation 6.7, and the superior
performance compared to EKF is an instance of the generally better accuracy of the
numerical integration approach compared to EKF, even when using one of the least
accurate numerical integration rules.

This view of the Unscented Filter has immediate practical consequences: We can
trade off between the accuracy of the computation and its computational require-
ments. For example, if we are interested in a more precise rule than the Unscented
Filter and are willing to evaluate the function at O(d*) points then we can use the
exact monomial rule of precision 5. Depending on the function, this may represent a

significant gain in accuracy.

6.2.4 Dealing with General Gaussians

The integrals that appear in Equation 6.2 through Equation 6.4 have a weight func-
tion W(X) =N (X;p,X) and in general represent a different weight function than
N (X;0,1). Thus, we cannot directly use our set of points chosen for V' (0, I) for gen-
eral Gaussians. Fortunately, we can transform these points to any general Gaussian

while keeping the same accuracy guarantees.
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Theorem 6.2 Let Pi(X) =N (X;0,1) and Po(X) =N (X;pu,X). Then for every
square malriz A such that AAT = ¥:

|7 P f@)de = [ Pi(@)f(Az + p)da

— 00 — 00

Before proving the theorem let us consider its usefulness. First, since X is positive
definite it is always possible to find such a matrix A, often called the square root of
Y. For example, we can use Cholesky’s decomposition [PTVF88| and find such an A
which is also lower triangular. Once we have A, Theorem 6.2 lets us transform the
integral that involves a general Gaussian into an integral that involves the standard
Gaussian N (0, 7). We can therefore use the same set of points that we found for
N (0, 1) to compute an integral with any Gaussian — all we have to do is apply the
linear transformation AX + g to every point. Intuitively this linear transformation
corresponds to scaling the point to the covariance matrix ¥ and shifting it according
to the mean pu.

Proof: Note that, from AAT = ¥ it follows that AT = A=Y = (¥71A4)~!. Also note
that, since |A| = |AT|, |A| = \/ﬁ We can therefore write:

1 1
Py(Ay +p) = exp (——(Ay +p—p)' ST Ay +op - M))
’ NCET 2

1

1 T ATy -1 )
— —yTATY 14
V2| A| eXp( 2¥ Y
| 1, )
— T
VoAl eXp( ¥ Y
Pi(y)
|Al

To compute the integral [Zo) Pa(x)f(@)dx we perform the change of variables
x = Ay + p and get:

| P@)s@yd = [ AIP(Ay + w)f(Ay + n)dy

— 00 —
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Numerical Integration for non-linear CPDs
1. Sort nodes in topological order Xi,..., X,
2. For 1 =1..n do
3. If CPD of X, is not linear
4. Find moments of P(Par(X;),X;) and approximate as a Gaussian
5. Find covariances between X; and {Xi,...,X;,_1} —Par(X;)
using Equation 6.9
6. else
7. Compute first two moments of P(Xi,...,X;) using Theorem 3.3

Figure 6.2: The numerical integration approach

[ P sy + iy

= [ Ay + wy

6.2.5 Putting it all together

We can now adapt the algorithm in Figure 6.1 to the numerical integration approach,
as shown in Figure 6.2. Again we sort the variables in topological order and for linear
CPDs simply use Theorem 3.3. For non-linear CPDs we compute the moments of the
CPD variable and its parents using one of our integration rules: We use the simple
grid approach of the Gaussian Quadrature rule for low dimensions (up to d = 2 or
d = 3) and for higher dimensions we use one of the exact monomial rules such as
Equation 6.7 or Equation 6.8

It is only left to explain how to compute the covariances with the variables in
{X1,..., Xi1} — Par(X;). As before, we can add them to the CPD and include them
in the integrals that we compute. However, this approach leads to integrals of very
high dimensions, forcing us to use relatively inaccurate integration rules. Fortunately,
we can use an alternative approach.

Let Y = f(X) be some variable with a non-linear CPD, and let Z ¢ X be some

variable that appeared before Y in our topological order. We are interested in finding
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Cov(Z,Y). Since Z was already processed, we have a Gaussian approximation for
P(X,Z). We can therefore use Corollary 3.5 in order to represent 7 as a linear

combination of X, i.e.,

Z=0+> BiXi+W

Using this representation of Z we have:

Cov(Z,Y) = E[ZY]— E[Z]E[Y] =
= E[(Bo+ Z BiXi + W)Y] = E[Bo + ZﬁiXi + W]E[Y]
= BE +25EXY]+E[WY]
ZﬂE i|E[Y] = E[W]E]Y]
= ZB — E[X|E[Y]) + E[W]E[Y] - E[W]E[Y]

= Z BZ'COV Xi7 Y) (69)

The reason that E[WY]| = E[W]E[Y]is that W is independent of X and therefore
it 1s also independent of Y. We note that representing 7 as a linear combination
of X involves solving a set of linear equations A& = b where A is the covariance
matrix of P(X) and b = (Cov(Xy,7),...,Cov(X,,7)). If we need to perform this
computation for more than one node we can do so efficiently by decomposing A once
using Cholesky decomposition and then using it to solve each set of linear equations
(see [PTVF88] for more details).

Computing Cov(Z,Y) using Equation 6.9 is exact under two conditions:

e There are no errors in Cov(X;,Y)

e The true joint probability distribution P(X, 7) is indeed a Gaussian

In other words, if P(X,7) is not truly a Gaussian (because Z, X or one of their
ancestors has a non-linear CPD) then we will not get the correct Cov(Z,Y) even if we
were able to find the correct first two moments for P(X,Y’). The reason is that we are

using only an approximation for P(X, Z) and might suffer from errors resulting from
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this approximation. It is possible not to rely on the Gaussian estimate for P(X, 7)
by using integrals that might involve more variables, such as the ancestors of X. In
practice we often end up with integrals of higher dimensions, and the inaccuracies that
arise due to less accurate integration rules often negate the potential improvement of

not using the Gaussian approximation for P(X, 7).

6.2.6 Encapsulated Variables

Just as we use the structure of the Bayesian network to decompose the dependency
between the various variables, in many cases it is possible to further decompose the
non-linear dependency Y = f(X). For example, we may be able to decompose the
non-linear function f as f(X) = ¢(¢1(X1),92(X>)), where X1, X, C X .? Instead of
directly approximating the Gaussian over { X, Y} we can define two extra variables:
Ty = ¢1(X1) and Ty = g2(X3). We first find a Gaussian approximation to P(X 1, 7}).
Next we approximate P(X,T3) as a Gaussian and using Equation 6.9 we approxi-
mate P(X,T1,T) as a Gaussian. Finally, we approximate P(Ty,T5,Y) as a Gaussian
and again use Equation 6.9 to find the Gaussian approximation for P(X,T1,Ts,Y).
The same accuracy tradeoffs that were discussed in the previous section apply here:
by reducing the dimension of the integrals we can solve each one more accurately,
but may introduce further errors if the interactions between the extra variables are
non-linear.

In principle, one could add 77 and 7, to the Bayesian network and treat them
as regular variables. However, doing so increases the number of variables in our
Gaussian, denoted as n in Figure 6.2, and thereby increases the algorithm’s space
complexity, which is O(n?) (as we need to represent a covariance matrix). It is
better to treat the extra variables as local variables encapsulated within the CPD and

unknown to the rest of the network. After computing the Gaussian approximation

2As an example, consider a gas flow sensor which is used in the RWGS system, described in
Chapter 10. For a given gas flow, a flow sensor gives different readings depending on the gas type.
Assume we have random variables that represent the total flow F' and the compositions of the
different gases in it a1, as. The function g; (i = 1,2) may be the product a; F', representing the net
flow of each one of the gases. The function g would be a weighted sum of these flows where the
weights correspond to the sensor’s response for the different gases.



CHAPTER 6. NON-LINEAR CPDS 130

for the CPD variables, we simply marginalize out the encapsulated variables and do
not compute the covariance between them and any other network variable. In our
example, we reduce to Gaussian P(X,T1,73,Y) to the Gaussian P(X,Y). In terms
of the algorithm in Figure 6.2, this operation can be viewed as an implementation
of line 4, where the encapsulated variables are not considered to be variables of the
Bayes net.

Note that each encapsulated variable belongs to just one CPD, and therefore
can have at most one non-encapsulated child. This approach is very similar to the
local computations in an OOBN model [KP97], where some of the variables are local

variables, encapsulated within a CPD.

6.3 Moments Correction

Unfortunately, our numerical integration approach has one significant problem, as
nothing guarantees that the resulting covariance matrix will be positive definite or
even positive semi-definite. For example, the estimated variance is the difference
E[Y?] — E[Y]?. If we underestimate E[Y?] or overestimate E[Y], we might end up
with a negative variance for Y.

One possible way of dealing with this problem is to use a more accurate inte-
gration rule, which often solves the problem in practice. However, the problem may
persist even when using a more accurate rule. Furthermore, a more accurate rule is
computationally more expensive, and so it may be undesirable to use it.

An alternative approach is to find the “closest” positive definite covariance matrix.
We cast this problem as a convex optimization problem following [BV03, Ber95]. Con-
sider once again the problem of approximating P(X,Y’) as a multivariate Gaussian,
where Y is a nonlinear function of its parents X = {Xy,..., X, },i.e., Y = f(X), and
P(X) =N (z;pu,A). Assume that the results of our numerical integration rule were
a=FE[Y], b= E[Y?] and ¢; = E[X;Y]. We also denote ¢ = (¢i,...,¢,)T. Recall that
Var(Y) = E[Y? — E[Y]? and that Cov(X;,Y) = F[X,Y] — E[X,]E[Y]. We therefore

have the following covariance matrix:
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W e
ca (6.10)

(¢ —ap)T | b—a?

We would like to make sure that ¥ is a legal covariance matrix, i.e., it positive

definite. The following theorem is useful (its proof is given in Appendix A.3).

Theorem 6.3 Let ¥ be a symmetric matrixz of the form

where A is a positive definite matriz of dimension n X n, w is a vector of dimension

n and v is a scalar. Then ¥ is positive definite iff v—u’ A~ 'u > 0.

Since the distribution of X is known and assumed to be legal, A and g in Equa-
tion 6.10 are fixed, and we are therefore only allowed to change @, b and ¢. We would
like to change them “as little as possible” in order to make ¥ positive definite. We can

formulate this as an optimization problem (using the L2-norm to express “closeness”):

Minimize  f(a,b,¢) = (a —a)> + (b—b)°+ || c — ¢ ||? (6.11)
Subject to  fi(a,b,¢) = (c —ap)T A7 (e —ap) — (b—a*) +e <0 (6.12)

Note that if € = 0 then we demand that ¥ is only semi-positive definite. To make
sure it is positive definite € needs to be a small positive number. Also note that if
the original estimates @, b and ¢ result in a legal covariance matrix then they must
be the solution of the optimization problem and we are done.

Since A and therefore A™! are positive definite, both the functions f and f; are

convex in a,b and ¢, and we can use convex optimization techniques to solve our
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problem. We use the Lagrange multiplier A and form the Lagrangian

L{a,b,e,\) = f(a,b,e)+ Afi(a,b,c)
— (e a B e—c P+ (6.13)
A ((c — a,u,)TA_l(c —ap) + at—b+ e) (6.14)

We now take the standard approach of solving the dual problem, i.e.:

Maximize  g(\) I int L(a,b,c, ) (6.15)

a,b,c

Subject to A >0 (6.16)

The function g(A) is called the dual function. Since L is convex with respect to

a,b, ¢ we can find inf, ;. L(a, b, ¢, X) by setting the partial derivatives to 0:

aL

5 = 2Aa—a) (2674 (ap — ¢) + 20) (6.17)
L .

5 = 260 =X (6.18)
Z_ﬁ = 2(c—¢)+ 2247 (c —ap) (6.19)

Setting Equation 6.19 to 0, we get

(IT+x47) e = e+ A ap
e = (142477 (e+ A4 "ap) (6.20)

When we set Equation 6.18 to 0 we get

b="b+

N | >

(6.21)
We now set Equation 6.17 to 0:

(L+2+2p A p)a=a+ "4 e (6.22)
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Plugging Equation 6.20 into Equation 6.22 we get:

(14X 42074 ) a = a+M"A7 (142347) 7 (e + 247" ap)
= a+ A" (A+ )7 (e + AA ap)
= a+ A\ (A+AD) e + NPpT (A2 4 AA) pa (6.23)

Solving Equation 6.23 for a we get:

B a+ T (A+ M) te
T+ A+ ATA = N2pT(A2 £ NA)

(6.24)

a

Equations 6.20, 6.21, and 6.24 define the infimum of @, b and ¢ for every value of
A. We can therefore plug these equations into Equation 6.14 and get the function
g(A) as defined in Equation 6.15. The function we get is concave in A [BV03, Ber95]
and therefore it is not hard to find the value of A that maximizes it. In particular,
we can find A by solving the equation ¢’(A) = 0. Finding ¢’ may appear cumbersome,

but in fact it is not, since we can use the following lemma.

Lemma 6.4 Consider the convex oplimization problem

Minimize  f(@)
Subject to  fi(z) <0

where both f and f; are convex and differentiable. For A > 0 define the Lagrangian as
L(z, ) = f(z)+ Afi(x) and the dual function g(A) = L(x(X), A) where we define the
function ®(X) as (X)) = arginfy L(x,A). Then ¢'(\) is a monotonically decreasing
function and g'(X) = fi(x(N)).

Proof: Since g is concave we know that ¢’ is monotonically decreasing. To show that

g'(A) = fi(®(X)) note that g(A) = f(x(N)) + Afi(2())) and therefore

g\ = V(@) VaA) + filz(A) + AV fi(z())) - V()
fi(@(X) + Va(A) - [Vf(2(A) + AV fi(z(V))]
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But #()\) was the defined as the infimum of f(&) + Afi(«). Since both f and
f1 are convex, the gradient with respect to @ at the infimum must be zero, i.e.,

Vf(®(X) + AV fi(x())) = 0. Therefore ¢'(A) = fi(x())). 1

Thus, to find to optimal value of A we need to solve the equation

g'(A) = fi(a(A), b(}),e(X)) = 0 (6.25)

where f; i1s defined in Equation 6.12 and the functions a,b and ¢ are defined using
Equations 6.20, 6.21, and 6.24. Since ¢’ is monotonically decreasing in A, we can solve
Equation 6.25 using bisection. To do so we must find one value A = A\g for which ¢’
is non-negative and one value A = Ay for which ¢’ is non-positive. For the value of
Ao note that a(0) = a,b(0) = b and ¢(0) = e. Since a, b, ¢ violate the constraint of
Equation 6.12 we know that fi(a,b,¢) > 0 and thus, we can simply choose Ao = 0.

To find a value for \; it is convenient to define the function h:

fila(A); b(A),e(A) = h(a(A),e(A) = b(A)
ha(V),e(A)) = (e(A) —a(M)p) A7 (e(A) = a(A\)p) + () + ¢

Since f; is monotonically decreasing in A, so is h, and we can therefore write:

g = fi(a(}),b(1),e(}))

= BV, e(0) b
= bV, e() ~b—
< h(a(0),(0)) ~ b~

It follows that if we choose Ay = 2fi(a,b,¢) we have g'(a(A1),b(A1),e(A1)) < 0.
Thus, we can use A\g and A as a lower and an upper bound for the actual value of
A and then use bisection in order to solve Equation 6.25. Once we have A we use

Equations 6.20, 6.21, and 6.24 to compute a, b and ¢ and plug them into Equation 6.10
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Figure 6.3: Comparison of Gaussian approximations for Y = /X7 + X7 (a) KL-
divergence from optimal approximation (b) Resulting distribution when Var(X;) =

Var(X;) =4

to get our new covariance matrix. This represents an efficient algorithm to correct
the integration results, guaranteeing a legal covariance matrix.

In terms of the algorithm from Figure 6.2, we can plug in this procedure between
lines 4 and 5, correcting the moments of P(Par(X;), X;). Note that if P(Par(X;), X;)
represents a legal Gaussian and P(Xi,..., X;_1) represents a legal Gaussian, then

P(X1,...,X;) generated in line 5 will also be a legal Gaussian.

6.4 An Example

We compare the EKF approach and the exact monomial rules using a simple non-
linear function Y = /X? + XZ. For simplicity we assume that X; and X, are inde-
pendent and that P(X;) = N (X;;0,0%) and P(X,) = N (Xy;2,0?). We computed
a Gaussian approximation for the distribution of Y using EKF, an exact monomial
rule of precision 3 and an exact monomial rule of precision 5. In this example the
precision 5 rule always led to legal covariance matrices, but the precision 3 rule re-
sulted in illegal covariance matrices for o > 0.23. Thus, the results reported here for

the precision 3 rule include a correction using the technique described in Section 6.3.
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Mean Variance KIL-divergence
Optimal 3.235 2.538 0
EKF 2.236 4 0.169
Rule 3 3.142 3.173 0.013
Rule 5 3.277 2.263 0.00381

Table 6.1: Comparison of Gaussian approximations for Var(X;) = Var(X;) =4

Figure 6.3(a) shows the KL-divergence for P(Y') between the optimal approxima-
tion and the various methods. As our optimal approximation we used a very accurate
Gaussian Quadrature rule which used a grid of 100 x 100 integration points. In gen-
eral, the quality of the approximation of every method degrades as we increase o?.
This is to be expected since all the methods are accurate for low order polynomials,
and the larger o2 is, the larger is the contribution of the higher order terms.

For small and medium variances, EKF is the least exact of the three methods. For
large variances, the precision 3 rule becomes the least accurate but the precision 5
rule maintains a much better precision than EKF. The reason for the precision 3 rule
behavior is the illegal covariance matrices for ¢ > 0.23 — the moments correction
is capable of dealing with this problem as long as ¢ is not too large, but for ¢ > 4
the inaccuracies become more and more significant. However, it is important to note
that for high variances, the Gaussian approximation is not a very good approximation
to begin with and therefore it is not as important to be very close to the optimal
Gaussian approximation. For low variances, where the approximation is a good one
even the corrected precision 3 rule significantly dominates the EKF approximation.
Figure 6.3(b) shows the distribution of ¥ for ¢ = 2 — the precision 5 rule is quite
accurate but even the corrected precision 3 rule is significantly more accurate than
the EKF. The results are also summarized in Table 6.1, including the KL-divergence

from the optimal approximation.

6.5 Combination with the Enumeration Algorithm

So far, we have focused on networks that contain only continuous variables, and saw

how to approximate their joint distribution as a multivariate Gaussian. In hybrid
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networks, these ideas can be combined very easily with the enumeration algorithm as
presented in Section 5.1.4.

Recall that the enumeration algorithm enumerates discrete assignments from the
prior and for each one computes the corresponding Gaussian. Adding non-linear
CPDs does not change the prior distribution of the discrete variables, and there-
fore, we can use the exact same algorithm for enumerating the discrete assignments.
Given a discrete assignment we are back to the case of a distribution over the con-
tinuous variables, where some of the CPDs are not linear. Thus, for every discrete
instantiation we can use the numerical integration approach (or EKF) in order to
approximate the induced distribution over the continuous variables as a (Gaussian.
We can also use our moments correction algorithm in order to make sure that all the
covariance matrices are positive definite. Note that using the same approach we can
also combine RB-LLW or any other algorithm that generates discrete assignment with

our techniques to deal with non-linear CPDs.



Chapter 7

Augmented CLGs

One of the main restrictions of CLGs is that the graphical model does not allow dis-
crete variables to have continuous parents, a dependency that arises in many domains.
For example, consider a feedback control loop involving a thermostat, which controls
the room temperature by turning on or off a heating device and a cooling system. The
thermostat should be modeled using a discrete variable (“heating on”, “cooling on”,
and “idle”) which depends on the continuous variable representing the room temper-
ature. As another example, consider the modeling of sensors such as the warning sign
which appears when the gas level in a car’s gas tank gets low. Once again, we have
a discrete variable (“sign on” or “sign off”) which depends on a continuous one (gas
level).

In this chapter we define a class of augmented CL.Gs and discuss inference in these
models. In augmented CLGs the CPDs of the continuous nodes are linear CPDs, but
we also allow discrete nodes to depend on continuous parents. We use continuous-

discrete (CD) to refer to such CPDs.

7.1 Representation

There are many possible functional forms that can be used to represent CD CPDs.

One of the most useful is a softmaz or logistic function. Let A be a discrete node

138
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Figure 7.1: Examples of softmax CPDs: (a) The low gas level warning sign (b) The

with the possible values ay, ..., a,,, and let X;,..., X, = X be its parents. We define:

(4) k ()
exp (w _|_E: w
P(A=a;|zy,...,21) = ( 0 1=1 Wy z)

=1 €XP (w((Jj) + Zf:l wl(j)xl) ‘

(7.1)
The case where A also has discrete parents is modeled as in CLGs: We define a

different softmax function for every combination of the discrete parents.

It is possible to eliminate one of the linear combinations by dividing both nu-

merator and denominator by exp (w(()m) + Y wl(m):z:l), leaving us with m — 1 sets of
parameters (for the m-th set we get that after the division w

l(m) =0for0<I<k). In
particular, when A is binary, this new form simplifies to a standard sigmoid function.
For 0 <[ < k define w; = wl(o) — wl(l) and w? = (wy,...,w;). Then:

1
P(A = | L1, ---al'k)

1
— 1+ exp (wo + Zle wl;[;l) N 1+ exp (wo + ’LUTGB) .

(7.2)

Figure 7.1 shows two examples of softmax CPDs. In Figure 7.1(a) we have a
softmax function for a binary variable, corresponding to the low gas level warning

sign. When the tank is full the sign is always off, and when the tank is empty the
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Figure 7.2: Generalized softmax CPD

sign is always on. The parameters of the softmax CPD determine the slope of the
transition and its location: w; determines the slope and —wq/w; determines the
location. Figure 7.1(b) models the thermostat. When the temperature is below 557,
the thermostat is likely to turn on the heating and when it is above 75, it is likely
to turn on the cooling system. In between, the thermostat keeps both appliances off.
The location of the transitions is determined by the relative values of the w;’s, and
the slope of the transition, which corresponds to the noise level, by their magnitude.

It is possible to generalize the softmax functions to express fairly complex distri-
butions. Intuitively, the generalized softmax CPD defines a set of R regions (for some
parameter R of our choice). The regions are defined by a set of R linear functions over
the continuous variables. A region is characterized as the part of the space where one
particular linear function is larger than all the others. Each region is also associated
with some distribution over the values of the discrete child; this distribution is the
one used for the variable within this region. The actual CPD is a continuous version
of this region-based idea, allowing for smooth transitions between the distributions
in neighboring regions of the space.

More precisely, let A be a discrete variable, with the continuous parents X =
{Xi,...,X;}. Assume that A has m possible values, {a1,as,...,a,}. Each of the

R regions is defined via two vectors of parameters w(™, p"). The vector w") is a
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(r) . ,(7) (r)

vector of weights wy ', wy /.. .., w,’ specifying the linear function associated with the

region. The vector p(") = {pY), ..., '} is the probability distribution over ay, ..., a,,

m (r)

associated with the region, i.e., -7, p;” = 1. The CPD is now defined as:

R
P(A=a;| @) =3 alp!)

J
r=1

where

o) — exp(wy + 5, wiz))
Zf:l exp (w(()q) + Ef:l wz('q)xi)

In other words, the distribution is a weighted average of the region distributions,
where the weight of each “region” depends exponentially on how large the value of
its defining linear function is, relative to the rest.

The power to choose the number of regions R to be as large as we wish is the key
to the rich expressive power of the generalized softmax CPD. Figure 7.2 demonstrates
this expressivity. In this example we have four different regions. The choice of w(")
determines both the regions and the slope of the transitions between them; the choice

of p') determines the distribution defining each region.

7.2 Lauritzens’s Algorithm and Augmented CLGs

Our approach for inference in augmented CLGs is based on the observation that a
Gaussian can be a good approximation to the product of a Gaussian and a softmax
CPD [Mur99]. The quality of the approximation depends on the slope of the logistic
function compared to the variance of the Gaussian, as is demonstrated in Figure 7.3.
The sharper the logistic function is, the worse the approximation becomes, but in
many cases the accuracy of the approximation is very high.

The observation that a product of a Gaussian and a logistic function can be ap-
proximated as a Gaussian suggests that one can extend both Lauritzen’s algorithm
and the enumeration algorithm to the case of augmented CLGs. Unfortunately, unlike
the case of continuous non-linear CPDs, when we use augmented CLGs the enumera-

tion algorithm becomes impractical, as we shall discuss in Section 7.3. In this section



CHAPTER 7. AUGMENTED CLGS 142

we concentrate on extending Lauritzen’s algorithm to augmented CLGs using the
numerical integration approach. Our goal is to come up with an algorithm that is

exact in terms of the first two moments, up to numerical integration errors.

7.2.1 Variational Approach

We first review the algorithms of Murphy and Wiegerinck [Mur99, Wie00] for ex-
tending Lauritzen’s algorithm to augmented CLGs using the variational approach.
Roughly speaking the idea is to build a strong clique tree where we introduce vari-
ational parameters in the clique potentials, i.e., the canonical factors (defined in
Section 3.3.2) are parameterized by some extra parameters. We then try to find a set
of parameters that represents a good approximation to the distribution represented
by the Bayesian network. When using the variational approach, we limit ourselves to
networks where all discrete variables with continuous parents are binary and all the
CD CPDs are of the form of Equation 7.2.

More formally, let o(x) be the sigmoid function o(x) 2 S Murphy [Mur99]

1+exp(—x)
suggests the use of the following bound on o:

S

log o(x) 2 A(€)” + 5 +log o(€) — 2 — €A(¢) (73)

where ¢ can take any value and

Combining the bound from Equation 7.3 and our representation for a binary
softmax CPD from Equation 7.2, we get the following bound for softmax CPDs
(where r € {0,1}):

PA=a,|x) > —%azTKa: +hlz+g (7.4)
K = —-2(Hww”
ho— (%(w 1)+ 2)\(5)6) w
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Figure 7.3: Approximating the product of a Gaussian and a logistic CPD by a Gaus-

sian
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2r — 1 13
2 2

g = logo(§)+

T = (wy,...,w;). Equation 7.4 is a quadratic form. For every value of the

where w
variational parameter ¢ we get a bound on the softmax CPD. We can multiply this
quadratic form into some potential in our strongly rooted tree; the tree would then
represent a distribution which is parameterized by the variational parameters. It is
important to note that, even with the introduction of the variational parameters, our
representation is still a mixture of Gaussians.

The goal is to find the “best” variational parameters that give us the best possible
approximation. The variational approach does this by minimizing the KL-divergence
D(Q || P) between the distribution @) represented by the tree and the true underlying

distribution P.! This can be done by an iterative algorithm. For the variational

parameter corresponding to Equation 7.4 we use the following update rule:
& — El(w' X +wp)?] = w' E[X*w + 2bw” E[X] + w?

where the moments of X are computed using Lauritzen’s algorithm. Murphy [Mur99]
discusses how to choose good initial values for the variational parameters which
is an important problem since bad values might lead to a poor local maximum.
Wiegerinck [Wie00] shows how the approximation can often be significantly improved
by using different variational parameters for every Gaussian in the canonical factor,
rather than using just one variational parameter for each softmax CPD.

While the variational approach is quite elegant it suffers from a few problems.
First, it is currently limited to binary softmax distributions and seems to be quite
hard to extend to generalized softmax CPD. More importantly, note that this method
is based on optimizing the bound in Equation 7.3, and therefore can offer no real
guarantees: the bound may not be tight, and even if it is, finding a lower bound
for log o(z) is not guaranteed to result in a good approximation for the posterior

distribution. Furthermore, the iterative algorithm used to optimize the parameters

Tt is more natural to minimize the other KL-divergence, i.e., D(P || @), but it is much harder
to do so.
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is not guaranteed to converge to the global maximum, and we might end up with
a poor local maximum. There is currently no method of estimating how close the
result is to the best possible approximation within the same expressive power, i.e.,
the distribution which approximates the posterior as a mixture of Gaussians with the

correct first two moments for every mixture component.

7.2.2 Numerical Integration Approach

It is possible to extend Lauritzen’s algorithm to deal with augmented CLGs without
performing a variational approximation by taking the more direct approach of nu-
merical integration. The resulting algorithm can be made to be exact up to errors
introduced by numerical integration. To simplify the presentation, we take the same
approach as in Chapter 3 and present our algorithm in the context of canonical forms.
It 1s then a simple matter to adapt the algorithm to work with conditional forms as
we shall show in Section 7.2.5.

We begin with a simple motivating example. Consider the network X — A, where
X has a Gaussian distribution given by P(X) = N (X;u, o) and the CPD of A is a
softmax given by P(A =1 | X = z) = 1/(1 4+ ¢****). The clique tree has a single
clique (X, A), whose factor should contain the product of these two CPDs. Thus, it
should contain two continuous functions — P(z)P(A=1|z) and P(x)P(A =0 | z)
— each of which is a product of a Gaussian and a sigmoid.

To approximate the resulting distribution as a mixture of Gaussians we need to
compute the marginal distribution of A and the first two moments of X conditioned

on the different values of A:

P(A=a) = /_0; P(A=a|z)P(z)de (7.5)
E[X|A=d = /_O;f(;P(:(; | A= a)de
= ﬁ /_O:o tP(A=a|z)P(x)dx (7.6)

E[X?| A= d] :/ 2Pz | A = a)dz
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- ﬁ /_O:O e*P(A = a | 2)P(z)de (7.7)

This basic idea leads us to the following outline for an algorithm. We roughly
follow Lauritzen’s algorithm, diverging only in cases where a clique contains CD
CPDs; in this case, we approximate its factor as a mixture of Gaussians, where the
mixture has one Gaussian — with the correct first and second moments — for each
instantiation of the discrete variables. In the next section, we “fill in” the details of

this algorithm, addressing the subtleties that arise.

7.2.3 The Algorithm
Using integrable distributions

The first difficulty in applying our algorithm arises from the observation that Equa-
tions 7.5 through 7.7 compute expectations relative to P(x): To evaluate these ex-
pressions at a clique, we must have a probability distribution over X in that clique.
Unfortunately, the message passing algorithm does not guarantee that these distri-
butions are available initially. Consider the network X — Y — A where X and Y
are continuous nodes and A is discrete. The clique tree for this network consists of
two cliques: (X,Y) and (Y, A). In Lauritzen’s algorithm, the clique tree is initialized
by incorporating all CPDs into their corresponding cliques. In our case, we should
incorporate P(A | Y) into the clique (Y, A) by computing the relevant expectations.
However, at the initialization phase, the message passing has not yet been performed.
As such, Y is given in canonical form and does not yet represent a Gaussian distri-
bution, preventing us from performing this integration; thus, we cannot multiply the
CPD P(A |Y) into the clique at this stage.

We address this problem by introducing a preprocessing phase, which serves to
guarantee that all cliques contain an integrable distribution — a Gaussian distri-
bution relative to which we can compute the relevant expectations, rather than a
non-Gaussian canonical form. To do so, we build the standard clique tree for our BN,
but do not initialize the clique potentials. We then insert all the CPDs except for the
CD CPDs. The resulting network is equivalent to a CLG, so we can calibrate it using
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Figure 7.4: Incorporating softmax CPDs before and after the evidence

Lauritzen’s algorithm, resulting in probability distributions in each clique. Finally,
we insert the remaining CD CPDs and re-calibrate the tree. Note that the cliques
in our tree were designed to accomodate this insertion operation. Since we now have
integrable distributions, we can perform the approximation.

In our example, we will first calibrate the clique tree without the CPD for A,
obtaining a distribution over Y. We can then introduce A’s CPD into the clique,
using the distribution over Y as our integration distribution to compute the necessary
expectations. Thus, we ensure that we have a well defined distribution in every clique
in the tree.

This approach raises the following question: Can we always use the distribution
in some clique in the tree as our integration distribution? Unfortunately, there are
several reasons why the use of this distribution is an approximation which can lead

to errors. We now discuss each of these, and show how to correct them.

Conditioning on the evidence

In Lauritzen’s algorithm it is possible to condition the distribution on the evidence

during any part of the algorithm. However, once we need to deal with non-linear CPDs
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this is no longer true. Consider, for example, the network X — Y — A, and assume
that X is observed. The minimal cliques are (X, Y') and (Y, A). Following our current
algorithm, we would first enter the CPDs P(X) and P(Y | X) and the calibrate the
tree. We would then insert the CPD P(A | Y) and calibrate the tree, approximating
the distribution as a mixture of Gaussians. If we now enter the observed evidence
X, we would be incorporating it into an approximate distribution rather than the
true one, potentially leading to a sub-optimal approximation. Figure 7.4 shows an
example of this phenomenon, where the approximation obtained by first integrating
the CD CPD and then conditioning on the evidence is a sub-optimal approximation.
The optimal approximation uses the posterior over Y directly as our integration
distribution.

Our solution to this problem is straightforward: We not only ensure that each
clique has a Gaussian distribution in it, we ensure that it has the Gaussian distribution
that accounts for the evidence. Thus, we incorporate the evidence and propagate it
before entering the CD CPDs. We note that only evidence about continuous variables
can cause difficulties with our approximation: Evidence over discrete variables merely
changes the probabilities of the mixture components and can thus be incorporated

either before or after the integration.

Restricting the integration cliques

A more subtle problem with our choice of integration distribution relates to the use
of collapsing within Lauritzen’s algorithm. Consider a network A — X — Y — B,
and assume that the clique tree has the cliques (X, Y, B) and (A, X, B) (note that the
tree (A, X), (X,Y), (Y, B) is inconsistent with strong triangulation). According to our
current algorithm, we calibrate the clique tree with the CPDs for A, X, and Y, and
then insert the CPD P(B | Y) into the clique (X, Y, B). However, the distribution in
this clique is not the correct prior distribution over Y. The correct prior distribution
of Y has two modes (one for every value of A); but, as A does not appear in the
clique, Lauritzen’s algorithm collapses the two modes into a single Gaussian, losing
its bimodal nature. Although Lemma 3.14 ensures that this approximation can be

used without introducing new errors if the functions are linear, it does not hold for
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non-linear functions. Thus, since the CPD P(B | Y) is not linear, we may not get
the optimal approximation for the first two moments. Figure 7.5 shows an example,
where our approximation is worse when we use the collapsed distribution for Y as
the integration distribution.

Once again, the solution is to enter the CD CPD into a clique where the integration
distribution over the continuous parents is correct. Let X be the variables of some
maximal continuous connected component. Denote by CD(X) C X all the variables
in X (continuous or discrete) that participate in some CD CPD. As in Definition 3.17,
let DN(X) be the discrete neighbors of X. As we discussed, CD(X) will have one
mode for every assignment to DN(X'). Hence, if we want to represent the exact multi-
modal distribution for CD(X), it is necessary and sufficient to have a clique containing
the variables CD(X ) U DN(X). Of course, this requirement could result in a larger
clique tree; however, the overhead is not large. As we discussed in Section 3.3.5,
DN(X) must already be in some clique in any strongly rooted tree. Thus, at worst, we
only add some continuous variables to some of the cliques. Since the representation of

canonical forms (and multivariate Gaussians) is quadratic in the number of variables,
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the size of the tree can only grow by a polynomial factor at worst.

Note that this modification to the clique tree is necessary only if we want to
guarantee the optimal approximation. The algorithm remains well defined if we use
an approximate integration distribution, only the quality of our approximation can
degrade. Therefore, we can use a clique tree where the clique that contains CD(X)
contains only a subset of the variables in DN(X'). Thus, we obtain a spectrum of

approximations, with a tradeoff between complexity and accuracy.

Simultaneous insertion of CD CPDs

The final problem arises when there is more than one CD CPD. Most simply, we can
insert each CD CPD sequentially. We insert each CD CPD, approximate the resulting
joint distribution as a mixture of Gaussians, and proceed to use that mixture as the
basis for inserting the next CD CPD. Unfortunately, this approach has a problem: The
integration distribution used for the CD CPDs inserted later is only an approximation

to the correct non-Gaussian distribution resulting from the insertion of the earlier CD

CPDs.
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The solution to the problem is to integrate all the CD CPDs in the same continu-
ous connected component in one operation. In Figure 7.6, we show the difference on
the network A «+— X — Y — B. We tried inserting both softmax CPDs into the clique
containing X and Y together, and separately. We experimented both with step-like
transitions (“sharp” sigmoids), and smoother transitions. The latter allows for a bet-
ter approximation as a Gaussian, and therefore less error by doing the approximation
step by step. This difference is clearly manifested in the figure.

While the idea of joint integration seems expensive, we note that the relevant
CPDs must already be in the same clique (with their discrete neighbors), so we do
not increase the size of the tree. However, we do pay the price of computing integrals
in higher dimensions. We can reduce this cost by integrating only some of the CD
CPDs together. Again, we get a spectrum of approximations, with a tradeoff between
complexity and accuracy: If we want to avoid the high dimensional integration, we
can approximate it by inserting the CPDs separately or in small groups. However, it
is also possible to use the exact monomials methods discussed in Section 6.2.3, and
get efficient integration rules even in high dimensions.

The full algorithm for inference in augmented CLGs is presented in Figure 7.7.
We are given a hybrid Bayesian network B, evidence e and a query @ and wish to
compute P(Q,e). Note that the CD CPDs should be integrated together to achieve

the best approximation but can also be integrated separately as discussed above.

7.2.4 In-clique Integration

Having defined the overall structure of the algorithm, it remains only to discuss the
integration process within the cliques. Since our integrals still have the form of a
product between a Gaussian and some other function we can use the integration
techniques discussed in Chapter 6. As always, it is desirable to reduce the dimen-
sion of the integrals involved if possible: doing so will speed up the computation or
alternatively will let us achieve better accuracy without spending more time on the
computation of the integral. Reducing the dimension of the integrals seems to have

a special importance in our case, as the cliques in our algorithm often contain many
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Extending Lauritzen’s algorithm to augmented CLGs
1. Comnstruct a strongly rooted tree s.t. for all maximal connected

components X;, DN(X,;)UCD(X;) belong to some clique C;

Insert all CPDs except for softmax CPDs

Insert the (continuous and discrete) evidence

Calibrate the tree using Lauritzen’s algorithm

Instantiate the CD CPDs with the continuous evidence

For each maximal connected component X,
7. Find all softmax CPDs Si,...,5, that can go into (;
8. Imsert S5i,..,5, into (; using multi-dimensional integration
9. Re-calibrate the tree

10. Return the distribution over @

D Ok W N

Figure 7.7: Inference algorithm for augmented CLGs

continuous variables (particularly if we keep a clique which contains an entire contin-
uous connected component). Fortunately, we can use the properties of our augmented
CLGs to significantly reduce the computational burden.

Our first observation exploits the fact that we are dealing with Gaussian distribu-
tions by using a similar trick to the one discussed in Section 6.2.5. Assume that the
continuous variables can be partitioned into the sets Y and Z where only variables
from Y appear in CD CPDs. Recall that we can represent the multivariate Gaussian
over the variables {Y, Z} as a linear Gaussian network with the structure Y — Z,
i.e., there are no edges from a variable in Z to a variable in Y. The CD CPDs change
the distribution over Y, and since every variable in Z depends linearly on the vari-
ables in Y, Lemma 3.14 ensures that having the first two moments for Y is enough to
infer the first two moments for Z without any further numerical integration. Thus,
to incorporate the variable A into the CPD, the required integration dimension is
exactly the number of continuous parents of A.

Interestingly, we can substantially improve even on this idea, in the case where
the CPD of A is a softmax. The softmax for a node A is a soft threshold defined via a
set of linear functions f, over the continuous parents Y of A; we have one function for
each value a of A, although we can eliminate one of them as discussed in Section 7.1.

Thus, from now on we shall assume that f,, = 0 (where m = |A|) and we are left
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with m — 1 functions {f1,..., fm_1}-

We can now define a set of new variables 7, which are a (deterministic) linear
function of the variables Y: Z, = f,(Y) = w(()a) +>7 wl(a)Yl. We can then reinterpret
the softmax as a CPD whose parents are the variables Z,. Note that, as the Z,’s are
linear functions of the parents Y, a Gaussian distribution over Y induces a Gaussian
distribution over the Z,’s, and we can therefore use the distribution over the Z,’s
as our integration distribution. Since we can represent the variables Y as a linear
combination of the Z,’s, we can once again apply Lemma 3.14 and find the correct
distribution over Y (up to the first two moments). The dimension of the integrals we
have to perform is at most |A| — 1, where |A| is the number of values of A. Indeed,
we have our choice of methods, so we can perform the insertion of A into the clique
using an integration dimension which is min(|A| — 1,|Y]), where |Y'| is the number
of continuous parents of A. When dealing with binary variables, this approach can
result in dramatic savings.

More generally, we can use any set of variables Z which are linear combinations
of Y such that every f,(Y) can be represented as a linear combination of Z, and
the integration dimension would then be |Z]|. In particular we can choose Z =Y
or Z ={f1,..., fm-1} (recall that f,, = 0) and therefore we can choose |Z| to be
min(|A| — 1,]Y|). However, if it is possible to represent some of the functions f;
as linear combinations of the others, i.e., they represent vectors which are linearly
dependent, then we may find Z with even a smaller dimension.

As an example, assume that m = |A| =4 and k = |Y'| = 4. Using the notation of

Equation 7.1 we have the following set of parameters (where w!) = (wgi), e wl(j)))
wi = 2,1,6,2)
wi? =2 1,-3,4,0)

w) = (
w?® = (

wi? = —2 w® = (2,54, -2)
w = (1,-1,3,-2)
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As a first step, we make sure that f; = 0 by subtracting w§4) from all the coeffi-
cients, i.e., dividing the exponents by exp(w(()4) + 35 u’§4)Yj)- We get:

wi =2 w) = (1,2,3,4)
wi? =1 w® = (0,-2,1,2)
wi? = -3 w® = (1,6,1,0)
wi? =0 w® = (0,0,0,0)

Note that this set of parameters represent exactly the same softmax distribution
as the original set. In principle we can now define Z = {7, Z5, Z3} for the 3 non-
zero functions. However, we can use the fact that w® = w® — 2w® and define
Z = {7, Z,}, with the third function being defined as Z; — 27,.

Thus, define 77 = Y7 + 2Y, + 3Y3 + 4Y,; and Z, = —2Y, + Y3 + 2Y,. Using these
variables we can define the softmax CPD with the parents Z;, Z; and a new set of

parameters that still represents the same distribution:

wy ' = w® = (1,0)
w? =1 w® = (0,1)
wl) = -3 w® = (1,-2)
wi =0 w® = (0,0)

For example,

exp(—3+ 71 — 273)
exp(2+ Z1) +exp(l + Z2) + exp(—3 + 71 —27,) + 1

P(A=as| Z) =

The integrals are now defined over Z; and Z; only. We thus reduced the dimension
of the integration from 4 to 2.

Of course, one can still construct networks where the integration dimension is
very large: networks where the discrete variable A has many values and continuous
parents, or where there are many CD CPDs that all need to be integrated into the
same clique. In these cases, we can choose to use the exact monomials method with

a relatively low precision rule.
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7.2.5 Using Conditional Forms

As discussed in Section 3.2.3, canonical forms suffer from some well known numerical
instabilities which our extension to Lauritzen’s algorithm would inherit. Lauritzen
and Jensen’s modified algorithm [L.JO1] improves upon the original one by using con-
ditional forms, which are more numerically stable and can incorporate deterministic
CPDs.

To enjoy the benefit of numerical stability, we can adapt our algorithm to work
with conditional forms. In this version of Lauritzen’s algorithm, the clique poten-
tials are conditional Gaussians except for the strong root, where the potential is a
multivariate Gaussian. All we need to do is to ensure that CD CPDs are inserted in
a clique which is a strong root, guaranteeing it has an integrable distribution. But
using the algorithm in Figure 7.7 we already have this property, as it is forced in line
1.

Note that even if we have a tree in which the strong root does not contain the
continuous variables from the CD CPDs (in which case the algorithm is still well
defined for canonical forms, although it is not guaranteed to give the correct first
two moments), we can change the clique tree using PUSH operations [[.JO1]. These
operations “push” continuous variables into the strong root, and thus can be used to
ensure that the property in line 1 of the algorithm holds. The only possible conse-
quence is the addition of continuous variables to some cliques. Therefore, the added

complexity in the worst case is polynomial in the number of continuous variables.

7.2.6 Analysis

We now show that our algorithm is “exact”, up to errors caused by numerical integra-
tion. We use “exact” in the same sense used in Lauritzen’s algorithm: It computes the
correct distribution over the discrete nodes, and the correct first and second moments

for the continuous ones.

Theorem 7.1 Let B be some augmented CLG. Let Q be a query such that Q C
C where C is some clique in the tree and let e be some evidence. The algorithm

in Figure 7.7 compules a distribution P(Q,e) which is exact for discrete variables
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in Q and has the correct first two moments for continuous variables in Q, up to

inaccuracies caused by numerical integration.

Proof: We start by showing that the algorithm is exact when the clique tree contains
just one clique. The first step involves inserting discrete and (conditional) linear CPDs
into the clique tree. Since all the variables are in one clique and there is no need for
collapsing, we get that the clique potential represents the exact product of the CPDs
that were inserted. Note that the product of the clique potential and the CD CPDs
is the exact prior distribution.

The next step involves incorporating the evidence. As we saw in Section 2.3,
the discrete evidence can be viewed as extra factors that are multiplied into the
tree (the entry in the factor corresponding to the evidence is 1 and the rest are 0).
Multiplying these factors into the tree is an exact operation, and does not introduce
any inaccuracies. We now consider the continuous evidence. Setting the evidence is
equivalent to setting the relevant values in every function of the product of the tree
and the CD CPDs. In the clique potential, we simply condition our canonical factors
or our conditional factors on the evidence. In the CD CPDs we are guaranteed that
any continuous evidence variables that appear in the CPD must be parents; Thus, we
can simply set their value and get a new conditional distribution not involving them,
which is either a CD CPD or just a discrete factor.

The last step is the insertion of the CD CPDs into the clique potential. Had
we been able to represent the answer exactly, then the clique potential would have
been the exact posterior distribution. In practice, the true posterior distribution is
a mixture of non Gaussians, and we approximate each of the mixture components
as a Gaussian. Thus, the third step produces the correct first two moments, up to
inaccuracies caused by numerical integration.

We now remove the assumption of a single clique in our tree by assuming that
we have some general strongly rooted tree. Let C' be a clique as defined in line
1 of the algorithm in Figure 7.7. Consider the network B’ that we get from B by
removing all the CD CPDs. B’ is a CLG and our clique is a strong root for B’. Note
that C' contains all the discrete neighbors of a maximal connected components, and

therefore can represent the exact distribution for its continuous variables without
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collapsing. From that, and from Theorem 3.13, we know that after line 4 of the
algorithm the distribution in C' represents the correct posterior distribution for B’
over the variables in . Thus, similarly to the single node case, when we multiply
C' by the CD CPDs using numerical integration, we get the correct distribution over
the discrete variables and the correct first two moments for the continuous variables,
up to inaccuracies caused by numerical integration.

We now perform a downward pass in the tree, i.e., we send messages from C'
outward. The proof that we get the correct first two moments in the downward pass
(up to numerical integration inaccuracies) in some arbitrary clique V' is similar to the
proof in Theorem 3.13. Again, we use induction on the length of the path between
C'" and V. For C itself we already know that we have the correct marginal. For
some other node V', we define W to be the first node on the path from V to €' and
define S to be the sepset between V and W. The induction hypothesis is that the
canonical factor in W represents the correct discrete distribution and the correct first
two moments (up to numerical integration errors).

Using the same idea as the proof of Theorem 3.13, we first use Equation 3.12 to
show that variables in V' that belong to S have the same (weak) marginal as they have
in W. Since these variables have the correct weak marginal in W up to numerical
integration errors, the same also holds in V. Thus, it is left to prove the claim for
variables in V' — S. Because of strong triangulation, all the variables in V' — S must
be continuous (unless all the variables in S are discrete, in which case the message
passing operation is exact and the claim becomes trivial). We now observe that
because of the way the tree was built in line 1 of Figure 7.7, all the the continuous
variables in V' that appear in some CD CPD must be in the clique C'. Thus, none of
the variables in V' — S can appear in a CD CPD, and therefore the variables in V — 5
must have a linear dependency on the variables in S. Since the dependency is linear,
Lemma 3.14 applies and therefore we have the correct first two moments for all the

variables in V' (up to numerical integration inaccuracies). 11

We point out that sometimes the numerical integration errors can be magnified by
unlikely discrete evidence. Recall that in order to get the conditional distribution we

must renormalize the discrete weights to sum up to 1, and we do so by dividing by the
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Figure 7.8: Experimental results: error caused by inserting CD CPDs separately (a)
KL-divergence for discrete variables (b) KL-divergence for continuous variables

likelihood of the evidence. If we divide by a small number, even slight errors in our
approximation can become significant. It is possible to reduce the effect of unlikely
evidence by a two-step process: We run our algorithm to obtain a first estimate of
the posterior over the discrete variables and then rerun it, using more precise (and
more expensive) integration rules for mixture components that are more likely in the

posterior distribution.

7.2.7 Experimental Results

Perhaps the most inconvenient part about our extension to Lauritzen’s algorithm is
the need to perform the integration of CD CPDs simultaneously in order to get the
optimal approximation. It is therefore interesting to examine how important it to
insert the CD CPDs together versus one at a time.

We experimented with the network A — X — Y — B used in Figure 7.6.
In Figure 7.8 we show the KL-divergence, for both the discrete and the continuous
variables, between the distributions obtained by inserting the softmax CPDs together
versus one at a time. The error depends on the strength of the correlation between

X and Y, so we considered different correlation values ranging from 0 to 1. We also



CHAPTER 7. AUGMENTED CLGS 159

Waste Filter Burning
Type State Regime

| ¢/¢
Metal i coz
!: .Dust co2
Emission Sensor

ice
¢ Penetrabilit

Metal Dust
Sensor Sensor

(a) (b)
Figure 7.9: Augmented CLGs (a) The original Crop network (b) The extended Emis-

sion network (c¢) The extended Crop network

changed the parameters of the softmax CPDs, allowing for smooth transitions in one
case (a flat sigmoid) and step-like transitions in another case. We see that the error
is larger when there is a strong correlation between variables influenced by different
CD CPDs, and when the sigmoids are sharp, making the Gaussian approximation
worse. Interestingly, however, the accuracy is very high in all cases; Thus, even if we
insert CD CPDs separately, with the associated computational benefits, we often get
very accurate results.

We compared the performance of our algorithm to that of others on examples
that have been considered by other researchers. We first tested our algorithm on
the Crop network [BKRK97] shown in Figure 7.9(a). We compared our results with
the results reported by Murphy [Mur99] and with running Gibbs sampling using
BUGS [GTS94]. It turns out that Murphy’s variational algorithm performs quite
poorly when the posterior distribution is multi-modal, achieving L1-errors over the
binary discrete variables of 0.28-0.38. On the other hand, both our algorithm and
BUGS performed very well on this simple network, giving the correct result almost
instantaneously. We also note that Wiegerinck [Wie00] reports good results for this
network using his variational approach.

To test the algorithm on a larger network, we used the Emission network [Lau92],

which models the emission of heavy metals from a waste incinerator. The original
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network is a CLG. We augmented it with three extra discrete binary variables as
shown in Figure 7.9(b). The additional variables correspond to various emission
sensors and each has a CD CPD: a dust sensor (wg = —3,w; = 1), a CO3 sensor
(wo = 6,w; = 3) and a metal emission sensor (wg = —5.6,w; = 2).

We experimented with various queries using our algorithm and compared it to a
few runs of Gibbs sampling using BUGS. We found that BUGS seemed unstable and
produced results which differed significantly from ours. As an example, we queried
for the distribution over the emission of dust after setting both the metal emission
sensor and the CO; sensor to High. Our algorithm returned a mean of 3.419 and a
variance of 1.007. BUGS converged after about 500,000 samples to a mean of 3.31 and
a variance of 0.31, which did not change substantially even after 1,000,000 samples.

To understand the discrepancy, we used likelihood weighting on the same query.
After 500,000 samples, the estimated mean was 3.418 and the estimated variance was
0.999 which agree quite closely with the results produced by our algorithm.? For our
algorithm, we were able to converge using Gaussian QQuadrature as a numerical inte-
gration technique with only 3 points per dimension, and with the highest integration
dimension being 2. Hence, our algorithm was almost instantaneous, and was much
faster than both BUGS and likelihood weighting.

As a final example, we tried our algorithm with a network containing non-softmax
CD CPDs. We augmented the crop network with three more variables, as shown
in Figure 7.9(c). One of them is the Profit variable, which depends on a product
of the Crop and Price variables. The parameters of the extended network appear

in Table 7.1, where

i
fi+1+ 1,
1

fi+1+ 1,

2We further investigated this discrepancy and discovered that BUGS also returns answers that
disagree with those appearing in [Lau92] even for the original Emission network without the CD
CPDs. For example the standard deviation for DustEmission converged to 0.85 instead of 0.77 (the
mean was correct).

P(Profit=Negative) =

P(Profit=Fven) =
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Node Distribution
Policy (0.5, 0.5)
Rain (0.35,0.6,0.05)
Subsidize | Drought  Liberal (0.4, 0.6)
Drought  Conservative (0.3, 0.7)
Average  lLiberal (0.95, 0.05)
Average  Conservative  (0.95, 0.05)
Floods Liberal (0.5, 0.5)
Floods Conservative (0.2, 0.8)
Crop Drought N (3,0.5)
Average N (5,1)
Floods N (2,0.25)
Price Yes N -C,1)
No N(12 - C,1)
Buy wo=—1,wy =7
Profit Sub=Yes Buy=Yes f;zexp(lS 2P-PC)
fo=exp(3P4+PC-23)
Sub=Yes Buy=No fi=exp(13-2P)
fo=exp(3P-23)
Sub=No  Buy=Yes fi=exp(13-PC)
fo=exp(PC-23)
Sub=No  Buy=No fi=exp(13)
Jo=exp(-23)
Table 7.1: Parameters for the augmented Crop network

Figure 7.10: Experimental results: Comparison with Likelihood Weighting

\ —-—- LWerror on Price
\ ——— LW error on Rain | Profit=Even

0.001 Alg. error on Rain | Profit=Even

0.000
0.0 1.0 2.0 3.0 4.0 5.0

Time (seconds)



CHAPTER 7. AUGMENTED CLGS 162

o

P(Profit=Positive) = ——————
fi+1+ 1,

Having experienced problems using BUGS, we compared our results to likelihood
weighting. We tested two scenarios, one without evidence, and one with the evidence
Profit=Fven, and compared the accuracy of both algorithms on various queries. We
used numerical integration with 150 points per dimension as our ground truth. We
ran LW and our algorithm for the same amount of time, and then measured the
KL-divergence between the “ground truth” and the results. For LW, we averaged
over 10-500 runs (for short runs, where the number of samples was smaller and the
variance larger, we averaged our results over a larger number of runs). Figure 7.10
shows the results for the KlL-error for Price with no evidence and for Rain given
Profit=Fven. Only three lines are visible: the KL-error of our algorithm in the case
of no evidence is too close to zero to be visible in the graph. It is clear that our
algorithm converges much faster than LW, especially when we have evidence. This
is to be expected — as we discussed, sampling methods can take a lot of time to

converge, and the performance of LW deteriorates when there is evidence.

7.3 Enumeration Approach

The main problem with the approach of generalizing Lauritzen’s algorithm to aug-
mented CLGs is that, as we saw in Section 3.3.5, Lauritzen’s algorithm does not scale
up well, even in the case of regular CL.Gs. Recall from Chapter 5 that we dealt with
this problem by using the enumeration algorithm, and we saw in Section 6.5 how to
extend this algorithm to non-linear CPDs involving continuous variables. One could
hope that we could use similar ideas for augmented CLGs as well — after all the
resulting distribution of augmented CLGs is again a mixture distribution where we
can approximate every mixture component as a Gaussian.

Unfortunately, enumerating the discrete hypotheses by their prior is a much harder
task in augmented CLGs than in CLGs. In fact, finding just the most likely discrete
instantiation in polytree augmented CLGs is already NP-hard. Intuitively, the reason

is that once some of the discrete variables depend on continuous variables we can no
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Figure 7.11: (a) Augmented CLG used in the reduction for Theorem 7.2 (b) Distri-

butions of P(B;|X,) and P(B;|X,) in the reduction
longer ignore the continuous parts of the network for the purposes of enumeration by

prior, and we have to pay the price in terms of significant added complexity.

Theorem 7.2 The following problem is NP-hard:
e Instance: A polytree augmented CLG T with binary discrete variables.

e Question: What is the most likely assignment of the discrete variables in T ?

Proof: The reduction is similar to the one used in Theorem 4.1. Again, we show a

reduction from the subset sum problem where we have a set of non-negative integers
,Sn}, and another positive integer L and we are asked whether there

S = {s1, 82, ...
exists a subset 5" C S such that 3, co = L
We reduce the problem to an augmented CL.G polytree with the structure shown
in Figure 7.11(a). Before going into the details, we explain the general idea of the
proof. The variables A; and X; have the same distribution as in Theorem 4.1. The
variables A; represent a “selector” function that determines whether s; € S or not.
Every assignment of the A; variables induces a Gaussian for X,, and therefore X, is
a mixture of Gaussians with a mode at L iff there exists an S’ such that 3, .o = L.

We use the variables By and B; as noisy indicators for the value of X,,: By is a
noisy indicator for X,, > L — 0.5 and Bj is a noisy indicator for X,, < L + 0.5. Note
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that By = By = 1 is likely only when X,, = L, and thus B; = B, = 1 will be a part of
a likely assignment iff there exists a solution to the subset sum problem. The nodes
C; and C; will be used to make sure that if there is a solution to the subset sum
problem, then the assignment with B; = By = 1 is not only a likely assignment, but
the most likely one. We will therefore show that there exists an S’ that is a solution
to the subset sum problem iff the most likely discrete assignment in the augmented
CLG has By = B, = 1.

More formally, we define the CPDs of the variables. The discrete variables are all
binary. The variables A; have a uniform distribution, i.e., P(A; = 1) = % For the

continuous variables:
P(Xl | Al) == {

_ _1 N .
where 0 = et For:=2,3,...,n:

N(Xi_l,oj) AZ =0

P(X; | A, X)) = { N(Xioy +s0,0%) A;j=1

The CPDs for By and By are logistic CPDs shown in Figure 7.11(b). Note again
that By and B, are likely to both be 1 only when X,, = L.

P(By =1|X, = 2,) =

1+ exp (—a (;z:n — L+ %))
1

Cresp(a (e L 1)

P(By=1|X, = ,) =

Finally, we have the CPDs for C; where : = 1, 2:

P(C; =1|B;=0) =
P(C;=1|B;=1) =

We will set the values of our constants as ¢ = 12 and o = 24 — these values
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will become clear later in the proof. For now we just assume that both ¢ and « are
positive.

First, let us assume that there exists an S’ which is a solution to the subset sum
problem. We must show that By = By =1 is a part of the most likely discrete assign-
ment. Let @’ = (a1, as,...,a,) be some assignment to (A, A, ..., A,) corresponding
to S’ i.e., a; = 1 iff s; € S’. Note that for similar arguments to the ones used in
Theorem 4.1

P(X,|a) =N (X,; L,no?) = N <Xn;L, 61—2) (7.8)

Consider the assignment (a’, By =1,B; =1,C; =1,C; = 1), which we will de-

note as (@', by, by, ¢1,¢2). We have:

P(a', 61,62,61,02) = P(a/)P(bl,bg | a')P(cl |a/,bl,bg)P(c2 | a’,bl,bg,cl)
= 2_nP(bl,bQ | a/) -1-1

Thus, we need to find P(by, by | @’). Note that By and B; are independent given

x,, and therefore:
P(by, by | a) :/ P(by,by | @', 2,) P2, | @)day,
1
= [ Pl 2 P(bs | )N (Xn;L,—Q) d.,
—00 C

/oo N (205 L, %)
oo {1 +exp (—a (2, — L+ 1)) {1 +exp (a (2, — L - 1)))

dz,

- /L+§ N(xn;L’c%) d
Tn
R (Y CY (i S TR (Y G
1 2 L+l 1
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where we use the notation ®(¢) = [*__ A (x;0,1)dz. For our choices of a = 24 and
¢ =12 we get that P(b1,by | @) = 0.9951 - 0.9974 = 0.9925, and therefore

P(CI,/, bl, bQ,Cl,CQ) > 0.99 - 27"

Consider any other assignment, where B; = 0 or By = 0. For any such assignment

we must have P(C; | By = 0) = % or P(Cy | B, = 0) = %, and therefore for the

2
likelihood of such an assignment we have:

P(Ay,..., Ap, B1, By, C1,Cy) < P(Ay, ..., A)P(Cy | BI)P(Cy | By) < = - 27"

DO | =

Since 0.99-27" > %
B1 — B2 — 1

Conversly, we must show that if there does not exist a solution to the subset sum

-27" 1t must be the case that the most likely assignment has

problem then the most likely assignment has By = 0 or By = 0. Consider some
assignment (a, by, by, C1,Cs) involving By = By = 1 where @ = (a1,...,a,). Let

M = S(a) = Y;a;s; # L. Assume first that M < L. Then:
P(a’761762701702> S P(G’)P(bl | CL) = Z_HP(bl | CL)
Using the fact that M — L < —1 we get:

P(by | a) = /°° P(by | @) P2y | @)da,

— 00

= /M+% ! P(z, | a)dz, +
-0 1+ exp (—a (:z:n — L+ %))
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/Mﬁ ! Plx, | @)da, +
-0 ] 4 exp (—oz(M—L—I—%))

oo 1
N (:L‘n; M, —2) dz.,
c
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1

m + O(—c/4)

Again, using our choices for a and ¢ we get that the probability of any assignment
for which S(a) < L and B; = 1 is at most 0.0038 - 2=". To realize this is not the
most likely assignment we only need to remember that no matter what assignment a
we choose there are 16 combinations of By, By, Cq,C3y and since Y. P(By, Bz, C1,Cy |
a) = 1 there must be at least one combination of By = b}, By = b,,Cy = ¢|,Cy = ¢
for which P(b], b}, ¢}, ¢, | @) > &. Since for this combination P(a,b;,b},c},c}) > 1=
27" > 0.0038-27" we get that the most likely assignment does not have By = By = 1.

The case for M > L is similar where we use By instead of B;. I

Thus, enumeration by prior can be hard even for simple augmented CLGs, and
in general we cannot use i1t as a part of an efficient approximate inference algorithm.
However, this does not imply that one cannot use some different version of the enu-
meration algorithm for augmented CLGs. After all, enumeration by prior is nothing
more than a heuristic that tries to achieve an enumeration order that is close to the
order induced by the posterior distribution. It is possible to come up with other
heuristics that also try to approximate the order induced by the posterior distribu-
tion, but are tractable even for augmented CLGs. We leave the problem of finding

such tractable heuristics as an open issue which we do not address in this thesis.



Chapter 8
Dynamic Bayesian Networks

So far, we have considered only static environments, i.e., environments that do not
evolve over time. However to perform many tasks, including fault diagnosis, we need
to model stochastic processes, where the various variables have different values over
time. In this chapter we discuss how to extend Bayesian networks to the dynamic case
and some of the important inference algorithms. Sections 8.1, 8.2, 8.3, 8.5 and 8.7,

are based on a draft of the textbook of Koller & Friedman.

8.1 Modeling Stochastic Processes

Given some stochastic process, it is convenient to view its state in terms of a snapshot,
which encodes the process state at some given instant. Each state is represented as
usual: an assignment of values to some set of random variables. We denote the
random variables that represent the state at time ¢ as Xl(t), .., XD (and accordingly
x® represents the entire state at time ).

Our first representational simplification is to model time as proceeding in discrete
regularly-scheduled time slices. That is, instead of viewing time as continuous, we
assume that ¢ can only take on integer values; thus, X is the state at the initial
time slice, X is the state after a single time increment, and so on. This assumption

is often consistent with the way sensors are used in practice, where the value of the

sensor is sampled at some constant frequency — this frequency is a natural candidate
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to represent the discrete time units in our model.

Using this assumption, we can represent the process using a probability distri-
bution over X, XM X . This can be done by directly representing the dis-
tribution P(X) and for ¢ > 0 representing the conditional distribution P(X |
x (0
forward, as the state at time ¢ depends only on the history of the system before time

t.

,...,X(t_l)). Note that this representation encodes the fact that time moves

We now make a second simplifying assumption. Instead of letting the X ® depend
on the entire history of the system from time step 0 all the way to time step ¢t — 1
we assume that the dependency goes back only k time steps into the past, i.e., we
assume

P(X®O | x©  x0) = px®| xt-H _ x0-1)

)

In this thesis, we will almost always use the strongest form of this assumption in

which k& = 1. This special case is called the Markov assumption.

Definition 8.1 We say that a dynamic system over the variables X salisfies the
Markov assumption if, for all t > 0,

p(X(t) | X(O),...,X(t_l)) — p(X(t) | X(t—l))

t+1)

Another way to state the Markov assumption is that X! is independent of

x

present. Like any conditional independence assumption, the Markov assumption may

o, XD given X® ie. the future is independent of the past given the

be reasonable or not. For example, assume that we are tracking a moving object and
our only variable is its location. The location at time ¢ + 1 is not independent of
the history given the location at time ¢ because we need to know in which direction
the object i1s moving and at what velocity. We can, however, make the Markov
assumption more realistic by adding these variables to our model. We can make our
model even more accurate by also adding variables that represent the acceleration
of the object. In general we can transform any model in which P(X(t)) depends
on XU=F XY for some fixed k into a Markov model by treating the variables
X(t—k)

..., X2 a5 a part of the system state, i.e., the system state has a “memory”
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Figure 8.1: (a) A highly simplified 2-TBN for monitoring a vehicle. (b) The unrolled
DBN for three time slices

of £ — 1 time slices into the past.
Since the process is unbounded, we still need to represent infinitely many condi-
tional probabilities P(X(t) | X(t_l)). Therefore, we usually make one last simplifying

assumption:

Definition 8.2 We say that a Markovian process is time-invariant (or homogeneous
or stationary ) if P(X(H'l) | X(t)) is the same for all t. In this case, we represent the
model using a transition model P(X' | X)), where X represents the variables al the

current time slice and X' represents the variables at the next one.

8.2 Definition of Dynamic Bayesian Networks

Under the Markov and the stationarity assumptions, the key to representing stochastic
dynamic processes is the representation of the transition model P(X' | X)), which

is a conditional probability distribution. We can represent such a model using a

2-time-slice Bayesian network (2-TBN).

Definition 8.3 A 2-time-slice Bayesian network (2-TBN) for a process whose state
variables are X is a Bayesian network fragment defined as follows. The graph struc-

ture is a directed acyclic graph whose nodes are X U X', where nodes in X have no

parents. The nodes in X' are annotated with CPDs, P(X' | Par(X')). The 2-TBN
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represents a conditional distribution P(X'| X) via the chain rule for 2-TBNs:

PX' | X) = [T P(X! | Par( X)),
i=1

Figure 8.1(a) shows a very simple example of a 2-TBN for a vehicle monitoring
application. The 2-TBN models the behavior of the vehicle, the environment and an
on-board camera that tries to estimate the vehicle’s position (in order to keep it in
its lane).

Based on the stationarity property, this model defines the probability distribution
P(X(Hl) | X(t)) for any ¢. If we put in our distribution over the initial states, it
defines the distribution over arbitrarily long sequences of time slices resulting in the

Dynamic Bayesian network model [DK89]:

Definition 8.4 A Dynamic Bayesian Network (DBN) is a pair (Bo, B_), where By
is a Bayesian network over X9, representing the initial distribution over states, and
B_ is a 2-TBN for the process. For any T, the distribution over X© . . XT) is
defined as:

PXO =0 XD = oM) = p (z0) [T P (X' = 2® | X = 2tD)

t=1

Given some desired window length, we can easily compose the initial Bayesian
network By and the transition network B_, to define a Bayesian network over all the
variables within that window. This process is called unrolling the DBN. For example,
Figure 8.1(b) shows a Bayesian network obtained by unrolling the DBN over three
time slices. The edges in the first time slice are the ones present in By (not shown
separately). The CPDs for XZ»(O) is the CPD of X; in By; the CPD for XZ»(t) fort >0
is copied from the CPD of X! in B_.

Note that some of the edges go between time slices, whereas others are between
nodes in the same time slice. Intuitively, this depends on the temporal aspect of the
interaction. If the effect is immediate — much shorter than the difference between
time slices — the influence is manifested (roughly) within a time slice. If the effect is

longer-term, the influence is manifested from one time slice to the next. In addition
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some of the arcs between time slices are called persistence arcs, representing the
tendency of certain variables (e.g., weather) to persist over time with high probability.

Just like a Bayes net, a DBN can encode sophisticated reasoning patterns as long
as they are made to be an explicit part of the model. For example, by explicitly
encoding sensor failure, we can reach the conclusion that the sensor has failed. Thus,
for example, if we get a reading that tells us something unexpected, e.g., the car
is suddenly 15 feet to the left of where we thought it was 0.1 seconds ago, then in
addition to considering the option that the car has suddenly teleported, we will also
consider the option that the sensor has simply failed. Note that the model only
considers options that are built into it. If we had no “sensor failure” node, and had
the sensor reading depend only on the current location, then there would be no way

to explain unlikely sensor readings except by the trajectory.

8.3 The Inference Task

Inference in DBNs can be usually categorized into one of four possible types of queries:
e Prediction: Given a probability distribution P(X(t)) over the current state,
compute the distribution over some set of variables at ¢’ > t.

¢ Monitoring (tracking): Given an observation o) that comes in at every time
slice t, maintain a distribution over the current state given the evidence seen so

far. This distribution
O (XO) L p (X0 | o0, of0)

is called the belief state at time t.

¢ Probability estimation: Given a sequence of observations o"), ..., o(T), what

is the distribution over each intermediate state X ).

¢ Explanation: Given an initial state and an observations sequence o), ..., 0",

what is the most likely sequence of states &(®, ..., () explaining the observa-

tions. This is the DBN version of the MPE problem from Section 2.5.1.
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Figure 8.2: (a) Unrolling the DBN where X are all the state variables (b) The

resulting clique tree

Prediction, monitoring and probability estimation can all be solved using clique
tree inference. We simply unroll the DBN and then perform inference on the resulting
Bayes net. For example, if we want to perform monitoring, we can unroll the DBN
up to time ¢, set all the observations oY), ... 0 and then use our inference engine
to find the probability distribution over X ).

The problem with this approach is that it might become very inefficient. Suppose
that we monitor the condition of some patient given information from various sensors.
The process can run for very long, and thus the unrolled DBN can become very large
(in our example, perhaps we monitor the patient at time intervals of 5 seconds and
we can do it over days). It seems wasteful and not practical to unroll the DBN and
perform the probabilistic inference from scratch for every ¢. Instead we would like to
use our results from time ¢ — 1 in order to speed up the computations at time t.

To understand the online version of the algorithm it is useful to think of the DBN
as having just one state variable and one observation variable (this special case of
DBNs is called Hidden Markov Models (HMMs) [Rab89]). Figure 8.2(a) shows an
example of such a DBN rolled over four time slices, and Figure 8.2(b) shows the
resulting clique tree.

It 1s easy to verify that the monitoring task is equivalent to an upstream pass in
the clique tree of Figure 8.2(b) (where upstream is the left to right pass): the message
passed from the { X1 X®} clique to the {X® X+ clique is the probability
of X and all of the downstream evidence o"),... o). To get the appropriate
conditional probability, we simply renormalize the factor.

The key point is that the messages in the clique tree are simply the (unnormal-

ized) belief state (X ®), leading to a simple on-line algorithm that avoids the full
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unrolling of the DBN for every time slice. Assume, by induction, that we have al-

1) based on ¢ and the evidence ot*1)

ready calculated . To compute ! , we
first propagate the state forward:
A1) ( X(t+1>) “fp ( XD | o0 70@))
= Y P (X(Hl) | X® o) .,o(t)) P (X(t) R ,o(t))
X (o)
= Y (X(Hl) | X(t)) o (X(t)) (8.1)
X(0)

where the simplification in the last step is due to the Markov assumption. Then, we

condition on the evidence o'*!) and using Bayes’ law we get:

D) (X(f“)) — (X(t+1) o™, .. -70(t+1))

P
P (oltF1) | XUH) o0, o0) p (XD | o0, o)

P (0(t+1) | X(t+1)) £(+1) ( X(t+1))
= P o™, o) (8:2)

Thus we can simply multiply 7(+D(XED) by P(ol+1) | X+D) and renormalize.
The process of computing ¢+ from () is often called filtering.

To solve the probability estimation task we need to calibrate the tree and find
the clique potentials for the various X, We can do this by our standard clique
tree algorithm, first doing an upstream pass and then doing a downstream pass. In
fact, this algorithm was independently developed in the HMM community before the
theory of clique trees was developed and was called the forward-backward algorithm
for obvious reasons.

In principle, these computations extend easily to general DBNs, with the only
difference being that the belief state is now defined as the joint distribution over all
the state variables, i.e., c,o(t)(X(t)). The key question when doing inference in DBNs
is how to represent this joint distribution. As we shall see in the next sections, the
answer to this question strongly depends on the type of DBN we are dealing with
(continuous, discrete or hybrid). However, no matter the type of the DBN, the belief
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state has an unfortunate property: In almost every DBN, after a relatively small
number of time slices the belief state has no conditional independence structure,
because usually all the variables are correlated through the past [Ast65].

As an example, consider the network of Figure 8.1 and consider the two variables
Terrain® and Pos'® which are a part of the belief state 0@ Intuitively it seems that
these variables are independent, but in fact they are not. The reason is that Terrain'®
is correlated with SensorFailure™™ (both are influenced by Termz'n(o)), which in turn
is correlated with Pos(") (both are parents of the observed variable SensedPos(l)).
Since Post!) is correlated with Pos® we get that Terrain(® is correlated with Pos®
where all the correlations come from past variables, i.e., Terrain'® and Pos'® are not

conditionally independent given any other variables in the time 2 belief state.

8.4 The Kalman Filter

Perhaps the most important type of DBNs is also the simplest type, where all the
variables are continuous and all the CPDs in By and B_. are linear CPDs. These
models, often called linear dynamic systems or simply linear systems, as well as
models based on them were investigated and used in many communities long before
DBNs were introduced. For example, tracking using linear systems is at the heart of
most target tracking systems [BSLKO1], e.g., tracking submarines using sonar data.
It is also widely used in computer vision, computer graphics, economics, and control.

The popularity of linear models comes from their simplicity, and more importantly
the simplicity of the tracking algorithm. The key property of linear systems is that
the belief state is always a multivariate Gaussian. We can show this by induction.
Since By is a linear Gaussian the initial belief state is indeed a Gaussian. Assume
now that ¢ is a Gaussian. When we propagate the belief state using Equation 8.1
we get that 7(+1) is also a Gaussian (since all the CPDs in B_, are linear). Similarly,
when we condition on the evidence all the CPDs are linear and therefore o+ is also
a Gaussian.

Thus the belief state can be kept in a compact representation of a mean vector and

a covariance matrix, whose representation size is only quadratic in the number of state
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variables. Propagating the belief state involves various manipulations of Gaussians
and linear Gaussians and can be done in time which is cubic in the number of state
variables. We therefore have a polynomial algorithm for monitoring linear systems.
This algorithm is known as the Kalman Filter (KF) [Kal60].

If the variables are continuous but the CPDs are not linear then in general the be-
lief state is not a Gaussian. The standard approach is to approximate the belief state
as a Gaussian using the ideas discussed in Chapter 6, i.e., using EKF or algorithms

based on numerical integration rules such as the the Unscented Filter.

8.5 Inference in Discrete DBNs

We now turn our attention to the representation of the belief state for discrete DBNs.
As we have seen at the end of Section 8.3, we cannot use the structure of the DBN to
simplify the representation of the belief state. Since the belief state has no conditional
independencies, there is no better way to represent it than a table with one number for
every possible combination of the discrete variables. Obviously this is not a practical
method for reasonably sized networks, i.e., more than 15-20 variables. Thus, exact
inference is usually not possible for DBNs, and we must resort to approximations.

In this section we concentrate on a specific type of approximation presented and
analyzed by Boyen and Koller [BK98]. The idea is that, although the belief state
is fully correlated, some of the correlations are weak and can be approximated as
independencies. Recall our example from Figure 8.1. Although, as we have seen,
the variables Terrain'® and Pos? are correlated, their correlation is weak, and it
may be reasonable to approximate it as an independence. As another example, con-
sider monitoring a physical system such as an engine. Although eventually all the
belief state variables become correlated it may make sense to approximate the state
of various subsystems (such as the gas subsystem and the cooling subsystem) as in-
dependent or alternatively as conditionally independent (e.g., given the state of the
electric subsystem).

We begin with the case where the belief state is approximated as a product of
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separate distributions, i.e., we approximate the various subsystems as fully indepen-
dent rather than conditionally independent. More precisely, we define a set of disjoint

clusters Y4,...,Y, such that X = U,;Y ;. We maintain an approximate belief state:

AO(X ) (X 0) = [T 40(v 1)
i=1
If we were to propagate this approximate belief state forward, all of our variables
would become correlated as before. Therefore, we perform the following process: at
each time ¢, we take (), propagate it forward to time ¢ + 1, and condition the result-
ing distribution on the evidence. The result is a new distribution 31 (note that we
do not get the correct belief state ¢t since we started with an approximate belief

state $p(). The distribution $**") may not be factored as a product of independent
(t+1)

marginals over the clusters Y; "/, but we can approximate it as one. This approx-

imation step is straightforward: We simply compute @(t+1)(Y§t+1)) for every ¢; the
product of these marginals is G0+,

We can use the clique tree algorithm to implement this process. We generate

a BN over X X+ where the distribution over X is ¢ this BN will have a
(t)

fully connected subgraph over the variables in each cluster Y, but no edges between

variables in different clusters Ygt) and Y;t). The connections between the two time
slices are as in the original 2-TBN. We then generate a clique tree where we make
sure that the variable in any cluster YZ(»HI) are together in at least one clique. We
set the evidence of the time ¢ + 1 variables and calibrate the clique tree. When the
calibration is complete, we can read 95(t+1)(Y(t+1)) from the appropriate cliques in the
tree. The marginals over the clusters give us G+,

We now consider the case where the Y's are overlapping, leading to conditional
independencies rather than simple direct independencies. The idea is to think of the
various Y;’s as the nodes in a clique tree and add the sepsets Z4,..., Z,_1 to the tree

(where Z; = Y;NY;11)." The belief state is therefore represented as the product of

1'We restrict ourselves to subsets Yis that can be used as cliques in a clique tree, i.e., they can
be arranged in a tree such that the running intersection property holds.
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the cliques, divided by the product of the sepsets:

[T, ¢Y(Y5)

50 x (1)) =
® = -1 -
X = ?(Z;)

The propagation step can once again be carried out using the clique tree algo-
rithm. We can either build a Bayes net that represents cfo(t)(X(t)) or better yet, plug
the belief state directly into a clique tree over {X(t), X(Hl)} with the appropriate
structure [BK98].

It is not immediately clear whether this algorithm provides a useful approximation.
Intuitively, the process introduces errors into the belief state at every time step. If
the errors accumulate, our results might become less and less relevant. Luckily, this
is not the case. Consider two parallel processes: the (hypothetical) process of exact
tracking (with correct belief states), and the (actual) process of approximate tracking.
We would like to analyze how far they can diverge from each other. There are two
opposing forces at work. The stochastic transition from time ¢ to time t+1 adds noise
to both belief states, causing the difference between them to decrease. Conditioning
both on the same evidence also causes the error to decrease (on expectation). The
approximation is the other opposing force, which causes the error to increase. It can
be shown that, if the process is stochastic enough, these two opposing forces remain

balanced [BK98]. Thus, the error remains bounded indefinitely over time.

8.6 Inference in Hybrid DBNs

The third and last type of DBNs we discuss in this chapter is hybrid DBNs, contain-
ing both discrete and continuous variables. In particular, we are interested in CLG
DBNs, i.e., DBNs where both By and B_, are CL.Gs. These models are often called
switching linear systems or Switching Linear Dynamic Systems (SLDS). Bar Shalom
et al. [BSLKO1] provide a good introduction to these models, and Ghahramani and
Hinton [GHO0] provide an up-to-date literature survey. The reason for the name is
that, given the discrete variables, the system is linear; “switches” in the value of the

discrete variable correspond to switches in the system behavior.
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Figure 8.3: (a) An SLDS (b) GPBI1 algorithm (¢) GPB2 algorithm (d) IMM algorithm

Unfortunately, just like the situation with static Bayesian networks, the combi-
nation of discrete and continuous variables in DBNs is significantly harder than any
one of them separately. Consider, for example, the SL.DS in Figure 8.3(a) where the
belief state has the discrete variables A (with M values) and the continuous variable
X (the continuous variable 7 is observed). Bg has no edges, and therefore the distri-
bution of X© in ¢ (A©) X ©)) is a Gaussian. When we propagate the belief state
to time slice 1, we get a different Gaussian for X for every value of A®"). Thus the
belief state p(V(AM, X)) is a mixture of M Gaussians, one for every value of A.
When we propagate to time slice two, each one of the M Gaussians in time slice 1
results in M different Gaussians over X(?) (one for every value of A®?), and together
e (AP X @) is a mixture of M? Gaussians. It is not hard to verify that the belief
state (1AM X®) has a mixture of M* Gaussians, where each Gaussian corresponds
to a particular combination of AM_ ...  A®. For similar reasons, if each time slice
has n binary variables then the exact belief state at time ¢ is a mixture of up to (2")°

Gaussians. We conclude that there is no hope of representing the exact belief state
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for anything but trivial SLDSs over a small number of time slices.

There has been much work trying to deal with this problem, e.g., [BSLKO01, SS91,
Kim94, GHO00]. Most of this work assumes that the number of discrete combina-
tion at every time slice is relatively small, and the difficulty comes mostly from the
exponential dependence on t. In this section, we review some of the techniques to
approximate the belief state under these conditions. In Chapter 9, we discuss the case
where the number of discrete combinations in every time slice is too large, preventing
us from directly using these ideas.

To make the propagation algorithm in SLDSs practical, we must make sure that
the mixture of Gaussians represented by the belief state does not get too large. The
two main techniques to do so are pruning and collapsing. Pruning algorithms reduce
the size of the belief state by discarding some of its Gaussians. The standard pruning
algorithm simply keeps the N Gaussians with the highest probabilities, discards the
rest and then renormalizes the probabilities such that they sum up to 1.

Collapsing algorithms work by partitioning the mixture of Gaussians into subsets
and then collapsing all the Gaussians in each subset into one Gaussian. Thus, if the
belief state was partitioned into N subsets, the result would be a belief state with
exactly N Gaussians. The different collapsing algorithms usually differ in the number
of subsets, how they are chosen and exactly when the collapsing is performed. In this
section, we present three algorithms: GPB1, GPB2, and IMM [BSLKO1].

The General Pseudo-Bayesian (GPB) algorithms limit the number of Gaussians
in the belief state to M*~' where M is the number of possible system modes, i.e., the
number of discrete combinations that induce a different behavior for the continuous
variables in the 2-TBN. and k is a positive integer. For example, in the SLDS of
Figure 8.3(a), M = |Dom(A)|. Note that if p(*), the belief state at time ¢, has M*~!
Gaussians then after one step of propagation, ¢t1) will have M* Gaussians. The
GPB algorithms partition these Gaussians into M subsets, where the elements in
each subset have the same trajectory k& — 1 time steps into the past. In the example
of Figure 8.3(a) Gaussians in the same subset will correspond to the same values of
Al=ht3) A1)

To understand this better, let us examine the special cases of k =1 and k£ = 2. In
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the case of £k = 1 we get the GPBI algorithm, that keeps exactly one Gaussian in the
belief state. Assuming we have M different modes of behaviors and one Gaussian in
the time ¢ belief state we get M Gaussians at time ¢ + 1 which are collapsed into one
Gaussian. This algorithm is shown in Figure 8.3(b) for the case of M = 3 (each circle
represents a Gaussian). Note that all the collapsed Gaussian correspond to different
discrete values at time ¢+ 1; thus, their trajectories differ on the most current discrete
instantiation.

Consider now the case of & = 2, which corresponds to the GPB2 algorithm. Here
we keep M Gaussians in the belief state. After propagation we get M? Gaussians,
each one corresponding to one of M discrete values at time ¢ and one of M discrete
values at time ¢t +1. We now partition this mixture into M subsets, where each subset
has Gaussians that have the same ¢ 4+ 1 discrete value (and different time ¢ values).
Each subset is collapsed, resulting in a belief state with M Gaussians. The entire
process is shown in Figure 8.3(c) (again for M = 3). Note that the trajectories of
collapsed Gaussians agree on the one most recent time step.

The problem of the GPB2 algorithm is that at every propagation step we must
generate M? Gaussians, which is often too computationally expensive. If we cannot
use GPB2 but would like to do better than GPB1 we can use the Interacting Multiple
Model (IMM) algorithm which is more efficient than GPB2 but more accurate than
GPBI.

Just like the GPB2 algorithm, the IMM algorithm keeps M Gaussians in the belief
state for time ¢, but unlike GPB2, these Gaussians are collapsed before propagating
them into time ¢ + 1. It seems that this should give us the same behavior as GPBI,
but the difference is that we collapse the Gaussians in different ways depending on
the discrete value at time ¢t +1. For every one of the M values of the discrete variables
at time t + 1, we compute a different set of probabilities for our time ¢ mixture and
then collapse the Gaussians using these probabilities.

For example, consider again the SLDS of Figure 8.3(a). Our belief state has the
distribution M (A® X®) = P(ADYP(X® | A®) where P(X®) | A®) is a Gaussian.

We now consider each one of the possible values of AUt1). For each one of these values
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we compute the distribution

P (A0, X0 | AGD) = p (40| ACHD) p (X0 | AW, AC+D)
= P (A [ AED) p (X0 ] A0) (8.3)

Thus for every value of A+!) we have a mixture of M Gaussians but with different
probabilities from the belief state probabilities. Intuitively, the new probabilities
better correspond to the specific mode of operation. Note that computing the new
probabilities involves only discrete variables and therefore is simple as long as M 1s
not too large. We then collapse the mixture using the new probabilities and propagate
the Gaussian to time ¢ + 1 resulting in just one Gaussian over time ¢ + 1 variables.
After doing this for every value of A+Y, we end up with M Gaussians at time ¢ + 1
which are our new time ¢ 4 1 belief state. This process is illustrated in Figure 8.3((1).

Although we collapse our belief state in M different ways when using the IMM
algorithm, we only create M Gaussians at time ¢ + 1, as opposed to M? Gaussians
in GPB2. The extra work compared to GPBI is the computation of the new mixture
probabilities and collapsing M mixtures instead of just one, but usually this extra
computational cost is small relative to the cost of computing the M Gaussians at
time ¢t 4+ 1. Therefore the computational cost of the IMM algorithm is only slightly
higher than the GPB1 algorithm, and is significantly lower than GPB2. In practice, it
seems that IMM often performs significantly better than GPB1 and almost as well as
GPB2 [BBS88]. Thus, the IMM algorithm appears to be a good compromise between

complexity and performance.

8.7 Particle Filters

As we have seen in previous chapters, sampling techniques offer an alternative ap-
proach to other approximate inference algorithms for Bayesian networks. The situa-
tion is similar for Dynamic Bayesian networks. The most popular sampling technique

for DBN inference is Particle Filters [GSS93, Kit96], which will be described in this

section.
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The naive way to use sampling techniques in DBNs is to apply LW (see Sec-
tion 2.4.1) to the unrolled DBN, where each sample corresponds to one possible
trajectory of the system &(®, ... (). To generate a sample, we initially sample x©
from By. Given X© we can now sample X using B_, and weigh the sample by
the likelihood of the evidence ol"). We continue this process sampling the variables
one time slice at a time and multiplying the sample weight by the probability of the
evidence.

It is possible to modify this procedure and get an online algorithm that we can use
xM[N].

Each of these is associated with a weight w([j]. At each time slice, we take each of

for monitoring. We maintain a set of samples at each time slice ¢: &®[1],.. .,
the samples, propagate it forward to sample the variables at time ¢ + 1, and adjust
its weight to suit the new evidence at time ¢ + 1. We can then use our set of time
t + 1 samples to answer various queries.

Unfortunately, this simple approach does not work in practice. Recall that if all the
evidence is at the leaves, LW generates the samples according to the prior distribution
and the evidence affects only the weights. For example, in the car surveillance DBN
(Figure 8.1), all the evidence is at the leaves. Thus, we would generate completely
random trajectories for the car, and only use the evidence to influence the weights.
Unfortunately, most random trajectories would not make the evidence very likely.
Thus, each sample would have very low weight. While this is a problem also in
regular BNs, in DBNs it leads to a complete breakdown of the algorithm: As time
evolves, more and more trajectories deviate from the true system trajectory and are
never corrected by the evidence. The samples become less and less reliable as an
approximation of the system’s hidden state and LW diverges rapidly as time goes by.

The Particle Filtering (PF) algorithm is a way to deal with the problem. The key
intuition is to think of the samples at time ¢ as an approximation of the belief state
at time . What we truly want to do is not to propagate each sample but propagate
the belief state as a whole, i.e., take i.1.d. samples from the belief state and propagate
those new samples forward.

Assume our belief state has N samples (2®[1],..., 2®[N]) with N associated
weights (w®[1],...,w[N]). We sample N ii.d. samples y[1],...,y®[N] (also
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called particles) from the belief state:

We then propagate each one of the y([;] particles to time ¢ +1 and weigh them by the
time ¢t 4+ 1 evidence. This new set of samples and weights serves as our approximation
to the time ¢ 4+ 1 belief state. Note that a sample &®[] with a large w([4] is likely
to be sampled more than once while a sample with a low w(®[7] is likely to not be
sampled even once.

Another way to view this algorithm is that some samples are “better” than others.
In particular, samples that have larger weights explain the evidence so far better, and
are likely to be closer to the current state. Thus, we want to use a sample 2 [i] more
often as a starting point for propagation if it has a large weight. Particle filtering
works much better than LW in practice, as the quality of the approximation does not
degrade over time.

In SLDS models it is very natural to combine particle filtering with the Rao-
Blackwellization techniques (Section 3.4.3) leading to the Rao Blackwellized Particle
Filter (RBPF) [DGAO0OQ]. The idea is to sample only the discrete variables. Given an
assignment to the discrete variables, the continuous variables have a normal distribu-
tion which we can compute and represent exactly. Thus, each particle is represented
as an assignment to the time ¢ discrete variables and a Gaussian over the time ¢ con-
tinuous variables. The tradeoffs are similar to the RB tradeoffs: each RBPF particle
is more expensive to generate but contains more information. In practice it seems
that RBPF particles are well worth the extra computational complexity needed to

compute them.



Chapter 9

Scaling up Hybrid DBNs

In Section 8.6 we discussed some of the standard techniques for inference in SLDS
models. Recall that if we have n binary discrete variables within every time slice
and ¢ time steps, then the exact belief state is a mixture of (2")" Gaussians. All
the techniques described in Section 8.6 assumed that n is a small number. Under
this assumption, a mixture of 2" Gaussians was assumed to be small enough to be
tractable, and the concern was to deal with the temporal blowup of raising 2" to the
power of ¢.

Unfortunately, in many domains it is not realistic to assume that n is small. For
example, in the fault diagnosis domain, we have discrete variables that represent
different faults (e.g., a broken sensor) and various modes of behavior (e.g., valve open
or valve closed). Obviously, in a reasonably sized system we can have many such
variables. The upshot is that we must deal with the case of 2" being too large by

itself, even if we ignore the temporal blowup. This is the subject of this chapter.

9.1 A Collapsing Algorithm

In Section 8.6 we discussed how the belief state in hybrid DBNs can be represented as
a mixture of Gaussians. Recall that in GPB1 the belief state has just one Gaussian
while in GPB2 and IMM the belief state has 2" Gaussians. Unfortunately, none of

these options is useful for us. One Gaussian is not enough for our needs — in fault

185
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Figure 9.1: (a) A simple hybrid DBN, describing the movement of a robot (b) Col-

lapsing a mixture of two different hypotheses

diagnosis it 1s often important to track a few distinct hypotheses over time in order
to decide which is the correct one, and thus, we cannot afford to collapse all the
hypotheses into just one Gaussian. On the other hand, a mixture of 2" Gaussians is
too large for our needs, since it is often not practical to keep such a large mixture.
In fact, even if could keep 2" Gaussians in our belief state, the collapsing scheme
of GPB2 may not be ideal. In GPB2 we collapse together Gaussians which share the
same assignment to time ¢ 4+ 1 discrete variables (and have different assignments to
time ¢ discretes). However, some of the Gaussians which we collapse may be very
different from each other, and worthwhile keeping as distinct hypotheses. On the
other hand, it is possible that among the 2" Gaussians that GPB2 keeps some are
very similar to each other and can be collapsed without a significant loss of accuracy.
For example, assume that we have a very simple hybrid DBN shown in Fig-
ure 9.1(a) that models the movement of a robot in a one-dimensional world. The
variable X indicates the location of the robot. Depending on the value of the discrete
variable D the robot can move either left or right. There are two sensors that mea-

sure the robot’s location represented by M; and M. Both sensors can either work
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properly or be broken — this behavior is represented by the discrete variable OK' for
i = 1,2. If the sensor is working, i.e., OK' = True, then we get some noisy reading
of the robot’s location. If the sensor is broken then we get a reading from AN (0, 1),
and get no information about the robot’s position. The two sensors differ in accuracy
and reliability — the first sensor is very accurate but tends to break down a lot while
the second sensor is much more noisy but very rarely gets broken.!

Consider two hypotheses that agree that at time £41 the robot moved left and that
both sensors did not work, namely DU+Y) = Left, O[(gtﬂ) = False and OK%HI) =
False. Note that the hypotheses agree on the time ¢ + 1 variables and therefore
will be collapsed by GPB2. Assume now that the two hypotheses start with two
different robot locations at time ¢. Although the robot is assumed to move left in
both cases, the two hypotheses will represent two very different locations at time
t + 1 (as there is no sensor reading to change the estimates of either hypothesis).
For example, one hypotheses may have P(X+1)) = A/ (X(Hl); 10, 1) and the other
may have P(X(+1)) = A (X(t‘H); 20, 1). If we collapse these hypotheses (assuming
they have the same likelihood) we get the hypotheses P(X(+1)) = A <X(t+1); 15, 26).
Figure 9.1(b) shows the mixture of the two original hypotheses as well as the collapsed
hypotheses. As we can see from the figure, not only we have lost our two distinct
hypotheses, but according to the collapsed hypotheses, we now believe that the robot
is likely to be at X = 15, which is unlikely according to both of the original hypotheses.
This can be especially problematic when dealing with physical systems. The reason is
that some values, such as X = 15, may violate some physical constraints. While the
original mixture may reflect these constraints, after collapsing we get a hypothesis
in which much of the probability mass is in the “forbidden zone”. Thus, it is often
desirable to avoid collapsing distinctly different hypotheses.

On the other hand, consider now two hypotheses at time ¢+ 1 which originate from
the same robot location at time ¢, have the same direction of the robot movement,
have sensor 1 (the accurate sensor) as working but differ on whether sensor 2 is

working. Both hypotheses may have a very similar estimate for the robot’s location

'In a more realistic model the sensor faults would be persistent over time. We will discuss such
models later in this chapter.
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at time ¢ + 1, since when sensor 1 is working, the noisy reading of sensor 2 has very
little effect on the estimate for the robot’s location. Thus, it may make sense to
collapse these two similar hypotheses into one, instead of keeping them as separate
hypotheses as GPB2 would do.

The conclusion is that, even when our belief state can keep 2" Gaussians, using
GPB2’s collapsing scheme may not be optimal. Instead we may want to consider
which Gaussians are similar and which are different before deciding which to collapse.
To formalize this intuition, we first need to define similarity between two Gaussians
Py = N (pq, %) and P, = N (py,X2). We choose to define similarity in terms of
KL-divergence between the Gaussians, i.e., we define the distance between P; and P,

as:

J(P17P2)=%(D(P1 | P2) + D(P || Pr)) (9.1)

Our measure has some desired properties:

e It is symmetric: J(Py, P) = J( Py, P1)

o J(P1, P;) >0 with equality iff P, = P;

e J(Py1, P;) can be computed in closed form [CT91]:

_ _ 1 _ _
J(Pr, P2) = <tr(221§]1) + tr(21122) - Qd) ‘|’Z(I‘1 — i)' (25 1‘|’221)(ﬂ1 —H3)

DO | —

where d is the dimension of the Gaussians.

Having defined a distance measure we are ready to present our collapsing algo-
rithm, shown in Figure 9.2. We assume we are given a mixture of Gaussians and
would like to collapse it to a smaller mixture of at most K Gaussians. Our algorithm
partitions the mixture into at most K + 1 subsets of Gaussians. The first K subsets
represent Gaussians that are collapsed together, i.e., all the Gaussians in subset ¢ for
1 < ¢ < K are collapsed into one Gaussian in the resulting mixture. Gaussians in
subset K + 1 are discarded. The question, of course, is how to create the partition
scheme.

We use a greedy approach, that takes into consideration both the likelihood of the
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Collapsing Algorithm
A= {{w;, P,)iz1..n}: a mixture of n Gaussians
K: Maximal size of mixture after collapsing
c: threshold of distance matrix

Sort A in decreasing order of weights w;

Mark all Gaussians in A as unused

Set B=10

While |B| < K and A has unused Gaussians
Let (w,P) be the first unused Gaussian in A
Find all [ € L s.t. (w, P) € A is unused and J(P,P) <c¢
Mark (w, P) and (w;, P)icr, as used
Let w' « w+ Y jcr wy
Let P’ be the Gaussian resulting from collapsing (w, P) and
(wi, P)ier, according to Equations 3.10 and 3.11

10. Let B « BU {(v', P")}

11. end-while

B W N -

© 0 N O O,

Figure 9.2: Collapsing a mixture of Gaussians into K Gaussians

different Gaussians and their similarity to each other. We first sort the different hy-
potheses by their likelihoods. Then, starting from the most likely Gaussian P, we find
the Gaussians Py, ..., P, that are “similar” to P and create the subset {P, P;,..., P, }.
We then find the next most likely Gaussian in our list that was not used so far and
continue in the same manner. We stop after using up all the Gaussians in the original
list or generating K subsets

We define two Gaussians Py and P, as similar if J(P;, P») < ¢. Note the impor-
tance of the parameter c. If we set ¢ = oo then all the Gaussians are similar to each
other and all will be collapsed together. Thus, for ¢ = co we effectively get the GPB1
algorithm. On the other hand, if ¢ = 0 then no two different Gaussians are similar
to each other and therefore every subset will contain exactly one Gaussian. Thus, for
¢ = 0 our algorithm behaves like a simple pruning algorithm, keeping the K most
likely Gaussians as they are while discarding all the rest

As an example, assume we have three binary discrete variables A, B and C' such

that we have a Gaussian for every combination of A, B and . Let the original
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mixture be

A B C P(A,B,C) | Corresponding Gaussian
False | False | False 0.2 P
False | False | True 0.1 P,
False | True | False 0.05 P
False | True True 0.23 P,
True | False | False 0.12 Ps
True | False | True 0.08 Fs
True True | False 0.07 P
True True True 0.15 P

Suppose that we use our collapsing algorithm on this mixture with the size of
the resulting mixture bounded by K = 3. The most likely Gaussian is P, and we
now look for a similar Gaussian. Assume that only Fs is similar enough, leading to
our first subset {Py, Ps}. We next move to the remaining most likely Gaussian, P;.
Assuming that out of the remaining Gaussians P is similar to P, and Fs, we get the
subset {P;, Py, Pg}. The next most likely remaining Gaussian is Ps, and in this case
it is not similar to any of the remaining Gaussian, leading to the subset {Ps}. We
now have generated 3 subsets and therefore we stop. The output of our algorithm are
the subsets { Py, Ps}, { P1, P2, Ps} and {P5}. The Gaussians P; and P; are discarded.

Assume we have N d-dimensional Gaussians in the original mixture and would
like to collapse them into a mixture of K Gaussians. Sorting the Gaussians by their
weights takes O(N log N). To compute the KL-divergence between two Gaussians it
is necessary to invert to covariance matrices, which can be done once for each of the
original N Gaussians. Once the covariance matrices are inverted, evaluating Equa-
tion 9.1 takes O(d?). Inverting all the original Gaussians takes O( Nd®). Equation 9.1,
i.e., line 6 of Figure 9.2, needs to be evaluated in K iterations for O(N) Gaussians per
iteration leading to a complexity of O(N Kd?). The collapsing operation in line 9 can
be done in O(M;d?*) where M; is the number of Gaussians that are being collapsed in
iteration i. Since "%, M; < N all the collapsing operations can be done in O(Nd?).
Thus, the total complexity of the algorithm is O(N log N + Nd® + NKd?).
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Figure 9.3: (a) Belief state representation (b) Belief state representation with a de-
composed probability distribution over the discrete variables

9.2 The Hypothesis Variable

In the previous section we discussed the collapsing algorithm while implicitly assuming
that all the variables in the belief state are continuous. As we already mentioned,
this assumption is not realistic, as the belief state often contains persistent discrete
variables as well as continuous ones. We therefore need to discuss how to represent
both the discrete and continuous variables in the belief state and the relation between
them.

For GPB1 and GPB2 the representation is quite simple. In GPBI1, where all
the Gaussians are collapsed together, we can represent the belief state as a product
between a multivariate Gaussian over the continuous variables and a factor over the
discrete variables, since by keeping just one Gaussian the continuous variables are
assumed to be independent of the discrete variables. In GPB2 every hypothesis
corresponds to a full instantiation over the discrete variables, and thus, the belief
state can be represented as a Gaussian factor where we keep one Gaussian for every
combination of the discrete variables.

It is less clear how the belief state should look like after using our collapsing algo-
rithm. In this case, every Gaussian corresponds to some set of discrete assignments
and to their weights. In other words, each Gaussian P induces a probability distribu-
tion over the discrete variables where every assignment that was not collapsed into P

has probability zero and the assignments that were involved in P have a probability
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which is proportional to their weight.

As an example, consider again the example from the end of Section 9.1. Assume
that the discrete variables A and B are in the belief state while C' is not. We end up
with three Gaussians that correspond to the subsets { Py, Ps}, {P1, P2, Ps} and {Ps}.

These Gaussians induce the following distributions on the discrete variables (after

renormalization):
{ Py, Ps} {P1, Py, Fs} {Ps}
A B | P(A,B) A B | P(A,B) A B | P(A,B)
Fualse | False 0 False | False | 0.667 False | False 0
False | True 0.742 False | True 0 False | True 0
True | False | 0.258 True | False 0 True | False 1
True | True 0 True | True 0.333 True | True 0

The obvious question is how to represent this type of belief state. It is convenient
to introduce a new random variable H, called the hypothesis variable. The hypothesis
variable is a discrete variable with one value for every Gaussian in the belief state.
We define the belief state using the graphical model shown in Figure 9.3(a) where the
continuous variables in the belief state are X1,..., X, and the discrete variables are

Di,...,D.

variable: For every value of the hypothesis variable there is a Gaussian distribution

Both the discrete and continuous variables depend on the hypothesis

defined over the continuous variables and some factor defined for the discrete variables.
It is important to note how the hypothesis variable correlates the continuous variables
and the discrete ones: Every Gaussian in the mixture corresponds to one value of the
hypothesis variable which in turn induces a probability distribution on the discrete

variables.
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Figure 9.4: A model for a one-dimensional robot including its velocity

9.3 Empirical Comparison

To compare the collapsing algorithm with GPB2 and GPB1 we slightly extended our
one-dimensional robot model from Figure 9.1 into the model shown Figure 9.4. To
make sure it is possible to run GPB2 we kept the belief state to a minimum with only
12 discrete states.

There are two continuous variables in the belief state: the robot’s Location (L)
and the robot’s Velocity (V). Positive velocity implies that the robot is moving to the
right while negative velocity implies that the robot is moving to the left. At every
time step the robot can take one of three Actions (A) that influence its velocity: it can
accelerate to the right, i.e., increase its velocity, accelerate to the left, i.e., decrease
its velocity by adding some negative constant to it, or decelerate, i.e., decrease the
absolute value of its velocity. Note that, depending on its current velocity the result
of accelerating to one direction can be similar to decelerating. There are two sensors
that measure the robot’s location: M; and M;. Both sensors can be in two possible
Statuses (S7 and Sy): Failed or Okay. Sensor 1 is less likely to be working than sensor
2, but if it is working, then its reading is less noisy. The only observed nodes in the
network are M; and M,. The exact parameters of the network are given in Table 9.1.

For example, we see that P(Action, = Ace-Left | Actiong = Ace-Right) = 0.05.
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Node Discrete Parents Distribution
Actiong — (0.333, 0.333, 0.333)
Statusl1g — (0.5, 0.5)
Status2g — (0.5, 0.5)
Locationg | — N (0,1)
Velocity, | — N (0,1)
Action, Actiong = Slow-Down (0.6, 0.2, 0.2)
Actiong = Acc-Right (0.25, 0.7, 0.05)
Actiong = Acc-Left (0.25, 0.05, 0.7)
Status1, Statusl o = Failed (0.9, 0.1)
Status1o = Okay (0.3, 0.7)
Status2, Status2y = Failed (0.6, 0.4)
Status2q = Okay (0.2, 0.8)
Location, | — N (Lo + V5,0.0025)
Velocity, | Action, = Slow-Down N (0.5V5,0.0001)
Action; = Acc-Right N (Vo +1,0.0016)
Action; = Acc-Left N (Vo —1,0.0016)

Table 9.1: Parameters for a simple model for a one-dimensional robot

Unfortunately, even for this extremely small example, exact inference is intractable

for any reasonably long sequence. Since we wanted to conduct our experiments with
sequences of hundreds of time steps we had to evaluate our algorithms based on
criteria which can be computed without the exact posterior distribution. We used
two such criteria.

The first criterion was comparison to the “omniscient Kalman Filter”. An omni-
scient Kalman filter gets to observe all the discrete variables. Given these variables
we are left with a simple linear system on which we can use the Kalman filter algo-
rithm. Clearly, the omniscient Kalman filter should do a better job of tracking the
system than any method based on imperfect, partial information, but comparing to
it provides some indication on the quality of the approximation.

Thus, given a sampled trajectory we used the omniscient Kalman filter to compute
P(I‘(t)), the belief state over the continuous variables for every ¢. For each inference
algorithm A we also computed PA(I‘(t)), i.e., the belief state according to A. We
then computed the KL-divergence D(P || Pa) averaged over {. When computing
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Figure 9.5: Results for the one-dimensional robot model (a) KL-divergence from the
omniscient Kalman Filter (b) Likelihood of the correct discrete trajectory

the KL-divergence we collapsed P4 into a single Gaussian in order to have a simple

expression for the KL-divergence.
The second criterion was based on the likelihood of the discrete variables. From

our generated data we knew 8, the assignment to the discrete variables at time
t. Thus, our second criterion was PA(5(t)) averaged over t, i.e., the likelihood that
algorithm A assigned to the correct discrete event.

We emphasize that none of these criteria is perfect, since sometimes unlikely events
happen. For example, it is certainly possible that the most likely discrete event ac-
cording to the exact belief state is not the actual discrete assignment. In these cases,
the likelihood of the “correct” discrete event should be small, and therefore maximiz-
ing the second criterion is not always the right thing to do. The same holds true for
the first criterion — when the unlikely events are the correct ones, the omniscient
Kalman Filter may be a poor approximation to the belief state. Still, on average the
two criteria should provide a reasonable indication for the quality of the algorithms.
Thus, we should treat the results as a noisy sensor for the quality of the algorithms.

The results are shown in Figure 9.5, where Figure 9.5(a) shows the KL-divergence
criterion and Figure 9.5(b) shows the criterion based on the likelihood of the discrete

trajectory. In both graphs the results were averaged over 100 trajectories of 200 time
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steps each. The graphs show the performance of the GPB1 and GPB2 algorithms as
well as the collapsing algorithm. For the collapsing algorithm we show the perfor-
mance for two values of the threshold parameter ¢ (as used in Figure 9.2): ¢ =1 and
¢ = 50. The X axis represents the number of Gaussians in the belief state — this
axis is relevant only for the collapsing algorithm since GPB1 always has one Gaussian
and GPB2 always has 12 Gaussians (thus, GPB1 and GPB2 are shown as horizontal
lines).

The graphs show that GPB2 beats GPBI, as expected. The performance of the
collapsing algorithm is very poor when we use just one Gaussian, and not as good as
GPB2 when using two Gaussians. Note that, for any ¢ < oo, the collapsing algorithm
does not behave like GPBI1, but for ¢ = oo we get the exact same performance of
GPBI1 with just one Gaussian. However, with three or more Gaussians in the belief
state, the performance of the collapsing algorithm is comparable to GPB2 and in
some cases even slightly better.

Interestingly, for ¢ = 50 the KL-divergence criterion actually detoriates when we
use the collapsing algorithm and go beyond 7 Gaussians (unless we go as high as 12
Gaussians). We conjecture that, in this system, 7 Gaussians are usually enough to
keep the correct hypothesis in the belief state, and adding more Gaussians increases
the KL-divergence from the omniscient Kalman Filter, since we add hypotheses which
are different from the correct one. However, this seems to be more of a symptom
of the KL-divergence criterion which compares the distribution only with the correct
hypothesis rather than comparing it with the true belief state, and less of an indication
of a problem with the collapsing algorithm.

Given the noise of our criteria it is very hard to say whether GPB2 performs better
or worse than the collapsing algorithm when using at least 3 Gaussians. However, it
seems that at least for ¢ = 1 both GPB2 and the collapsing algorithm outperform
GPBI1 and that their performance is comparable. This by itself is a win for the col-
lapsing algorithm that achieves similar performance to GPB2 with a much smaller
belief state. Thus, it is reasonable to believe that when the number of Gaussians re-
quired by GPB2 is too large, the collapsing algorithm provides a useful alternative by

offering comparable performance to GPB2 and outperforming the GPB1 alternative.
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9.4 Decomposition of the Belief State

There is a potential problem with the belief state representation described in Sec-
tion 9.2, as the size of the factor over the discrete variables is exponential in the
number of variables. Thus, if the number of discrete variables in the belief state is
too large, it may not be practical to keep a factor that represents the joint distribu-
tion over them. In this case we can use similar ideas to the BK algorithm discussed
in Section 8.5. We impose some independence or conditional independence assump-
tions on the probability distribution over the discrete variables in order to get a more
compact representation for it. As an example, in Figure 9.3(b) the probability dis-
tribution over the discrete variables is decomposed. Instead of keeping a factor over
{D1,...,Dg} we keep three much smaller factors over {Dy, Dy, D3}, {D4, D5} and
{D¢, D7, Dg, Dy}, leading to significant savings in space. In this example, we have
each subset of the discrete variables independent of the other subsets given the hy-
pothesis variable. Just like the BK algorithm for discrete DBNs, we can also choose
overlapping subsets, leading to conditional independencies between the subsets rather
than direct independencies.

Given the decomposition of the distribution over the discrete variables, it is natural
to ask whether it is useful to have an analogous decomposition for the continuous
variables as well. The answer is yes and no: an exactly analogous decomposition is
not very useful but a somewhat different decomposition is useful.

In an exactly analogous decomposition, instead of keeping one multivariate Gaus-
sian for every value of the hypothesis variable, we decompose it as a product of smaller
Gaussians or, if we want to keep some of the dependencies between the continuous
variables, a product of conditional forms. However, unlike discrete factors that grow
exponentially with the number of variables, the space required in order to represent
a multivariate Gaussian is only quadratic in the number of variables, and therefore
we can use our Gaussian representation even if the belief state contains tens or even
hundreds of continuous variables. Thus, unless the system is extremely large, it is
feasible to represent the belief state over the continuous variables given the hypothesis

variable as a multivariate Gaussian, and there is no real need for decomposition.
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However, we can use a different type of decomposition, where we decompose the
hypothesis variable as well as the continuous variables. This type of decomposi-
tion lets us represent a much larger mixture of Gaussians, effectively keeping more
hypotheses in our belief state. To see this, consider a mixture of Gaussians over
{X1,..., X, } where the X,’s are independent of each other. Assume that the marginal
probability for every X; (1 < i < n) is a mixture of two Gaussians: N (X;;—1,1)
and NV (X;;1,1), where the weight of each Gaussian is 0.5. It is easy to see that the
joint distribution over {X7,..., X, } is a mixture of 2" Gaussians. The weight of each
mixture component is 27", the covariance matrix is [ and the mean vector looks like
(+1,...,%1), i.e., the absolute value of each coordinate in the mean vector is 1. If
we naively represent the joint distribution, then we need to represent 2" different
Gaussians and for each one the space requirement is O(n?). On the other hand, if we
use the independencies between the variables we can represent the joint distribution
as a product of n marginals. Each marginal is represented as a mixture of 2 univari-
ate Gaussians, and therefore has a space requirement of only O(1). Thus, by using
the independencies between the continuous variables we can dramatically reduce the
space requirements from O(2"n?) to O(n).

The reason for this savings is that for different X;’s we need different collapsing
schemes, and this can be done only if we keep marginals rather than the full joint
distribution. For example, assume that n = 2 and that the joint distribution is
therefore a mixture of four Gaussians: P, = N ((1,1),1), Po = N ((1,-1),1), Ps =
N ((=1,1),1) and Py = N ((—1,—1),1). If we only consider the marginal of X; then
P, = P, and P; = P, and therefore collapsing P; with P, and Ps; with P; does not
change the marginal for X;. If we consider the marginal of X, then we should collapse
P, with P; and P, with P,. However, if we operate on the full joint distribution then
no two Gaussians are similar and we should not collapse anything. Thus, in case
some subsets of the continuous variables are (close to) independent from each other,
it is useful to decompose the distribution and define a separate collapsing scheme for
every subset of continuous variables.

The last insight leads us to a further decomposition of the belief state. We parti-

tion the variables in our belief state into subsystems, where every subsystem contains



CHAPTER 9. SCALING UP HYBRID DBNS 199

H, H, Hs

/ e

D, D, D, D,

Figure 9.6: Belief state with three hypothesis variables. Variables in the different
subsystems are assumed to be independent.

both discrete and continuous variables. For example, if we model a car, we can have
one subsystem for the variables relating to the electric system, one subsystem for vari-
ables relating to the gas system, another one for the engine, and so on. We assign one
hypothesis variable to each subsystem, and represent the distribution over a subsys-
tem using a graphical model such as the ones shown in Figure 9.3(a) or Figure 9.3(b).
Note that in each subsystem we can use a different collapsing scheme.

In the simplest case, shown in Figure 9.6, we assume that the variables in dif-
ferent subsystems are independent of each other. We can relax this assumption and
let the various subsystems be only conditionally independent of each other using a
graphical model such as the one shown in Figure 9.7, where we let variables in one
subsystem influence variables in different subsystems. For the continuous variables
we can represent such a dependency using conditional Gaussians.

Formally, we define the belief state using a graphical model, where we have n
hypothesis variables Hy,..., H,. We partition the variables in the belief state into
n subsets such that each subset is influenced by one of the hypothesis variables. In
addition, for every 1 < 7,7 < n we let discrete variables in subsystem 7 influence
the discrete variables in subsystem 7, and similarly for every 1 < 7,7 < n we let
continuous variables in subsystem 2 influence the continuous variables in subsystem.
The only constraint we impose on the graphical model is that it contains no cycles.

There is a subtle difference between our representation and the representation

used in the discrete version of BK. In the discrete case, the BK algorithm represents
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Figure 9.7: Belief state with three hypothesis variables and interdependencies between
the sub-systems

conditional independencies by having overlapping sets of variables in the various sub-
systems, while making sure that every two subsystems agree on the marginal distri-
bution of their intersection. This is problematic in our case. Our decomposition is
useful mainly if we use different collapsing schemes in different subsystems. However,
by using different collapsing schemes, we get different mixtures over the continuous
variables, and in general the marginal distributions of the intersection would be differ-
ent in different subsystems. Thus, if we keep overlapping sets of continuous variables
and use different collapsing schemes in different subsystems, the joint distribution
may not be well defined.

In contrast, the semantics of the graphical model in Figure 9.7 is well defined:
the collapsing scheme for { X4, X5} is defined using Hjz. For different hypotheses
in subsystem 3, i.e., different values of H3, we can represent different dependencies
of {X4, X5} on {X3}. Note that the conditional Gaussians do not depend on the
hypothesis variable Hy, and thus are the same for all the hypotheses of subsystem 2.

It is left to discuss the modifications in the collapsing algorithm to account for
the conditional Gaussians. Consider, for example, subsystem 3 in Figure 9.7. The
conditional Gaussians in the mixture are defined over the variables { X3, X4, X5}. We

call these variables the relevant variables and denote them as R,.

Definition 9.1 The relevant variables of subsystem i, denoted by R;, are all the
variables in the belief state of subsystem 1 and all their direct parents in the decomposed

belief state, excluding any hypothesis variables.

As another example, in Figure 9.7 the relevant variables in subsystem 2 are Ry =
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{D1, Dy, D3, D4, X1, X2, X5}. We denote the continuous variables in R; as I'; and
partition them as I'; = T} UT; where I'} are the continuous variables in subsystem
v and I'; are the continuous variables which are not in subsystem z, but are relevant
to subsystem z. In our example of Figure 9.7, T's = {X3, Xy, X5}, I'T = {X,, X5}
and I'; = {X3}. Similarly, we denote the discrete variables in R; as A; and partition
them as A; = AT U A7 where A are the discrete variables in subsystem i and A}
are the other discrete variables in A;. Again, in our example Ay = { Dy, Dy, D3, Dy},
A} = {D3, D,} and A, = {Dy, Dy}.

Recall that, in our collapsing algorithm, we collapsed together Gaussians that
had a small KL-divergence between them, i.e., Gaussians that had similar probabil-
ity distributions. Now however, we are interested in collapsing together Gaussians
that have a similar conditional distribution, even if their joint distribution is signif-
icantly different. More formally, for two Gaussians P, and P, we do not demand
that P, (T}, T;) and Py(T],T';) would be similar; instead we would like P, (T} | T'7)
and P,(T'} | T7) to be close, allowing for the possibility that P (I';) and P(T';) are
significantly different. Fortunately, there is a natural metric that we can use, based

on the conditional KL-divergence, which is defined as:

DAy =) | Py =) = [ @) [ Py | )log T2 = dyde
It is easy to verify [CT91] that

D(Pi(y | )| Py | 2)) = D(Pi(2,y) || Pa(®,y)) — D(Pi(2) || Pa(x))

Intuitively, the last expression means that the conditional KL-divergence ignores
the differences between Pi(x) and Pp(@) and leaves only the differences between
Pi(y | ) and Py(y | ). Thus, we can use the collapsing algorithm shown in
Figure 9.2 but we replace the metric J defined in Equation 9.1 by the new metric J’
defined as:

J'(A(TETT), (T, T7)) = %(D(Pl(rf | T7) || 2T [ T7) +
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D(R(TF | T7) || A(TF [ T7))) (9.2)

After we decide on the collapsing scheme we need to transform our distribution
into a conditional distribution if T7 # § or A7 # . If A7 # ) we must transform
the factor over A; from the distribution P(AF, A7) into the conditional distribu-
tion P(AT | A7). We can do that by simply dividing P(Af, A7) by the marginal
P(A7). Similarly, if I'; # () we must transform the Gaussian over P(I'f,T';) into
the conditional Gaussian P(T'} | T';). Again, we can do that by dividing P(T'},T;)
by the marginal P(T';). To do that, we need to represent the belief state using either

canonical forms (Section 3.2.2) or conditional forms (Section 3.2.3).

9.5 Putting it all together

We now have the tools necessary to scale up the algorithms discussed in Section 8.6
to large scale hybrid DBNs. There are four crucial components in our propagation

algorithm:

o The representation of the belief state discussed in Sections 9.2 and 9.4.
e The enumeration algorithm from Section 5.1.4.

e The numerical integration techniques discussed in Chapter 6 which are used

together with the enumeration algorithm.

e The collapsing algorithm from Sections 9.1 and 9.4

In each propagation step, we are given the decomposed belief state for time ¢
P(X), the the 2-TBN B_., and E®Y | the evidence for time ¢ + 1. The task
is to create the decomposed belief state for time ¢ + 1. We first create the full
Bayesian network B by combining the belief state P(X) with the 2-TBN B_. We
then create the decomposed belief state one subsystem at a time. For each subsys-
tem we first use the enumeration algorithm in order to approximate the distribution
P(REH_I) | EW E(t+1)), and then use the collapsing algorithm on the resulting
mixture (using the distance metric of either Equation 9.1 or Equation 9.2, depending

on whether T'; =  or not). We get a different collapsing scheme and a different
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One step inference

P(X): time t belief state
B_: the 2-TBN
et . evidence at time t+1

1. Plug P(X) into B_ to create the BN B

2. For each subsystem : do
3. Create the subnetwork B; over R, U F; and their ancestors
4. Use enumeration algorithm (Section 5.1.4) to create a mixture

of Gaussians over {X(t‘H),E(tH)}

5. Condition on the evidence E(Hl) = elt+1)

6. Use collapsing algorithm (Figure 9.2) to create a collapsing
D

scheme and the hypothesis variable for subsystem ¢z, H,

7. Generate time {4+ 1 belief state as discussed in Section 9.4.
If needed generate conditional distributions

hypothesis variable in each subsystem. If ', # () we generate a conditional Gaussian
and if A; # () we generate a discrete factor that represents a conditional distribution.

The only issue that we have not discussed yet is how to take advantage of the
subsystem decomposition for generating the Gaussians. The simple approach is to
first generate a mixture of Gaussians over all the variables in the network B and
condition it on the evidence e**1). Next, each subsystem 1 < i < n marginalizes
out all the variables which are not in R;, leading to n mixtures of Gaussians, where
mixture ¢ is defined over R;. We then perform the collapsing algorithm independently
within each subsystem. Thus, although the different subsystems get their Gaussian
from the same source (the original mixture over all the system variables), they can
define different collapsing schemes, based on their own R;.

A different approach is to let each subsystem generate its own Gaussians. This
approach is useful if the subsystems are relatively small compared to the entire sys-
tem. Since the size of the covariance matrix is quadratic in the number of variables,
if we have many variables it may be more efficient to generate relatively small Gaus-
sians for each subsystems, instead of Gaussians over all the variables in B. In this
case subsystem ¢ must generate Gaussians over the relevant variables R; and every

observation variable that is not independent of R;, denoted as F;. To do so we define
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the Bayesian network B;. The nodes in B; are R; U FE; and all their ancestors in the
DBN. The edges between the nodes in B; are the same edges as in the DBN and so
are the CPDs. In other words, B; is the original DBN restricted to R; U E; and all
their ancestors. To generate Gaussians for subsystem ¢ we can use the enumeration
algorithm on B;, ignoring the rest of the DBN. If all the B;’s are small compared to
the full DBN, this approach will be computationally more efficient. The resulting
algorithm is shown in Figure 9.5.

Unfortunately, in practice it is often the case that even if R; contains relatively
few variables, E; contains many of the observations in the system, forcing B; to be
almost as large as the entire DBN. As an example, the RWGS system, discussed in
detail in Chapter 10, has a chemical reactor that creates a chemical reaction between
the gases flowing in the system. The chemical reactor can be modeled as a relatively
small subsystem. However the efficiency of the reaction depends on the incoming flow
F', which in turn depends on many flows and pressures around the system. Thus, F
is dependent on every flow and pressure sensor in the system. The result is that the
network B; for the reactor subsystem will include all the variables that influence the
flows and pressures in the system, which are almost all the variables in the model.

However, even in cases where many observation nodes influence the variables in
some subsystem, it is often the case that some of the dependencies are extremely
weak, and can be ignored almost without changing the posterior distribution. In the
chemical reactor example, if we have a measurement M of the incoming flow we may
be able to ignore all the other flow and pressure measurements in the system without
introducing any significant errors.? Thus, it may be a reasonable approximation to
ignore some of the nodes in F; in order to reduce the size of B; and decrease the
time it takes to generate a Gaussian. By doing so we may be able to generate more
Gaussians given the same amount of computation time, compensating for the errors

introduced by ignoring some of the observations.

?Note that, the flow is not truly independent of the other measurements in the system, even given
the measurement M. Since M, like any other measurement, is noisy, even given M there is still
some uncertainty over the actual incoming flow, and other measurements can influence our belief
over f.
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9.6 Smoothing

So far we concentrated on the problem of tracking, i.e., the evidence that was available
to us was the observations up to the current ¢. In some applications we are also
interested in the probability estimation task, defined in Section 8.3. Here we have a

T) and we would like to find the distribution over

sequence of observations oV, ... ol
X® for some 1 <t < T. Probability estimation comes up when we perform offline
inference, perhaps in order to learn the parameters of the model. However, even if
we restrict ourselves to online applications, sometimes it is possible to look into the
future. For example, assume that we get a new observation every second. If we are
allowed a short delay of five second before we are required to give our estimate for the
state of system, then we can use five “future” observations in order to improve our
estimate. The process of using future observations in order to improve our estimate
for the present is called smoothing.

Smoothing can be quite important even in tracking applications since the sup-
porting evidence for some hypotheses may be present only in the future. Consider,
for example, the case of a leak in some water tank, and assume we measure the water
level in the tank. When the leak starts it has no effect on the water level, and thus
the leak hypothesis is not supported by the present evidence. Only by looking at
future evidence we can realize that the leak hypothesis is much more likely than it
currently seems to be.

In discrete DBNs, one can perform smoothing using message passing. Consider
again the DBN of Figure 8.2(a) and the resulting clique tree of Figure 8.2(b). Assume
that we need to find the belief state over X? and that in addition to the evidence
0@ we also have the evidence O available. We can now perform smoothing using
an algorithm which is called the forward-backward algorithm, which is identical to the
clique tree calibration algorithm. We first send messages forward in time, 1.e., from the
clique { X, X1} to the clique { X1, X3} and from it to the clique { X3, X3}, and then
we send messages backward in time. After we send the message from { X, X3} back
to the clique { X4, X3}, the clique {X 1, X3} has the correct posterior distribution

given all the evidence.
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Unfortunately, we cannot use the same algorithm for hybrid DBNs. The reason
is that the clique tree in Figure 8.2(b) is not strongly rooted, since Definition 3.11
does not hold for any clique in the tree. Intuitively, in a strongly rooted tree, we can
perform an upstream pass without collapsing any Gaussians, but when we send the
forward messages in a clique tree resulting from a hybrid DBN, we have to collapse
the Gaussians in the belief state to avoid the exponential blowup. Thus, using the
forward-backward algorithm in hybrid DBNs may not be well defined. For example, it
is easy to convert the example from Section 3.3.4 that resulted in a negative variance,
to a tree that represents a DBN.

However, it is possible to salvage some part of the smoothing algorithm. Since the
problems in the backward pass involve illegal Gaussians we can ignore the continuous
variables in the backward pass and send messages that involve only the discrete
variables. The result would be a belief state at time ¢ where the discrete variables
would have a distribution which reflects the future evidence as well at the past and
present evidence. Thus, by using smoothing over the discrete variables we do not
change the actual Gaussians in our belief state, but we do change their weights.

We can use the new distribution over the discrete variables in two ways:

e Improve our estimate for the state of the system. As we have seen in the
leak example, we need the future evidence in order to come up with an accurate

estimate for the current state.

e Improve our collapsing scheme. Recall that the collapsing scheme is influ-
enced by the likelihood of the hypotheses, as it attempts to keep the more likely
hypotheses relatively unchanged in the belief state. If we sort the hypotheses
based on their new weights, we are more likely to keep in the belief state hy-
potheses which may not be very likely given the present evidence but become
more likely given the future evidence. Obviously keeping such hypotheses in

our belief state is a desired feature.

It is important to make sure we do not double count the future evidence. The

belief state used for the next propagation step should only reflect the past and present
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evidence and not the future evidence. Thus, the distribution over the discrete vari-
ables that is sent forward should be the distribution before the smoothing step. In the
collapsing algorithm, we can use the smoothed distribution as a heuristic for deciding
which hypotheses should remain in the belief state, but when we actually do collapse
hypotheses we must use their weights before the smoothing step. In other words, we

can use the new weights in line 1 of Figure 9.2 but we must use the original weights

in lines 5-10.



Chapter 10

Application: The RWGS System

So far we have considered some theoretical aspects of hybrid Bayesian networks and
developed some algorithms which were tested on relatively simple examples and syn-
thetic data. In this chapter we put our algorithm to a real test, namely performing
fault diagnosis for the RWGS system, a complex real-world physical system. We be-
gin with a quick overview of the system and then discuss some of the issues that had
to be addressed while modeling the system. We then test our inference algorithm and

our model on both synthetic data and actual data collected during system runs.

10.1 The RWGS System

The Reverse Water Gas Shift (RWGS) system shown in Figure 10.1 is a complex
physical system designed to extract oxygen from carbon dioxide. NASA foresees a
number of possible uses for the RWGS system, including producing oxygen from the
atmosphere on Mars and converting carbon dioxide to oxygen within closed human
living quarters. In a Mars mission, the RWGS is supposed to operate for 500 or more
days without human intervention [LGO00], thus making a fault diagnosis system a
necessary component. A prototype of the system was constructed at NASA’s Kennedy
Space Center (KSC).

The RWGS works by decomposing carbon dioxide (CO3), which is abundant on

Mars, into oxygen (Oz) and carbon monoxide (CO). The system, whose schematic is

208



CHAPTER 10. APPLICATION: THE RWGS SYSTEM 209

Mvs
5} N |II
= Y |
[re] [ne]

cve

COMPRESSOR

co,
H

2
11 - CO

\\\\\\\\&‘\

mzrxwImZ

©

MARS HEAT
SINK SIMULATOR

‘‘‘‘‘

Figure 10.2: The RWGS schematic
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shown in Figure 10.2 [Goo02], contains two loops: a gas loop that converts CO, and
hydrogen (Hz) into water (H20) and CO, and a water loop that electrolyzes the HyO
to produce Oz and Hy. Under normal operation, CO; at line (1) is combined with H
returned from the electrolyzer via line (12), and a mixture of COg, Hy, and CO from

the reactor recycle line (11). This mixture enters a catalyzed reactor (3) heated to

400°C. Approximately 10% of the CO, and H; react to form CO and H;O:
CO;+ Hy=CO + H,0

The Hy0 is condensed at (4) and is stored in a tank (5). The remaining gas
mixture passes through a separation membrane (9), which sends a fraction of the
CO to the vent (13) while directing the remaining mixture into the recycle line (11).
A compressor (10) is used to maintain the necessary pressure differential across the
membrane. In the water loop, the HyO in tank (5) has some CO; dissolved in it,
which would be detrimental to the electrolyzation process. To remedy this, the H,O
is pumped into a second tank (6), and has Hy bubbled through it to purge the COx.
From there, the H,O is pumped into the electrolyzer (8), which separates a portion of
it into Oy and Hy. The Hy re-enters the gas loop via (12), while the remaining H,0O,
along with the Oy, goes into tank (7), where the mixture is cooled and separated.
The Hy0 returns to the electrolyzer, while the O leaves the system through (14).
The entire process is controlled by a computer program that opens and closes valves,
turns water pumps, the condenser and the electrolyzer on and off, controls gas flow
and reactor temperatures, and so on.

In addition to its normal operating mode, the system may operate without the
electrolyzer and water pumps. In this mode, the H; for the reaction is supplied by
a supply line (15) paralleling the CO; supply line. This option is not feasible for
operation on Mars, but has proven useful for testing the physical system while under
development.

The RWGS is an interconnected nonlinear system where the various components
influence each other in complicated and sometimes unexpected ways. For example,

during runs without the electrolyzer, it is necessary to empty the water tank (5)



CHAPTER 10. APPLICATION: THE RWGS SYSTEM 211

1.0
dl | ‘ " 1

1.0 }( V] e T e
> 0.8
g-:’ —
z a
o
2 06 3
> |
5 g
S 04

0.2

0.0 : : : -05 : : :

0 5000 10000 15000 20000 0 200 400 600 800 1000
Time[sec] Time [sec]

(a) (b)

Figure 10.3: (a) Effects of emptying a water tank (b) Pressure difference between P;
and P4

periodically, to prevent water from accumulating and eventually overflowing the tank.
This causes the gases in the tank to expand, and thus creates a significant and sudden
pressure drop, which affects the flow throughout the whole system. This phenomenon
is demonstrated in Figure 10.3(a) [Whi0O1]. The graph shows the flow through the
CO vent (13) as it evolves over time — the spikes correspond to emptying the water

tank.

10.2 Modeling the RWGS

We model the RWGS using a hybrid DBN. The 2TBN has 313 nodes, out of which
66 are discrete and 247 are continuous. All the discrete variables are persistent and
belong to the belief state, i.e., we have 33 discrete variables in the belief state. Out of
the 33 discrete variables, 8 correspond to various modes of operation, e.g., compressor
on or off, valves being open or closed, and so on. The other 25 discrete variables
correspond to sensor faults. Note that the variables indicating the mode of operation
can also represent faults, for example, it is possible that the valve is supposed to

be open but it is stuck closed. We model this by keeping all the discrete variables
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hidden, i.e., if the valve is supposed to be open then with high probability we have
Valve=Open but it is also possible that Valve=Closed.

The continuous variables in our model capture the continuous-valued elements of
our system, e.g., pressure at various points in the system, flow rates, temperatures,
gas composition, and so on. Of the 247 continuous variables, 49 represent the time
t belief state and 198 represent the variables at time ¢ + 1. Of the latter, 49 vari-
ables are belief state variables for time ¢ + 1, 71 variables are encapsulated variables,
as discussed in Section 6.2.6, 32 variables are observed variables, and the rest are
transient variables. Within the 198 variables at time step ¢t + 1, the CPDs for 73
variables are non-linear CPDs. Examples for non-linear functions used in our CPDs
include a multiplication function, a division function, a max function, and other more

special-purpose functions such as the gas loop equations discussed in Section 10.2.3.

10.2.1 Sensor Modeling

As in any real system, the RWGS sensors do not record the underlying state exactly.
In addition to some important quantities, such as the gas compositions, which are
not measured at all, the existing sensors are noisy and biased. The noise level of
the sensors depends on many factors and can change over time. An example is
shown in Figure 10.3(b), where the difference in the readings of the pressure sensors
P; and Py (both located at (2) in Figure 10.2) is plotted over time. The main
reason for the noise in time steps 0-800 is the physical proximity of the sensors
to the compressor, which sends pressure waves throughout the system. Since the
sensors are not synchronized with the compressor, they take measurements at various
phases of the pressure waves and thus measure significantly different values. After 796
seconds the compressor shuts down and the noise level decreases dramatically.! More
interestingly, we note that the two sensors are placed very close together and therefore
at least the average difference should be zero. However, as the plot demonstrates, this
is not the case, indicating that the sensors are not well calibrated and some bias 1s

present. Furthermore this bias depends on the system state, as shown by the change

IThe sensor’s noise is literally noise that can be heard — the pressure waves are the sound waves
generated by the compressor.
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Figure 10.4: The sensor model

in the average difference when the compressor shuts off.

We deal with noisy sensors in the obvious way: by increasing the variance of the
predicted measurement values to match the noise level in the data. Sensor biases
present a more interesting modeling problem. The biases are not easily modeled
using a simple parameter since they are unknown and can drift over time. Instead,
we address the problem by adding hidden variables to the belief state that model the
different biases of the sensors. Biases start with zero mean and a reasonably large
variance and persist over time, i.e., the CPD for Bias't" is a linear CPD of the form
Bias'™ = Bias'+ V. The variable V represents Gaussian noise with a relatively small
variance, allowing for some amount of drift to occur over time. Figure 10.4 shows
our sensor model, using a flow sensor as an example. The belief state contains two
variables for every sensor: the status of the sensor (working or failed) and the bias
variable. If the sensor is working then its reading at time ¢ 4 1 is a sum of the actual
quantity (the flow in Figure 10.4) and the sensor’s bias.

This idea works quite well, but it tends to overfit the data: By letting the bias
account for every discrepancy between the model predictions and the actual sensor
measurements, the tracking algorithm might settle to an incorrect steady state. For
example, assume we have some flow sensors each one with some bias. If we add some
constant ¢ to all the biases then all the flow measurements can be explained by the
flows being smaller by ¢ than their true value, i.e., if the flow sensor has bias ¢ and it
measures the flow F' then we predict the actual flow to be F'—¢. This leads to a state

that is almost consistent with the measurements (it is not fully consistent because
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other sensors may indicate some discrepancies) but might be very different from the
actual state.

To fix the problem we must make sure that the model biases reflect true sensor
biases — biases should be kept as small as possible and be allowed to grow only if
there is a real reason. We implement this idea by introducing a contraction factor
7 < 1 (empirically set to be 0.9) into the bias formula: Bias™™' = ~- Bias'+ V. Thus,
biases tend to go to zero unless doing so introduces a systematic discrepancy with

the predicted system state.

10.2.2 Sensitivity and Unidentifiability

One of the challenging aspects about the RWGS system is that some parts of the
system state are very sensitive to input conditions, and yet are not measured directly
by the existing sensors. As an example, consider the Hy and CO5 compositions in the
gas loop. Under normal operating conditions, the gas flow into the reactor has equal
amounts of Hy and CO4 added to it via the CO; line (1), the recycle line (12) and the
Hj supply (15). The reactor itself takes almost the same amounts of Hy and CO3 back
out of the mixture. Thus, aside from a very small difference in these two quantities,
the only changes in the compositions of Hy and CO, in the gas loop arise from small
amounts of Hy and CO; that leave the system through the vent line (13). Therefore,
the changes in the compositions of the gases are very slow. The system takes a long
time to reach equilibrium, and the equilibrium itself is exceptionally sensitive to the
input conditions and to the behavior of the membrane. To make matters worse,
the gas compositions are not measured directly in real time. The reason is that
the only existing sensors capable of making this sort of measurement are application-
specific, and require specific types of lasers, complicated optical setups, and significant
amounts of time from specialists in order to set the system up. Using such sensors
is entirely impractical for a prototype system, and may not be feasible even for the
actual system that needs to work autonomously on a different planet.

Even if we use the most exact form of the equations governing the Hy /CO, balance

in the gas loop in our model, we will end up with (at least) the same level of sensitivity
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to slight variations in the input conditions. In addition, the model predictions will
suffer from high sensitivity to inherent errors in the model such as small errors in
physical parameters, approximate equations for complex components such as the
separation membrane, and so on.

We therefore use equations for the Hy/CO3 balance that contain an intentionally
non-physical component — a stabilizing term — that reduces the sensitivity. This
term drives the balance to a pre-determined point, which in this case is our expected
value for the balance. In other words, the variable C**1), representing the composi-
tion of a certain gas at time ¢ + 1, is a weighted average C+) = wM U+ 4 (1 —w)S
where M(+1) represents the composition predicted by the model and S represents the
pre-determined stabilization term. The weight w was manually adjusted to provide
a good tradeoff between physical accuracy and model stability and was set at 0.995,

i.e., the prediction of the model contributes much more than the stabilizing term.

10.2.3 Differing Time Scales

The RWGS system contains different phenomena that manifest themselves over at
least three different time scales. Pressure waves in the RWGS propagate essentially
instantaneously (at the speed of sound). The time it takes for the gas flow to circulate
around the gas loop is on the order of seconds. Finally, as we have just discussed,
gas compositions in the gas loop take a very long time to reach a steady state (on
the order of hours). Meanwhile, the sensors in the system collect data at a sampling
rate of one second.

The naive approach is to model the DBN at finest time granularity, i.e., with
less than 1ms per time step. Doing so enables us to model the pressure waves that
go around the system, at least in principle. However this idea is not useful: If we
model the system at time steps of 1ms we get one observation for every 1000 steps.
Even if we can find a way to create an accurate model (which is very hard since the
data is too sparse to be used effectively for training), without sensor data to correct
our predictions, using the finer time granularity does not help us to achieve more

accurate predictions. In other words, there is no point in modeling the system at a



CHAPTER 10. APPLICATION: THE RWGS SYSTEM 216

finer granularity than the sensor data.

Thus, we choose to model our DBN with time granularity of 1 second per time
step. We approximate the pressure waves as occurring instantaneously and, instead
of modeling their transient behavior, we model the quasi-steady-state of the system
after the pressure waves traveled around the system and have reached an equilibrium.
The equations in this case are substantially simpler, and require far fewer empirical
constants.

The difficulty, however, is that a change in any part of the system will affect
all the other parts at a much faster rate than our time steps, i.e., they happen
instantaneously from the point of view of the model. In fact, this situation leads
to cyclical influences between our variables. For example, the gas flow entering the
membrane (16) influences the pressure there. A change in this flow would change the
pressure at (16) causing an almost instantaneous pressure wave around the gas loop.
This change in the pressures would change the gas flows in the loop, including the
flow at (16). Thus, we have a situation where the flow influences the pressures which
influence the flow. Since all these changes occur within one time step, we get a cycle
in our DBN, which is not legal in our framework.

The solution is to solve the equilibrium equations of the gas loop simultaneously.
There are five variables that represent the pressures and flows around the gas loop,
denoted as Y. The value of Y can be determined if we know the outside conditions
denoted as X, e.g., gas flows into the system, the pressure at the vent pipe (13), and
so on. The equations to compute Y from X include both the compressor equation
and an approximation to the membrane equations developed by Whitlow [Whi01].
They are fairly large and nonlinear, and no direct simultaneous solution form exists.
Instead, we can solve these equations iteratively, as a set of fixed point equations.

How do we combine these fixed point equations with our DBN? We insert these
fixed-point equations into a (nonlinear) CPD C in our DBN. Since we solve the equa-
tions simultaneously for the five variables Y, C is in fact a vector CPD, used for all
the variables Y. The parents in C are the variables X. The definition of the CPD
is essentially procedural: given a value of the parents X, it executes an iterative

fixed-point computation until convergence, and outputs the values for all of its five
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variables Y. Thus, we can view C as defining the non-linear function ¥ = f(X).
The function has a complicated form, implemented as a C procedure in our code.
Approximating the distribution induced by C may seem like a daunting task.
Indeed, had we been using the EKF algorithm (Section 6.1) this would have been a
difficult task, since it is not easy to compute the derivatives of the function f(X)
represented by C. However, if we use our numerical integration methods, and in
particular the exact monomials method (Section 6.2.3) there is no difficulty in using
a CPD such as C. When using the exact monomials method we only need to evaluate
the function f at some set of points, i.e., we need to solve the fixed point equations
at some points «1,...,x, determined by the numerical integration algorithm. Thus,
we plug in our “procedural” CPD C into our numerical integration algorithm, and
estimate the first two moments of the relevant variables. We can use the algorithm
from Figure 6.2 almost unchanged — the only exception is that unlike other CPDs,

C defines the moments of more than one variable.

10.3 Parameter Estimation

The model for the RWGS is quite complex and includes many parameters. It is useful
to classify these parameters into different categories, as it helps to understand the
different types of parameters involved in the model and the different methods used

to estimate their values. We partition our parameters into seven classes:

1. Known physical constants

2. Unknown physical constants

3. Unknown physical quantities that change over time

4. Noise level parameters that are induced by the physical system
5. Noise level parameters that are induced by model inaccuracies
6. Persistence parameters

7. Model correction parameters
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The first class is probably the simplest one. It involves constants such as the
gravity of the earth and constants used for convergence between physical units. The
convergence parameters are useful if we want to represent our variables using some
convenient units, but the sensors are using some other units. For example, it may be
more convenient to represent temperatures in Kelvin even though the sensors are in
Celsius. Thus, when we model the sensor readings we must convert from Kelvin to
Celsius. Since all the parameters in this category are known, they are simply set to
their actual value.

The second class of unknown physical constants includes parameters such as the
physical lengths of the pipes in the system (which we only have an estimate for),
the rate in which the reactor heats up when the heater is on, the surface area of the
separation membrane, and so on. Parameters in this class were estimated either by
the NASA team (e.g., the length of the pipes) or from the data using least squares or
other curve fitting techniques. For example, we plotted the cooling off curve of the
reactor and tried to find a low order polynomial fit to this curve.

The third class includes parameters such as the resistance to the gas flow (which
turned out to change over time) and the bias variables, discussed in Section 10.2.1.
Since these quantities change over time they cannot be modeled as simple model
parameters. Instead, we add them as hidden variables to the model with some initial
distribution based on some heuristic. For example, the initial mean of all the bias
parameters was set to zero and the initial resistance of the membrane was set to a
rough estimate produced from data collected during steady state runs. We then let
the inference algorithm take care of the rest, i.e., adjust the values of these variables
over time.

The fourth and fifth classes correspond to the variances of certain variables in
the model. The fourth class corresponds to noise that exists in the physical system.
Examples include the noise levels of the sensors and the noise levels of various set
values (e.g., the pressure valve located at (13) is supposed to set the pressure in the
system to some pre-defined value X, but it may actually to set it to a value slightly
different from X'). These noise levels can usually be easily estimated from the data.

For example, in order to estimate the sensor noise we can take short sub-sequences
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of the steady-state data where the actual measured quantity stays almost constant
in each sub-sequence. We then compute the variance of the sensor readings in these
sub-sequences, and use it as an estimate for the sensor’s noise level. If the noise
level of a certain sensor depends on some outside conditions such as the compressor
working or not working, we perform the estimation procedure independently for each
operating mode.

The fifth class accounts for model errors. For example, the equations that model
the separation membrane are only an approximation to the actual membrane behav-
ior, and thus, even if all the outside conditions are known exactly, there should still be
some uncertainty on the predicted flows and pressures within the gas loop. Similarly,
even if know exactly the temperature of the reactor and the gas composition, we can
only give an approximate estimate of the efficiency of the reaction, and thus, there
should be some uncertainty added to our predictions. Most of these parameters were
estimated using “trial and error”, i.e., we tried different values and chose the ones
that led to the best results. Note that by adding these parameters to our model we
artificially introduce more noise to compensate for the model inaccuracies.

The sixth class includes the persistence parameters for the discrete as well as the
continuous variables. For example, we need a parameter that defines the probability
of the sensor to work at time ¢+ 1 given that it was working at time {. An example for
a persistence parameter that relates to continuous variables is the uncertainty over
the sensor bias at time ¢ + 1, given that we know the sensor bias at time ¢{. These
parameters were estimated using various methods and then tuned using trial and
error. For example, for the persistence discrete parameter we estimated how often
sensors break or start working in the data that we had. We then used our training
data to improve the value of this parameter, finally setting it to 0.9999.

The last class includes parameters for the various stabilization mechanisms that
were added to the model. Examples for these parameters include the weight of the
stabilization term described in Section 10.2.2 and the decay parameter « of the sensor
biases, described in Section 10.2.1. Again, these parameters were estimated using trial

and error.
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Parameter estimation turned out to be perhaps the most difficult task involved in
modeling the RWGS. The reason is that there is relatively very little data and many
parameters to estimate. Furthermore, the system has some modes of behavior for
which we had no data, making the estimation of some of the parameters very hard.
For example, we do not have data for the case that the H, flow into the system is
turned off while there is still CO; flowing into the system. We feel that, at this point,
coming up with a good model with good parameters is the single biggest problem
that must be solved in order to use hybrid models for fault diagnosis in practice. We

discuss this issue further in Section 11.2.3.

10.4 Experimental Results using Synthetic Data

We tested our algorithm with both real data and simulated data that was generated
from our model. Although running with real data is the real test for our approach,
running with simulated data is also of interest. The reason is that there are two
sources of errors when using real data: model inaccuracies and errors induced by the
algorithm. When using simulated data, only errors of the second type are present
and we can better test the performance of the algorithm. In this section we present
the results of the experiments with synthetic data. All our experiments were run on

a Pentium IIT 7T00MHz.

10.4.1 Testing the Gaussian Approximation

Our first test was whether the belief state, as defined by the model, can be well
approximated as a Gaussian, and whether our particular approximation algorithm
that uses the numerical integration approach is a good one. To represent the belief
state without approximating it as a Gaussian, we generated a set of samples from the
model. We did not introduce any evidence so the samples were indeed sampled from
the correct joint distribution.

In Figure 10.5 we show the results for two particular variables: the flow at point

(16) and the pressure at point (2). These variables were chosen because of their



CHAPTER 10. APPLICATION: THE RWGS SYSTEM 221

© Using integration
® From samples

3.28 - :
x
© o
[«B] o
£ 3.26 ¢ -
[92]
) o
L
o

3.24 -+ o i

3.22 ‘ ° ‘

28.0 32.0 36.0 40.0

Flow at (16)

Figure 10.5: Random samples from the RWGS model and Gaussian estimates for the
distribution

dependency on the non-linear CPD of the membrane; other variables produced similar
results. The samples appear to be drawn from a distribution that is either a Gaussian
or close to one. Furthermore, our estimate for the joint distribution, as depicted by
the contours for one and two standard deviations, is very close to the Gaussian that
was estimated directly from the samples. Thus, it is reasonable to expect that our

techniques will lead to good approximations of the belief state.

10.4.2 Comparison with Particle Filtering

The most popular alternative to our inference algorithm is based on particle filters
(PF) (Section 8.7) with or without the addition of Rao-Blackwellization. The reason
we may want to use simple PF rather than RBPF is that the system is non-linear
and when we use PF we do not impose any restrictions on the belief state — with
enough samples we can represent any distribution, no matter how non-Gaussian it is.

To compare our algorithm with PF, we generated a trajectory of 500 time steps
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Figure 10.6: Comparison with particle filtering on simulated data

from our model and tested both algorithms on it. To make the task particularly
simple, we assumed that all the discrete variables were observed — as we shall see,
even this simple case was quite challenging for PF.

Our algorithm took 20ms per time step, which included computing the Gaussian
approximation to the belief state, with numerical integration when necessary, and
conditioning on the evidence. In comparison, generating a sample using particle
filtering took 1.5ms. Thus, one step of our algorithm took as much time as generating
13 samples. However, with just 13 samples PF performed extremely poorly and
therefore in our experiments we used 10,000 samples at every time step, giving PF a
somewhat unfair advantage.

Figure 10.6 shows the estimates for the percentage of Hy in the flow at point (16)
that were computed by our algorithm and by particle filtering, as well as the actual
value (known from the simulated data). We report the results on this particular vari-
able because the gas compositions are not measured by any sensors and are therefore

a potential challenge to any algorithm. The X axis represents time, and the Y axis
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the percentage of Hy in the flow at point (16). To increase readability, we shifted
the estimates generated by our algorithm by 0.1 to the left and those generated by
particle filtering by 0.1 to the right. The error bars represent the uncertainty of the
estimates as plus and minus two standard deviations. For our algorithm we simply
used the variance of the Gaussian to compute the standard deviation. For parti-
cle filtering we computed the standard deviation using the variance induced by the
weighted samples, i.e., if given a set of particles {([1],w[l]},...,(x[N],w[N]), the
variance was estimated as YN, w[i](2[i] — @) where & = SN, w(i][:].

As Figure 10.6 demonstrates, the estimates of particle filtering are not as good
as the estimates of our algorithm. Over the entire sequence the average error of our
algorithm was 0.009 while the average error of particle filtering was 0.013, although
under our setup, particle filtering was slower than our algorithm by a factor of 750.
Nevertheless, the more dramatic difference is in the estimates of the variance. Of-
ten, the estimated variance for particle filtering i1s extremely small, even when the
estimated value is not very accurate (e.g., time steps 72 and 73). In fact, over the
entire sequence, according to the estimated distribution of our algorithm, the correct
value of the Hy composition was within two standard deviations 96% of the time (this
is consistent with the fact that the probability mass within two standard deviations
from a Gaussian mean is 95%). In comparison, for particle filtering, the true value
was within two estimated standard deviations only 20% of the time.

The difference was even more apparent when we considered the average log-
likelihood of the true value given the two possible estimates for the belief state.
Note that, for particle filtering, we could not estimate the log-likelihood directly from
the samples, since the probability of the ground truth being exactly equal to a value
in one of the samples is zero. Therefore, we used the samples generated by particle
filtering to estimate the first two moments of the belief state distribution. We used
these moments to approximate the distribution as a Gaussian and compute the log-
likelihood of the ground truth. For our algorithm the average log-likelihood was 3.1
while for particle filtering it was only —5.59 - 10!,

The reason for this problem is the relatively high dimension of the evidence which

leads to a very high variance for the weights of the samples. Although we generated
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10,000 samples at each time step, only a very small number of them had a signifi-
cant effect on the estimate. Over the entire sequence, in 65% of the time steps one
sample accounted for more than 0.5 of the total probability mass, in 27% one sample
accounted for more than 0.9 of the mass, and in 15% one sample accounted for more
than 0.99. Obviously, in cases where one sample completely dominates the rest, the
estimates of PF are not very reliable and in particular the variance estimates can be
extremely small and misleading. Thus, not only is our algorithm faster than particle

filtering with 10,000 samples by a factor of 750, its estimates are much more reliable.

10.4.3 Comparison with Rao Blackwellized Particle Filtering

The results from the previous section are a strong indication that RBPF should be
preferred over PF in the RWGS domain. Therefore, we next compared the perfor-
mance of RBPF to the performance of our enumeration algorithm. To make a direct
comparison between the two algorithms, in both cases we used our algorithm for in-
ference in hybrid DBNs from Figure 9.5, with the only difference being that in one
case we implemented line 4 using the enumeration algorithm while in the other case
we used RB-LW to generate the Gaussians.

The belief state was represented using a decomposed belief state as described in
Section 9.4. We used three hypothesis variables, where the subsystems were modeled
as independent of each other. The sub-systems corresponded to the following partition

of the model:

e The reactor subsystem — this subsystem contained variables that describe
the state of the reactor (area (3) in Figure 10.2), mainly variables that relate
to the temperature of the reactor. This was the smallest subsystem with just 8

belief state variables (3 discrete and 5 continuous).

e The water subsystem — this subsystem contained all the variables that de-
scribe the state of the water tanks and the electrolyzer. Specifically, it involved

the variables in areas (5)—(8), (12), and (14) in Figure 10.2. This subsystem

contained 24 belief state variables (12 discrete and 12 continuous).
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e The gas loop subsystem — this subsystem contained all the the other vari-
ables in the belief state, which correspond to the gas flows in the system. It was
compromised of areas (1),(2),(4),(9)—(11), (13) and (15). This was the largest

subsystem with 50 belief state variables (18 discrete and 32 continuous).

For the sake of having a fair comparison, we gave the two algorithms the same
amount of time to generate the Gaussians: 3 seconds for the gas loop subsystem,
0.7 seconds for the water subsystem and 0.3 seconds for the reactor subsystem — we
allocated more time to the gas loop subsystem since it is by far the largest one.

We ran a few synthetic trajectories, each one corresponding to some specified
sequence of faults. We used two methods to evaluate the algorithms. The first was to
examine if the algorithm converged to the correct discrete hypothesis and how quickly
it did so. The second was comparison with the omniscient Kalman Filter, described in
Section 9.3. The omniscient Kalman Filter gets to observe all the discrete variables;
we cannot expect any algorithm which does not get to observe the discrete variables
to perform as well as the omniscient Kalman Filter, but we can evaluate the quality

of an algorithm by how close it gets to the omniscient Kalman Filter.

The no faults sequence

Our first sequence was the simplest possible sequence, where no faults occurred.
In this case both RBPF and the enumeration algorithm performed well — both
gave a very high probability to the no-fault hypothesis, and the distribution over
the continuous variables in the belief state was almost indistinguishable from the

omniscient Kalman Filter.

Turning off the heater

Our second sequence involved a single fault: at time step 11 the reactor heater (3) was
turned off. Figure 10.7 shows the results of tracking the variable T’r, representing the
temperature of the reactor, using both the enumeration algorithm and the omniscient

Kalman Filter (for reference, we also plot the actual value of Tg, which was known
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from our synthetic data). To create the plots, we ran the algorithms and at every
time step computed the mean of Ty from the belief states.

Up to time step 14, the estimates for the mean of Tr, as computed from the belief
states of the enumeration algorithm and the omniscient Kalman Filter, are the same.
At time step 15 the two estimates diverge but become identical at time step 26 and
remain so until the end of the sequence (even when looking at closeups of the graph).

This behavior can be best understood when considering Figure 10.9 which shows
the probability P(Heater(t):Oﬁ) as computed by the enumeration algorithm. Ini-
tially, the probability of the heater being off is very low. It remains so even after the
heater is turned off at time step ¢ = 11. The reason is that the initial drop in the
reactor temperature is better explained as noise (either in the sensors, the model equa-
tions, or the physical system itself) rather than a fault of the heater device. However,
after a few seconds, when the temperature consistently keeps dropping, the hypothsis
of the heater being off becomes more and more likely: P(Heater(QG):Oﬁ) ~ 0.93
and after that the probability is almost 1. Thus, between time steps 11 and 25 the
enumeration algorithm “believes” in the wrong hypothesis of the heater being on, and
therefore the estimated mean of Tx in these time steps does not agree with the om-
niscient Kalman Filter.? In other words, early in the run and after time step 25, the
enumeration algorithm gives a very high probability to the correct discrete hypoth-
esis. Since the omniscient KF knows the correct discrete hypothesis, they agree on
the belief state. When the enumeration algorithm does not know the correct discrete
hypothesis, it disagrees with the omniscient KF.

We ran the same experiment for RBPF, where we generated 10 different runs of
RBPF on the same sequence. All the RBPF runs behaved initially like the enumer-
ation algorithm — they were all identical to the omniscient KF until ¢ = 14 and
then diverged. However, different RBPF runs disagreed with the omniscient KF for
different periods of time. Figure 10.8 shows the trace of five RBPF runs: the first
agrees with the omniscient KF from time step ¢ = 26 on (just like the enumeration

algorithm) and the last does not agree with the omniscient KF even at time step 120

?In fact the estimates still agree until ¢ = 14. The reason is that the model contains a built-in
delay between the time the heater is turned off (or on) and the time the reactor temperature starts
to change as a result.
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(it finally does converge to the omniscient KF at time step 160, which is not shown
in order to make the graph more readable).?

Once again, the behavior can be best understood from the likelihood of the correct
discrete hypothesis, shown in Figure 10.10. The graph plots P(Heater(t):Oﬁ) for 10
different runs of RBPF. In different runs the algorithm discovers that the heater is
off at different time steps. In the best runs, the algorithm discovers the state of the
heater around ¢ = 26, just like the enumeration algorithm. In the worst run, the
belief state indicates that the heater is on as late as ¢ = 155.

To understand the behavior of RBPF, we must remember that every change in the
temperature in a single time step can be explained as noise. It is the persistent drop
of the temperature over a few time steps that indicates that the heater is off. Thus, in
order for the algorithm to discover that the heater is off, it needs to first generate this
hypothesis and then to propagate it over a few time steps. Both of these conditions are
problematic for RBPF. Recall that the discrete persistence factor was set to 0.9999,
and therefore almost all the samples are duplicate samples where the heater is on.
Only a small fraction of the samples represent the Heater=Off hypothesis, and in
fact there is no guarantee that such a hypothesis would be generated. Even if the
correct hypothesis is generated, its weight would still not be significantly larger than
the weights of the hypotheses where the heater is on, since the evidence of any single
time step can be explained as noise. Thus, even if we have the Heater=0ff hypothesis
in our belief state for time ¢, we may not re-sample it when we propagate the belief
state to time t41, in which case the Heater=0ff hypothesis would be lost. Intuitively,
the low probability of generating the hypothesis representing the fault makes RBPF
(at least in its standard version) an unreliable algorithm for fault diagnosis.

There is another interesting phenomenon in Figure 10.10. Around ¢ = 65, 3 of
the 7 runs that discovered that the heater is off significantly reduce the probability
of the heater being off, while the 4 other runs keep the probability very close to 1.
We believe that the reason for this is the variability of the sampling process, both

in the hypotheses that were generated and in the number of duplicate samples per

3nterestingly, even without knowing the correct discrete hypothesis the mean of the variable
does not diverge too much, since the measurements make sure that the temperature estimate stays
close to the actual value.
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Figure 10.11: Hydrogen shutoff: hypothesis likelihood (enumeration algorithm)

hypothesis. Note that the problem does not exist in Figure 10.9 describing the be-
havior of the enumeration algorithm. This is another instance where the enumeration

algorithm is more robust than RBPF.

Shutting off the hydrogen flow

Our third sequence involved a fault of the hydrogen valve (15), simulating the valve
getting closed at time step 51. In this sequence we let the algorithms use the in-
formation from the flow sensor R; located on the hydrogen pipe. When the valve
gets closed, Ry indicates that the flow is approximately zero, and therefore this fault
should be easier to diagnose than the heater being turned off.

Figures 10.11 and 10.12 show the performance of the enumeration algorithm and
RBPF in this case. The enumeration algorithm diagnoses this fault as soon as it
happens. On the other hand, the performance of RBPF varied in different runs. In
the best run, RBPF diagnosed the fault in time step 51, just like the enumeration

algorithms. In other runs, the fault was not diagnosed until much later in the sequence
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Figure 10.12: Hydrogen shutoff: hypothesis likelihood (RBPF)

— in one of the 10 runs the fault was not even diagnosed after 250 time steps. These
results are very similar to the results we have seen for the heater example. Again,
the reason is that because of the high discrete persistence the correct hypothesis is
not always sampled at the right time.

In this particular sequence there is another possible way to explain the sensor
readings, namely R; itself can be broken. This hypothesis is less likely than the valve
being closed since a broken sensor can show any flow value and the fact that it shows
0 1s likely not to be a coincidence and indicates that the flow has indeed stopped.
For this reason the enumeration algorithm chooses the Valve=Closed hypothesis —
the probability of R; being broken goes up to 0.00019 at time step ¢ = 51 and drops
back almost to zero afterwards. On the other hand, one might suspect that RBPF
may consider the broken sensor hypothesis to be quite likely in runs where the closed
valve hypothesis was not generated. Indeed, Figure 10.13 shows that this is the case.
Here we plot the probability of Ry, the hydrogen sensor, to be broken for four runs of

RBPF in which the closed valve fault was generated relatively late in the sequence.
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Figure 10.13: Hydrogen shutoff: probability for a broken sensor (RBPF)

Sensor Faults

Our next trajectory involves a related fault to the hydrogen valve fault, namely the
flow sensor Ry failing at ¢ = 10. Sensor faults are quite easy to diagnose in our
model, at least in principle. We model a failed sensor using a normal distribution
with a large standard deviation of & = 100, i.e., the distribution is A (0,10000). In
our trajectory, after giving readings which were consistently close to 1, at ¢ = 10
Ry suddenly generated the reading —27.3. This behavior can only be explained as a
sensor fault, and indeed the enumeration algorithm had no problem with this fault,
as it estimated P(Rglo) = Failed) ~ 1.

RBPF. on the other hand, had serious problems with this sequence. The faulty
sensor hypothesis was usually not generated at ¢ = 10. However, in this case, not
generating this hypothesis was worse than in previous examples. In our model the
noise level of Ry when working has a standard deviation of 0.1. Thus, under the

working sensor hypothesis we expect to get a reading from N (1,0.01). The reading
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-27.3 is 283 standard deviations away, and therefore under the working sensor hy-

pothesis the probability of this evidence is astronomically low, or more precisely it is

\/%0 T exp(—0.5 - 283?) & 107171, This number is too small to be represented using

the standard 64 bits double representation for real numbers, and therefore is rounded
to 0. Thus, in effect the likelihood of every hypothesis which does not include the
sensor fault is zero.

In order for the propagation algorithm to be well defined, we must generate at least
one hypothesis with a positive probability, otherwise the inference algorithm would
not be able to continue. However, when using RBPF in our model with the discrete
persistence factor of 0.9999, we are likely not to generate any faulty sensor hypothesis,
in which case the probability of all the hypotheses is zero and the algorithm fails to
continue. It is important to emphasize that the value of the discrete persistence factor
was tuned to be a realistic model and to produce the best fault diagnosis results, and
not to make the model easy or hard for a certain inference algorithm.

Going back to the enumeration algorithm, we observe that, while it can be reliably
used to diagnose a fault of a single sensor, at some point the algorithm will break
down. For example, if all the sensors fail simultaneously, the enumeration algorithm
will not generate the correct hypothesis in a reasonable amount of time, since it is
the least likely hypothesis.* Thus, in this case all the hypotheses generated will have
a zero likelihood and the algorithm would fail, just like RBPF with a single sensor.
The question is how far we can push the enumeration algorithm, i.e., how many
simultaneous faults it can reliably diagnose.

Using the optimization techniques described in Section 5.1.6 we were able to gen-
erate about 320 Gaussians per second in the gas loop subsystem and about 1350
Gaussians per second in the heater and water subsystems. The gas loop subsystem
contains 18 discrete variables, which is more than any other subsystem and is there-

fore the bottleneck in generating simultaneous-faults hypotheses. Using 3 seconds per

*This is true if all the faults are independent. However, note that when using DBNs we can
model a system where certain faults are actually likely to happen simultaneously, e.g., because of
some common cause. In this case, the enumeration algorithm will generate the hypothesis that
corresponds to the the faults happening simultaneously before it generates the hypotheses that
correspond to each fault happening by itself.
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time step in the gas loop subsystem, the enumeration algorithm was able to gener-
ate all the double-fault hypotheses and a relatively small portion of the triple-fault
hypotheses. Thus, under the setup we used in our experiments, our algorithm can
diagnose two independent simultaneous sensor faults in real time, but not three.

Note that, if we are requested to diagnose more than two simultaneous faults,
we can do several things. One option is to use a faster computer that can generate
more Gaussians per second. Another option is to divide the gas loop subsystem into
smaller subsystems, each one containing less discrete variables. Finally, we may be
able to improve the inference algorithm — we discuss some ideas in Section 11.2.1.

On the other hand, if the faults happen sequentially then our algorithm can still
be used, even if the faults happen at consecutive time steps. Our final synthetic
trajectory describes a catastrophic scenario where we lose five flow sensors in just
three time steps: at ¢ = 10 the flow sensor Ry, located at (15), fails. At ¢t = 11 the
two flow sensors Rs and Ri2, located at (16) and (10) fail. Then, at ¢ = 12, the two
flow sensors Rg and R, located at (13), fail. After these three time steps we have lost
almost all the flow sensors in the gas subsystem, except for Rj, the flow sensor that
measures the CO, flow, located at (1). Our algorithm had no problems diagnosing
these faults and the relevant probabilities jumped from 0 to 1 at the appropriate time
steps.

As a final challenge, the sequence included an Hy shutoff at ¢ = 20. Note that, by
this point of the sequence, there are no working flow sensors that can give us useful
information to diagnose the fault — the only working flow sensor at (1) continues to
report the same amount of CO, flow going into the system. Thus, our only information
comes from other sensors in the system, such as the pressure sensors in the gas loop,
making the diagnosis task quite hard.

Figure 10.14 plots the likelihood of the hydrogen shutoff hypothesis as estimated
by our algorithm. The algorithm reaches the correct conclusion, albeit after a fairly
long time, which is to be expected given how little sensor data is available in the
sequence. This can also be seen in Figure 10.15, which shows the actual flow at (16)
combined with the estimates of the omniscient KF and our algorithm. As usual,

our algorithm diverges from the omniscient KF as long as it gives high likelihood to
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the wrong discrete hypothesis (of no Hy shutoff), but when our algorithm infers the
correct discrete events it converges to the omniscient KF, and behaves like it from
that point on.

Figure 10.15 also indicates that the ground truth trajectory sampled from the
model is quite noisy, and in fact is much noisier than the actual data (we present
some of the data in Figure 10.20 in the next section). The reason is the extra noise
added to our model to compensate for its inaccuracies, as discussed in Section 10.3
When sampling a trajectory from our model, we use the adjusted noise levels, thus

creating more jagged trajectories.

10.5 Results on Real Data

We now turn our attention to experiments that were run on real data collected for
us by the KSC team. In the data that was available to us, the electrolyzer and the
water pumps were not working, and therefore, although the water subsystem was a
part of our model, it was never tested against real data. Its effect was mostly making
the model as large as it should be.

Some of our data sets recorded the sensor readings at a frequency of once every 10
or 60 seconds. Since our model has a time step of 1 second, those data sets were only
of limited use to us and were used solely for model estimation. Within the remaining
data sets, only two were taken while the gas loop was operating with the compressor
— in the rest the compressor was off and all the gas flow went out of the system
through the ventilation pipe (13).

Thus, all the experiments in this section are reported on two data sets. The
first was a long sequence of 4000 seconds that included 3430 seconds of steady state
operation and 570 seconds of a COy shutoff transition. The second included 600
seconds, out of which just 30 seconds were steady state and the other 570 seconds
were a COj shutoff transition. All our steady state results are reported on the first
data set. In order not to use the same data for both training and testing the model,
we used only 100 seconds of the steady state sequence for training, and the rest was

used only for testing. For the COy shutoff transition we treated the first data set as
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Sensor t=1 t=2 t=23
Flow at (16) Ry 0.001278 | 0.00001 0.000001
Flow at (13) Ry 0.00064 0.000001 | O
Flow at (13) Rio | 0.000593 | 0.000001 | O
Flow at (10) Ry | 1 1 1
Flow at (10) Ry5 | 0.000705 | 0.000008 | 0.000001

Table 10.1: Probabilities of the flow sensors around the gas loop to be faulty at time
steps 1-3

our training set and the second data set as our test set.

10.5.1 Steady State Experiments

Our first set of experiments with real data was performed with the steady state data.
First, we tested the capability of the model to recognize faulty sensors. The data
supplied to us by KSC actually included a faulty sensor, namely the flow sensor Ry,
located at (10). In this experiment we initialized all the sensors (including the faulty
one) to have a probability of 0.8 to be working and 0.2 to be broken.

As indicated by the synthetic data, our results confirmed that sensor faults are
easy to diagnose. Table 10.1 shows the probabilities of the flow sensors around the gas
loop to be faulty after 1,2 and 3 time steps. Indeed, our inference algorithm believes
that all the sensors are working except for Ri;.

In general, our model worked as expected on the steady state data with the correct
discrete hypothesis always having a very high probability, and the continuous quanti-
ties being tracked well. To make the steady state data more challenging, we removed
the data collected from the flow sensors Ry and R3 that measure the incoming Hy and
CO, flow at (15) and (1). Without these sensors, we have no measurements of the gas
flowing into the gas loop, making various diagnoses harder. In particular, diagnosing
whether the Hy and CO, valves are open or closed becomes a more difficult problem.

Figure 10.16 shows the results of running our model on steady state data without
Ry and R;. Here we plot the probability of both valves being open, which is the
correct discrete hypothesis. With the exception of a small drop at the beginning of

the sequence, the probability is practically 1 throughout the entire sequence (note
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Figure 10.16: P( Valves open) plotted over 50 minutes of steady state data

that this the sequence represents 3000 seconds, i.e., 50 minutes in which the system
was in steady state).

To better understand the drop at the beginning of the sequence, Figure 10.17(a)
shows just the first 150 time steps of the sequence. Our conjecture is that the drop is
caused by our initial conditions which do not represent the correct initial distribution.

This is caused by a few factors:

e For some quantities in the model which are not directly measured, such as gas
compositions, we used only rough estimates, which were probably somewhat

wrong.
e Our initial values for all the sensor biases were zero, which we know to be wrong.

e We do not model any correlations between the variables in our initial belief
state, 1.e., we just defined a mean and a variance for each variable, setting all

the covariances to zero. Again, we know this to be incorrect.

To test whether the initial drop is indeed caused by an incorrect initial belief state,
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Figure 10.17: (a) The first 150 steps of the original sequence (b) First 150 steps of a
sequence starting at ¢ = 1500

we used the same sequence but this time started it at time step 1500. We modified
our initial distribution to reflect the situation at ¢ = 1500, but again we knew that
we only have an approximation of the correct initial belief state. The results of
this experiment are shown in Figure 10.17(b). Note that again the probability of
the correct hypothesis drops at the beginning of the sequence before going back up.
Since the original experiment had no problems around ¢ = 1500, we view this as an
indication that the problem is with the initial conditions. Clearly, if the system is to
be used in practice it is necessary to have a better approximation of the initial belief
state, although the task of estimating the belief state at the very beginning of the
sequence, before the heater is turned on and there are any gas flows in the system,
may be significantly easier.

Since in general the model worked well for steady state, we used the data to test
various aspects of our model. Here, we report on experiments that test our sensor
model. Recall that our sensor model includes two important components — the sensor
noise and the sensor bias. We tested the effect of each one of these components.

We first demonstrate the effect of the noise level of the sensors. The standard

deviation of the flow sensor noise was estimated from the data to be 0.1. We tried
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Figure 10.18: Wrong flow sensor noise level (a) Standard deviation too large: o = 0.4
(b) Standard deviation too small: ¢ = 0.01

both to increase and decrease the standard deviation to 0.4 and 0.01, again not using
the data from R; and Rs. In Figure 10.18 we plot the probability of both the CO,
and H, valves to be open as estimated by the modified models.

It is clear that the performance for the different noise levels is quite poor and the
predictions are not robust. When the noise level is too small the model is too sensitive
to the noise in data, causing it to change the discrete hypothesis in order to explain
the data noise. When the noise level is too high the model is too insensitive to the
data — 1t does not adequately use the flow sensors readings to correct its predictions.
The belief state becomes only a poor estimation of the state of the system, again
leading us to choose the wrong discrete hypothesis. Thus, it is important to model
the correct noise level of the sensors, and bad estimates for this parameter can lead
to a serious degradation in the quality of the model’s predictions.

Next, we set the standard deviation of the noise level back to 0.1, but removed
all the bias variables of the flow sensors from our model. We used the same setup of
removing the readings from Ry and Rs3 and plotting the probability of both valves to
be open. The results are shown in Figure 10.19, again showing a dramatic degradation

in the performance of the algorithm. Intuitively, without the bias variables, the belief
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Figure 10.19: Modeling the flow sensors without the bias variables

state is not a reliable estimation of the state of the system. For example, consider
the hidden flow variable F' at (16). Without a bias variable for Rg, the flow sensor
at (16), we force the value of F to be close to the value measured by Rs. Thus, if Rs
has a significant bias, the value predicted for F' would not be close to the actual flow,

and our predictions would not be reliable.

10.5.2 CO; Shutoff Experiments

Our last set of experiments involves the CO, shutoff sequence. We treat the shutoff
as an unknown event, i.e., a fault, that we need to diagnose. All the results in this
part were generated using the test set. We did not adjust our model for the test set,
except for modeling the initial conditions at the beginning of the sequence.

To better understand our results we begin by examining some of the data that was
generated in this sequence. Figure 10.20 shows the readings recorded by Rs, the flow
sensor at (16) that measures the incoming flow into the membrane, and by Ris, the

flow sensor at (10) that measures the outgoing flow from the membrane. Figure 10.21
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Figure 10.20: Flows at (16) and (10) during a CO, shutoff: the entire sequence
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Figure 10.21: Flows at (16) and (10) during a CO4 shutoff: the first 50 seconds
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focuses on the first part of the sequence.

There are a few interesting phenomena in the data. The first is the qualitative
behavior of the flows. Initially the flows are dropping, just as one would expect —
turning off the CO4 flow should decrease the flows in the system. However, 90 seconds
into the transition the flows start to increase and even go beyond their original values.
The reason is the different response of the separation membrane to different gases.
After the CO4 supply is cut off, the compositions of the gases in the gas loop change.
Gradually, the CO and CO; in the system are vented out and the composition of
Hs in the flow increases. The resistance of the membrane to Hy is smaller than the
resistance to CO, and therefore the flows start to increase. Eventually, all the CO and
CO; are vented and the system stabilizes again. Notice that our model can predict
this subtle behavior of the system — the synthetic trajectory shown as the ground
truth in Figure 10.15 has a similar qualitative behavior of first dropping, then rising
and finally stabilizing (although, as we already discussed the noise levels in our model
are larger and the simulated transition seems to happen slightly faster).

The second interesting phenomenon is the relation between the flows as measured
by Rs and by Ri. In general the flow at (16) is equal to the sum of the flows at
(10) and (13). Thus, the flow measured by Rs should be at least as large as the flow
measured by Ri;. In the actual sequence, the flow in Rg is indeed larger than the flow
at Rpz during the first 30 seconds (see Figure 10.21). However, after the transition at
t = 30, the readings of Rq3 become larger than the readings of Rg, and starting from
time step ¢ = 280, the difference becomes significant. The reason for this behavior is
that apparently the sensors are not well calibrated and react differently to the changes
in the gas compositions. Thus, although the actual flow in Rg is slightly larger than
the flow at Ris, the sensors indicate that it is significantly smaller.

Figure 10.22 shows how the readings of Rg and Ri, are reflected by the belief
state of of our model. Here we plot the joint probability distribution over the status
of the two sensors. Up to ¢t = 280, the dominating hypothesis is that both sensors
are working. The model explains the higher readings from R;3 compared to Rg by
adjusting the bias variables of these sensors accordingly. However, the bias variables,

as encoded in our model, are not likely to have large values. Since we did not model
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Figure 10.22: Predicted failures of Rg and Rij

the dependency of the bias variables on the gas compositions, our model does not
reflect the change in the biases after the gas compositions change. Thus, our model
cannot explain the behavior of Rg and Ry, for ¢t > 280.

The other possible explanation is that one of the two sensors is faulty, which is
exactly the diagnosis our system makes. Initially, the likely hypothesis is that Rg
is faulty. When the flows level off at ¢ = 360, our system seems to prefer the flow
measured by Rs and it therefore changes its diagnosis to Rz being faulty with high
probability. For a few seconds it gives a high likelihood for both of the sensors to be
faulty, but then it infers that Rg is working after all.

This diagnosis seems quite reasonable, given that we did not explicitly model the
influence of the gas compositions and the flow rates on the bias variables. In other
words, given the sensor model we use, the behavior of Rg and Ry, should indeed be
considered a fault, and the system makes a reasonable inference (which we did not
expect beforehand) by assuming that one of the sensors is broken.

We now examine the performance of the model and our inference algorithm in
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Figure 10.24: Prediction with all the flow sensors except for CO; readings
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Figure 10.25: Prediction with no flow sensors except for Hy readings

diagnosing the position of the valves. Figure 10.23 indicates that the correct diagnosis
was reached, but as we already discussed in the case of the synthetic data, as long
as we have the data from the CO; flow sensor Rs, located at (1), it is very easy to
diagnose the CO; shutoff. Therefore, a more interesting test is to ignore the data
from R3 and test whether we can still diagnose the CO, shutoff. The results of
this experiment are shown in Figure 10.24. Without the data from Rj, it takes a
little more time to reach the right conclusion, but within a few time steps we reach
the correct diagnosis and consider it to be extremely likely through the rest of the
sequence.

In the previous section, we tried to diagnose an Hj shutoff event with only the
CO; flow sensor working. We tried a similar experiment with real data, but since our
sequence included a CO; shutoff rather than an Hy shutoff, we removed all the sensors
except for the Hj sensor. The results are shown in Figure 10.25, and are quite similar
to the results on the synthetic data in Figure 10.14 (except for the synthetic data

being more noisy as we discussed above). The fact that we get the same qualitative
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Figure 10.26: Prediction with no measurements of incoming flows

behavior for real and simulated data in this case is a positive indication for the quality
of our model as well as the inference algorithm. Another positive indication is the
fact that we are still able to come up with a useful diagnosis on a real data set even
without many of the sensors.

As our final, and most challenging test, we ignored the data from both flow sensors
Ry and Rs, thus eliminating any measurement of incoming gas flows. Coming up with
the correct diagnosis is much more challenging now, since, even if we infer that one
of the valves is closed it 1s hard to infer which one, as the effects of a CO, shutoff and
an Hy shutoff are similar. The results of this experiment are plotted in Figure 10.26.
Shortly after the transition, the probability of both valves being open goes down
quickly and the two likely hypotheses are that the CO4 valve was closed or that the
H, valve was closed. For a short time the hypothesis of an H, shutdown is considered
more likely but 15-20 seconds into the transition the probability of a CO; shutoff gets
close to 1. It remains practically at 1 except for two short periods in the sequence.

Interestingly the first period correspond to the time step where the model infers that
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Ry 1s faulty. The second corresponds to the short period where the model gives a
high probability to the hypothesis of both Rg and Ry, being faulty.

These results are quite encouraging, although obviously there is some work to be
done. We discuss some extensions to our framework in Chapter 11, but even with the
current model and inference algorithm we were able to diagnose fairly complex faults
that were not manifested directly in the sensor readings. In particular, the last two
graphs, where important flow sensor readings were missing, demonstrate the power of
hybrid DBNs in coming up with complex diagnoses based on the probabilistic model
of the system.

10.6 Discussion

Previous work on fault diagnosis is based on two main approaches. Within the engi-
neering community the fault diagnosis framework is usually based on SLDS models
while the Al community has concentrated on constraint based methods, that work
by discretizing the system. In this section we discuss these approaches and contrast
them with our approach of using hybrid DBNs.

Within the fault detection and isolation engineering community, much of the
research has focused on modeling the system as an SLDS, defined in Section 8.6
(e.g., [Fra90, Ise97, Ger88]). Non-linear systems are linearized, usually using the
EKF. This approach is quite similar to our hybrid DBNs approach, with the main
difference that there is no decomposition of the probability distribution: The model
uses just one discrete variable that represents all the possible faults. As a result,
we need to explicitly encode the behavior of all the continuous variables given every
value of the discrete variable, forcing the model to have a relatively small number of
possible faults.

The main alternative approach is to discretize the variables of the system, result-
ing in a discrete model which is often expressed as a set of constraints. A violated
constraint indicates a fault, and the task of fault diagnosis is to find the likely ex-
planations to the violated constraint. This is the classical approach used by the Al
community (e.g., [IKW87, dKW89, CT94, Mcl98]).
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To make the discussion more concrete, we focus on the Livingstone system [WN96,
KNO00] which is a fault diagnosis and control system developed at NASA. Livingstone
is defined in two slightly different ways in the two references, but for our purposes

Livingstone models a system as a tuple (X, Mx, M7) where:

e X is a set of discrete state variables, representing the state of the system. Just
like DBNs, we have a set of variables for every time step, and in particular
X ® represents the state of the system at time {. Any continuous quantity
of interest is discretized into a small number of possible values. Examples of
typical discretizations are two values such as Zero, Nonzero and three values
such as Low, Medium, High. Note that every sensor observation is discretized

as a pre-processing step.

o Mx is a set of state constraints formalized as propositional logical formulas
defined over X. These constraints define a subset of the possible states of X

as the feasible states of the system. For example, we can use the constraint
(Vi = Closed) = (flowy, = zero)

where V; represents the state of some valve and flowy, represents the flow

through V4.

o M is another set of constraints, constraining the possible transitions from x®
to X", M7 is defined as a set of propositional formulas over Xy X 41,

For example, we can state that if the sensor 57 is broken then it remains broken:

(S{t) = Broken) = (Sl(H_l) = Broken)

Livingstone uses a simple heuristic to model the probabilities of the possible tra-
jectories in the system, based on the number of faults in a transition, where all the
faults are assumed to be independent. A transition with & faults is not considered
believable unless all the trajectories with less than & faults were ruled out due to the
evidence and the constraints M x and M7. Thus, Livingstone considers the nominal

no-faults trajectory as the actual trajectory of the system if it is consistent with the
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constraints. If it is not, then the possible trajectories of the system are defined as all
the single fault trajectories which are consistent with the constraints. If there are no
such trajectories, the double fault trajectories are considered and so on.

The actual algorithm used to find the trajectories [KNOO] is quite similar to our
enumeration algorithm from Chapter 5. The algorithm maintains a belief state over
time ¢ variables and enumerates the transitions to time ¢4 1 in order of their likelihood,
ignoring all the transitions that are not consistent with the constraints. However,
other than the fact that Livingstone uses only discrete variables, there is another
important difference between Livingstone and our approach. In Livingstone the belief
state is defined as a set of possible states, as opposed to our approach which maintains
a probability distribution over the states. Consequently, while our approach uses the
evidence to make some states more likely than others, Livingstone uses the evidence
as hard constraints, making states either feasible or not.

Livingstone was applied by NASA to a few systems, including the propulsion sys-
tem used in the Cassini spacecraft and the RWGS. While Livingstone was successful
in the former application it was not in the latter [GKO01]. The reason is the different
nature of the two systems. The model of the propulsion system has two basic modes
of operations, determined by the configuration of the valves: either there is flow of
fuel through the system and thrust is produced, or there is no flow and no thrust. The
typical faults in the system cause the flow to start or end unexpectedly, rather than
causing the flow to increase or decrease the flow. Thus, there are many questions that
can be answered by a very simple discretization of the flows to Zero and Nonzero.

The situation in the RWGS is more complex. As we have seen, faults can manifest
themselves in changes in the flows and pressures rather than the flow going down to
zero. If we use the Zero and Nonzero discretization in the RWGS, then the entire
graph in Figure 10.20 would be reduced into the flow constantly being Nonzero, and
the fault would be impossible to diagnose. It is possible to define a finer discretization
but we are faced with similar problems to those discussed in Section 3.4.1: It is
hard to find a good discretization scheme and inference becomes significantly more
expensive. In addition, defining the model becomes harder. For example, assume

that we partition the possible flows to ranges such as {[0,1),[1,2),...,[59,60)}. We
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now have to decide whether to define a flow in the range [19,20) and a sensor reading
of [20,21) as a fault, and if it is, how to express the fact that it is more likely than a
fault resulting in a reading of [40,41). Diagnosing faults such as a slow drop in the
temperature of the reactor as a result of the heater being turned off is extremely hard
under this framework.

The deep reason for these problems is that the RWGS is truly a hybrid system,
where the actual continuous quantities are important beyond the question of being
zero or non-zero. Thus, although the classical constraint-based approach may be use-
ful in some cases, it does not seem to work well in systems such as the RWGS. We feel
that the results in this chapter indicate that modeling these systems as hybrid dy-
namic Bayesian networks is a natural alternative that has the potential of overcoming

some of the limitations of the classical approach.



Chapter 11

Conclusion and Future Work

11.1 Summary

In this thesis, we have tried to achieve two main goals: develop a better understanding
of hybrid Bayesian networks and show that hybrid models can be useful for practical
applications, in particular in order to perform fault diagnosis on a complex real world
physical system.

We first presented an overview of inference in both discrete and hybrid Bayesian
networks. We showed that some of the insights for discrete networks can be used
for hybrid networks but that there are also some important subtle differences. In
particular we saw that it is possible to adapt the clique tree algorithm, developed for
discrete networks, for CLGs. However, unlike the discrete case, not every elimination
order can be used for CLGs. For some elimination orders, the operations involved in
the message passing are not be well defined, and even if the operations are well defined
they sometimes lead to illegal distributions, such as distributions with a negative
variance.

To fix this problem, it is necessary to add a crucial restriction on the elimination
order, called strong triangulation. We saw that with strong triangulation, we get a
strongly rooted clique tree, where message passing is not only well defined, but is also
guaranteed to find the correct (weak) marginal in every clique. Unfortunately, our

complexity analysis showed that strong triangulation might dramatically increase
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the size of the clique tree. For many simple networks including polytrees, where
without strong triangulation we get compact clique trees, strong triangulation leads
to impractical clique trees.

The last observation led to an important and natural questions, namely, can strong
triangulation be avoided. In other words, perhaps it is possible to find an algorithm
which is not based on clique trees and does not suffer from the problems induced
by strong triangulation. Alternatively, if we compromise on using approximate in-
ference instead of exact inference, perhaps we can find some approximate inference
algorithm which is efficient for networks such as polytrees and still provides a good
approximation to the posterior distribution.

These questions were answered by our theoretical analysis in Chapter 4, and unfor-
tunately, in general the answer is no. We showed that, even in polytrees, approximate
inference in CLGs is NP-hard (unlike the discrete case where even exact inference in
polytrees can be done in linear time). We proved that the NP-hardness holds even
for a restricted class of polytrees where the marginal prior distribution for every con-
tinuous variables is a mixture of at most two Gaussians. A corollary is that finding
the most likely discrete instantiation given some observations over the continuous
variables is NP-hard, even for very simple network structures.

The last result appears quite discouraging in the context of fault diagnosis, where
part of the task is to find the likely states of the system given the sensor readings.
Our corollary tells us that finding even the single most likely state of the system (and
certainly the K most likely states) is already NP-hard even in polytrees.

However, in Chapter 5 we showed that, in practice, the situation is not as bad.
Real life domains do not look like NP-hardness reductions and we can often take
advantage of their properties in order to come up with useful and efficient algorithms.
In particular, in many domains the distribution over the discrete variables is very
skewed. For example, in the fault diagnosis domain, the probability for faults is
low and therefore the combination of many simultaneous independent faults is ex-
tremely unlikely. We presented an any-time algorithm that takes advantage of this
phenomenon by deterministically enumerating the possible states of the system in or-

der of their prior likelihood. Since the probability distribution is skewed, the hope is
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that considering a fairly small number of the most likely hypotheses provides a good
approximation to the actual distribution. Our algorithm works well if at least some
of the hypotheses that are likely a priori, are the most likely hypotheses a posteriori,
and considering them produces a good approximation of the posterior distribution.

Our algorithm is an any-time algorithm and its space complexity is often expo-
nentially smaller than Lauritzen’s algorithm, and therefore we can use it and get
some answer (albeit an approximate one) even in cases where Lauritzen’s algorithm
is completely impractical. Furthermore, we empirically showed that this algorithm
outperforms the classical sampling algorithms on networks with a skewed distribution.

We next turned our attention to non-linear models. Once we introduce non-linear
relations into our model, the resulting distribution is no longer a Gaussian (or a
mixture of Gaussians), and can be arbitrarily complex. However, in many cases even
if the distribution is non-Gaussian, it can be well approximated as a Gaussian. Thus,
our approach was to approximate every non-Gaussian distribution as a Gaussian.

In Chapter 6, we described in detail two numerical integration techniques, namely
Gaussian Quadrature and Exact Monomials. These techniques proved to be very
useful for our purposes as they allowed us to compute efficiently the first two moments
of the non-Gaussian distribution, often with a very high precision. We showed that
our approach often outperforms the extended Kalman filter approach. We also showed
that our approach presents a simple and coherent view of the successful Unscented
Filter which turns out to be a special case of the Exact Monomials method. Once
viewed as a numerical integration technique, it becomes clear how one can extend the
Unscented Filter to achieve better precision. Our numerical integration approach can
be naturally combined with the enumeration algorithm from Chapter 5.

In Chapter 7, we concentrated on augmented CLGs, i.e., CLGs that include dis-
crete nodes with continuous parents. We presented a systematic way to deal with
these networks by extending Lauritzen’s algorithm using our numerical integration
techniques. Our algorithm computes the exact distributions over the discrete nodes,
and the exact first and second moments of the continuous ones, up to inaccuracies
resulting from the numerical integration procedure. To achieve these properties, we

had to address some subtle technical issues, and modify Lauritzen’s algorithm is some
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non-trivial ways. We showed that, in the special case of softmax CPDs, the integra-
tion can often be done efficiently, and that using the first two moments leads to a
particularly accurate approximation.

We also discussed how to extend our enumeration algorithm to augmented CLGs.
We proved that enumeration from the prior distribution, which can be done efficiently
for CLGs with a simple structure such as polytrees, is NP-hard for augmented CLGs
with a similar structure. Therefore, our enumeration algorithm cannot be directly
used in augmented CLGs, and some other heuristics are necessary.

Up to this point in the thesis we concentrated on static models. However, as
we pointed out, we are interested is tracking stochastic processes over time. We
therefore turned our attention to temporal models, namely to DBNs. In Chapter 8,
we described three standard inference algorithms for hybrid DBNs: GPB1, GPB2, and
IMM. Unfortunately, none of these algorithms is suitable for our needs, because of the
number of Gaussians kept in the belief state. GPB1 keeps only one Gaussian in the
belief state, which is not enough for the purposes of fault diagnosis, while GPB2 and
IMM keep 2" Gaussians (assuming the belief state has n binary variables). Clearly,
these algorithms are not practical when n is large. In particular, models in the fault
diagnosis domain can easily have tens of discrete variables in the belief state. For
example, in the RWGS system discussed in Chapter 10 there are 33 discrete variables
in the belief state.

Thus, in Chapter 9, we discussed how we can scale up inference in hybrid DBNs.
We first observed that some of the Gaussians that are collapsed together in GPB2
may be very different from each other, and better kept as distinct hypotheses. On the
other hand, some of the Gaussians that GPB2 keeps as separate hypotheses may be
very similar to each other and can be collapsed without a significant loss of accuracy.
Using this insight, we developed a new collapsing algorithm. Our algorithm takes a
parameter K, representing the maximal number of Gaussians in the belief state, and
tries to identify the K most likely distinct hypotheses and keep those in the belief
state. A key part of our algorithm is that it collapses Gaussians together only if they

are similar to each other in terms of KL-divergence.
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We then discussed the implications of the collapsing algorithm on the represen-
tation of the belief state. We described the belief state using a graphical model that
includes a special “hypothesis variable”. Each value of the hypothesis variable corre-
sponds to exactly one of the Gaussians in the belief state and induces a probability
distribution on the discrete variables in the belief state. Thus, the hypothesis variable
is a convenient way to correlate the mixture of Gaussians resulting from our collapsing
algorithm with a distribution over the discrete variables.

In addition to approximating the belief state by collapsing together some of the
hypotheses, it may be beneficial to decompose the belief state and keep it in a factored
way, just like in discrete DBNs. We discussed various ways of doing so, including
decomposing the mixture of Gaussians by using more than one hypothesis variable.

By this point in the thesis, we described all the techniques necessary to perform
fault diagnosis in the RWGS model. In Section 9.5 we presented our tracking algo-
rithm for hybrid DBNs that combines the following set of techniques:

e The enumeration algorithm from Chapter 5.
e The numerical integration techniques from Chapter 6.

e The collapsing algorithm and the representation of the belief state from Chap-
ter 9.

Finally, we applied these techniques to the RWGS system in Chapter 10. The
RWGS system is a complex physical system designed to extract oxygen from the
Martian atmosphere, or any other carbon dioxide rich environment. We described the
system and discussed some of the interesting issues that must be addressed in order
to model the RWGS system as a hybrid DBN, including the problem of parameter
estimation.

We presented experimental results both on synthetic data and real data collected
during actual runs of the system. The experiments on the synthetic data compared
the enumeration algorithm and the sampling approach, both with and without Rao-
Blackwellization. We believe that these experiments demonstrate that the enumera-
tion approach has some real advantages over the sampling approach. However, even

the most successful experiments with synthetic data are not enough to demonstrate
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that the approach of modeling a system as a hybrid DBN can work in practice. In
real world domains, the model is just an approximation of the system. Thus, real
data never quite fits the model, and working with it presents an extra challenge over
synthetic data. We feel that our experiments with real data sets demonstrate the

feasibility of our approach under real-world conditions.

11.2 Limitations and Future Directions

It is our hope that this thesis demonstrates the usefulness of hybrid (dynamic)
Bayesian networks and provides useful algorithms for inference in these models. Ob-
viously, we have not answered all the questions that come up in these models, and
there is still room for much work to be done. In this section, we review some exciting

research directions that build on top of the work in this thesis.

11.2.1 Inference Issues

The heart of the algorithm used for tracking the RWGS system is the enumeration
algorithm from Chapter 5 combined with the techniques of Chapter 6. Although this
algorithm was proven to be capable of reliably dealing with a complex real-world

system, it still can be improved in a few ways.

Combination with CD CPDs

Currently, our enumeration algorithm only handles non-linear relations between the
continuous variables. In Chapter 7, we showed why it is not easy to combine the algo-
rithm with CD CPD (CPDs of discrete nodes with continuous parents). Nonetheless,
the need to do so still exists, since, as we discussed in Chapter 7, in some cases us-
ing CD CPDs is the most natural way to model a system. Thus, finding a way to

incorporate CD CPDs with our enumeration framework is still an open problem.
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Combination with Outside Experts

Our enumeration algorithm only uses information available directly from the proba-
bility distribution. However, in many cases we can get more information that may
be useful and can improve the performance of our algorithm. For example, we may
have an outside “expert” that uses its own algorithms to come up with possible hy-
potheses about the state of the system. It seems natural to combine such an expert
with our algorithm, by combining the hypotheses generated by the expert with the
most likely hypotheses enumerated by our algorithm. Defining such an architecture
and studying its theoretical and empirical properties may prove to be a significant

advance for using hybrid DBNs for fault diagnosis.

Adaptive Enumeration

The order in which the enumeration algorithm enumerates hypotheses is determined
by the prior distribution over the discrete variables and by the discrete observations,
if any exist. The enumeration order does not take into account any observations for
the continuous variables. As we discussed in Chapter 5, we can view this as a similar
approach to RB-LW which generates samples from a distribution that does not take
into account the continuous observations.

The adaptive importance sampling approach [OK00, CD00] attempts to improve
the sampling distribution over time. Roughly speaking, the idea is to use the samples
that were already generated in order to get a better approximation of the posterior
distribution. We then generate samples from our improved approximation of the
posterior, use these samples to improve our approximation even further, and so on.

It should be possible to use the same idea for our enumeration algorithm. We
start by enumerating hypotheses from the distribution P which does not take into
account any continuous evidence. After enumerating the Ky most likely hypotheses
from F,, we use them to estimate a new distribution P, which should be a better
approximation of the posterior distribution. We then stop enumerating hypotheses
from F, and start enumerating hypotheses from F;. Again, after we enumerate the

K7 most likely hypotheses from P; we use them to compute P, and continue in this
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fashion.

This approach may prove to be useful in dealing with simultaneous faults. Assume
that four independent faults happen simultaneously. Since the probability of faults is
low, it might take too long before our enumeration algorithm reaches the hypothesis
that corresponds to all four faults. However, perhaps using the hypotheses that were
already generated we discover that the probabilities for the faults are larger than our
original estimates. We now learn a new distribution where each one of the faults
is more likely. In this new distribution, the hypothesis corresponding to the four
simultaneous faults is also more likely, and appears earlier in the enumeration order,

which may enable the enumeration algorithm get to it at a reasonable time.

Exploiting Approximate Conditional Independencies

Perhaps the most important improvement to our enumeration algorithm is to combine
it with a collapsing process. As an example, consider the RWGS system once again.
The gas compositions in the gas loop depend on the temperature of the reactor, and
thus depend on the discrete variable representing whether the heater is turned on
or off. Thus, we must include the discrete variable representing the heater status
among the variables for which we enumerate the hypotheses. However, if we know
the current temperature of the reactor, this dependency disappears. In practice, we
never know the exact temperature since all our sensors are noisy, but if we know the
temperature with a high accuracy, perhaps we can still ignore the dependency of the
gas compositions on the heater status. Thus, if the temperature sensor is working
properly, there may be no need to enumerate the different hypotheses for the heater
status — since they are similar for the purposes of our query we can collapse them
into one, pick one of them, or even completely ignore this part of the network. On
the other hand, if the temperature sensor is not working, perhaps it is important
to consider the heater status, in which case we do want to enumerate the different
hypotheses.

This observation suggests a sophisticated algorithm that takes advantage of ap-
proximate conditional independencies between the query variables and some other

parts of the network, given some partial instantiation of the discrete variables in the
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network. To implement this algorithm, one must address many technical issues: in
what order should the partial discrete instantiations be enumerated, how to iden-
tify the approximate conditional independence relations, how to actually deal with
the variables that are approximately independent from our query variables, how to
combine these techniques with non-linear dependencies, and so on.

Thus, coming up with an algorithm that takes advantage of our observation is a
challenging problem, but we feel that the potential improvement in the performance
of the algorithm can be dramatic and well justify the time spent on this problem.
The reason is that, if we can find many partial instantiations for which large parts
of the network become approximately independent from our query, we can get an
exponential reduction in the number of hypotheses. In fact, using this approach
we may be able to effectively enumerate all the distinct hypotheses for our query

variables.

11.2.2 Modeling Long Term Changes

In the RWGS experiments we concentrated on diagnosing abrupt changes such as
the CO4 valve getting closed. In physical systems there is another important type of
change, called drifts. Drifts occur slowly over a long period of time. An example of a
drift would be the slow accumulation of dust in the chemical reactor, causing a very
slow drop in the efficiency of the reactor. Drifts cause no noticeable change over a
short period of time and become significant only if we consider a much less accurate
time granularity. Over any short period of time, drifts cannot be detected, since the
changes that they cause are negligible compared to other sources of variability in the
system.

As a motivating example, consider the process of aging for human beings. As
a thought experiment, assume that we are given a sequence of snapshots of some
person’s face taken at time intervals of one hour from each other. The snapshots will
obviously be different from each other due to different light conditions, different facial
expressions, and so on. If we look at snapshots taken hours or days apart from each

other there would be no indication of the aging process — most likely we would not
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be able to tell the chronological order in which the snapshots were taken. However,
if we look at snapshots taken decades apart the results of the aging process will be
very clear.

Drifts present a challenge both from a modeling perspective and from a diagnosis
perspective. From a modeling perspective, it is not clear how to best model drifts,
given that they induce no perceptible change from one time step to the next. From
a diagnosis perspective, it is not clear whether we can use our standard techniques of
tracking the belief state in order to identify drifts or perhaps we need some different
mechanism, perhaps equivalent to comparing the current snapshot to snapshots that

were taken a long time ago.

11.2.3 Active Learning

The parameter estimation process for the RWGS system, as described in Section 10.3,
was a very complicated and time-consuming process. It is quite certain that even after
this investment, the model parameters can still be greatly improved. For example,
we currently do not know how good the RWGS model is for Hy shutoff, since we do
not have such a sequence available, but it is very possible that the predictions of the
model in this case are quite poor.

Obviously, there is a need for a more systematic way for parameter estimation
and model learning in general. One possibility is to use the EM algorithm [DLRT77]
which is designed to estimate the parameters of the model from incomplete data,
i.e., data in which not all the variables are observed. However, we we feel that in
order to learn a good model for physical systems, it is important to direct the data
collection process to include sequences that would be useful for modeling purposes
(e.g., a sequence that includes a Hy shutoff for the RWGS). In other words, we would
like to perform active learning

In an active learning setup, it is possible to direct the data collecting process
to collect data for specific system configurations. In active learning, the framework
is that the learning algorithm can ask the data collecting process to first set some

of the variables to some values, and then to generate a sample given these values.
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There has been some work on active learning in the context of discrete Bayesian
networks [TKO0la, TKO1b]. However, in order to successfully use active learning for

our needs, some interesting problems must be addressed:

e How to perform active learning for hybrid networks rather than discrete ones.

e How to perform active learning for DBNs rather than Bayesian networks. Note
that, instead of requesting a sample given a setting of some of the variable,
in the dynamic setup we would most likely ask for a sequence describing the
system behavior given some initial conditions that we impose and perhaps some

more interventions along the way.

o In real life systems such as the RWGS, we must take into account some safety
constraints. For example, we may not be able to ask to test the behavior of
the system when the pressure grows to 100 atmospheres since the system would
explode in this case. Thus, in order to use active learning for systems such as
the RWGS, we must model the safety constraints and combine them with the

active learning algorithm.

11.2.4 Control

Finally, in this thesis we focused on the task of fault diagnosis. In many practical
cases we are not interested in fault diagnosis by itself but rather as a part of a control
system: We do not want to just know about the system faults — we want to take
actions to fix them or at the very least minimize the damage that they cause. Thus,
there is an obvious need for a control component that would work hand in hand with
our fault diagnosis tools.

Control is a difficult problem, even when the state of the system is fully known.
The classical control theory [Oga01] usually deals with continuous systems, while the
AT community often focuses on discrete systems, usually modeled as Markov decision
processes [Put94]. Some work has been done on the problem of creating a control
component for complex hybrid systems (e.g., [TPS98, PS96]), but the problem is still

very much an open issue, especially if the state of the system is not fully known.
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11.3 Conclusion

It is our hope that this thesis demonstrates that hybrid (dynamic) Bayesian networks
are a powerful tool for reasoning about complex and realistic domains. They combine
the explicit representation of uncertainty that has proved useful for Bayesian networks
with enough expressive power to model discrete as well as continuous phenomena in
the world. In this thesis, we concentrated on the use of hybrid models for fault
diagnosis, but it is not hard to come up with other domains that call for hybrid
models: visual tracking, speech recognition, robotics and many others.

In this thesis, we have answered some important and fundamental questions about
hybrid models, which naturally led to some other questions, some of them just as im-
portant, or even more so. But perhaps even more importantly, in this thesis we go
beyond theoretical analysis or testing our algorithms on synthetic data generated
from toy examples — we take the bull by its horns and prove the applicability of our
techniques on a real-world system with actual data. We believe this to be a strong
indication that hybrid Bayesian networks are more than an intellectual exercise, and
actually hold practical importance. We hope that this will serve as a motivation for
other researchers to pursue some of the research questions related to hybrid Bayesian
networks in combination of testing the applicability of hybrid models in other do-

mains.



Appendix A

Some Proofs

A.1 Proof of Lemma 3.14

Proof: Let X = {X;,...,X,} and Y = {Y;,....Y,,}. We prove the theorem by
induction on m. Assume first m = 1, in which case we can write P(Y; | X) =
N (Yi;a+3;6:X;,¢) or alternatively P(Yy | X) = Z + ¥, 6:X; where P(Z) =
N (Z;a,c). We now have:

ElYi] = E lZJrZi:biXi]

= E[Z]+E [Z biXZ-]

EYY] = B

(Z + Z biXi) 2]

= E|7%] +2E [ZZ biXZ-] +E

(z2)]

= CL2 +c+ Z bzb]E[XZX]]

]

EViX;] = E l(z + Z biXi) Xj]
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= E[ZXZ']—I—E[ZbiXinl
= Y biE[XiX]]

We get that all the expectations depend only on the first two moments of X as
required. The induction step is similar. Since P(Y | X) is linear we can always
write Y; as a linear combination of {X,Y7,...,Y,_1} plus some Gaussian noise. By
induction we already have the first two moments of P(X,Y7,...,Y;_1) and using the
same argument as in the case of m = 1 we can show that the first two moments that

involve Y; are determined directly by the first two moments of P(X,Y7,...,Y;_1) 1

A.2 Proof of claim used in Theorem 4.2

Proof: Recall the network shown in Figure 4.3 where the parameters are defined as:

P(Xo) = N(0,0%)
For1 <i<n: P(X;) = N(M, o)

N(X; — Xi_1,0}) A =0
{ N(X; — Xioq —si,01) Ai=1
N(L—=+2n,1) B=0
N (X, 0%) B =

For1 <i:<n: P(Z) =

P(Y) = {

where

eo? o?
M:ijsj; U%:n-M ; 03202<1—|——2>
Our goal is to prove that V1 <k <n
P(Xy | a*, 2" = 0) = N (s, 0?)

where [px — S(a*)| < .
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We prove the claim by induction on k. For k& = 0 we must show that P(X,) =

N (0,0?), which is given. For a general & > 0 we can use the conditional indepen-

dencies induced by the network and write:

P(Xy, Z | a*, 251 = 0) = /P(Xk_l,Xk,Zk |a*, Z" = 0)d X,

— /P(Xk_l |a*, 251 = 0)P(Xy | Xp_1, ab, 21 = 0)

P(Zy | Xy, Xpo1,a", 2" = 0)d X,y
— /P(Xk_l |a*!, ZF1 = 0)P(X,)
P(Zy | Xi, Xi—1,a8)dXi—4

Using the induction hypothesis we have P(X;_; | a*~', Z*' = 0) = N (py_1, 0?)

and therefore it is easy to explicitly write P(Xy, Zx, Xp_1 | a*, ZF!
fk—1 o2 0
P(Xi1, X, Z | a*, ZF ' =0) = N M 0 o2
M —pp —« —0? ol

=0):

2
b

2 2 2
o+ oy + o3

where @ = 0 if Ay = 0 and a = s; if Ay = 1. Marginalizing out Xj;_4 is trivial and

we get:

M 2 2
P(Xe, Z | @*, 251 = 0) = N 7 72
M—pp —«

2 2 2 2
oy 0+ 0]+ 03

) (A1)

To find P(X} | @*, Z* = 0) we need to condition the distribution in Equation A.1

on Zr = 0 and find the new mean and variance of X;. Using Corollary 3.5, the

posterior mean of X}, is

2
)

2 2
o? 4+ of + o3

E[X:|a" Z"¥=0]=M +

(0= (M = ppa — @) (A.2)
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where

267
ot (1+5)
o’ +ai + a3 O'Q—I-J%—I-O'Q(l—l-g—i)
B o® (0} +0?)
o (of o)+ o (of +0?)
N oi + o?
- WJQ_I_O-Z
1

= A3

- (A3)

Combining Equation A.2 and Equation A.3 we get:

|E[X, | a*, 2% = 0] = (-1 + o)

IN

IN

1

Mo (M - 0)— (s +a)
1+W

1
(R
S
I+ =
M
nM

By the inductive hypothesis we know that ‘S(ak_l) — ,Uk—l‘ < (k;—l)e Further-

more, by our choice of a, S(a*) = S(a*~') + a. Therefore,

|S(a*) - E[X | @, 2" = 0]

IN

[S(a* ") + = oy + prr — E[X; | @b, 2% = 0]

ke

n

S(ak_l) — ;Lk_l‘ + ‘/Lk_l +a— E[X; | at. ZF = O]‘
(k—1)e

€
_I__

n n
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We now turn our attention to computing the posterior variance of Xy, after con-

ditioning on a@* and Z* = 0. Again, we use Corollary 3.5 and get:

Var(X; | a*, Z¥ =0) = o2 —

= 02(1‘|‘U—z> U2+U% 2
o1 0'2‘|‘0'%‘|‘0'2<1‘|‘Z_2)
1

200 +of  of(o’+oy)

c?  o%0?+ ot + oot 4+ o2

2( 2 2)2
o?(0® + o7)
272
(02 + o)

and the proof is complete. 11

A.3 Proof of Theorem 6.3

Proof: ¥ is positive definite iff for every vector w € IR"*' such that w # 0 we have

wlYw > 0. Let w € IR™! be such a vector. We can describe w as

where @ is a vector of dimension n and y is a scaler.
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A
w'Sw = (2" |y “11°
ul |wv y
= a2l Az + 2yx"u + y*v (A4)

We therefore have a quadratic function in . Since A is positive definite the
function must be convex in & and we can find its minimum by setting the derivative

with respect to @ to 0:

24 + 2yu = 0
x = —yAlu (A.5)

Plugging Equation A.5 into Equation A.4 (and using the fact that (A=1)7 = A7)
we get that ¥ is positive definite iff Vy

vul A7 — 22w A7 w4+ g% > 0 (A.6)
Equation A.6 holds for every y iff

v—ul A u >0 (A.7)
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