PROBABILISTIC REASONING FOR COMPLEX
SYSTEMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Avrom J. Pfeffer
December 1999



(© Copyright 2000 by Avrom J. Pfeffer
All Rights Reserved

i



I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Daphne Koller
Computer Science Department
Stanford University
(Principal Adviser)

I certify that T have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

John Mitchell
Computer Science Department

Stanford University

I certify that I have read this dissertation and that in
my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Stuart Russell
Computer Science Department

University of California, Berkeley

Approved for the University Committee on Graduate
Studies:

il



To Debby Gelber, for giving me the strength to write this.

v



Preface

Reasoning under uncertainty is a central issue in artificial intelligence. Real-world
agents must deal with noisy sensor information, non-deterministic effects of actions,
and unpredictable exogenous events. Probabilistic reasoning methods, and Bayesian
networks (BNs) in particular, have emerged as an effective and principled method
for reasoning under uncertainty. BNs exploit conditional independence relationships
to create natural and compact domain models, thereby supporting useful reasoning
patterns, and providing effective probabilistic inference and learning algorithms. How-
ever, BNs are inherently limited by their attribute-based nature, making it difficult
to apply them to large, complex domains.

This thesis addresses the issue of representing and reasoning about probabilistic
models of complex systems. We believe that the key to reasoning effectively about
complex systems is to provide a language that supports the expression of system
structure. We present a powerful object-based representation language, that inte-
grates logical and probabilistic representations. Our language provides the ability to
create structured, modular probabilistic models. The language maintains the key ad-
vantages of BNs, exploiting conditional independence relationships. In addition, it is
capable of representing other aspects of system structure not represented in BNs. In
particular, it supports the decomposition of complex systems into weakly interacting
subsystems, and the reuse of models for many different components of a system.

Another key benefit of our language is that it is very flexible. The same proba-
bilistic representations can be applied in many different situations, with very different
configurations. In fact, our language can even represent uncertainty over the system

configuration itself, and integrate that uncertainty directly with uncertainty over the



basic properties of objects in the system. Our framework also supports the represen-
tation of powerful recursive probability models.

We present inference algorithms for our language that exploit the structure that
can be expressed in it — not only the conditional independence structure normally
exploited by BN algorithms, but also encapsulation, reuse of computation and sym-
metry resulting from the object-based representation. We describe an implemented
system that supports representation and reasoning with models in our language, and
provide experimental results demonstrating the advantages of exploiting structure in

inference.

vi



Acknowledgements

First of all, I would like to thank Daphne Koller, who has been an advisor, mentor,
co-author and friend. This work has been a joint venture from the start, and I could
not have asked for a better collaborator. I have learned so many things from Daphne:
how to choose interesting problems and tackle them by the horns; how to grasp
the big picture while working on the nitty-gritty details; most of all, how to push
myself beyond my self-perceived limitations to discover capabilities I did not know I
possessed. Thank you so much for being a wonderful advisor!

This work could not have happened without the involvement of a number of co-
authors. Alon Levy gave me the opportunity to spend a summer at AT&T Research,
where we hatched some of the initial ideas that made their way into this thesis. While
at AT&T I also met David McAllester, whose sparkling intelligence and creativity
have been exciting and inspirational. Nir Friedman has been a pleasure to work with.
His technical excellence and tremendous grasp of the issues have provided me with a
model to emulate. Lise Getoor has been more than a collaborator and co-author, she
is also a wonderful friend and office-mate. We have talked about so many things over
the last few years, I cannot begin to list the many things I have learned from her.
I especially appreciate her ability to integrate ideas from interesting and surprising
directions. Over the last two years I have had the joy of working with Brian Milch
and Ken Takusagawa. Brian’s wisdom, insight, and intuitive sense of what is right
have often guided us in the right direction, while Ken’s originality and creativity have
turned insoluble problems into solved problems.

Michael Stonebraker first introduced me to computer science research. I am

tremendously grateful to him for giving me the opportunity to work in his group

vii



while I was an undergraduate at Berkeley. Stuart Russell was my first Al teacher,
and is responsible for my collaboration with Daphne. He has been an excellent source
of advice and support over the years. Stuart has also provided me with valuable com-
ments and feedback on this thesis. I am also grateful to other people who have read
and commented on this work: John Mitchell, Ross Shachter and Richard Fikes. T am
also grateful to Joe Hellerstein, Manfred Jaeger, Ron Parr, Mehran Sahami and Yoav
Shoham for many stimulating discussions.

I would like to thank Uri Lerner, Lise Getoor, Xavier Boyen, Eric Bauer, Dragomir
Angelov, Ben Taskar and Barbara Engelhardt for developing the Phrog system; Brian
Milch, Ken Takusagawa and Ryan Shaw for their help in developing SPOOK; Simon
Tong, Barbara Engelhardt and Urszula Chajewska for help with knowledge engineer-
ing; Suzanne Mahoney, KC Ng, Geoff Woodward and Tod Levitt of IET Inc. for
the original battlespace models; and Jim Rice, who has been a tremendous help in
getting SPOOK to integrate with Ontolingua.

I would also like to thank my different sources of funding: a Stanford School
of Engineering Fellowship, a National Science Foundation Graduate Research Fellow-
ship, ONR contract N66001-97-C-8554 under DARPA’s HPKB program, and DARPA
contract DACA76-93-C-0025 under subcontract to Information Extraction and Trans-
port, Inc.

I am very grateful to the many friends both at Stanford and elsewhere who have
made the last few years so enjoyable. I would like to thank the Quail gang — Eyal
Amir, Urszula Chajewska, Patrick Doyle, Lise Getoor, Pedrito Maynard-Reid, and
Sunil Vemuri — for turning the qualifying exam into a social opportunity. I am
grateful to Greg Davidson, Jim Frazin, Bob Givan, Miriam Lewis, Doug Mandell,
Fabio Rojas, and Beth and Eric Zuckerman, for enriching my life with their presence.
I would also like to mention Hannah Ben-Hanan, who died so tragically and will
always be missed.

To my mother: your constant love and encouragement over the years have been
a tremendous blessing. You always knew I would grow up to be an absent-minded
professor! To my brothers, sisters, nieces, nephews, uncles, aunts and cousins: It is

wonderful to be part of such a large and close-knit family. You have provided me

viii



with fantastic support and community.

Above all I would like to thank Debby Gelber. You have come into my life and
turned it upside down. You have helped me dig deep inside many times, kept me
going, and given me something to live for beyond this thesis. I dedicate this thesis to

you.

X



Contents

Preface

Acknowledgements

1

2

Introduction

1.1 Probabilistic Knowledge Representation . . . . .
1.2 Summary of Contributions . . . . . . . ... ..

1.3 Thesis Overview . . . . . . . . . . . . ... ...

Possible Worlds

2.1 Attribute-Based Models . . . . . . . ... ...
2.2 Relational Models . . . . . .. . ... ... ...

Bayesian Networks

3.1 Introduction . . . . . . ... ... ... .....
3.2 Probability Distributions . . . . . .. ... ...
3.2.1 Conditional probabilities, independence,

3.3 Definition of Bayesian Networks . . . . . . . ..
3.4 Bayesian Network Semantics . . . . . .. . ...
3.5 Conditional Independence and d-Separation . .
3.6 Bayesian network reasoning . . . .. .. .. ..
3.7 Inference . . . . . ... ... .. ... ... ...

3.8 Conclusion . . . . . . . .. ...

vii

o W =

conditional indepen-



4 Object-oriented Bayesian Networks 49

4.1 Introduction . . . . . . . . ... 49
4.1.1 Hierarchical Systems . . . . . .. ... ... ... ... ... 53

4.2 Hierarchical Relational Models . . . . . . . ... ... .. ....... 55
4.2.1 Passing Information Between Objects . . . . . . . .. .. ... 57
4.2.2 Hierarchical Worlds . . . . . . ... ... ... 0. 60
4.2.3 'The Space of Possible Worlds . . . . . .. .. ... ... ... 66

4.3 Specifying the probability model . . . . . . .. .. ..o 69
4.4 Semantics . . . . . . .. .. e e e e e e 73
4.4.1 Generative Process Semantics . . . . . ... ... .. ..... 74
4.4.2 Equivalent BN . . . ... 00000000 oo 78
4.4.3 Semantics of a class probability model . . . . .. ... .. .. 81

4.5 Structured Inference . . . . . . . .. ..o 87
4.5.1 Interfaces and Encapsulation . . . . . . ... ... ... .. 87
4.5.2 Structured Variable Elimination . . . . . . .. .. ... .. .. 90
4.5.3 Reuse of Inference . . . . . . ... o000 94
454 Complexity . . . . . . .. o 98
4.5.5 Discussion . . . . . ... Lo L 106

4.6 Working with OOBNs . . . ... .. ... . . ... 111
4.6.1 Defining Class and Subclass Models . . . . . . .. ... .. .. 111
4.6.2 Abstraction and Refinement . . . . .. ... ... ... .... 115

4.7 Conclusion . . . . . . . . L 116
5 Relational Probability Models 118
5.1 Imtroduction . . . . . . . .. .. 118
5.2 Basic Language Definition . . . . . . ... ... 000000 121
5.3 Probability Model and Acyclicity . . .. ... .. .. ... .. ..., 130
5.3.1 Generative Semantics . . . . . ... ..o 130

5.4 Semantics . . . . . ..o L 137
5.4.1 Generative Semantics . . . . . ... ... ... ... 137
5.4.2 Probability Measures . . . . . . ... ... 0oL 140

xi



7

5.4.3 Measure-Theoretic Semantics for RPMs. . . . . . . ... ... 141

5.5 Inference . . . . . . . . .. 145
5.6 Discussion . . . . . . . ... e 153
5.6.1 Integration with OOBNs . . . . .. .. ... ... ....... 153
5.6.2 Isomorphic Worlds . . . . . ... ... ... ... ....... 156
5.6.3 Conclusion. . . . . .. .. ... ... o 156
Structural Uncertainty 159
6.1 Introduction . . . . . . . . . . .. ... 159
6.2 Multi-Valued Attributes . . . . . .. ... ... ... ... 160
6.2.1 Language . . . . . . . . . ... 160
6.2.2 Semantics . . . . . . . ... 164
6.2.3 Inference with Quantifiers . . . . . .. .. .. ... 168
6.3 Closed World Models . . . . . .. . ... ... .. . ... ....... 172
6.4 Number Uncertainty . . . . . .. . ... ... ... 176
6.4.1 Possible Worlds . . . . . ... ... ... oL, 177
6.4.2 Semantics . . . . . . .. ... e 181
6.4.3 Inference . . . . .. . . . . ... ... 189
6.5 Reference Uncertainty . . . . . . .. ... ... .. ... ... .. 191
6.5.1 Instance-Level Reference Uncertainty . . . . . .. ... .. .. 191
6.5.2 Inference With Reference Uncertainty . . . . . . . ... . ... 194
6.5.3 Class-Level Reference Uncertainty . . . . . . . .. ... . ... 199
6.5.4 Enumerated Classes and the Ace of Spades Problem . . . . . . 203
6.5.5 Type Uncertainty . . . . . . . .. ... ... ... ... .... 205
6.6 Discussion and Possible Extensions . . . . . . ... ... ... ... 206
Recursive Probability Models 208
7.1 Introduction and Examples. . . . . . . .. ... . o000 L. 208
7.2 Language Definition . . . . .. ... ... . 00000 216
7.3 Measure-Theoretic Semantics . . . . .. . ... ... ... .. .... 218
7.4 Approximate Inference . . . . . ... ... .. oL 227
7.5 Structured Approximation Algorithms . . . . ... ... ... .... 232

xii



7.6

7.5.1 Tterative SVE . . . . . . . ..

7.5.2 Analysis .

7.5.3 ISVE and Fixed-Point Equations . . . . . ... ... ... ..

Conclusion . . . .

8 Implementation and Applications
The SPOOK System . . . . . .. .. ... . ... ... ... .....

Example: Military Situation Awareness . . . . . . . . . ... .. ...

8.1
8.2
8.3
8.4
8.5
8.6

Experimental Results . . . . . . ... ... ... ... ... .....

Example: Computer System Diagnosis . . . . . ... ... ... ...

Example: Modeling a University . . . . . . . . ... ... .. .. ...

Discussion . . . .

9 Related Work
9.1 Axiomatic Approaches . . . . . .. . ... ... ... ... ...
9.2 Model-Based Approaches . . . . . . . ... ... ... ... ...

9.2.1 Structure Bayesian Networks . . . . . . .. ... ... ... ..

9.2.2 Knowledge-Based Model Construction . . . ... ... .. ..

9.2.3 Network Fragments . . . . . . ... .. .. ... ...,

9.2.4 Other Model-Based Approaches . . . . . ... ... ... ...

9.3

Miscellaneous . .

10 Conclusion and Future Work

10.0.1 Summary

10.0.2 Future Work . . . . . . . . . . .

10.0.3 Conclusion

Bibliography

xlii

252
252
257
266
269
272
276

279
279
281
281
282
285
286
287

289
289
291
293

295



List of Tables

xiv



List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

5.1

6.1
6.2

7.1
7.2

8.1
8.2

8.3

A simple Bayesian network. . . . . .. ... ... ... ... 26
Conditional probability tables for the example network. . . . . . . .. 27
Initial set of factors for Example 3.7.5. . . . . . . .. .. ... ... 40
Graphs for computation of Example 3.7.5. . . . . .. ... ... ... 44
The CPCS network. . . . . . ... .. o oo 46
Four levels of hierarchy in an OOBN model of a computer system. . . 73
Flat BN equivalent of Hard Drive object . . . . . . . . .. ... .. .. 80
Interface of Drive-Mechanism object within Hard-Drive . . . . . . . .. 88
Bounds from Theorems 4.5.11 and 4.5.12 are not tight. . . . . .. .. 103
Decomposable interfaces. . . . . . . .. ... ... L. 108
(a) Infinite and (b) cyclic dependency models. . . . . . ... ... .. 133
Relevant number variables. . . . . . . . ... 000 o000 185
Induced graph for decomposed CPF with reference uncertainty. . . . 199
Self-contained sets: (a) Normal case. (b) Pathological case. . . . . . . 219
Mlustrative figure for Lemma 7.3.7. . . . . .. .. .. .. ... ... 222
The SPOOK systen architecture. . . . . . .. .. ... ... ..... 253
(a) SCUD Battalion Bayesian network. (b) SCUD Battery Bayesian

Network. . . . . . . o o 259
SCUD battalion network with repeated substructures circled. . . . . . 260

XV



8.4

8.5
8.6
8.7
8.8

8.9
8.10

(a) SA2 Battalion Bayesian network, (b) SA3 Battalion Bayesian net-
work. .o
SCUD-Battalion class model. . . . . . . . ... ... ... .......
Class hierarchy of basic units in the battlespace model. . . . . . . ..
Comparison of unstructured and structured inference algorithms. . . .
Comparison of naive and combinatoric approaches to inference with

quantifiers. . . . . . .. L L L

A Bayesian network describing a single student taking a single course.

(a) BN for single student in two courses. (b) BN for two students in

single course. . . . ... ...

XVl

264
267



Chapter 1

Introduction

1.1 Probabilistic Knowledge Representation

In designing agents to operate in the real world, one cannot avoid dealing with the
issue of uncertainty. Uncertainty crops up in a variety of ways. An agent’s sensors
typically give it limited information about the world, and the information it does
receive is often noisy. The effects of an agent’s actions are often non-deterministic.
Also, an agent often has to consider unpredictable events that are completely outside
its control.

Probability theory provides a sound mathematical basis for reasoning under uncer-
tainty. It has a number of nice properties. It allows one to envision multiple possible
states of the world with different degrees of likelihood. It allows one to incorporate
multiple pieces of evidence obtained from various sensors in a coherent way, using the
principle of Bayesian conditioning. In combination with decision theory, it allows one
to make optimal decisions that lead to the maximum expected utility. Also, statistics
provides excellent tools for learning probabilistic models from data.

If we want to use probability theory as the foundation for reasoning under uncer-
tainty, we need to address three fundamental issues. First, we need a representation
language for describing probabilistic models. The language should allow us to build

compact, natural models, and allow us to represent as much domain structure as



CHAPTER 1. INTRODUCTION 2

possible. Second, we need an algorithm that will allow us to perform efficient prob-
abilistic inference. That is, given a model described in our language, and a set of
observations, we should be able to compute various interesting probabilities in a rea-
sonable amount of time. Finally, we need algorithms that will allow us to learn models
in our language from data.

This thesis is concerned with representation languages and inference algorithms
for probabilistic reasoning about complex systems. The types of applications we are
interested in include reasoning about complex situations, such as a battle scenario;
diagnosis of large-scale systems, such as an airplane or satellite; monitoring dynamic
systems, such as a nuclear reactor; and controlling agents in complex environments.
These systems are characterized both by their complexity, in that they consist of
many interacting components, and by the fact that there is usually a good deal
of uncertainty about the state of the system. We need probabilistic representation
languages and inference algorithms that are capable of handling complex scenarios
such as these. We also need languages for learning probabilistic models of complex
systems from data. This thesis focuses on the representation and inference issues,
with the understanding that once these issues have been tackled, learning algorithms
can be developed on top of the representation and inference algorithms. Indeed,
we have already done some work on learning the types of models described in this
thesis [56, 26].

Over the past fifteen years or so, Bayesian networks (BNs) [79] have emerged as
the leading technology for probabilistic reasoning. In a BN, a system is characterized
by some set of attributes, and a state of the system is an assignment of values to each
of the attributes. A network consists of a directed acyclic graph over the attributes,
and a local probability model for each attribute. The graph structure specifies condi-
tional independence relationships that hold between different attributes, while a local
probability model encodes the conditional probability distribution over the values of
an attribute given the values of its parents in the graph. Between them, the graph
structure and local models encode a probability distribution over all the possible

states of the system.



CHAPTER 1. INTRODUCTION 3

The Bayesian network representation is both compact and natural. The condi-
tional independence relationships asserted by the graphical structure are exploited to
allow the complete probability distribution to be defined in terms of a small number
of local conditional probabilities. Furthermore, the graph structure can be exploited
to support effective probabilistic inference and learning algorithms. BNs, therefore,
succesfully address the three issues discussed above, at least for systems that can be
conveniently characterized by a set of attributes.

However, BNs are inherently limited by their attribute-based nature. It is very
difficult to model a complex system using a BN. The basic problem is size — complex
systems may have many thousands of variables, and trying to construct such a large
network is simply not feasible. Imagine trying to model a battlefield situation — there
may be hundreds of units connected to each other in various ways, with each unit
described by a number of variables. In addition, systems may have many different
configurations, as, for example, a battlespace with different collections of units. We
do not want to have to construct a different BN for each possible configuration of the
system. Furthermore, we often have uncertainty about the configuration itself. For
example, we do not generally know exactly which enemy units are in a battlespace.

For another example, consider trying to model an airplane. An airplane has a
huge number of components; modeling each variable associated with each component
explicitly, and describing all the dependencies between these variables in a single
network, is simply not feasible. It would be far better to describe the properties of
the different types of components in an airplane in a general way. In addition, many
of the components of an airplane are interchangeable. We should be able to replace
a component with a similar component without having to completely reconstruct the
model.

From the first days of artificial intelligence, first-order logic was proposed as a
foundation for knowledge representation due to its modularity and generality [67].
By allowing general statements that can be applied to many different entities, first-
order logic allows the knowledge needed to describe a large system to be represented in
a compact manner. Also, because the representation is described in terms of domain

entities and the relationships between them, the same knowledge can be applied to



CHAPTER 1. INTRODUCTION 4

systems with different configurations. However, logical representations do not support

probabilistic reasoning, and are inadequate for dealing with uncertainty.

1.2 Summary of Contributions

It seems that what we need is a language that combines the generality and modularity
of logical representations, with the ability of Bayesian networks to represent proba-
bilistic models. In this thesis we develop such a language. Our language represents
a complex system in a structured manner, in terms of entities in the system and the
relationships between them. Probabilistic knowledge is encoded in our language in
the form of probability models associated with objects in the domain. The object
probability models resemble BN models; a graph structure encodes conditional in-
dependencies that hold between properties of an object, and each property has its
own local probability model. The probability model for an object describes how each
property of the object depends on other properties of the object and on properties
of related objects. Probability models are associated with classes of objects, allowing
us to reapply the same knowledge to many different instances.

It is vital to make sure that our probabilistic representation language has coherent
semantics in terms of a probability distribution or probability measure over possible
worlds. The basic approach to achieving this is to imagine a knowledge base as
specifying a generative stochastic model, that randomly generates possible worlds.
Using this intuition, we can imagine a structured process that generates a world with
relational structure, rather than a simple process that generates values for a set of
attributes. We provide formal semantics for our language that matches this intuitive
idea.

We also develop inference algorithms for our language that exploit the different
types of system structure that can be represented in the language. Our algorithms
exploit the conditional independence structure in the same way as BN inference al-
gorithms. Our algorithms also utilize the object structure to organize inference, ex-
ploiting the fact that the interactions between different objects in a system can often

be mediated by a small number of variables. In addition, our algorithms use the fact



CHAPTER 1. INTRODUCTION )

that many objects share the same probability model to reuse inference between the
different objects.

By developing an object-based probabilistic representation language, we obtain
a powerful, expressive language, that is capable of describing rich and interesting
domains, and also supports efficient inference that allows us to draw useful and in-
teresting conclusions. The key point is that our language is not only expressive, but
also structured. It is our firm belief that expressive languages are good, provided that
they allow useful structure in the domain to be represented explicitly. Structure is
vital both for helping the model designer construct a good model, and for supporting
efficient, structure-exploiting inference algorithms. Our language provides a number

of features that allow the structure of a domain to be represented and exploited:

e Different properties of a system are localized within distinct subsystems, exploit-
ing the fact that the different subsystems only interact weakly. Our inference
algorithms exploit the fact that many properties can be encapsulated within a

single subsystem.

e The language allows general probabilistic models to be provided for entire classes
of objects, exploiting the fact that systems often contain many objects of the
same kind. Our inference algorithms exploit this feature by reasoning on a

general level wherever possible.

e The knowledge representation is separated into a set of class probability mod-
els, describing the general behavior of objects, and statements describing the
particular configuration of a system. The probability models remain fixed as
the system configuration changes. This approach provides a smooth and flexible

way of creating probability models for systems with variable configurations.

e The language provides the ability to express uncertainty about the configura-
tion of a system itself. Furthermore, uncertainty over system configuration is
thoroughly integrated into the probabilistic models. This integration allows us

to apply the same techniques to modeling uncertainty over system configuration



CHAPTER 1. INTRODUCTION 6

that we use for modeling uncertainty over basic system properties. In particu-
lar, we are able to exploit conditional independence between different aspects

of system configuration.

e The language allows an object to depend on other objects in an aggregate
manner. Such aggregate dependencies introduce symmetry into a model; the
same aggregate effect can be achieved in many different ways, all of which have
the same effect on the dependent object. Our inference algorithm is able to

detect and exploit this symmetry.

1.3 Thesis Overview

In the next chapter, we describe the possible worlds over which our probability models
are defined. We first describe attribute-based worlds, and then describe possible
worlds with relational structure. In Chapter 3, we review Bayesian networks, which
define probability distributions over attribute-based worlds.

The new contributions of this thesis begin in Chapter 4, in which we present
Object-oriented Bayesian Networks (OOBNs), which allow us to specify probabilistic
models for hierarchically structured systems. The representation and inference are
specifically designed to take advantage of the hierarchical system structure.

Beginning with Chapter 5, we consider probabilistic models for more general re-
lational systems. We present relational probability models (RPMs), which integrate
a Bayesian network-like probabilistic representation language with traditional rela-
tional representations. In particular, RPMs allow us to describe probability models
for systems involving many objects that are related to each other in multiple ways.
We show how the semantics and inference algorithms for OOBNs can be extended to
deal with these more general systems.

The language of relational probability models is extended in Chapter 6 to allow
an object to depend on related objects in an aggregate manner. We also introduce

structural uncertainty, which allows us to represent uncertainty about the relational



CHAPTER 1. INTRODUCTION 7

structure of a system, and incorporate that uncertainty directly into the class prob-
ability models.

In Chapter 7 we consider probability models that may contain infinite chains of
influences between different objects. These recursive probability models provide a
powerful extension to relational probability models. We show that the semantics of
RPMs generalizes naturally to these recursive models, and present an object-based
iterative approximation algorithm for these models.

In Chapter 8 we describe the implemented SPOOK system for representing and
reasoning with relational probability models. We also present three example appli-
cations, to military situation awareness, computer system diagnosis, and modeling a
university. We present experimental results that demonstrate the advantages of ex-
ploiting domain structure in inference. We describe other approaches to integrating
probabilistic and logical representations in Chapter 9, and in Chapter 10 we conclude.

Some of the material in this thesis has appeared previously in conference papers.
Chapter 4 is based on [57], while Chapters 5 and 6 are largely based on [58] and [82].
Chapter 7 is largely new, but a preliminary version of these ideas appeared in [55].
The implementation and military example in Chapter 8 were described in [82]. Other

papers which contain material related to this thesis are [54, 56, 27, 26].



Chapter 2

Possible Worlds

We want a mechanism for dealing with uncertainty that allows us to envision multiple
different states of the world as being possible, to specify how likely each of the different
possible states is, to update our belief about the state of the world based on our
observations about the world, to incorporate multiple sources of evidence in a coherent
way, and to determine our degree of belief in some particular property of the world,
based on our general beliefs about the world and on our observations.

A fundamental principle of our approach to knowledge representation is to rep-
resent our knowledge in the form of a model of the world. Since we are concerned
with reasoning under uncertainty, our model will be probabilistic. All reasoning
is performed with respect to a probability model, according to the well-established
mathematical principles of probability theory. Thus, to the extent that our model is
a reasonable one, all conclusions we draw from the model will also be reasonable.

Our basic approach, then, to dealing with uncertainty, is to envision a set of
possible states of the world, and to specify a probability distribution over the set
of possible worlds. Each possible world is a complete specification of all relevant
properties of the world, and the set of possible worlds includes all of the worlds that
we consider to be at all possible. The probability distribution over the set of possible
worlds describes how likely we think each of the worlds is a prior:, when we have no
specific knowledge about the state of the world. This distribution is therefore called

the prior probability distribution over the set of possible worlds.



CHAPTER 2. POSSIBLE WORLDS 9

We can incorporate our observations about the world by eliminating from consid-
eration all possible worlds that are inconsistent with our observations. As a result, we
will get a new probability distribution over the worlds, called the posterior probability
distribution over the set of possible worlds, after conditioning on our observations.
With this approach, we can easily incorporate multiple observations — we simply
eliminate from consideration all worlds that conflict with any of the observations.

Also, we can easily determine our degree of belief in any property of the world
from the probability distribution over the set of possible worlds. Each property of the
world determines a subset of the possible worlds, namely, the set of worlds satisfying
the property. The probability of the property is therefore simply the cumulative
probability of all the worlds satisfying the property.

Thus, the probabilistic approach to dealing with uncertainty satisfies all the cri-
teria listed above, at least in principle. The key question, of course, is how to achieve

the desired effects in practice. In particular, we must address the following issues:
1. What is the set of possible worlds?
2. How do we represent a probability distribution over this set of worlds?

3. How do we reason with this distribution, to determine the likelihood of some

property of the world, given our observations about the world?

In this chapter we address the first question, describing the different sets of possible

worlds considered in this thesis. We consider questions 2 and 3 in subsequent chapters.

2.1 Attribute-Based Models

A possible world is a complete description of all relevant features of the world. In
the simplest case, the state of the world is captured by some finite set of attributes,
each describing a particular aspect of the world. For example, if we are modeling a
person, we might represent the world using the attributes Height, Weight, Age, Sex,

Eye-color and Hair-color.



CHAPTER 2. POSSIBLE WORLDS 10

In this thesis, we will assume that all attributes take on values in a discrete,
finite range. For example, the range of the Eye-color attribute may be the set
{brown, blue, green, grey}. The technologies for probabilistic reasoning in artificial
intelligence, and of Bayesian networks in particular, have traditionally been most
strongly developed for domains with discrete attributes. Many of the ideas from dis-
crete domains carry over to continuous domains, but probabilistic inference is often
more difficult in continuous domains. In this thesis, we focus solely on discrete do-
mains. However, much of what we have to say about structured representation of
probability models carries over to the continuous case.

A model in which the state of the world is captured by a finite number of discrete
attributes is called attribute-based. A possible world is then an assignment of values

to each attribute. Formally, we make the following definitions.

Definition 2.1.1: An attribute-based model M consists of a finite set of attributes
Xi,...,X,. Each attribute X; has an associated range Val[X;], where Val[X,] is a
finite set of values.

A possible world for M is a tuple (X; : z1,... , X, : z,,), where x; € Val[X;]. The
set of possible worlds for M consists of all such tuples. We will denote the set of
possible worlds for M by 2,4, or simply €2 when M is clear. A single possible world
will be denoted by w.

The wvalue of attribute X; in a world w = (X7 : x1,..., X, : T,) is z;, and we

write X;(w) = x;-

In Chapter 3, we will discuss Bayesian networks, which are a technology for prob-

abilistic reasoning about attribute-based models.

2.2 Relational Models

The technology for probabilistic reasoning in attribute-based models has been well-
developed. This thesis is concerned with probabilistic reasoning for richer domains,
that cannot easily be captured by a simple set of attributes. For these domains,

we use the richer language of relational models. A relational model allows us to



CHAPTER 2. POSSIBLE WORLDS 11

talk about the different entities in the domain, the relationships between them, and
properties of each of the entities. Our formulation of typed relational languages
and interpretations is fairly generic, and can be adapted quite easily to a variety
of formalisms, such as standard first-order logic [24], relational and object-oriented
database models [97, 7, 1], description logics [15, 64, 63], and frame representation
languages [25, 61], to name a few. We have chosen a presentation that is particularly
convenient for developing a theory of representing probability models over relational
worlds.

When a possible world is relational, it will consist of a set of domain entities.
The entities will be typed — each will belong to some class in a class hierarchy. We
will have functions and binary relations that relate entities of one class to entities of
another class. Entities will also have attributes describing their particular properties,
just as in attribute-based models. We will have names for some particular entities in
the world, while others will be unnamed, “generic” entities.

For example, a world may consist of a set of Person entities and a set of Place
entities. We also have the Student subclass of Person and School subclass of Place.
We have the function Lives-at relating people to places, and the function Studies-at
relating students to schools. We also have the relation Knows relating people to
people, the relation Teaches relating people to students, and the relation Home-of
relating places to people. Entities of the Person class will have the same six attributes
as in the previous section. We have particular entities Jane-Doe of type Student and
Stanford of type School.

Formally, we define the language of relational models as follows.

Definition 2.2.1: A typed relational language L is a structure (C,C, A, f, R, I) as

follows:

e (C is a set of classes.

e [ is a partial ordering over C, defining the class hierarchy. 1If Cy C Cy, we
say that C; is a subclass of Cy, and Cy is a superclass of C;. We require that
if C is a subclass of both C; and (5, then either C; is a subclass of C5 or vice

versa, (thus ruling out multiple inheritance). Note that a class is a subclass and



CHAPTER 2. POSSIBLE WORLDS 12

superclass of itself. If C; is a subclass (superclass) of Cy, and C; # Cy, we will

call C; a proper subclass (superclass) of Cs.

e A is a set of simple attributes. Each attribute A € A has an associated domain
type, which is a class in C, and an associated range Val[A], which is a finite
set. If the domain type of A is a superclass of C, A is called a simple attribute
of C. The range Val[A] will also be called the range type of A.

o A et f of functions, and a set R of relations. Each function and relation has an
associated domain type and an associated range type, both of which are classes
in C. A function or relation whose domain type is a superclass of C' is called a

complez attribute of C.

e A set I of named instances, each of which has an associated type, which is a

class in C.

We assume that the number of language elements is finite. I

In this thesis, we limit the language to binary relations, but these can be used
to define relations of higher arity in the standard way. The terms “domain type”
and “range type”, denote the types of the first and second arguments of a relation,
indicate that we think of a binary relation as a multi-valued function having a domain
and range. We think of functions and relations as defining attributes of a class, and
distinguish them from simple attributes. If we have an entity ¢ whose type is C, each
of the simple attributes A of C represents a basic property of ¢, whose value is an
element in Val[A]. Meanwhile, if we have a function or relation R whose domain type
is C, R will relate c to an entity or set of entities in the range type of R. It is natural
to view R as also defining a property of ¢, whose value is the set of entities related
to ¢ by R, and therefore we view R as being an attribute of C. We call it a complex
attribute to emphasize that its values are domain elements that themselves have
properties, whereas the value of a simple attribute is an atomic symbol. We could
have defined simple attributes to be functions themselves, but we prefer to emphasize
the fact that their values are chosen from a pre-defined set of atomic values, and they

will play a special role later in the definition of the probability model. However, we



CHAPTER 2. POSSIBLE WORLDS 13

use the generic term attribute for simple attributes, functions and relations, and we
shall often use the symbols A, B and D to denote attributes of any kind, whether
simple or complex.

We allow attribute names to be overloaded. Two attributes with the same name
and different domain types are considered to be distinct attributes. We do not allow

two attributes to have the same name, the same domain type and different range

types.

Example 2.2.2: Let us make our running example more formal. Our language £ is
defined as follows: The set of classes C is {Person, Place, Student, School}. The order
relation C on C'is the set of pairs {(Person, Person), (Student, Person), (Place, Place),
(School, Place), (Student,Student), (School,School)}. For simplicity we will have
only two attributes in A: Eye-color, whose domain type is Person and range is
{brown, blue, green, grey}, and Weather, whose domain type is Place and range is
{sunny, cloudy, raining, snowing}. The set of functions f consists of the functions
Lives-At, whose domain type is Person and range type is Place, and Studies-At, whose
domain type is Student and range type is School. The set of relations R consists of
the relation Knows, whose domain and range types are both Person, and the relation
Home-of, whose domain type is Place and range type is Person. Finally, the set of
named individuals I consists of two individuals: Jane-Doe whose type is Student, and

Stanford whose type is School. 1

Definition 2.2.3: Let £L = (C,C, A, f, R, I) be a typed relational language. An

interpretation w for L consists of the following:
e A set AY of domain elements.

e For each class C' € C, a subset [C]¥ C A“. The sets [C]* must satisfy the
following constraints:
1. Ugec[C]® = AY.
2. If C; C Oy, [C4]Y C [Cy)~.
3. If 01 z 02 and 02 z Cl, [Cl]w N [Cg]w = (Z)



CHAPTER 2. POSSIBLE WORLDS 14

For each simple attribute A € A, with domain type C, a function [A]* : [C]¥ —
Val[A].

For each function f € f, with domain type C; and range type Cs, a function
[f12 : [Ch] = [Ca]*.

For each relation R € R, with domain type C; and range type C5, a relation
[R]* C [C1]* x [Cy]”.

For each named instance I € I of type C, an element [I|* € [C]Y. We require
that if Il 7é IQ, [Il]w 7é [Ig]w. |

The conditions on the [C]¥ enforce the constraint that every domain element must
belong to some class, and must be situated at a unique point in the class hierarchy.
That is, there must be a unique class such that it belongs to that class and all of its
superclasses, but to no others. The condition on [I]* enforces an assumption that we
shall always make, namely that distinct named instances are associated with distinct

domain entities.

Definition 2.2.4: Let w be an interpretation for a typed relational language £, and
let ¢ be an element of AY. The class of ¢ in w is the class C of L such that ¢ € [C]*,
but ¢ ¢ [C']¥ for any proper subclass C' of C. 11

Example 2.2.5: Consider the language of Example 2.2.2. A possible world w for



CHAPTER 2. POSSIBLE WORLDS 15

this language is as follows:

Av = {a, 0,03, e}
[Person] = {c, e}

[Place]* = {c3,ca}
[Student]” = {a}

[School]* = {e}
[Eye-color|“(c;) = green
[Eye-color|“(cq) = brown
[Weather|“(c3) sunny
[Weather|“(cy) cloudy
[Lives-At]“(cy) C4

[Lives-At]“(cy) C4
[Studies-At]“(c;) c3

[Knows|* = {(c1,¢2), (c2,c1)}
[Home-Of]¥ = {(ca,¢1), (cas 02)}
[Jane-Doel* =

[Stanford)” = ¢ |

Most relational languages have similar semantics; it is in fact the semantics, that
defines the world in terms of entities and the relationships between them, that makes
these languages relational. Where they differ most is in the types of statements they
allow one to make about the world. In this thesis, we will not be concerned with
arbitrary statements of first-order logic. We shall mainly consider statements about
named domain entities, or entities that are related to the named entities via some

finite sequence of functions or relations.

Definition 2.2.6: Let £L = (C,C, A, f, R, I) be a typed relational language, and let
C be a class in C. An attribute chain, or simply chain on C' is a sequence (possibly
empty) A;.---.Ay of attributes (i.e., simple attributes, functions, or relations), such
that the domain type of A; is a superclass of C', and for ¢ > 1 the domain type of
A; is a superclass of the range type of A; ;. The condition implies that only the last



CHAPTER 2. POSSIBLE WORLDS 16

attribute in a chain can be simple, since a simple attribute has no range type.
An attribute chain is called simple or complex, depending on whether the last
attribute in the chain is simple or complex. It is single-valued if none of the attributes

in the chain are relations, otherwise it is multi-valued. 1

We will use the letters o, p and 7 to denote attribute chains. The empty attribute
chain will be denoted by e. We can view an attribute chain as representing a de-
rived function or relation on domain entities. More precisely, we have the following

definitions.

Definition 2.2.7: Let w be a possible world, and o an attribute chain on C.

If o is the empty chain ¢, [0]“ is the identity function on [C]“.

If o = Ay.---.Ay is single-valued, then for any element ¢ € [C]¥, [0]¥(c) =
[Ag?([A—1])“(. .. ([A1]¥(€)) - - .))- Thus, if o is simple, [0]“ is a function from [C]“ to
Val[Ag]. If o is complex, [0]“ is a function from [C]“ to [C']Y, where C' is the range
type of Ay.

If o = Ay.--- . Ay is complex and multi-valued, then [0]“(c) is the relation
{(co,ce) : Je1, -, 1 8. ¢ € [C)Y, (cim1, ) € [Ai]“}- |

For a particular named instance I, we can talk about the value of the chain ¢ on

I in a possible world w.

Definition 2.2.8: Let w be a possible world, I a named instance of type C, and o
an attribute chain on C. If ¢ is single-valued, [I.0]* = [o]“([I]¥). If o is multi-valued
and complex, [I.0]Y = {c: ([I],¢) € [0]*}. [I.0]¥ is called the value of o on I in w.

We have not defined [0]“ if o is simple and multi-valued. A natural, but not
particularly useful, definition would have it be a relation on C x Val[A,]. A more
useful definition would have it be a multiset of elements in Val[A4,], since we will be
interested in the number of times it takes on one of its possible values. However,

rather than refer to [o]* directly, we deal with it as follows.



CHAPTER 2. POSSIBLE WORLDS 17

Definition 2.2.9: Let 0 = p.A be an attribute chain, where p is multi-valued complex
and A is simple. For some value a € Val[A], we will let #[I.0 = a] denote the number

of values of I.p that have the value a for A. 1

The kinds of statements about possible worlds that we shall make, then, involve
attribute chains on named instances. In particular, we shall make the following

statements:

e [.0 = a, where o is the single-valued chain p.A, A is simple, and a € Val[A].

This statement holds in w if [I.0]¥ = a.

e I.o = J, where o is the single-valued chain p.A, A is complex, and J is an
instance whose type is the range type of A. This statement holds in w if [I.0]¥ =
7]

e J € I.0, where o is the multi-valued chain p.A, A is complex, and J is an
instance whose type is the range type of A. This statement holds in w if [J]¥ €
[I.0]“.

e #[I.0] = n, where o is multi-valued and complex, and n is a non-negative

integer. This statement holds in w if |[/.0]¥| = n.

e #[I.0 = a] = n, where o is the multi-valued simple chain p.A, a € Val[A], and
n is a non-negative integer. This statement holds in w if [{c € [I.p]* : [A]“(c) =

a}| =n.

These statements by no means exhaust the expressive power that we could include
in the language. For example, we could allow statements of the form I.c = J.p, where
p is non-empty, or statements of the form #[I.(c = a A p = b)] = n. We shall not
allow these more general types of statements, but restrict ourselves to those specified

above.

Example 2.2.10: In the language of Example 2.2.2, Lives-at.Weather is a simple

single-valued attribute chain, Studies-at is a complex single-valued chain, Knows.Lives-at



CHAPTER 2. POSSIBLE WORLDS 18

is a complex multi-valued chain, and Knows.Lives-at.Weather is a simple multi-valued

chain. The following statements are true about the possible world of Example 2.2.5:

Jane-doe.Lives-at.Weather = cloudy

Jane-doe.Studies-at = Stanford

Stanford € Jane-doe.Knows.Knows.Studies-at
#[Jane-doe.Knows.Lives-at] =1
#[Jane-doe.Knows.Lives-at.Weather = snowing] = 0 |

Statements of the above kind are called ground statements. We shall also some-
times make statements that express a connection between one relation and some other
relations. One type of statement of this kind is the inverse statement, which states

that one function or relation is an inverse of another function or relation. Formally:

Definition 2.2.11: Let R; be a relation with domain type C; and range type C5,
and let Ry be a relation whose domain type is Cs and whose range type is a superclass
of C;. The statement “C} is an inverse of C,”, written Cy = (C;) !, holds in a world
w, if, for every (c1,¢3) € Ry, (c2,¢1) € Ry.

The definition holds if either or both of R; and R, are functions, which are treated

as relations for the purpose of this definition. 1

Note that the definition of inverse is one-sided. It is quite possible for Ry to be
an inverse of Ry, but not the other way round. Two-sided inverses are however very
common. In our running example, Home-to and Lives-at are natural inverses of each
other.

Another type of statement is the alias or same-as statement. Such a statement

defines a function or relation in terms of some complex attribute chain. Formally:

Definition 2.2.12: Let R be a function or relation, and ¢ a non-empty complex
attribute chain, such that the domain type of the first attribute in ¢ is the domain
type of R, and the range type of the last attribute in o is the range type of R. o
should be single-valued or multi-valued, according to whether R is a function or a
relation. The statement “R is an alias of ¢”, written R same-as o, holds in a world

w, if [R]* = [o]*.



CHAPTER 2. POSSIBLE WORLDS 19

We have said what a possible world looks like for a particular relational language.
Given such a language, what is the complete set of possible worlds that we envision,
and over which we will define a probability model? = The answer to our question
depends on what assumptions we are willing to make about what is known. In
particular, we may assume that the relational structure of the model is known. In
other words, we assume that we know the set of entities, their types, and all the
relationships between them, and our uncertainty is only over the values of the simple
attributes of the domain entities. Alternatively, we may have uncertainty over the
relational structure of the domain itself. In Chapter 4, we deal with a limited class of
relational models, in which we make strong assumptions about the structure of the
domain, namely, that there are a finite number of entities in the domain and that they
are hierarchically organized. This class provides a bridge between attribute-based and
relational models, because the state of the world can be captured entirely by a finite
set of attributes of the domain entities. In Chapter 5, and Sections 6.2 and 6.3,
we deal with increasingly elaborate models, while still making the assumption that
the relational structure is fully known. Beginning with Section 6.4, we will consider

models in which the relational structure is uncertain.



Chapter 3

Bayesian Networks

3.1 Introduction

Our basic approach to reasoning under uncertainty is to envision a set of possible
states of the world, and to define a probability distribution over that set. Such
a distribution tells us the relative likelihood of the different possible states of the
world. If we have particular observations about the world, we can condition the
distribution based on our evidence, to obtain a new posterior distribution over the
different possible worlds.

For us, the state of the world will be characterized by a set of attributes, each of
which describes some property of the world. We will assume that each attribute takes
on values in some discrete, finite domain.! A possible world is then an assignment of
values to each of the attributes, and the set of possible worlds is the set of all possible
combined assignments of values to all the attributes.

Our task is then to represent a probability distribution over this set. In other
words, we want to represent a function that assigns a number in [0, 1] to each possible

world. It is clear that we cannot hope to represent such a function explicitly, because

! The technology of Bayesian networks, and particularly the algorithms for probabilistic inference,
have been most strongly developed for discrete attributes, but they can also be applied to attributes
with continuous domains. In this thesis, we shall assume that all attributes are discrete, but much
of what we have to say about structured representation of probability models carries over to the
continuous case.

20



CHAPTER 3. BAYESIAN NETWORKS 21

the set of possible worlds is too large. If the world is characterized by n binary-
valued attributes, then the number of possible worlds is 2". We need a more compact
representation.

Over the past fifteen years or so, a technology for representing probability distri-
butions has emerged, called Bayesian networks (BNs) [79]. Bayesian networks exploit
domain structure to represent probability distributions in a compact manner. The
particular type of structure exploited in Bayesian networks is the conditional inde-
pendence that holds between different attributes. This chapter presents a review of
Bayesian networks, including their definition and semantics, the conditional indepen-
dence relationships encoded in their structure, the types of reasoning supported, and
an algorithm for probabilistic inference. None of the material presented here is new,
and formal proofs are not provided for most of the theorems, which can be found
in the literature. There are several textbooks available on Bayesian networks, such
as [79] and [50].

3.2 Probability Distributions

When the set of possible worlds is finite, as it is for the case of attribute-based models,
we can characterize our uncertainty about the state of the world by specifying a
probability distribution over the set of worlds. Such a distribution assigns a numerical
probability to each possible world, expressing our degree of belief that the true world is
actually that particular possible world. Formally, a probability distribution is defined

as follows.

Definition 3.2.1: Let ) be a finite set of possible worlds. A probability distribution
over ) is a function P : Q — [0,1] such that ) ., P(w)=1.1

For a given subset E of 2, P(F) is defined to be the probability that the actual
world is one of the worlds in E. It is equal to ) . P(w).
In an attribute-based model M, we will normally be interested in the probability

that some subset of the attributes take on particular values. If X is an attribute, and



CHAPTER 3. BAYESIAN NETWORKS 22

x is a value in Val[X], the condition X = x specifies a subset of {2, namely, the set
of worlds w such that X (w) = z. We can thus speak of P(X = z).

Similarly, for multiple attributes X7, ... , X, we can speak of P(X; = z1,..., X, =
%), which is the probability of the set of worlds satisfying all of these conditions. We
shall also use boldface notation for sets of attributes, so the same probability can be
written P(X = x), where X is the set of attributes Xi,..., X, and x is the set of
assignments xi, ... ,T,.

We will extend our notation to define functions on the ranges of attributes.
Namely, we will write P(X,Y = y) for the function from Val[X] to [0, 1] defined
by

P(X,)Y =y)(z)=P(X =1,Y =y).

Similarly for a set of attributes X, P(X,Y = y) is the function from Val[X] =
Val[X1] x ... Val[X,] to [0,1] defined by

PX,)Y =y)(z)=P(X =z,Y =vy).

3.2.1 Conditional probabilities, independence, conditional in-

dependence

Definition 3.2.2: Let P be a probability distribution over €2, and E, F C 2, with
P(F) # 0. The conditional probability of E given F, written P(E | F), is equal to
P(ENF)/P(F). 1

When P(F) =0, P(E | F) is meaningless in standard probability theory. Various
extensions to standard probability theory have been proposed that would allow such
conditioning on an event of measure 0, but we shall not appeal to them in this thesis.
Whenever we use the conditional probability notation, we shall always assume that

the conditioning event has non-zero probability.



CHAPTER 3. BAYESIAN NETWORKS 23

We can extend our notation in the same way as above:

PXi=z1,....Xp=z, | Yi=y1,-- Y =UYm) =
Pl {weQ: Xj(w)=x1,... , Xn(w) =2, Y1(w) =91, , Yo (W) = Ym} |
{we:Yi(w)=vy1,---, Y (w) = ym})-

Similarly, P(Xy,...,X, | Y1,...,Y,,) is a function on Val[X;] x ... x Val[X,] x
Val[Y1] x ... x Val]Y,,], by analogy with the above. We also use the notation with
some variables instantiated, as before.

The definition of conditional probability can be used to derive the ubiquitous
Bayes rule. If E and F are events, we have from the definition that P(E A F) =
P(E)P(F | E) and P(EAF) = P(F)P(E | F). From these we derive Bayes rule:

P(E)P(F | E)

P(E|F) = P

. (3.1)

Bayes rule is very useful in computing conditional probabilities in one direction when
we are given conditional probabilities in the other direction. In Bayesian networks,
we will typically specify the conditional probability of an effect given its causes; Bayes
rule can be used to compute the conditional probability of causes given effects.
Another immediate consequence of Definition 3.2.2 is the chain rule. If Ey,... | E,

and F' are events, the chain rule says that

P(EyA...NE, | F) -
P(E, | F)P(ExA...NE, | E,AF) =..= (3.2)
[, P(E; | ExA...NE;_1 A F).

A key idea in probability theory is the notion of independence.

Definition 3.2.3: Let F and F' be two events. We say that F and F' are independent,
written [(E, F), if P(EAF)= P(E)P(F). i

The definition can be formulated equivalently in terms of conditional probabilities.
Events E and F are independent if P(E | F) = P(FE), or equivalently, P(F | E) =
P(F). (We assume here that P(E) # 0 and P(F) # 0.) Intuitively, that means that



CHAPTER 3. BAYESIAN NETWORKS 24

if £ and F' are independent, telling me that a world w € F' does not give me any
information about the probability that w € E, and vice versa.
We can generalize the notion of independence to the conditional independence of

two events given a third event.

Definition 3.2.4: Let E, F' and G be three events. We say that £ and F' are
conditionally independent given G , written I(E, F | G), if P(EAF | G) = P(E |
G)P(F |G). 1

Again, the definition can be written in terms of conditional probabilities, assuming
P(EANG) #0and P(FAG) # 0. Events E and F are conditionally independent
given G if P(E | FAG) = P(E | G), and equivalently, if P(F' | EAG) = P(F | G).
Intuitively, this means that if I already know G, telling me about F' gives me no
additional information as to the probability of F, and vice versa.

Independence and conditional independence can also be defined for variables, or

more generally, for sets of variables.

Definition 3.2.5: Let X = {X;,... . X,,}, Y ={V;,... Y, }and Z ={Z;,... , Z;}
be three sets of variables (not necessarily disjoint). We say that X is conditionally

independent of Y given Z (written I(X,Y | Z)), if, for every choice of values
x € Val[X], y € Val[Y], and z € Vul[Z],

PX=z2,Y=y|Z=2) = PX=x|Z=2)PY=y|Z=2). |

Conditional independence of variables is a strong notion: it implies conditional
independence of events for any possible values of the variables. We will sometimes
be interested in the weaker notion of context-specific independence, where two sets of
variables X and Y are conditionally independent given specific values z of a third
set of variables Z. We will write this case as I[(X,Y | Z = z).

We have defined conditional probabilities in this section in terms of a probability
distribution. In a representation language such as Bayesian networks, the process is
actually the other way around. We define our probability distribution in terms of

the local conditional probabilities of a bunch of attributes. We want a way to talk



CHAPTER 3. BAYESIAN NETWORKS 25

about such conditional probabilities as building blocks, even before we have defined

the probability distribution.

Definition 3.2.6: Let D,...,D, and E be domains. A conditional probability
function (CPF) from D;,... ,D, to E is a function f : Dy X ... x D, x E — [0, 1],
such that, for each (z1,...,z,) € Dy X ... X Dy, ZyeEf(:cl,... JTn,y)=1. If fisa
conditional probability function, we will normally use the notation f(y | z1,... ,z,)

for f(x1,---,Zn,y). N

3.3 Definition of Bayesian Networks

In a Bayesian network, a joint probability distribution over a set of attributes is
encoded by specifying a local probability model for each attribute. The local model
for an attribute specifies how the value of the attribute depends probabilistically on

the values of a small set of other attributes.

Definition 3.3.1: A Bayesian network B consists of the following:

o A set of attributes A[B] = X1,..., X,.

e A directed acyclic graph G[B] over X. For each attribute X;, we denote the
parents of X; in G[B] by U? = {U1, ... , U, } where m; is the number of parents
of Xz

e For each attribute X;

— A domain Val[X;].

— A conditional probability function CPFy, from Val[U?], ..., Val[Ufni] to

Intuitively, if there is an edge in the graph from one attribute to another, we think
of the first attribute as a direct cause of the second. There is nothing in the definition
of a Bayesian network that requires this causal interpretation, but it is useful to think

of it as a causal model. The value of each attribute is determined probabilistically by



CHAPTER 3. BAYESIAN NETWORKS 26

Hard working

;9

Understands Materia

Good Test Taker

<

Exam Grade Homework Grade

Figure 3.1: A simple Bayesian network.

the values of its parents according to the local conditional probability function of the
attribute, so it is natural to think of the values of the parents as causing the values
of the children.

The conditional probability function for X is often specified explicitly, listing the
value of P(X =z | Uy = uy,...,U, = u,) for each combination of vi,... v,
and w. In that case, the function is called a conditional probability table. However, a
conditional probability function may be specified more compactly. For example, some
of the parents may only be relevant for particular values of other parents. In such
cases, the CPF may be specified more compactly using a tree structure [12]. Another
example is the noisy-or family of CPFs [39], which describe situations in which the
different parents all impact the child independently. We whall ignore the specific
manner in which the CPF is encoded, and assume that all its values are explicitly

available to us.

Example 3.3.2:
Figure 3.1 shows a simple example of a Bayesian network, describing the perfor-

mance of a student in a course. The state is captured here through six attributes:



CHAPTER 3. BAYESIAN NETWORKS 27

Smart Hard Working
True ‘ False True‘ False
| 05 | 05 | | 0.7 ] 03 |
Understands Material
Good Test Taker S HW || True | False
S True | False True | True || 0.95 0.05
True || 0.75 0.25 True | False | 0.6 0.4
False | 0.25 0.75 False | True | 0.6 0.4
False | False || 0.2 0.8
Exam Grade
GTT | UM A|B|]C]|]D]F Homework Grade
True | True || 0.7 [ 0.25 [ 0.03 ] 0.01 | 0.01 UM [A] B[ C|D]F
True | False || 0.3 | 0.4 | 0.2 | 0.05 | 0.05 True || 0.7 | 0.25 | 0.03 | 0.01 | 0.01
False | True || 0.4 | 0.3 | 0.2 | 0.08 | 0.02 False || 0.2 | 0.3 | 0.4 | 0.05| 0.05

False | False || 0.05 | 0.2 | 0.3 | 0.3 | 0.15

Figure 3.2: Conditional probability tables for the example network.

Smart, Hard Working, Good Test Taker and Understands Material are all boolean at-
tributes, while Exam Grade and Homework Grade have as their type the set of grades
{A,B,C, D, F}. We will usually refer to the attributes by their initials.

The graphical structure of the network reflects the causal structure of the domain.
Whether or not a student is a good test taker depends on her smartness, and we
indicate this by setting S to be a parent of GTT in the network. Similarly, whether
or not she understands the material depends both on her smartness and how hard
working she is, so the parents of UM are S and GTT. The student’s test taking skills
and understanding of the material go on to determine how well she does on the exam
and homeworks. The former depends on both UM and GTT, while the latter depends
only on UM.

Figure 3.2 shows the conditional probability functions for our example network.
The functions are represented here as tables. For example, the function CPFgtT
specifies that if the student is smart, she is a good test taker with probability 0.75,
but if she is not smart, the probability is only 0.3. Not all the entries in the tables




CHAPTER 3. BAYESIAN NETWORKS 28

are independent. The constraint in Definition 3.2.6 specifies that the sum of entries

in each row must be 1. 1

3.4 Bayesian Network Semantics

A Bayesian network B defines an attribute-based model, and a probability distribu-
tion over the possible worlds 2z of the attribute-based model. That is, B defines a

probability distribution over the possible assignments of values to all the attributes.

Definition 3.4.1: A Bayesian network B defines a probability distribution Pg over
Qp, as follows. If w is the world (X : z1,..., X, : ),

Pg(w) = [[CPFx,(Xi==i | Ui =ui... U} =ul,). (3.3)
=1

In words, the probability of a world w is the product of the conditional probability
of the value of each attribute given the values of its parents, as specified by the CPFs.
It is easy to see that this definition has the desired effect, i.e., that Pgz is in fact a
probability distribution, and the conditional probability of each attribute given its

parents is as specified in its CPF:

Proposition 3.4.2: Let B be a Bayesian network. Then Pg is a probability distribu-
tion over Q, and for each attribute X;, Pg(X; | U?) = CPFx,.

Proof?: By induction on the number of attributes in B. In the base case, B has one
attribute X. Qg is equal to Val[X], and Pg is by definition equal to CPF x. Since X
has no parents, CPF x is a probability distribution over Val[X]| = Q.

For the induction step, let B be a network with attributes X1, ..., X,,, and assume
without loss of generality that X, is a leaf of G[B]. Let B’ be B with X, removed.

2The proof is provided since we will later prove a similar theorem for OOBN.



CHAPTER 3. BAYESIAN NETWORKS 29

Then

> weny PBW) =
Z(Xl:;cl,...,Xn:mn) [[io CPFx,(x; | u’) =
Z(X1:z1,...,Xn_1:zn_1) H?:_f CPF x,(z; | u?) Za)ne Val[Xn] CPFx, (zn | u™)
= Y X Xorimn) 1= CPFx,(x; | u®) (since CPFy, is a CPF)
> weqy Do (W)
= 1. (by induction hypothesis)

Therefore Pg is a probability distribution over )z.

In addition, for any values z for X,, and u for U™,

> Qp:X e U™ (w)= Pg(w)
Pp (X, =2 |U"=u) = weQR:Xn(w)=2,Um(w)=u
PB( n | ) EuenB:U"(w)zuPB(w)
Yweny Un (w)=u P (W) CPF X, (Xn=2|U"=u)

Ew'eng, U™ (w!)=u Py (w')

= CPFyx,(X,=z|U"=u).

So Ppy(X, |U™) = CPFx,. If i < n, Ppy(X;) = Pp, (X;) (by a similar calculation),
which by induction hypothesis is equal to CPFx,. I

Example 3.4.3: In the network of Example 3.3.2, let w be the world defined by
w(S) = Fualse, w(HW) = True, w(GTT) = False, w(UM) = True, w(EG) = B, and
w(HG) = A. The probability of w is given by

Pw = P(S = False) - P(HW = True)-
P(GTT = False | S = False) - P(UM = True | S = False, HW = True)-
P(EG =B | GTT = False, UM = True) - P(HG = A | UM = True)
= 0.5-0.7-0.75-0.6-0.3-0.7
= 0.033075.

A useful view of Bayesian networks is that they define a generative model, i.e.,

a process that randomly generates values from a distribution. Here, of course, the



CHAPTER 3. BAYESIAN NETWORKS 30

generated values are possible worlds, i.e., assignments of values to all the attributes.
This idea of a generative model is sometimes used for probabilistic inference, using
some sort of sampling algorithm. However, we can also use this idea to define the
probability distribution specified by a network: the probability of any possible world
is defined to be the probability that the process generates that world.

The generative process for a Bayesian network B is extremely simple. A value is
chosen for each of the attributes in turn, following an order consistent with G[B], so
that values will always have been assigned to all the parents of an attribute before a
value is chosen for the attribute. By the end of the process, a value will have been
assigned to each of the attributes. We use the notation X (w) < v to indicate that
w is updated by assigning the value v to X. The process is defined in pseudocode as

follows.

GenerateWorld(B)

Let w be a new, empty world.

For each attribute X, of B, following the order of G[B]:
Choose v € Val[X;] with probability CPFx,(Uij(w),...,U, (w),v).
Xi(w) < v.

Return w.

It is easy to see intuitively that this generative process defines the same distribu-
tion as that presented in the previous section. Since the values of all the attributes
are chosen separately from each other, the probability of a particular set of choices
of values for all the attributes is the product of the probabilities of each of the indi-
vidual choices. According to the process, the probability of choosing a value v for a
particular attribute X is given by CPFx, (U{(w),..., UL, (w),v).

While viewing Bayesian networks as generative models may not seem particularly
enlightening at this point, its usefulness will become clear in later chapters, when
we define probabilistic models with more structure. We will think of such models as
defining a program that stochastically generates a possible world, using a generative
process that is richer than the one here. Again, the generative process will be used

to define the semantics, not to perform inference in these more complex models.



CHAPTER 3. BAYESIAN NETWORKS 31

3.5 Conditional Independence and d-Separation

Bayesian networks are a very compact representation. A complete joint probability
distribution over n binary-valued attributes requires 2" — 1 independent parameters
to specify. In contrast, a BN over n binary-valued attributes, in which each node
has at most k parents, requires at most 2¥n independent parameters. Clearly, such a
network can encode only a very small fraction of the possible distributions over these
attributes, since it has relatively few parameters. (In fact, any probability distribution
over a set of discrete attributes can be encoded in some Bayesian network over those
attributes, but only a small number can be represented using a particular network
structure.) The fact that the structure of a BN eliminates the vast majority of
distributions from consideration indicates that the network structure itself encodes
information about the domain. This information takes the form of the conditional
independence relationships that hold between attributes in the network.

Recall the definition of conditional independence of variables, restated here for

convenience.

Definition 3.5.1: Let X = {X;,... . X,,}, Y ={Y,,... Y, }and Z ={Z;,... , Z;}
be three sets of variables (not necessarily disjoint). We say that X is conditionally
independent of Y given Z (written I(X,Y | Z)), if, for every choice of values
x € Val[X], y € Val[Y], and z € Vul[Z],

PX=zY=y|Z=2) = PX=x|Z=2)PY=y|Z=2z). |

The key idea is that the graphical structure of a Bayesian network forces certain
conditional independences to hold, regardless of the CPFs. Whether or not a condi-
tional independence must hold for a certain network structure can be determined by

the d-separation criterion:

Definition 3.5.2: Let 7 = [X7, ..., X,;;] be an undirected path in a Bayesian network
B. We say that X; has converging arrows in 7 if G[B] contains edges from X;_; to
X]‘ and fI'OHl Xj+1 to Xj. [ |



CHAPTER 3. BAYESIAN NETWORKS 32

Definition 3.5.3: Let 7 be an undirected path in B, and X a set of attributes of B.
We say that 7 is blocked by X if there exists a node Y in 7 such that either

1. Y has converging arrows in 7, and none of Y or its descendants are in X, or

2. Y does not have converging arrows, and X isin X. 1

Definition 3.5.4: Let X, Y, Z be three disjoint subsets of nodes of a Bayesian
network B. We say that X is d-separated from Y by Z if every path from an
attribute in X to an attribute in Y is blocked by Z. 1

Theorem 3.5.5: Let G be a directed acyclic graph over a set of attributes, and X,Y
and Z be sets of attributes in the graph. Then I(X,Y | Z) in every distribution Pg
defined by a Bayesian network B such that G[B] = G, if and only if X is d-separated
fromY by Z in G.

Note the prominent place given to the notion of converging arrows in the defini-
tion of d-separation, indicating that the directionality of the graph is crucial to the

independence assumptions it encodes.

Example 3.5.6: Let us look at some examples from the network in Example 3.3.2.
It is clear from Figure 3.1 that I({S,HW}, {EG,HS} | {GTT,UM}). Any path from
S or HW to GTT or UM must pass through either EG or HS, in such a way that the
intermediate node does not have converging arrows. This is intuitively correct. A
student’s understanding of the material and test-taking skills are direct causes of the
student’s performance in the exam and homeworks, whereas a person’s smarts and
hard-working nature are predisposing features that only influence the grades via the
direct causes. Once I know the values of the direct causes, telling me the values of
the predisposing features gives no new information as to the results.

On the other hand, it is not the case that I({S}, {EG} | {GTT}), because the path
S — UM — EG is not blocked by GTT. Even if I know that a student is a good test
taker, telling me that the student is smart gives me reason to believe that the student

understands the material, which in turn affects my belief about the exam grade.



CHAPTER 3. BAYESIAN NETWORKS 33

Now, consider S and HW. These are independent predisposing features, and indeed
I({S},{HW} | 0), because every path from S to HW passes through a node with
converging arrows. However, S and HW are not conditionally independent given
UM. The path S — UM <« HW is not blocked by {UM}. Intuitively this makes
sense. Both smartness and hard work (or their combination) are possible causes of a
student understanding the material. If you tell me that the student understands the
material, my belief in any possible explanation of that fact will go up, therefore my
belief in both the student’s smarts and her hard working nature will go up. If you
then tell me that the student is smart, that provides me with an explanation of her
success in understanding the material, and thereby discounts the explanation that the
student understood the material due to hard work, and so my belief in the student’s
hard work will go down a little. This phenomenon is called “explaining away” — the
observation that the student is smart explains away the fact that she understood the

material, and discounts the other possible explanation. i

The above example illustrates the surprising fact that two variables that are in-
dependent of each other when there is no other information may become dependent
when new information is obtained. This type of reasoning is common in humans. For
example, consider the case of a person who discovers he has a symptom of a serious
illness, who then finds out that he has a much less serious illness that causes the same
symptom. The person experiences relief on discovering he has the less serious illness,
indicating that once the person knows he has the symptom, discovering that he has
the less serious illness decreases his degree of belief in his having the more serious
illness. However, if the person has not observed the symptom, then discovering that
he has the less serious illness sheds no new light on whether he has the more serious
illness, and does not cause relief. The ability of BNs to correctly handle this type of
situation is illustrative of their power to support sophisticated reasoning patterns. We
shall see more examples of the sophisticated types of reasoning that can be performed

in BNs in the next section.



CHAPTER 3. BAYESIAN NETWORKS 34

3.6 Bayesian network reasoning

Because a BN B specifies a complete joint probability distribution over {2z, it de-
termines the probability of any subset of {25. The semantics of a Bayesian network
determines the conditional probability of any event given any other event. When com-
puting such a conditional probability, the conditioning event is called the evidence,
while the event for which we want to determine its conditional probability given the
evidence is called the query. The general capability of a BN to compute conditional

probabilities allows it to exhibit many particular patterns of reasoning.

Example 3.6.1: Causal reasoning is the pattern of reasoning that reasons from a
cause to its effects. A hard working student is more likely to understand the material,

which in turn makes her more likely to do well on the homeworks, so
P(HG = A | HW = True) > P(HG = A) > P(HG = A | HW = False). |

Example 3.6.2: Evidential reasoning is the reasoning from effects to its possible
causes. Since a student who understands the material is more likely to do well on
the homework than one who does not, observing that the student did well on the
homework provides evidence that the student understood the material, which in turn

provides evidence that the student is a hard worker.
P(HW = True | HG = A) > P(HW = True) > P(HW = True | HG = F)). |

Example 3.6.3: Mixed reasoning combines both causal and evidential reasoning.
If T observe that a student did well on the exam, that provides evidence that she
understood the material, which in turn makes it more likely that she did well on the

homework.
PHG=A|EG=A)>PHG=A)>PHG=A|EG=F).

Note, however, that HG and EG are conditionally independent given UM, so if I
already know that the student understands the material, telling me that she did well



CHAPTER 3. BAYESIAN NETWORKS 35

on the exam gives me no extra information about how well she did on the homework.

PHG=A|EG= A,UM = True)
= PHG=A| UM = True)
= PHG=A|EG=F,UM = True). |

Example 3.6.4: Intercausal reasoning involves reasoning between two different
causes that have an effect in common. This example corresponds to the “explaining
away”’ phenomenon described at the end of the previous section. If I do not know the
value of UM, S and HW are independent.

P(HW = True | S = True) = P(HW = True) = P(HW = True | S = False).

However, if I know that UM = True, then telling me that S = True decreases the
probability that HW = True.

P(HW = True | S = True, UM = True)
< PHW = True | UM = True)
< PHW = True | S = False, UM = True). |

Example 3.6.5: Sometimes, more than one reasoning pattern is in effect. Suppose
for example, that I know that a student received an A on the exam, and I then
observe that she is a good test taker. This observation has two opposing effects on my
belief about whether the student understood the material. By intercausal reasoning,
the observation that the student is a good test taker explains away the observation
that she did well on the exam, and discounts the possibility that she understood
the material. On the other hand, by mixed reasoning, the fact that she is a good
test taker provides evidence that she is smart, which makes it more likely that she
understood the material. In this case, we cannot determine whether P(UM = True)
goes up or down based on purely qualitative considerations. However, the Bayesian
network still allows the probabilities P(UM = True | GTT = True,EG = A) and
P(UM = True | EG = A) to be computed and compared. §



CHAPTER 3. BAYESIAN NETWORKS 36

Example 3.6.6: A similar situation holds when we have multiple sources of evi-
dence that provide contrary indications. Suppose I observe that a student did well
on the exam but not on the homework. The former provides positive evidence that
the student understood the material, the latter negative evidence. We cannot deter-
mine which evidence is stronger based purely on qualitative considerations, but the

Bayesian network can answer the question. 1

The last two examples illustrate situations that are too complex to handle using
purely qualitative reasoning methods. It is often quite difficult for a human to guess
whether a certain combination of evidence increases or decreases the probability of
a query. The situation becomes much more complex as the number of sources of
evidence increases. The power of Bayesian networks lies partly in their ability to
combine plausible qualitative reasoning patterns, as shown in the first four examples,
with quantitative reasoning methods that can carefully weigh different sources of

evidence.

3.7 Inference

In this section, we describe the central ideas behind inference in Bayesian networks.
The algorithm we shall describe, called Variable Elimination (VE), lies at the
core of most exact algorithms for BN inference, including the well-known junction
tree algorithm [60]. (Another class of inference algorithms is based on the cutset
conditioning method [95], which we shall not describe here.) The presentation in this
section is based on the approach of [22].

The basic inference task is as follows: given a BN B compute P(Y | Z = z),
where Y and Z are sets of attributes of B, and z is a value in Val[Z]. The value
to be computed, P(Y | Z = z), is the conditional probability distribution over the
query variables Y, given the evidence that the value of Z is z; it is a function that
assigns, for each y € Vul[Y], a probability P(Y = y | Z = z). This conditional



CHAPTER 3. BAYESIAN NETWORKS 37

probability is equal to

Zw:Y(w):y,Z(w):z PB(("))
Zw:Z(w):z Pg ((,O)

Note that the denominator does not depend on y, and furthermore, we have the

constraint that

Y P(Y=y|Z=2z)=1
ye Val[Y]

It is therefore sufficient for us to compute f(y), where for each y,

= 5 Psw).

wY (w)=y,Z(w)==2

. . . 1 . .
By the constraint, the denominator }°, 7 _, Ps(w) is equal to @) which is a
normalizing factor that scales the values of f so that they total 1.
Before showing in detail how we compute the function f, we will introduce some

terminology.

Definition 3.7.1: A factor over variables Y is a function f : Val[Y] — R. We say
that f mentions the variables Y. 1

In database terms, we can think of a factor as a relation that contains a tuple
for each possible assignment of values to Y, and that associates a number with each
tuple. We can define the product of two factors f and g over Y and Z to be the join
of f and g, where the number associated with each tuple ¢ in the result is the product

of the numbers associated with Y (¢) in f and with Z(¢) in g.

Definition 3.7.2: Let f be a factor over Y and ¢ be a factor over Z. The product
of f and g, denoted f - g, is a factor h over Y U Z defined by h(t) = f(Y (¢))g(Z(¢t)).
|

The product of factors is commutative and associative. We extend it naturally to

the product of a set f of factors, and write [ f for the product.



CHAPTER 3. BAYESIAN NETWORKS 38

If we have a factor f over Y, and Z is an attribute in Y, we can sum over Z to
obtain a new factor g over Y — {Z}, in which the number associated with each tuple

t in g is the sum of the numbers associated with tuples in f that project onto ¢.

Definition 3.7.3: Let f be a factor over Y and let Z be an attribute in Y.
The sum over Z of f, denoted >, f, is a factor g over Y — {Z}, defined by
9(t) = X .cvaz f({t. Z : z)). (The notation (¢,Z : 2) denotes the tuple formed
from extending ¢ by assigning z to Z.) i

The summation operation is analogous to the projection operation in databases. We

also define the analogue of the selection operation, as follows:

Definition 3.7.4: Let f be a factor over Y, let Z € Y, and let z be a value in
Val[Z]. The conditioning of f by Z = z, written f[Z = z|, is the factor g over Y
defined by

One may also condition a factor on a set of values. If {z1,...,2z} C Vul[Z], f]Z €
{#1,...,2}] is the is the factor g over Y defined by

g(t) = f(t) Z(t) € {21, A azk}
0 Z(t)¢{21,...,zk} )

Now that we have the concept of a factor, along with some basic operations on
factors, we will show how to compute our target function f as a series of operations
on factors. Note that a conditional probability function is a factor. The network B
specifies a conditional probability function for each attribute X;, which is a factor fx
over X U U®. The joint probability distribution defined by B can be written as the
product of factors [y, A[B] fx. In addition, the function f that we want to compute
is a factor over Y.

The first step in computing f is to condition on the evidence Z = z. We do this



CHAPTER 3. BAYESIAN NETWORKS 39

by rewriting f as follows:

f(y) = Zw:Y(w):y,Z(w):z PB(w) = Zw:Y(w):y g(w)’ where
_ HX fx Z(w) =z
0 Z(w)# z
In order to write the function ¢ as a product of factors, we replace, for each Z; € Z,
the factor fy, with gz, = fz,[Z; = 2]. For an attribute Y ¢ Z, we set gy = fy. We
can now write g = [Ty 415 9x-
It remains to compute f, where f(y) = >, y()=y [[xcapm9x(w). Let W =
{Wi,... , W} be X =Y, i.e., the set of attributes of B that are not part of the query.

The factor f is equal to the sum of products of factors:

=3 o

1%%1 We

In order to compute this expression, we eliminate the attributes W1,... , W, one by
one. When eliminating the variable W;, we can push in the ZWi so that it only
encloses factors that mention W,. We then multiply those factors together, and
sum over W; in the result. It is this phase of the algorithm that gives it the name
Variable Elimination.

The full Variable Elimination algorithm is presented below. It takes four argu-
ments: a Bayesian network B, a set of query variables Y, a set of evidence variables
Z, and an assignment of values z to Z. It returns a joint probability distribution
over Y, which is Pp,(Y | Z = z). The algorithm maintains a set f of factors, and
updates it as it goes along. After eliminating all the variables, the algorithm is left
with a factor f over Y. The factor f is unnormalized, so it calls Normalize(f),

which normalizes f by scaling its values so that they sum to 1.

VariableElimination(B, Y, Z, z)
For each X in A[B] do

If X is Z, € Z

gx = CPFx[X = z].



CHAPTER 3. BAYESIAN NETWORKS 40

| S |GTT | gorr |
| ‘ HW H gHW‘ True | True || 0.75
True || 0.5 True || 0.7 True | False | 0.25
False || 0.5 False || 0.3 False | True || 0.25
False | False || 0.75

| S | HW | UM [ gum |
True | True | True || 0.95
True | True | False || 0.05 ‘ GTT ‘ UM ‘ EG H JEG ‘

True | False | True || 0.6 True | True | A || 0.7 ‘ UM ‘ HG H gHG ‘
True | False | False | 0.4 True | False | A 0.3 True | C | 0.03

False | True | True || 0.6 False | True | A 0.4 False | C 0.4

False | True | False || 0.4 False | False | A | 0.05

False | False | True || 0.2
False | False | False | 0.8

Figure 3.3: Initial set of factors for Example 3.7.5

Else
gx = CPFx.
f={9x: X € AB]}.
For each W € A[B]-Y do
Let g be {g € f:g mentions W}.
hx =]]g-
kx =)y hx.
f=(-g9) U{kx}.
f=IIf.

Return Normalize(f) .

Example 3.7.5: Let us illustrate the variable elimination algorithm by computing
the answer to the query discussed in Example 3.6.6. We want to compute P(UM |
EG = A HG = C). After conditioning on the evidence, we have the set of factors
shown in Figure 3.3. (All entries with value 0 have been omitted from ggg and gng.)

We will eliminate the variables HG, GTT, EG, S and HW, in that order. Note that
HG appears only in gyg, and that its value is fixed by the evidence. Eliminating HG



CHAPTER 3. BAYESIAN NETWORKS 41

replaces gyg with the following factor hy:

UM hy
True || 0.03
False || 0.4

Next, we eliminate GTT, which appears in gett and ggg. We multiply those together

to obtain
S GTT | UM | EG

True | True | True | A || 0.75-0.7 = 0.525
True | True | False | A || 0.75-0.3 = 0.225
True | False | True | A || 0.25-04 = 0.1
True | False | False | A | 0.25-0.056 = 0.0125
False | True | True | A | 0.25-0.7 = 0.175
False | True | False | A || 0.25-03 = 0.075
False | False | True | A |/ 0.75-0.4 = 0.3
False | False | False | A || 0.75-0.05 = 0.0375

We then sum GTT from the result, and replace ggrt and ggg with ho, defined as

follows:
S UM | EG ha
True | True | A || 0.525 + 0.1 = 0.625
True | False | A || 0.225 + 0.0125 = 0.2375
False | True | A | 0.175 + 0.3 = 0.475
False | False | A | 0.075 + 0.0375 = 0.1125

We continue in a similar manner. Eliminating EG involves simply summing EG out
of ho, replacing it with the factor h3 over S and UM. At this point, the running set of
factors consists of gs, gnw, gum, h1 and hz. To eliminate S, we multiply together gs,

gum and hg, and sum over S in the result, replacing them with a factor hy over HW



CHAPTER 3. BAYESIAN NETWORKS 42

and UM. Next we compute hs = Y,y guwha. We are left with h; and hs which are
factors over UM alone. Multiplying these two factors together, we obtain the factor
f over UM:

UM f
True || 0.0113
False || 0.0907

To finish the computation, we normalize f to obtain

P(UM = True | EG = A,HG = C) = 0.8892
P(UM = False | EG = A,HG = C) = 0.1108

What is the cost of the Variable Elimination algorithm? In the following anal-
ysis, we let |f| denote the number of variables mentioned in a factor. If each variable
has at most b values, then the size of f is O(b//l). Now, each variable elimination
involves a series of multiplications to compute an intermediate result, followed by
a series of additions. The number of multiplications is proportional to the size of
the intermediate result, and each row in the intermediate result contributes to one
summation term, so the cost of eliminating a variable is proportional to the size of

the intermediate result. We therefore have the following:

Theorem 3.7.6: The cost Variable Elimination is O(nb™) where n is the number
of variables, b the largest number of values of a variable, and M the largest number

of variables mentioned by an intermediate result produced during the computation.

From this discussion we see that it is M that is crucial in determining the com-
plexity of BN inference.
In order to better understand the inference computation, it is useful to represent

it graphically.

Definition 3.7.7: Let f be a set of factors, and let X be the union of the attributes
mentioned by the factors in f. The graph of f is an undirected graph over X, in



CHAPTER 3. BAYESIAN NETWORKS 43

which there is an edge between X and Y if X and Y appear in the same factor in f.
|

The inference computation can be represented by a series of graphs, corresponding
to the current set of factors at each computation stage. Let us denote the set of
factors at the i-th stage by f;, and the corresponding graph by Gg,. The initial set
of factors f, consists of a conditional probability function for each attribute of B,
which is a factor over the attribute and its parents. Therefore, the graph Gy will
be an undirected graph over the attributes of B, in which there is an edge between
two attributes if one is the parent of the other, or if both are parents of the same
attribute (because then they both appear in the CPF of their common child). This
graph is called the moral graph of B. Eliminating the variable X at the ¢-th stage
involves an operation on Gy, , to produce Gyg,. Let Yi,... Y, be the neighbors of
X in Gy,_,. Since X appears in a term with each of the Y; in f, and with no other
variables, the result of eliminating X will be a new factor over {Yi,...,Y,,}. Thus
Gy, can be obtained from Gy, , by removing X and adding an edge between every

pair of neighbors of X.

Definition 3.7.8: Let fo,..., fn be the sequence of factors produced by a VE

computation. The induced graph of the computation is the union of the graphs of

for,--- s fn- 1

Figure 3.4 shows the series of graphs for the computation of Example 3.7.5. Fig-
ure 3.4(a) shows the moral graph of the Bayesian network, and Figures 3.4(b) to (f)
show the graphs after eliminating HG, GTT, EG, S and HW respectively. Note that
eliminating GTT requires that an edge be added between S and EG. Figure 3.4(g)
shows the induced graph of the entire computation. It is this graph that is crucial in
determining the value of M, the size of the largest intermediate result produced by
the computation.

Consider any clique (i.e., a maximal fully-connected subgraph) in the induced
graph of a VE computation. Let X be the first attribute eliminated in this clique,

and let the stage of its elimination be i. No edge involving X can be added to



CHAPTER 3. BAYESIAN NETWORKS 44

(d) (e) (f) (9)

Figure 3.4: Graphs for computation of Example 3.7.5.

the induced graph after X has been eliminated, so f;, must have contained a factor
relating X to each of the other attributes in the clique. The intermediate result
produced at the i-th stage will be a factor that mentions at least all the attributes
in the clique. So M must be at least the size of the clique. Conversely, consider the
intermediate result produced at the i-th stage, and let X be the variable eliminated
at that stage. Let Y be the variables other than X mentioned by the intermediate
result. X must have been related to each of the Y before the i-th stage, while the Y’
will all be related to each other after that stage. Therefore { X} UY must be a clique
in the induced graph. We conclude that there must be a clique in the induced graph
of size M, and therefore M is the size of the largest clique in the induced graph. We

have therefore shown the following:

Theorem 3.7.9: The time and space cost of a Variable Elimination computation
is O(nb™), where M is the size of the largest clique in the induced graph for the

computation.

The value of M for a particular query is highly dependent on the elimination order

used, so the choice of a good elimination order is crucial to effective BN inference.



CHAPTER 3. BAYESIAN NETWORKS 45

The maximum number of neighbors of a node in the induced graph for a VE compu-
tation, which is equal to M —1, is called the induced-width of the computation. Given
an initial set of factors f, one may consider many possible elimination orders. The
minimal induced width over all possible elimination order is called the tree-width of
f [2]. The tree-width characterizes the cost of computation if the best possible elim-
ination order is found, while the induced width characterizes the cost for a particular
order.

An important special case occurs when the Bayesian network is a polytree. A
polytree is a network in which there are no (undirected) loops. If the network is a
polytree, an elimination order can be found in which no edges need to be added to
the induced graph. Thus the tree-width is equal to the maximum number of parents

of any node in the network.

Theorem 3.7.10: If B is a polytree, and @ is a query over a single variable, ) can
be solved in time and space O(nbP), where p is the mazimum number of parents of an

attribute in B.

It is well-known that BN inference is NP-hard in theory. In particular, for VE,
the cost of inference is O(nb™) where M is the size of the largest clique in the induced
graph. For a graph of size n, the question of whether its tree-width is less than or
equal to k is NP-complete [3]. However, there do exist algorithms that can find an
optimal ordering in time O(n**2), where k is the tree-width of the graph [3, 90].

These algorithms are complex and expensive, and most practical implementations
of BN inference algorithms do not try to find an optimal elimination order. Rather,
they use a greedy algorithm to try to find a good order. One heuristic, which is
used in many implementations (see, e.g., [50]), is the minimum discrepancy heuristic.
According to this heuristic, the node that adds fewest edges to the current graph is
chosen as the next node to be eliminated.

Despite the fact that BN inference is theoretically hard, in practice inference can
be performed on fairly large networks. A well-constructed network possesses a good
deal of structure that can be exploited by the inference algorithm. With the right

variable elimination order, the value of M can often be kept quite small even for fairly



CHAPTER 3. BAYESIAN NETWORKS

Figure 3.5: The CPCS network.

46



CHAPTER 3. BAYESIAN NETWORKS 47

large networks. An example is the CPCS network for diagnosis of internal medical
disorders, shown in Figure 3.5. This network has about 500 nodes, and was specially
designed so as to support efficient inference.

If exact inference is too expensive in a network, an approximate inference al-
gorithm may be able to give a fairly accurate answer to a query in a reasonable
amount of time. A wide variety of approximate inference algorithms has been de-
veloped. These include sampling methods [42, 88], Markov Chain Monte Carlo algo-
rithms [28, 72], algorithms that selectively ignore some of the nodes or edges in the
network [23], branch-and-bound style algorithms for finding likely instantiations of
the variables [84], and more [71]. One class of algorithms that has drawn attention
recently is the family of variational methods [51], which have proven to be extremely

successful where they can be applied [47].

3.8 Conclusion

In recent years, BNs have had a growing number of applications, both academic
and commercial. Many of the early successes were in the area of medical diagnosis
(e.g. [40]). Since then, the range of diagnostic applications has broadened consid-
erably. For example, BNs are now used in the Microsoft Windows troubleshooter,
and in troubleshooters for RICOH photocopiers. BNs are also being applied to a
growing variety of non-diagnostic applications. For example, they have been applied
to monitoring systems such as electric generators [69], to display of information for
time-critical decision making [44], for determining the needs of software users [43],
and filtering junk email [86].

The key to the success of Bayesian networks is the explicit representation of do-
main structure: in this case, conditional independence structure in their domain. As
we have seen, this structure leads to compact representations and efficient inference
algorithms. There are also a number of learning algorithms for BNs that we have
not discussed (see [38] for a survey). As a result, BNs have been widely accepted
in the artificial intelligence community as being the best way to reason under uncer-

tainty in attribute-based domains. It is our goal in subsequent chapters to extend the



CHAPTER 3. BAYESIAN NETWORKS

capabilities of BNs to more complex domains.

48



Chapter 4

Object-oriented Bayesian Networks

4.1 Introduction

As described in the last chapter, Bayesian networks have emerged as a viable tech-
nology for representing and reasoning about probabilistic models. As we have seen,
they have a variety of successful applications. We now want to take the next step,
to scale BNs to more complex domains than they have been applied to in the past.
Rather than diagnosis of one particular aspect of medicine, such as internal medicine,
we want to be able to diagnose the entire human body. Rather than diagnose only
the engine of an aircraft, we want to diagnose an entire aircraft. Rather than provide
separate troubleshooters for different components of a computer, we want a single
troubleshooter for an entire computer system, and move beyond that to an entire
network. Rather than model the behavior of a single military unit in a battlespace,
we want to create a model of the entire battlespace. Rather than model an individual
student in a single course, we want to be able to model an entire university.

To this point, Bayesian networks have not been applied to these larger, more
complex types of applications. We believe that there are a number of reasons for
this. The basic difficulty is that in a large system, the number of variables needed
to capture the state of the world is very large, and a BN would have to model all of
these variables explicitly.

Why are big networks a problem? One issue is that it is very hard to construct

49



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 50

big networks. Building a network to model a system requires a clear conception of
how the system works. It requires being able to enumerate all the relevant variables
in the system, and to know exactly which variables causally influence other variables.
As the number of variables grows, the difficulty of envisioning such a model increases
enormously. Consider the CPCS network in Figure 3.5. This network models only a
single aspect of medicine, yet it is already immensely complicated. Imagine trying to
model the entire human body using the same type of technology.

Modelling using Bayesian networks is a lot like programming using logical circuits.
At some point a model becomes simply too complex to fathom in its entirety. It is
clear that some facility is needed to divide a model into separate chunks that can each
be fathomed separately, and for linking those chunks together into a single coherent
model. BNs provide no such facility.

Another problem with standard BN technology is that BNs provide no support for
the recurrence of the same elements many times within a model. The same variables
show up again and again, and the graph structure and CPFs are repeated many times.
The only way to exploit this in current BN technology is by using cut and paste to
copy one part of a network to another. The part of the network that is copied has no
separate identity, it just consists of a set of nodes in the network. After copying, there
is no record that the copied part represents the same set of elements as the original.
As a result, the network is very hard to maintain. If a change is needed to the model
representing a repeated element, all the copies need to be changed. Furthermore, as
copies of different elements are merged together in a variety of ways, it becomes very
hard to keep track of which node came from which element. It is clear that we need
a way to represent the fact that the same components appear again and again in a
BN model, and to give these components their own identity.

A related problem with BNs is their lack of flexibility. We want to be able to
model many similar situations with different configurations. We need a mechanism for
quickly recombining the components of a network to provide a model for a particular
configuration. BNs are static models, defined once and for all. They provide no
facilities for reconfiguring the model to adapt to a changing domain.

In addition to the representational inadequacies of BNs for large domains, there



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS ol

is also the problem of inference. If we do manage somehow to build a model of a very
large system, how do we know that it will support efficient inference? Inference in
BNs is NP-hard in theory. As we discussed in Section 3.7, the cost of inference in a
BN depends on subtle properties of the network structure and variable elimination
order used. There is generally no way to know while constructing a large network
whether it will support efficient inference in practice. We would like a language
and methodology for building large probabilistic models that we know will support
efficient inference.

Our approach to representing large systems is to take into account the fact that
they typically have a good deal of structure. The structure can be represented in a
relational model, by decomposing the system into the separate objects in it and the re-
lationships between them. We will utilize the good properties of Bayesian networks, in
particular their ability to explicitly represent conditional independence relationships
within a graphical structure, while also taking advantage of the additional relational
structure.

This approach provides us with many of the properties we want in a probabilistic
representation language. By representing a system in terms of distinct objects, we
get to decompose the probabilistic model for the system into models for the objects.
These models interact with each other, to be sure, but the representation is decom-
posed into separate models for the different objects. By associating the probability
models with classes of objects rather than with individual objects themselves, we get
to exploit the fact that many objects have the same type and therefore share the same
probability model. We can also exploit the fact that similar types of objects have
similar probability models by allowing a subclass to inherit its model from a super-
class. Using a relational language also provides us with a flexible way to reconfigure
a system. We can specify the structure of a particular system simply by specifying
which objects are in it and how they are related to each other. As we will show, the
probability models of the different classes will automatically fit together to produce
a probability model for the entire system.

To sum up, we get many of the same properties in a probabilistic modeling lan-

guage that are provided by higher-level programming languages. Our language has



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 02

been inspired in particular by ideas from object-oriented programming languages [31,
10]. As in object-oriented languages, our models are represented in terms of modular
components that can be put together in a variety of ways. We associate models with
classes of objects, create instances of our classes, and use inheritance to create new
models out of old ones. Because we use a typed relational language, our probability
models are also well-typed. Of course, our language is not a programming language
but a modeling language. Its purpose is to facilitate the construction and analysis of
models, not the construction and execution of programs. By presenting our language
in the framework of relational models, rather than in a programming language frame-
work, we are able to integrate our probabilistic representation language with more
traditional logic-based representation languages.

However, we can use the programming language analogy in thinking about how
to design a modular probabilistic language. In particular, the idea of representing
a probability model as a generative stochastic program, which we discussed in Sec-
tion 3.4 suddenly becomes very useful. If we take this view, we can associate a
generative stochastic function with each of our classes. The stochastic function for
one class is defined in terms of the functions for the classes to which it is related, just
as a function in an ordinary programming language is defined in terms of other func-
tions. The generative program for the entire system is then defined very naturally in
terms of these functions. Of course, our intent is not to execute the generative pro-
gram, but to use it to define the probability model, and then to analyze that model.
Nevertheless, defining the probability model in terms of composing functions is both
intuitive and useful.

To deal with the complexity of inference, we can borrow another idea from pro-
gramming languages: encapsulation. The complete description of the state of a par-
ticular object I may be very rich. It consists of properties of I itself, as well as
properties of related objects. If some other object .J is related to I, it may depend
probabilistically on properties of I. Typically, the dependence of J on I can be sum-
marized through a very small subset of the properties of I, that serves as the interface

between I and J. All other properties of I are encapsulated from J. In probabilistic



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 33

terms, J is conditionally independent of the encapsulated properties of I given the in-
terface between them. This property can be exploited for effective inference, because
it means that the only information that needs to be communicated between I and
J during the inference process is a factor over the interface. Most of the work per-
formed during inference can be localized within individual objects. When we utilize
the object structure for inference, we can also exploit the fact that many objects have
the same class. Different instances of the same class have the same probability model,
and communicate the same factor to their related objects. We can therefore perform
inference on the class level, reusing the computations performed for one instance of

a class to other instances of the same class.

4.1.1 Hierarchical Systems

Before we tackle the integration of probability models into full-scale relational lan-
guages, we focus on a common and useful special case: hierarchical systems. A hier-
achical system consists of a set of objects organized into a part-of hierarchy. There is
a top-level object, that may have several components, and each of these components
may have other components, and so on. The part-of hierarchy is finite, and forms a
tree — we don’t allow the situation where an object is simultaneously a direct com-
ponent of two different objects. All interactions and relationships in a hierarchical
system flow through the part-of hierarchy. Information flows up the hierarchy from
an object to its container, and down the hierarchy from an object to its components.
Many complex systems can be naturally modelled in this way, such as, for example,
an airplane, a military battalion or a computer system.

In his famous essay, “The Architecture of Complexity” [92], Simon postulated
that many complex systems have a natural hierarchical structure. He highlighted
two particular features of hierarchical systems that are of great interest to us. First,
the different components of a hierarchical system tend to interact weakly with each
other. Most of the interactions within the system are contained within the individual
components, but there are also some interactions between the components. The

second aspect of hierarchical systems that is useful to us is the fact that these systems



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS o4

contain a great deal of redundancy. Many of the objects in a system are often of
the same type, and in fact the same types of objects often appear in many different
systems. These are precisely the two types of system structure that we have proposed
to exploit for efficient inference. The weakness of the interactions between objects
can be exploited by limiting the interactions between them to small interfaces, while
the redundancy can be exploited by performing inference at the class level. Thus,
hierarchical systems are a natural starting point for designing our language.

Another reason why hierarchical systems are a good starting point is that they
provide a bridge between attribute-based and more general relational models. The
set of objects in a hierarchical system is finite and fixed, as are the relationships
between them, so the system can be completely characterized by the values of the
simple attributes of these objects. In other words, there is a finite set of attributes
that fully characterizes any possible world, and a probability distribution over this
set, of attributes gives us a probability distribution over the state of the system. More
general relational models may potentially contain infinitely many objects, and the
relationships between them are not necessarily fixed, so the state of the world may
not be describable by a finite set of simple attributes. As a result, the probabilistic
semantics for these types of systems are necessarily more complex. By presenting
hierarchical models first, we can focus on the basic ideas behind structured repre-
sentation and inference for probability models, and deal with the more general case
later.

In this chapter, we present Object-oriented Bayesian networks (OOBNs), a proba-
bilistic representation language for hierarchical systems that exploits the hierarchical
structure while maintaining the ability of BNs to represent conditional independence
information. We first show how to represent hierarchical systems using a relational
language. We then describe how to augment the relational representation with proba-
bilistic knowledge to define an OOBN. Next, we present the semantics of OOBNs, and
a structured algorithm for probabilistic inference. Finally, we discuss various aspects

of working with OOBNSs, focusing in particular on using subclasses and inheritance.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 35

4.2 Hierarchical Relational Models

Our first task is to show how to represent a hierarchical model using a relational
language. We know what we want the possible worlds to look like. The set of entities
will consist of all the objects in the hierarchy and no others. Each object will be
related to its components by a function. If we draw a graph over the objects, with
an edge from I to J if I is related to J by a function, the resulting structure should
be a tree, rooted at the top-level object. Objects will also have values for simple
attributes. In order to allow information to be passed around the hierarchy, some
of the attributes of an object will actually be placeholders for values of attributes
of other objects. We will force the placeholders to take on the same values as their
targets in any possible world.

We achieve the desired effect in four steps. First we define a restricted kind of
typed relational language called a hierarchical relational language. Then we show how
to specify the way information is passed around the hierarchy using an information-
passing structure. Next, we stipulate constraints on hierarchical worlds, that force
them to take on the structure we want. Finally, we define what our set of possible
worlds look like. We show that they do in fact satisfy the constraints, and in addition
that any possible world will, for all intents and purposes, be identical to one of the

worlds in our set.

Definition 4.2.1: A hierarchical relational language is a typed relational language
(C,C, A, f, R, I), with the following restrictions:

e R=1.

e I consists of the single instance Iy, called the top-level instance. The type of

I is called the top-level class, and it is denoted Cr.

e The classes C are stratified, in that it is possible to rank them in such a way
that for every function f in f, the range type of f has a lower rank than the
domain type. C7r is the highest ranking class. I



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 56

The restriction that R = () tells us that all attributes are single-valued. This
means that for any object, the number of objects that are related to it is fixed,
because all the relationships are functional. All functions map an object to a lower-
ranking object; components have lower rank than their containers. The stratification
requirement guarantees that the component hierarchy is not recursive. If there is an
attribute chain on C whose range type is C’, we will say that C is defined in terms
of C'. The stratification requirement then guarantees that no two classes are defined
in terms of each other. The requirement that Cr be the highest ranking class means
that Cr cannot be the range type of any function, so the top-level instance cannot

be contained in any other object.

Example 4.2.2: For our running example in this chapter, we will create a model for
diagnosis of a computer system. In our example, the hierarchical relational language

contains the following elements (among others):

e The classes Computer, Motherboard, OS, Hard-Drive, Drive-Mechanism, Drive-Motor,
Disk-Surface. For stratification purposes, the classes are listed in order of de-
scending rank. This is not the only possible ranking. For example, since neither
the OS nor the Hard-Drive are defined in terms of the other, either one could be
ranked higher than the other.

e A variety of functions mapping objects to their components. For example, the
functions Has-Hard-Drive with domain type Computer and range type Hard-Drive,
Has-Drive-Mechanism with domain type Hard-Drive and range type Drive-Mechanism,
and Has-Motor with domain type Drive-Mechanism and range type Drive-Motor.
We can represent the situation where an object has several components of the
same type, using multiple numbered functions. For example, the functions
Has-Surface-1, Has-Surface-2, Has-Surface-3 and Has-Surface-4, all with domain

type Hard-Drive and range type Disk-Surface.

e A large number of simple attributes describing properties of the different com-
ponents. For example, Status with domain type Hard-Drive and range { Good,
Minor-Damage, Major-Damage, Unreadable }. Most of the different compo-

nents, will in fact, have a Status attribute. Although they have the same name,



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS o7

they are in fact different attributes, because their domain types and possibly

ranges are different.

o A single instance My-Computer, whose type is Computer. 1

4.2.1 Passing Information Between Objects

When building a probabilistic model for a hierarchical system, we need to be able to
describe the ways in which the components interact. For example, the behavior of the
hard drive depends on the status of the operating system, because if the OS is corrupt
the drive may not function correctly. In order to describe the interactions between ob-
jects, we supplement our hierarchical relational language with an information-passing
structure, describing how information flows between the objects. The information-
passing structure consists of three parts. The first part specifies which attributes of
an object are actually part of the object itself, and which are simply placeholders for
information passed to the object. The placeholders are called inputs of the object.
The second part of the structure specifies what information about a component object
is passed to its container. Attributes which are passed back to the container of an

object are called outputs of the object.! Unlike input attributes, the values of output

! Unlike input attributes, which are essential to defining which parts of an object are inherent to
it, and which parts are actually derived from other objects, output attributes are not an essential
feature of the language. Rather, they are a convenient way of specifying which parts of an object
are visible to other objects, and thereby defining the interface of the object. We could alternatively
have left outputs out of the language definition, and made them a derived property, with the outputs
of an object being those aspects of the object that are actually used by other objects. However,
making outputs an explicit feature of the language makes the presentation easier.

In addition, making the distinction between output and encapsulated attributes explicit can serve
a similar role to the distinction between public and private attributes in a programming language.
The designer of a class need only supply models for all the output attributes in order to make sure
that the class integrates well with other classes. However, using the distinction between output and
encapsulated attributes for this purpose conflates two different interfaces. There is the interface
between an object and other objects, as specified by the output and encapsulated attributes. There
is also the interface between an object and the user, specifying which attributes of the object are
an inherent part of the object model and are therefore queryable, and which attributes are only
present for modeling convenience, and are not queryable. One may want an encapsulated attribute
to be a guaranteed part of the class model, that can be examined and queried. For example, the
Has-Drive-Mechanism attribute of the Hard-Drive class is encapsulated, but any model for diagnosis
of a hard drive should allow the state of its drive mechanism to be examined.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 58

attributes are part of the value of an object. The input and output attributes between
them make up the interface of an object. The third part of the information-passing
structure describes how the information is passed to the contained components of
an object. A binding is provided for each of the inputs, specifying how the input is
defined in terms of other objects. Because only the output attributes of other objects

are visible in the containing object, we require that bindings use only their outputs.

Definition 4.2.3: Let £ = (C,C, A, f, R, I) be a hierarchical relational language.

An information-passing structure Z for £ consists of the following:

e For each class C € C, a subset H¢ of the attributes of C.? The attributes in
H  are called input attributes, while the other attributes of C' are called value
attributes. A complex value attribute is also called a component function. The

top-level class cannot have inputs, i.e., Hc, = ().

e For each class C' € C, a subset K ¢ of the value attributes of C'. Value attributes
that are not output attributes are called encapsulated. The interface of C

consists of the input and output attributes of C.

e For each function f € f, with domain type C' and range type C’, and for each
input H of C’, a binding O[f.H], where ©[f.H] is an attribute chain ¢ on C
whose range type is a subclass of the range type of H. All attributes in o except

the first must be output attributes. i

The information-passing structure regulates the flow of information through the
hierarchical system. Information flows from an object to a contained component, and
back from the component to the containing object. The pattern is similar to the
call-return model of a traditional programming language. We can view the passing
of information from the containing object to its component as a function call. The
inputs of the component are the formal parameters of the function, and the bindings

map the formal parameters to actual parameters.

2We use the letter H if we wish to emphasize that an attribute is an input, and similarly we use
K for output attributes. (The letters I and O are taken). The letters A and B will denote attributes
of any kind.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 39

In order for the information-passing structure to be coherent, we must make sure
that it is acyclic. It must be possible to process the components of every object in
such a way that any information required by a component has already been produced
by the time that component is processed. This means that we cannot allow two
objects to depend on each other. We also cannot allow an object to depend on itself.
We can determine acyclicity by defining the following graph on the attributes of each

class.

Definition 4.2.4: Let £ be a hierarchical relational language, and let Z be an
information-passing structure for £. For each class C' of £, we define the directed
graph G*[C] as follows: The nodes of GZ[C] are the attributes of C, and there is an
edge from A to B if B is a complex value attribute with range type C’, and there is
some input H of C' such that O[B.H] begins with A.

If G*[C] is acyclic for every class, we say that T is acyclic. I

Note that all simple attributes and input attributes are sources of GZ[C]. Later,
however, we will define a dependency model for the simple value attributes of objects,
so that they too will depend on other attributes, and we will augment the graph
associated with C' to reflect that.

Example 4.2.5: Let us define some of the information-passing structure for the
hierarchical relational language defined in Example 4.2.2. Since Computer is the top-
level class, it has no inputs. The Hard-Drive class has inputs Temperature, Age and
OS-Status, and the outputs Status and Full. Although the hard drive has a rich
internal state, the only aspects of its state that influence objects outside the hard
drive are whether or not it is working properly and whether or not it is full. In
the Computer class, the binding ©[Has-Hard-Drive. Temperature] is Temperature. This
means that the value of the Temperature input of the hard drive in a computer will be
obtained from the value of the Temperature attribute of the computer itself. Similarly,
©[Has-Hard-Drive.Age| is Age. To pass information about the status of the operating
system to the hard drive, ©[Has-Hard-Drive.0S-Status| is defined to be Has-OS.Status,
Status being an output of the OS class. As a result, there will be an edge from Has-OS
to Has-Hard-Drive in GZ[Computer]. I



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 60

4.2.2 Hierarchical Worlds

In order to ensure that the possible worlds have the desired structure, we need to
impose some constraints on the interpretations we will consider for the hierarchical
relational language. Intuitively, we require the following three conditions to hold:
that the object hierarchy is indeed a tree and not a graph; that the values of input
attributes agree with their bindings; and that the model does not contain extraneous
entities that are not part of the hierarchy. The first two conditions are simple to

specify formally, but the third requires the notion of a subworld.

Definition 4.2.6: Let £L = (C,C, A, f, R, I) be a typed relational language, and let
w and w' be interpretations of £. We say that ' is a subworld of w if the following

conditions hold:
e For each C € C, [C]¥ C [C]“.

e For each A € A with domain type C, and each ¢ € [C]*, [A4]¥ (c) = [A]“(c).

/

e For each R € R, with domain type C, and each c € [C]¥, (c,d) € [R]Y +—
(c,d) € [R]".

e For each f € f, with domain type C, and each ¢ € [C]¥, [f]'(c) = [f]*(c).
e Foreach I € I, [I]* = [I]°.
If any of the [C]*' is a proper subset of [C]*, ' is a proper subworld of w. B

The definition of subworld is basically quite simple, but there is a subtlety. Intu-
itively, the definition means that any element in ' is also an element in w, and the
the value of any attribute defined on an element in ' is the same as its value in w. It
looks like we could have used a slightly simpler definition, in which we stipulate that
AY C A%, and that for each entity in A¥', its class in ' is the same as its class in
w. If we did that, however, we would have lost some cases of subworlds. Intuitively,
we want the definition to mean that if w' is a proper subworld of w, then w’ is sim-

pler than w, but its structure is essentially that of w projected onto the elements in



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 61

w'. The most obvious way in which w' can be simpler than w is if it contains fewer
elements. However, it is possible for w’ to contain the same elements as w and yet
have a simpler structure, even when the structure is essentially derived from w. This
can happen if the class of an entity in w’ is a proper superclass of its class in w. Le.,
there is some entity ¢ and some classes C' and C’ with C’ a superclass of C, such that
ce[C]¥, ce[C'), but ¢ & [C]¥. If C has an attribute A that is not defined on the
superclass, ¢ will be in the domain of [A]* but not in the domain of [A]*’, so w will
have more structure than w'. The first clause of Definition 4.2.6 achieves the desired
effect: it requires only that if an entity belongs to [C]*, it must also belong to [C]¥,
so that the structure of w is at least as rich as that of w’, but the structure of w’ may
be less rich even if it contains the same elements. This clause also guarantees that
every entity in A is also in A“, because every entity in A¥ is in [C]*' for some C.
However, there may be entities in [C]“ that are not in [C]*', either because they are
not in A¥" or because their class in ' is a proper superclass of C.

Now that we have formally defined the concept of subworld, we can define a

hierarchical world as follows:

Definition 4.2.7: Let £ be a hierarchical relational language, with acyclic informa-
tion structure Z. A hierarchical world for £,7 is an interpretation w for £ satisfying

the following conditions:

1. Every component function f is one-to-one. In other words, if ¢; and ¢, are in
[C]¥, where C' is the domain type of f, and ¢; # co, then [f]“(c1) # [f]“(c2)-

2. Distinct component functions have disjoint ranges. In other words, if f; and f
are distinct component functions, with domain types C'; and Cs, and ¢; and ¢,
are entities in [C1]¥ and [Cs]? respectively, [f1]“(¢c1) # [f2]¥(c2)-

3. If f is a component function with domain type C, ¢ € [C]“, and H is an input
attribute of the range type of f, then [f.H]¥(c) = [O[f.H]]“(c).

4. There is no proper subworld of w satisfying conditions 1, 2 and 3. 1

Let us show that these conditions do indeed achieve the effect we want. We will

show the following: that a hierarchical possible world contains a distinct entity for



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 62

each of the complex chains of component functions defined on the top-level instance;
that the relational structure of the possible world matches the structure of the com-
ponent chains; and that the possible world contains no additional entities.

First we show that in any hierarchical world, different complex chains of value

attributes on the top-level instance have different values.

Definition 4.2.8: Let £,7Z be a hierarchical relational language and information-
passing structure. A component chain for £,7 is an attribute chain on Cr that

consists only of value attributes. (The empty chain is a component chain.)

Lemma 4.2.9: If o1 and oo are distinct complex component chains, and w s a

hierarchical world, [Ip.01]” # [Ir.09]".

Proof: Suppose first that o1 = p;.f1, and g9 = ps.fo, where f; and f5 are different.
The result then follows from the fact that the images of [f1]“ and [f;]* are disjoint.
Now suppose that o; = p;.f, while 09 = po.f. p; and p, must be distinct, and

the result now follows from the fact that [f]“ is one-to-one. I

Next, we show that in a hierarchical world, the value of any attribute chain on the
top-level instance is equal to the value of a component chain. This is where we first
exploit the requirement that the information-passing structure be acyclic. To use this
fact, we define a partial order over the attributes of each class consistent with the
information-passing structure, and then lexicographically extend it to a partial order

over attribute chains, as follows:

Lemma 4.2.10: Let w be a hierarchical world for L, T, and o an attribute chain on
Cr. There is a component chain p such that [Ir.0]® = [Ir.p|”. If o is complex, then

p 18 unique.

Proof: First, for each class C' of £ we define the partial order < over the attributes
of C, by defining A <¢ B iff A is a predecessor of B in GZ[C]. Next, we define the

partial order <7 over attribute chains on C' as follows:

o If o = Ao' and p= B.p' and A <¢ B, then o <{, p.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 63

o If o = Ao’ and p = A.p and the range type of A is C' and o' <%, p/, then
o =¢p-

We simply write <* for <¢, .

Now, suppose ¢ is not a component chain. Then it must contain an input attribute,
which must be preceded by a component function, since Cr has no inputs. So o must
have the form 7.A.H.7', where 7 is a component chain, A is a component function,
and H is an input attribute. Let oy be 7.©[A.H|.7'. Since Z is acyclic, ©[A.H|
must begin with an attribute B such that B <o A (where C is the range type of 7).
Therefore O[A.H|.7" <, A.H.7', and 7.O[A.H].7' <* T.A.H.7', or 01 <* 0. We have,
using condition 3 of Definition 4.2.7:

[r.o]* = [F1°([A-H]*([7]* ([Ir]*))) = [7T°([O[A-H]]*([7]* ([Iz]*))) = [Ir-01]*.

If o, is a component chain, it is our required chain p. Otherwise, we can repeat the
process, producing oo such that oo <* o1, and [I7.01]* = [I7.03]*, and so on. Since
the classes of L are stratified, the length of any chain on Cr is at most the number
of classes, and so the number of distinct chains on C'r is finite. Since <* is a partial
order, the above process must therefore terminate in some o,,, which will be our
required chain p.

Finally note that if ¢ is complex, uniqueness follows from Lemma 4.2.9. 1

Note that the proof provides a simple way to compute a component chain p such
that [I7.0]“ = [I7.p]”. We will denote the chain produced by this procedure 0(o).3

p=o.
While p contains input attributes do:
Write p as 7.A.H.7',

where 7 is a component chain,

A is a component function,

and H is an input attribute.
p=T10O[AH]T.

3Big O is the notation for bindings, from which small 6 is derived.




CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 64

O(o) =p.

Note that by Definition 4.2.3, the range type of ©[A.H] must be a subclass of
the range type of H, so each replacement operation produces a well-defined attribute
chain, and the range type of o is a subtype of the range type of o.

On the basis of these two lemmas, we can see that a hierarchical world has the sort
of structure we want. We have shown that, at least with regard to the entities that
can be reached from I via some attribute chain, the entities are indeed structured
in a tree. Iy is at the root, and the nodes in the tree correspond to the complex
component chains defined on C7. We can use the fact that a hierarchical world has
no proper subworlds to show that this tree contains all the entities in the world, and

there are no other extraneous entities. Formally, we prove the following.

Theorem 4.2.11: Let L = (C,C, A, f, R, I) be a hierarchical relational language,
T an acyclic information-passing structure for L, and w a hierarchical world for L,T.
Let ¥ denote the set of complex component chains in L. There exists a one-to-

one correspondence ¢ from ¥ to AY, such that for any component chain o € X,
(o) = [Ir.0]“, and the class of ¢(o) (Definition 2.2.4) is the range type of o.

Proof: Let us define ¢ as required by the condition, so that ¢(o) = [I7.0]*. It follows
from Lemma 4.2.9 that ¢ is one-to-one.
To show that ¢ is onto, let A’ C A“ be the image of ¢. We will construct a

possible world w’ for £, and show that it is a subworld of w, as follows:
o AY = A,

e For each C' € C, we define [C]“' to be the image of ¢ under the component
chains whose range type is C' or a subclass of C. In other words, ¢ € [C]* iff
¢ = ¢(o) for some o whose range type is C’, and C' is a subclass of C. Note
first that the [C]* defined this way satisfy the conditions of Definition 2.2.3:

1. Every entity ¢ € A’ is ¢(o) for some o, and o has a range type C, so
c € [C]¥ for some C.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 65

2. If C; C (s, and the range type of o is a subclass of ('}, then the range

type of o must also be a subclass of Cy, so ¢ € [C1]" implies ¢ € [Co)'.

3. By Definition 2.2.1, if C' is a subclass of both C; and C5, either C; C ()
or vice versa. So if Cy Z Cy and Cs [Z Cy, there is no chain o whose range
type is a subclass of both Oy and C,. Therefore [C1] N [Co]*" = 0.

Now note that ¢ € [C]*' implies that ¢ = [I;.0]%, where the range type of o is a
subtype C” of C. Hence, ¢ € [C']“, which implies ¢ € [C]“ since C" is a subclass
of C'. So the first condition of Definition 4.2.6 is satisfied.

For each A € A, with domain type C, and each ¢ € [C]*, [A]“ (¢) = [4]“(c).
The second condition of Definition 4.2.6 is satisfied by definition.

The third condition of Definition 4.2.6 is satisfied trivially, since R is empty.

For each f € f, with domain type C, let ¢ be in [C]*'. Then ¢ = [Iy.0]” for
some o whose range type is a subclass C' of C. Therefore o.f is an attribute
chain on Cr, and, by Lemma 4.2.10, [I7.0.f]Y = [I7.p]* for some component
chain p. So [f]“(c) = [Ir.p]*, which is in A’. We can therefore safely define
[f]“(¢) = [f]“(c), and the fourth condition of Definition 4.2.6 is satisfied.

[I7]¢" = [I7]*, and the fifth condition of Definition 4.2.6 is satisfied.

Thus the possible world w’ is a subworld of w. In addition, it inherits conditions
1, 2 and 3 of Definition 4.2.7 from w. From the fact that w is a hierarchical world, it
follows that w' cannot be a proper subworld of w. Therefore [C]*" must be equal to
[C]“ for every C. Therefore A’ = Ugec[C]Y = Ugec|C]” = A. Since A is the image
of ¢, ¢ is onto.

Finally, for any o € X, let C be the range type of 0. Then ¢(c) € [C]“', but for a

proper subclass C" of C, the range type of o is not a subclass of C' so ¢(o) & [C']*.
So the class of ¢(o) is C. I



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 66

4.2.3 The Space of Possible Worlds

The above theorem tells us that the relational structure of a hierarchical world is fixed.
We know exactly how many domain entities there are, and how they are related to
each other. The only things left uncertain are the values of the simple value attributes
of the domain entities. We would like to say that A¥, [C]¥ for each C, [f]* for each
f, and [I7]¥, are the same for all hierarchical worlds. Actually, there is a technicality:
the identity of the elements in A¥ could be different, while the structure remains the
same otherwise. Obviously, the names of the domain elements are of no interest to
us, and we should regard two worlds that differ only in the names of the domain
elements to be the same, for all intents and purposes. Technically, we say that two

such worlds are isomorphic.

Definition 4.2.12: Let £ be a typed relational language, and w and w' two inter-
pretations for £. We say that w and w' are isomorphic if there exists a one-to-one

correspondence ¢ from A¥ to A“', such that
e For each C € C, and each c € A¥, c € [C]* <= ¢(c) € [C]¥.

For each simple attribute A € A of domain type C, and each ¢ € [C]¥, [A]“(c) =
[A] (8(c)).

For each relation R € R, and each ¢,d € A%, (¢,d) € [R]¥ < (¢(c),¢(d)) €

J

(R

For each function f € f of domain type C, and each ¢ € [C]?, ¢([f]“(c)) =
14 ((c)).

For each instance I € I, ¢([I]*) = [I]*. 1

When we define the set of possible worlds over which we define a probability
distribution, then, we would like to say that isomorphic interpretations are actually
the same possible world. There are at least three approaches to achieving the desired
effect. The most elegant uses measure theory — we can actually view isomorphic

worlds as distinct, but not allow our probability measure to distinguish between



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 67

them. As we will not discuss measure theory until Chapter 5, where we need it for
other reasons, we will not use this approach for now. Another approach is to define
the set of possible worlds as being equivalence classes of isomorphic interpretations.
A third approach is to fix the set of domain elements. We can define A“ to consist
of the symbols I+ and Ir.o for each component chain o.* We shall use this approach

in this chapter, since it makes the presentation easier.

Definition 4.2.13: Let L£,7 be a hierarchical relational language and acyclic
information-passing structure. The set of possible worlds for £, T, written Q 7, or
simply 2 when £ and Z are clear, is the set of hierarchical worlds w for £ in which
A'is {I7.0 : 0 is a complex component chain for £,Z}, and the map ¢ from Theo-

rem 4.2.11 maps each o to I7.0. 1

At this point, we can safely say that all possible worlds really are identical, except
for the value of [A]“ for the simple attributes. This means that a possible world is
characterized by the values of the simple attributes of domain entities. Since the
number of domain entities is finite, a possible world is actually characterized by a

finite set of simple attributes.

Definition 4.2.14: Let L£,7 be a hierarchical relational language and acyclic
information-passing structure. A basic variable of £,7 has the form I.0.A, where o
is a complex component chain, and A is a simple attribute whose domain type is the
range type of . We will use the letters X, Y, Z to denote basic variables.

The wvalue of the basic variable X in the possible world w is [X]“. 11

The basic variables play a similar role in hierarchical probability models to the
attributes in a Bayesian network. In fact, any probability distribution over €2, could

be expressed as a probability distribution over an equivalent attribute-based model.

Definition 4.2.15: Let L£,7 be a hierarchical relational language and acyclic
information-passing structure. The attribute-based equivalent to L, T is the attribute-
based model M containing an attribute X for each basic variable X in £,Z, in
which Val[XM] = Val[X]. 1

4This is akin to restricting our interpretations to the Herbrand universe.




CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 68

Theorem 4.2.16: Let L£,7 be a hierarchical relational language and acyclic
information-passing structure. Let X be the set of basic variables in L,Z, and let x
be an assignment of values to X such that for each X € X, the assigned value x is
in Val[X]. There ezists a unique possible world w € Q1 such that for each X € X,
[(X]Y = =.

Proof: The set of entities A“, and the map ¢ used in Theorem 4.2.11 are fixed by
Definition 4.2.13. Theorem 4.2.11 fixes the class of each ¢ € A“, which in turn fixes
[C]“ for each class C. The values of [f]“ for each component function f, and [I7]*, are
also fixed by Theorem 4.2.11. For a complex input attribute f with domain type C,
let I7.0.A be some element in [C]“. By Lemma 4.2.10, we must have [f]*(I7.0.A) =
[Ir.0.A.f]¥ = [Ir.0(0.A.f)]¥, so [f]¥ is also fixed for complex input attributes.

So the only leeway for variation in the possible worlds is in [A]“ for simple at-
tributes A. If we require that for every basic variable X, [X]|¥ = z, then [A]¥ is
uniquely determined for all simple attributes A. To see this, let A be a simple at-
tribute with domain type C, and ¢ € [C]¥. Since ¢ € A%, ¢ = [I7.0]* for some o,
and [A]“(c) = [Ir.0.A]“. By Lemma 4.2.10, [Ir.0.A]¥ = [I7.0(0.A)]¥, which must be
simple since A is simple. But I.0(c.A) is some basic variable X, so [A]“(c) must be
equal to the value z assigned to X.

It follows that there can be at most one possible world w € Q. 7 satisfying the
conditions of the theorem, and we have shown how w must be defined. We must still
show that w is indeed a possible world, i.e., that it satisfies the four conditions of
Definition 4.2.7.

If f is defined on both Ir.0 and Ir.p and o # p, [f|“(I7.0) = Ir.0.f # Ip.p.f =
[f]“(Ir.p), so condition 1 is satisfied. Clearly distinct component functions have
disjoint ranges, because an element in the range of f ends in f, so condition 2 is
satisfied.

For condition 3, let f be a component function with domain type C' and range
type C', let Ir.c € [C]¥, and let H be an input attribute of C'. We have required
that [Ir.o.f.H|* = [I7.0(0.f.H)]”, and that [I7.0.0]f.H]]* = [I7.0(c.©[f.H])]“. But
o is a component chain, so in the computation of §(o.f.H), the first computation step
will transofrm o.f.H into 0.O[f.H], so §(o.f.H) = §(0.0[f.H]), and [f.H|*(I7.0) =



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 69

[O[f.H]|“(Ir.0), as required.
Finally, the proof of Theorem 4.2.11 shows that no world satisfying conditions 1,
2, and 3 can be a proper subworld of w, so condition 4 is satisfied. Therefore w as

defined is indeed a possible world in {2z 7. I

Corollary 4.2.17: Let L, T be a hierarchical relational language and acyclic information-
passing structure, and M its attribute-based equivalent. There is a one-to-one corre-
spondence v from Qpq to 2z 1 such that for any world w € Qpq and any basic variable
X, if XM(w) =z, then [X]¥@) = z.

Proof: Immediate from Theorem 4.2.16. 1

4.3 Specifying the probability model

We have shown how to define a relational model over objects in a part-of hierarchy, and
how to specify the way information is passed between the different objects. We have
also shown that a possible world is characterized by the values of the simple attributes
of the objects in the hierarchy, that is, by the values of the basic variables. We
could, therefore, define a probability model over the set of possible worlds simply by
specifying a Bayesian network over the basic variables. Strictly speaking, this would
define a probability distribution over the set of possible worlds €2, for the attribute-
based model M, but since by Corollary 4.2.17 there is a one-to-one correspondence
between (25 and the set 2, 7 of possible worlds for the hierarchical model, we could
define the probability of each world in €2 7 to be the probability of the corresponding
world in (2,4, to obtain a probability distribution over {1 7.

However, if we follow this approach, we lose all the good properties we were hoping
to achieve from using a structured representation language. Instead, we associate a
probability model with each class of object, so that every instance of the class shares
the same probability model. The class probability models will then determine a

probability model over the properties of all objects in the part-of hierarchy. We



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 70

will show that defining the probability model in this way produces a model that is
equivalent to one defined by a BN over the basic variables.

Associating a local probability model with each class of object has several ad-
vantages over defining a BN directly over the basic variables. It is a more compact
representation: if many of the objects in the part-of hierarchy share the same class,
only one model needs to be specified for each of them. We will see also in Section 4.6
that the probability model for a subclass can be derived in large part from the model
for a superclass, allowing similar objects to share parts of their models. Defining
a local model for each class is modular: the local probability model for a class is
specified only in terms of attribute chains on that class. This modularity, in turn,
makes the representation flerible: objects of various classes can be combined into a
part-of hierarchy in many different ways, and the class probability models will always
fit together to define a probability model over the properties of all the objects in the
hierarchy.

A class probability model is specified by defining a model for each of its simple
attributes. The model for a simple attribute specifies how the value of that attribute
is determined probabilistically by the values of other attributes of the same object and
of attributes of related objects. It is very similar to the local model of an attribute

in a BN, and consists of a set of parents and a conditional probability function.

Definition 4.3.1: Let A be a simple attribute of class C. A local probability model

for A consists of:

e A set of parents v = vq,...,v,,, where each v; is a simple attribute chain on

C. All attributes in v; except the first must be output attributes.
e A conditional probability function CPF 4 from Val[v] to Val[A].

A class probability model for a class C' consists of a local probability model for each

of the simple value attributes of C'. 1

Example 4.3.2: The local probability model for the Status attribute of the Hard-Drive

class is defined as follows. It has three parents: Has-Drive-Mechanism.Status, Surface-Damage,



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS

71

and FAT (describing the status of the “File Allocation Table” containing the infor-

mation needed to access files on a Windows machine). CPFg;,1,5 i8

Status
HDM.S SD FAT Good | Minor-Dmg | Major-Dmg | Unreadable
Functional | None | Not-Corrupt || 0.997 0.001 0.001 0.001
Functional | None Corrupt 0.3589 0.3597 0.1805 0.1009
Functional | Minimal | Not-Corrupt || 0.4308 0.2878 0.1805 0.1009
Functional | Minimal Corrupt 0.1551 0.3623 0.2918 0.1908
Functional | Major | Not-Corrupt || 0.0897 0.2097 0.3 0.4006
Functional | Major Corrupt 0.0323 0.1833 0.3239 0.4605
Broken None | Not-Corrupt || 0.1246 0.1249 0.25 0.5005
Broken None Corrupt 0.0449 0.1348 0.2699 0.5504
Broken Minimal | Not-Corrupt || 0.0539 0.1258 0.2699 0.5504
Broken Minimal Corrupt 0.0194 0.11 0.2752 0.5994
Broken Magjor | Not-Corrupt || 0.0112 0.0637 0.2248 0.7003
Broken Major Corrupt 0.004 0.0499 0.2159 0.7302

As in a BN, we require that the probability model for a class be acyclic. We
cannot allow two simple attributes to mutually influence each other. We check this

condition by defining a graph over the attributes of the class.

Definition 4.3.3: Let C' be a class with a class probability model P. The directed
graph G[C] is defined as follows: The nodes of G¥[C] are the attributes of C, and
there is an edge from A to B if B is a simple value attribute, and some parent of B
has the form A.p. 1

Note that complex attributes and input attributes are sources of G¥[C]. This is in
contrast to GZ[C] (Definition 4.2.4), in which simple and input attributes are always
sources. In fact, the two graphs need to be put together to make sure that a class
has a coherent local probability model that will also integrate well with other objects.

We cannot allow a situation where a simple attribute depends probabilistically on



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 72

the value of some complex attribute, but is itself passed as an input to that complex
attribute.

Definition 4.3.4: Let L£,7 be a hierarchical relational language and information-
passing structure, and C a class in £ with class probability model P. The dependency
graph for C', denoted G[C], is a directed graph over the attributes of C, in which there
is an edge from A to B if either GZ[C] or G¥[C] contains an edge from A to B. I

We will see in the next section that if the dependency graph for the class of every
object in a part-of hierarchy is acyclic, the probability models for all the classes define
a coherent probability distribution over the properties of the objects in the hierarchy.
We call a hierarchical relational language with an information-passing structure in

which every class dependency model is acyclic an Object-Oriented Bayesian Network.

Definition 4.3.5: An Object-Oriented Bayesian Network (OOBN) is a triple (£, Z, P)
in which £ = (C,C, A, f, R, I) is a hierarchical relational language, Z is an acyclic
information-passing structure for £, and P consists of a local probability model P
for each C € C, such that the dependency graph G[C] is acyclic.

Each of the basic variables of £,Z are called basic variables of the OOBN, while

if o is a complex component chain of £,Z, Ir.o is called an instance in the OOBN. I

Example 4.3.6: Let us turn our running example into an OOBN by supplying an
acyclic probability model for each component of the computer system. Class models
for four levels of hierarchy are shown in Figure 4.1.5 Besides showing the dependency
graph for the classes Computer, Hard-Drive, Drive-Mechanism and Drive-Motor, the
figure also indicates other aspects of the class model. Complex attributes are shown
as rectangles, while simple attributes are ellipses. Each class model is contained in
a box. Input attributes intersect the top edge of the box, indicating the fact that
their values are received from outside the class, while output attributes intersect the

bottom. The rectangles representing the complex components also have little bubbles

5The figures shown here contain many more attributes than those described in Example 4.2.2.
Some of them are described in Chapter 8.4. For the sake of presentation, we have left out the prefix
Has- before some of the complex attributes.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 73

Computer OS-Status

Warmed Up
&

Drive
Mechanism

Figure 4.1: Four levels of hierarchy in an OOBN model of a computer system.

on their borders, showing that attributes are passed into and out of those components.
|

4.4 Semantics

As always, we present the semantics of our probabilistic modeling language in terms
of a probability distribution over possible worlds. For an OOBN O = (L, Z, P), the
space of possible worlds is €2, 7, as described in definition 4.2.13. We present the se-
mantics first in terms of a generative process that randomly generates possible worlds,
and then in terms of an equivalent probability distribution over the attribute-based
equivalent of L£,Z, specified as a BN over the basic variables. Finally, we present
semantics for the individual class probability models, in terms of a conditional prob-

ability function from values of the input attributes to values of the value attributes.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 74

4.4.1 Generative Process Semantics

We describe the semantics of OOBNs using a natural generative process. The process
operates recursively, following the structure of the part-of hierarchy. As it visits each
object in the hierarchy, it processes each of the value attributes of the object. Simple
attributes are processed by choosing a value for the attribute, according to the CPF of
the attribute and the previously generated values of its parents. Processing a complex
attribute results in a recursive call on the component object. The values of the inputs
of the component are set according to their bindings.

The generative process is presented below, as the function GenerateWorld.
GenerateWorld takes an OOBN O as input and returns a possible world w for
O. The values of Aw, [C]¥ for each C and [f]“ for component functions are set ac-
cording to Definition 4.2.13. Most of the work in creating the world is done by the
recursive function GenerateEntity, which takes a domain entity ¢ and its class C.
The notation A“ < ¢ : C' means that the domain A“ is augmented by inserting c
into it, and setting the type of ¢ to be C (i.e., ¢ is added to [C']* for every supertype
C" of C. Similarly, the notation [A]“(c) +— v means that [A]“ is augmented by setting
[A]“(c) to v.

Procedure GenerateWorld(O)
Let w be an empty world.
Let It be the top-level instance of O.
Let Cr be the type of Ir.
AY «— I : Cr.
GenerateEntity (I, Cr).

Return w.

Procedure GenerateEntity(c, C)

Let Ay,...,A, be an ordering of the value attributes of C,
such that for no j <i is A; a predecessor of A; in G[C].
For =1 to n do:

If A; is simple



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 75

Let v® be the set of parents of A; in Pg.
Choose w € Val[A;], according to CPF 4 (w | [v%]“(c)).

[A]¥(c) + w.
Else
AY «— c. A.

Let C' be the range type of A.
[A]“(c) +—c.A: C".

For each input H of C':
[H]“(c.A) + [©[A.H]]¥(c).

GenerateEntity(c.A,C").

Let us show that the generative process so defined is coherent. Specifically, we
show that the process terminates, and whenever an attribute is processed, the value
of any attribute chain needed by that attribute (i.e., a parent of a simple attribute, or
a binding of an input of a complex attribute) has already been generated. We rely on
the fact that the dependency graph is acyclic, so that we can process the attributes
in an order consistent with the graph, in which an attribute is processed only after

all of its parents have been processed.

Lemma 4.4.1: If GenerateEntity is called on arguments ¢, C, and, for any o
that begins with an input H of C, the value of [0]“(c) exists before GenerateEntity

begins, then:

1. For each value attribute A of C, and each attribute chain p on C that begins
with a predecessor of A in G[C|, the value of [p|* ezists before A is processed.

2. GenerateEntity terminates.

3. When GenerateEntity terminates, the value of [0]¥ exists for every attribute

chain on C. 1

Proof: By induction on the rank of C. In the base case, C' has no complex attributes.
Condition 1 holds because if ¢ is a chain on C' that begins with an attribute that

precedes A in G[C|], o must be a simple attribute B that precedes A in G[C]. B is



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 76

either an input, so that [B]“ exists by hypothesis when GenerateEntity begins, or
it is a value attribute that is processed before A, and the value of [B]“ is generated as
B is processed. Either way the value of [0]“ exists before A is processed. Condition
2 holds because there are no recursive calls for complex attributes. Condition 3
holds because the values of all simple attributes are generated directly when they are
processed.

To prove condition 1 for the inductive step, suppose the theorem holds for all
classes C' whose rank is less than that of C. We will use another induction on the
order in which the attributes of C' are processed to show that it holds for C'. The
first value attribute A; generated can be preceded only by input attributes in G[C],
so the condition holds in that case. Suppose it holds for every attribute preceding
some value attribute A;. That is, if £ < j < i, then for any o beginning with A,
the value of [0]“(c) exist when A; is processed. If A; is simple, the value of [A4;]“(c)
will of course be generated when it is processed. If it is complex, values for [0]“(c)
exists for all chains o beginning with a binding ©[A;.H], because O[A;.H] begins
with an attribute A that precedes A;. Processing of A; will result in a recursive
call to GenerateEntity(c.A;, C'), where C’ is the range type of A;, with [H]“(c.A;)
set to the value of [©[A;.H]]“(c), for each input H of C'. C' must have lower rank
than C, and the hypothesis of the theorem is satisfied for the recursive call, so the
recursive call terminates with a value assigned to [0]“(c.A;) for any chain on C'. It
follows that for any chain o beginning with A;, the value of [0.4;] exists after A;
has been processed. Since this is true for all j < ¢, Condition 1 holds for A;, and so
it holds for all attributes by induction.

Condition 2 is obvious, since every recursive call is on a class of lower rank, which
terminates by the induction hypothesis. We have just shown that after processing any
attribute A, the value of [0]“(c) exists for any chain beginning with A, so condition
3 holds. 1

Lemma 4.4.2: Let O be an OOBN. For any call to GenerateEntity(c, C) resulting
from a call to GenerateWorld(Q), and any chain o beginning with an input of C,
the value of [0]“(c) exists before the call to GenerateEntity.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 7

Proof: By induction on the calls to GenerateEntity resulting from the call to
GenerateWorld(QO). The first call is to GenerateEntity (7, Cr), and the state-

ment is trivial since Cr has no inputs. If the result is true for a call to GenerateEntity(c, C),
and A is a complex value attribute of C' with range type C’, it is also true for the
resulting recursive call to GenerateEntity(c.A, C'), following the same reasoning as

in the proof of Lemma 4.4.1. This accounts for all the calls to GenerateEntity, so

the statement holds. I

Theorem 4.4.3: GenerateWorld terminates, with a value assigned to [Ir.o]” for

every attribute chain o on Cr.

Proof: Immediate from Lemmas 4.4.1 and 4.4.2. 1

What exactly does the world generated by GenerateWorld look like? First,
Ir is inserted into A¥, and GenerateEntity(/7,Cr) is called. Other than I, an
entity is inserted into A% iff it is equal to c.A for some complex value attribute
A of the class C' of an entity ¢ that is previously inserted into A“ and for which
GenerateEntity(c,C) is called. It is easy to see that in the end, A¥ will be ex-
actly the set {Ir.0 : 0 is a complex component chain on Cr}, as required by Defini-
tion 4.2.13. Also, for a component function f with domain type C, [f]“ is defined to
map an element Ir.o € [C]¥ to Ir.o.f, as also required by that definition. In addi-
tion, the values of input attributes are set according to their bindings, as described in
the proof of Theorem 4.2.16. The generative process chooses a value for each of the
simple value attributes of each of the entities for which GenerateEntity is called,
so a value is chosen for each of the basic variables, and only those attributes. So
the world w generated by GenerateWorld is the unique possible world with the
particular chosen values & for the basic variables X, as described by Theorem 4.2.16.

Formally:

Theorem 4.4.4: Let O = (L,Z,P) be an OOBN. Any world generated by
GenerateWorld(O) is a possible world w € Q1.

Based on this theorem, we can define the semantics of an OOBN as follows:



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 78

Definition 4.4.5: An OOBN O = (L,Z,P) defines a probability distribution Py
over §z 7, with Pp(w) defined to be the probability that the world w is produced by
the GenerateWorld(O) process. 1

4.4.2 Equivalent BN

We can also view an OOBN as defining a BN over the basic variables. As the gen-
erative process unfolds, it chooses values for [A]“(c), according to CPF 4, given the
values [v]“(c) of the parents of A. We know that c is I7.0 for some complex compo-
nent chain o, so [A]“(c) is actually a basic variable X = [Ir.0.A]“. In addition, we
know from Lemma 4.2.10 that for each parent v of A, [Ir.0.1;] is equal to the value
of the the basic variable U; = [I1.0(0.v;)]“. We can view A as being a formal variable
of C; and each v; as being a formal parent. For an entity ¢ = Iy.0c whose class is
C, we will have an actual variable X corresponding to A and actual parents U; for
each of the v;. The value of X is then chosen according to CPFx = CPF 4, given
the previously generated values of its parents. It is easy to see that the values of the

U; are actually generated before the value of X.

Theorem 4.4.6: Let X = [I7.0.A]“ be a basic variable, C be the class of It.o, and v
a parent of A in the probability model of C. Then the basic variable U = [I7.0(c.A.v)]”
15 processed by GenerateWorld before X.

Proof: The proof uses a lexicographic order on attribute chain similar to that of the
proof of Lemma 4.2.10, but now the order is based on the dependency graphs of the
classes. First, for each class C of £ we define the partial order < over the attributes
of C, by defining A <¢ B iff A is a predecessor of B in G[C]|. Next, we define the

partial order <7, over attribute chains on C' as follows:
o If o = A" and p= B.p and A <¢ B, then o <{, p.

e If 0 = Ao’ and p = A.p' and the range type of A is C' and o' <f, p/, then
o <¢ p-
We simply write <* for <g, .

Now we show that



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 79

1. 8(0) <* o

2. ovw<*g.A
3. f(ow) <*0.A

4. If 0 <* p.A, a value for [Ir.0]” is generated before A is processed in the call to

GenerateEntity on I7.p.

The desired result will then follow immediately from (3) and (4).

(1) holds because 0(c) <* o (as shown in the proof of Lemma 4.2.10), and <* is
a suborder of <*, since G[C] contains all edges in G*[C].

(2) holds because v = B.p, where B precedes A in G[C], so B <¢ A (C is the
range type of o), v <}, A, and o.v <* 0. A.

(3) follows from (1) and (2) by transitivity of <*.

To show (4), write 0 = 7.B;1.0', and p.A = 7.By.p', with 7, ¢’ and p' possibly
empty, and B; and B, distinct. l.e., 7 is the longest common prefix of o and p.
This decomposition must be possible since o # p.A. Since o <* p.A, we must have
B; <¢ Bs, where C is the range type of 7. In the call to GenerateEntity(Ir.7,C),
B; is processed before By, and by Lemmas 4.4.1 and 4.4.2, the value of [By.0']“(Ir.7)
exists before By is processed. Since [I7.p.A]Y = [I1.7.By.p']* is generated during the

processing of By, the result follows. 1

As a result, the GenerateWorld process generates values for the basic variables
in a manner exactly equivalent to that of the generative process for a BN over the
basic variables. So we can view an OOBN as defining the same distribution over the
basic variables as does the BN. We call this BN over the basic variables the flat BN
equivalent of the OOBN. Formally:

Definition 4.4.7: Let O = (£,Z,P) be an OOBN. The flat BN equivalent of O,

denoted Bg is defined as follows:

e BE has an attribute XM for each basic variable X of O.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 80

(Usablg
o
= ‘
(Age)

h

‘S2Staus

‘\ ost Cluster
/

DM.Statu
DM .Motor.Disk Spins> -pM .Data Transfer
\ DM .Motor.Stiction / . i

Ctrl.Overheated able.Connected

/ Cable.Functiona

€l Cable.Endl Cable.End2

Figure 4.2: Flat BN equivalent of Hard Drive object

Q@Oﬁ

L

!

i

e For each basic variable X = Ir.0.A, where A a simple attribute of class C, and
each parent v of A in Pc (where C is the range type of o), let U = I7.0(0.v).
Then there is an edge from UM to XM in G[BY).

e For each attribute X = I;.0.A, the CPF of XM is CPF 4 in Pc.b 11

The network Bf is a Bayesian network over the attributes of M, the attribute-
based equivalent of £,Z. It defines a probability distribution P., over the worlds
Qur. By Theorem 4.2.17, there is a one-to-one correspondence 1 between €2,, and
Q¢ 1, the set of possible worlds for O@. We can therefore use B5 to define a probability
distribution over Q. 7. For any w € Q¢ 7, Po(w) = Py (¢~ (w)).

6We will write CPF x instead of the more precise but ugly CPF x. This should not cause any
confusion.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 81

Example 4.4.8: For the sake of simplicity, let us consider an OOBN in which the
Hard-Drive is the top-level class, rather than the Computer class. Since the Hard-Drive
class in our running example has inputs, we need to change its model slightly by
turning all of its inputs into value attributes. We also reduce the number of disk
surfaces from four to two. Figure 4.2 shows the flat BN equivalent for this OOBN.”
Each node in the network is a simple attribute chain on 7,[Hard Drive]. Consider, for
example, the node DM.Motor.Dead. In the Motor class, Dead has a single parent Age.
The corresponding parent of DM.Motor.Dead is

6(DM.Has-Motor.Age) =
6(DM.©[Has-Motor.Age]|)

6(DM.Age) =
6(©[DM.Age]) = Age. F

4.4.3 Semantics of a class probability model

We have seen how the generative process for an OOBN as a whole defines a probability
distribution over possible worlds for the OOBN, and an equivalent distribution over
the values of the basic variables. For the sake of modularity, we would also like to
give meaning to each individual class probability model, in its own terms, not just in
terms of the way all the class models fit together. In fact, if we look at the generative
process, we see that there is a natural semantics for individual class probability model.

Consider an individual call to GenerateEntity(c,C). Lemma 4.4.2 shows that
at the beginning of the call, values already exist for [¢]“ for any o beginning with an
input H of C. Lemma 4.4.1 shows that at the end of the call, values exist for [¢]* for

all o on C. So we can view the behavior of GenerateEntity as producing values for

“The Has- prefix has been dropped from component functions. Also, Drive Mechanism has been
abbreviated to DM, Surface 1 and Surface 2 to S1 and S2, and Controller to Ctrl.

8Note that several different attributes in the OOBN all have the same name Age. In
DM.Motor.Age, Age appears as an input of the Motor object. In DM.Age, it is an input of the
DM. At the end, Age stands on its own, as a simple attribute of the Hard Drive, and it is also a basic
variable. Of course, the same attribute name was used because they are all meant to represent the
same value — the age of the computer system.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 82

chains beginning with value attributes of C, given values for chains beginning with
input attributes of C'. Furthermore, for a particular set of values of the input chains,
the behavior of GenerateEntity depends only on the probability model Pe, and on
the behavior for the complex attributes of C'. Therefore, we can view P¢ as defining
a function from values of chains beginning with inputs to probability distributions
over the values of chains beginning with value attributes. In other words, P¢ defines
a conditional probability function. In order to make this intuition precise, we need

some terminology.

Definition 4.4.9: Let C be a class. A wvalue chain on C is a simple attribute chain
on C' consisting only of value attributes. An input chain on C is a simple attribute
chain on C beginning with an input attribute. If o is the set of value chains on C,
we write Val[C] for Val[o]. I

We can prove an analogue of Lemma 4.2.10 for individual classes.

Lemma 4.4.10: Let w be a possible world, and c an entity in A¥ whose class is C.
If o is an attribute chain on C, there is a chain p that is either an input chain or
value chain on C, such that [0]“(c) = [p]“(c).

Proof: Let ¢ = Ip.7. We know that [Ir.7.0]Y = [I7.0(7.0)]“, and the same is true for
Ir.p for any intermediate p produced in computing 0(7.0). We will show that during
the process of computing 0(7.0), some intermediate result 7.p is produced in which p
is either a value chain or an input chain on C. If 6(7.0) begins with 7, 0(7.0) = 7.p
with p a value chain, and we are done. If, on the contrary, f(7.0) does not begin
with 7, there must be some point in the computation of #(7.0) where a chain 7.p is
transformed into a chain not beginning with 7. But then, since 7 consists of value
attributes, p must begin with an input, so it is an input chain and again we are done.
|

As with Lemma 4.2.10, the proof of Lemma 4.4.10 gives us a way to compute the
input or value chain p on C such that [0]“(c) and [p]“(c) must be equal. We simply

go through the process of computing 6(7.0), stopping when an intermediate result



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 83

T.p, with p an input or value chain on C' is produced. We will denote the chain p so
produced by 6¢c(0).

Lemma 4.4.10 tells us that given particular values for all the input chains, the
values of all attribute chains can be characterized by the value chains.® We can
therefore naturally view Pc as defining a CPF from the input chains to the value
chains. The definition of this CPF is inductive. For a class of lowest rank, all its
attributes are simple, and the CPF for each of its attributes is given. For a class that
contains complex attributes, we assume inductively that we have already obtained
a CPF for each of its complex attributes. We can then define a BN over all the
attributes of the class, assigning an arbitrary CPF to the inputs (we use a uniform
CPF for the sake of definiteness). Any assignment of values to the input and value
chains corresponds to an assignment of values to the nodes of the BN, so we can use
the probability distribution defined by the BN to define the CPF of the class.

Definition 4.4.11: Let C' be an OOBN class, with input attributes Hy, ... , H,,, and
value attributes Ay, ..., A,. We define the hierarchical BN equivalent of C, denoted

BE | as follows:
e BE contains a node X4 for each (input or value) attribute A of C.

o If A is simple, Val[X4] is Val[A]. If A is complex with range type C’, Val[X4]
is Val[C']. Note that in both cases Val[X 4] = Val[o], where o is the set of

simple attribute chains beginning with A and continuing with value attributes.

9There may be some redundancy amongst the input chains; some pairs of input chains may
necessarily have the same value. However, there is no redundancy amongst the value chains, because
distinct value chains correspond to distinct basic variables. We cannot normally determine, based
on the model of C' alone, which input chains must have the same value, because that depends on
the bindings of the inputs, which are specified in some other class C' that has a component function
whose range type is C. In fact, there may be more than one such C’, and the bindings of the
inputs of C' may be different in each of them, so in general the determination of which input chains
necessarily have the same value may vary between different entities of C. In any case, this is not a
concern. Since the values of all input chains have already been generated before GenerateEntity
is called, we do not worry about the fact that some of them have the same value. It is enough that
we can identify the exact set of attribute chains, namely the value chains, that fully characterize an
entity of C.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 84

e G[BE] = G[C]. The set of parents of X4 in G[C] will be denoted U,. Note that

if A is an input, X4 has no parents.

e For each simple value attribute A, with attribute chain parents vy,... , v, in Pg,
the CPF of X, in B is a function F : Val[U a] x Val[X 4] — [0, 1], defined by

Fa(u,z) = CPF 4(v1(u), ... ,v(u), ),

where CPF 4 is the CPF associated with A; in P¢. The notation v;(u) denotes

the projection of w onto the attribute chain v;.

e For each complex value attribute A of C with range type C’, let the inputs of C’
be Hy, ..., H;. The CPF of X, in BZ is a function G4 : Val[Ua] x Val[X 4] —
[0, 1], defined by

Ga(u,r) = CPFE(O[A.Hi](u), ... ,0[A.Hj(u),z),

where CPF¢, is as defined below. Again, the notation ©[A.H,](u) denotes the
projection of w onto the chain O[A.H,].

e If H is an input attribute, the CPF for Xy in BE is the uniform distribution
over Val[Xp|.

For a particular value h for the input chains of C' and a for the value chains of C,
and an attribute A of C, let x4(h, a) denote the projection of h,a onto A. Note that
r4 € Val[X4]. We define the function CPF from Val[o] x Val[C] to [0, 1], (where
o is the set of input chains on C), by

CPF((h,a) = Pgu( Xa, =za,(h,a),..., X4, =24,(h,a)|
XH1 = :EHl(h, 0,),... ,XHm = JTHm(h, CL))I

Note the inductive nature of the definition: Bg is defined in terms of CPF g, for
various C" of lower rank than C, while CPF &, is in turn defined in terms of BY. Note

also that since the top-level class Cr has no inputs, C’PFgT defines a probability



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 85

distribution over the value chains on C7, i.e., over the basic variables. One would
hope that this distribution is the same as the one defined by the flat BN equivalent.

Indeed, the following theorem shows that this is the case.

Theorem 4.4.12: Let O be an OOBN with top-level class Cr. For any assignment
@ of values for all the basic variables, CPF{ () = Pyr ().

Proof: The idea behind the proof is as follows: Pgg(z) is the product of CPF entries,
one for each basic variable. CPFgT (z) is also the product of CPF entries, one for
each attribute of Cr. If we can show that the entry for attribute A in CPF{ () is
the product of the entries in BE for attribute chains beginning with A, we will be
done. We show this by proving the following statement.

Let o0 be a complex component chain on C7, with range type C. By Theo-
rem 4.2.16 there is a unique possible world corresponding to the assigned values x to
the basic variables, so for any value chain or input chain p on C, [p]“(Ir.0) is deter-
mined. Let h and a be the values of the input chains and value chains respectively.

The following statement holds:

CPFi(a|h)= [] CPFx(z|uy,..., un),

X= ITO'p

where u; is the value in x assigned to parent U; of X. In words, the probability
according to CPF g of the values of the value chains given the input chains is equal
to the product, over basic variables beginning with o, of the CPF entry for the value
of that basic variables given its parents in Bg.

The proof of this statement is by induction on the rank of C. If C is of lowest
rank, it contains only simple attributes. Let A be a value attribute of C'. There
is a corresponding basic variable X = Ir.0.A. For any parent v of A, the value
of v determined by h,a must be the same as the value of 0(Ir.0.v), which is the
corresponding parent U of X. So the CPF entry for A is the same as the CPF entry
for the corresponding X. So

CPFl(a|h) = H CPFa(a|v(a,h)= [] CPFx(z|u)

X= ITO'A



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 86

as required.

For the induction step, an attribute of C is either simple, or it is complex with
range type of lower rank than C. If A is a simple value attribute of C, the CPF entry
for A is the same as the entry for the corresponding basic variable X, as before. Since
X is the only basic variable of the form I7.0.A.p, the CPF entry for A is the product
of entries of basic variables of form Ir.0.A.p.

Meanwhile, if A is complex with range type C’, let h, and a4 be the values
of the input chains and value chains of C’, as determined by . By the inductive
hypothesis, CPF& (as | ha) = [Ix=tp04, CPFx(z | u1,... ,uy). Since the value
of ©[A.H| must agree with the value assigned to H in h 4, the value of the function
G 4 in Definition 4.4.11 must be equal to CPF& (aa | ha). So the CPF entry for A
is equal to the product of CPF entries for basic variables X that begin with o.A.

Since for all value attributes A of C, the CPF entry for A is equal to the product

of entries for basic variable beginning with 0.4, we have

CPFg(a|h)=]] [] CPFx(z|u)= ][ CPFx(z|wu)

A X=Ir.c.Ap X=Ir.o.T
as required. 1

In this subsection we have defined the semantics of a class C' in a natural way, in
terms of a conditional probability distribution over the values of the value attributes
of C given the inputs of C'. Defining the semantics this way ties it in very nicely with
the hierarchical nature of the representation language. In addition, the semantics is
modular: the same class can be reused in different models, and has the same meaning
in the different models. As Theorem 4.4.12 shows, defining things this way results in

the same semantics that we obtained using the flat BN equivalent.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 87

4.5 Structured Inference

4.5.1 Interfaces and Encapsulation

Since a possible world is fully characterized by the values of the basic variables, we
can phrase any query in an OOBN as a query about values of basic variables. As in
BNs, a query seeks a probability distribution over a certain set @ of query variables,
given values e for a set E of evidence variables. The inference task is to compute
Po(Q | E =e).

The flat BN equivalent of an OOBN discussed in the last section provides us
with a way of answering any query on the OOBN. We simply construct the flat
BN equivalent, and answer any query using the standard Variable Elimination
algorithm described in Section 3.7. However, when we do inference in this way, we
lose all of the structure of the OOBN by converting it into a flat BN. As discussed
in the introduction, we want to be able to exploit the OOBN structure to perform
efficient inference. In particular, we want to exploit both the hierarchical structure,
and the fact that many of the instances share the same class model.

In developing a structured inference algorithm, we note that the hierarchical struc-
ture of an OOBN gives us conditional independence information, in addition to the

standard information present in the graphs of the OOBN objects.

Definition 4.5.1: Let I = Iy.0 be an instance in an OOBN, and let X be a basic
variable. We say that X is inside I if X = I.p. X is importable by I if X =
Ir.0(0.H.p), where H is some input of the range type of 0. X is outside I if it is
neither inside nor importable by I. X is imported by I if it is importable by I and it
is a parent of some basic variable inside I. X is exported by I if it is inside I and it
is the parent of some basic variable outside I. X is encapsulated by I if it is inside I
and is not exported by I. X is in the interface of I if it is either imported or exported
by 1. 1

Example 4.5.2: Figure 4.3 shows the interface of Hard-Drive.Has-Drive-Mechanism

in the flat BN equivalent of the Hard-Drive. The interface consists of the variables



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 88

DM.Head.Damaged>
DM .Motor.Dead DM .Data Access

DM.Motor.Disk Spins DM .Data Transfer
DM.Motor.Stiction
/

Ctrl.Overheated able.Connected
/ Cable.Functiona
Ctrl.Cracked> CableEndl> (Cable End2

Figure 4.3: Interface of Drive-Mechanism object within Hard-Drive

Age, Temperature, Has-Controller.Status, Has-Cable.Status and Head-Crash imported by
Has-Drive-Mechanism, and the single exported variable Has-Drive-Mechanism.Status.
The black curve encloses that part of the network consisting of variables inside or
imported by Has-Drive-Mechanism. The variables strictly inside the curve are encap-

sulated within Has-Drive-Mechanism. i

As we now show, the interface of an object renders the variables inside the object
conditionally independent of those outside the object. We can therefore use the object

interfaces as separators when performing probabilistic inference.

Lemma 4.5.3: Let [ = Ir.c be an instance in an OOBN, let Ir.0.p be a basic
variable inside I, and let It.7 be a child of Ir.o.p that is not inside I. Then Ip.T is

outside I.

Proof: We must show that I.7 is not importable by I. Suppose the contrary. Then
7 = 0(0.H.7") for some input H of I. Let 0 = ¢’.A. Using the partial order <* from



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 89

the proof of Theorem 4.4.6,
T=0(c".A.H1') =0(c'O[A.H].T") <* ¢’ O[|A.H|.T' <* 0" A =0,

using Statement (1) from that proof. Since <* is lexicographic, it follows that 7 <*
o.p. But, writing 7 = 7'.B, we must have 0.p = 6(7'.v), where v is a parent of B
in the probability model for the range type of 7/, since I7.7 is a child of Ir.0.p. By
Statement (3) of the proof of Theorem 4.4.6, o.p <* 7. This is impossible since <* is

a partial order. 1

Theorem 4.5.4: Let I = Ir.0 be an instance in O, and X, Y and Z be the set of
variables inside I, outside I, and in the interface of I respectively. Then I(X,Y | Z).

Proof: We show that X is d-separated from Y by Z in B5. The result will then
follow from Theorem 3.5.5.

Consider any path 7 between variables X € X and Y € Y. Since X is inside
I and Y is not, m must contain an edge in which one end is inside I and the other
is not. There are two possibilities. In the first case, the child is inside I, while the
parent is imported by /. In the second case, the parent is inside I. By Lemma 4.5.3,
the child must be outside of I. Therefore the parent is exported by I. In either of
the two cases, then, the parent is a variable Z in the interface of I. So 7 passes
through a variable Z € Z and does not have converging arrows at Z. Therefore the
path is blocked by Z. Since all paths between X and Y must be blocked by Z, X
is d-separated from Y by Z. 1

Example 4.5.5: We can see this theorem demonstrated pictorially in Figure 4.3.
First of all, all the variables encapsulated within Has-Drive-Mechanism are enclosed
in the black curve that passes through the interface variables. This is not enough,
on its own, to guarantee d-separation. What is needed in addition is the fact that no
interface variable is the child of variables that are both inside and outside the curve,

which can readily be seen from the figure. i



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 90

4.5.2 Structured Variable Elimination

Theorem 4.5.4 captures our intuition that the effect of any variable encapsulated
inside an instance on the variables outside the instance can be completely captured by
the variables in the interface. This suggests a way to perform inference hierarchically.
In order to solve a query within a given instance I, we eliminate each contained
instance J, replacing it with a factor over the interface of J. Eliminating J, of course,
results in a recursive query on J. Once all the contained instances within / have been
eliminated, we can use standard Variable Elimination to solve the query on I. The
hierarchical inference algorithm, called Structured Variable Elimination (SVE),
takes four arguments: an instance I in an OOBN, a set o of query variables, a set p
of evidence variables, and the evidence, which is a value e € Val[p]. SVE returns a
factor over the query variables. The query and evidence variables are all value chains

on the type of I. The algorithm is as follows:

Algorithm StructuredVariableElimination(/, o, p, e)
1 Let C be the type of I.
2  For each simple value attribute A of C do:
3 If A is a chain p€p
4 Let a be the value assigned to A in e.

5 ga = CPF4[A =a].

6 Else

7 ga = CPF 4.

8 For each complex value attribute A of C do:

9 Let C' be the class of I.A.

10 Let ¢’ = Imports(C’) U Exports(C')U {0’ : Ao’ € o}.
11 Let p'={p' : A.p € p}.

12 Let €' be the value in Val[p'],

13 such that for each p' € p/,

14 the value assigned to p' in €’

15 is the same as the value assigned to A.p)) in e.
16  fa = StructuredVariableElimination(/.A, o', p’, €’).



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 91

17  ga = Rename(fy4,1)) where
18 1/1(’7') = 90(147’)

19 f={ga:A is a value attribute of CY}.

20 Let 7={7:7 is mentioned by some f € f} —o.
21 For each 7 €7 do

22 Let g be {g € f:g mentions T}.

23 h,=]]g-

24 k., =Y h,.

26 f=f-gU{k}.

2% f=TI17.

27 Return f.

Let us examine the algorithm line by line. Its general structure is similar to that
of VE. It consists of two phases. In the first phase (lines 2-18), a factor g4 is prepared
for each value attribute A of C'. Each of these factors will be a factor over attribute
chains on C. In the second phase (lines 19-27), all attribute chains except the query
chains are eliminated from the set of factors. These two phases are similar to those
of VE, the main difference being that now much more work is done in preparing the
factors.

In the first phase, the preparation of the factor for an attribute depends on whether
the attribute is simple or complex. For a simple attribute A (lines 2-7), if A is actually
one of the chains for which we have evidence, g4 is prepared by conditioning the CPF
of A on its observed value. Otherwise g4 is just its CPF in Py.

If A is complex (lines 8-18), a recursive call is required to compute a factor over
the interface of I.A. Lines 10-14 compute the arguments for the recursive call. The
set of query chains (line 10) consists of the interface of I.A, together with any query
variables in o that are actually inside of I.A. If a query variable o begins with A, it
is rewritten as A.o’, and passed as the query variable ¢’ to the recursive call. Thus
the query variables for the recursive call will be chains on C".

The functions Imports(C’) and Exports(C’) are defined as follows. Imports(C’)

is the set of chains on C’ beginning with an input attribute and followed by value



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 92

attributes. Such a chain is called an input-value chain on C'. Exports(C’) is the set
of chains on C’ that use only output attributes.!® All variables imported by I.A can

be captured by the input-value chains, as the following lemma shows.

Lemma 4.5.6: Let [ = Ir.o, let C' be the type of I.A, let X = I.A.p.B be a basic
variable inside I.A, and let C" be the type of I.A.p. For any parent v of B in Pcr,
let U = Ir.0(c.A.p.v) be the corresponding parent of X. Suppose that U is imported

by I.A. Then there is an input-value chain 7 on C, such that in any possible world
w, [UY = [r]“(I.A). The chain 7 is Oc(p.v).

Proof: By Definition 4.3.1, all but the first attribute in v must be an output attribute.
Therefore, 0.A.p.v contains at most one input attribute. Also, by Definition 4.2.3,
©[A.H] can contain at most one input attribute. Each step of computing 6 consists of
replacing some A.H with O[A.H], so it cannot increase the number of inputs. Now,
by Lemma 4.4.10, the process of computing #(o.A.p.v) must at some point produce a
chain 0.A.7, where 7 is either an input chain or value chain on C. But 7 cannot be a
value chain, because then U would be Ir.0.A.7, which is inside /.A and not imported
by it. So 7 must begin with an input, and since it contains at most one input, it must

be an input-value chain. The chain 7 is f¢(p.v) by definition of 6¢. I

Lines 11-15 prepare the evidence passed to the recursive call to SVE on I.A.
All evidence will be incorporated into the factor produced by the recursive call. The
recursive call itself is performed in line 16. It returns a factor over the query chains on
1.A, that is computed from the probability model for C’, and the values of evidence
chains inside I.A. The returned factor is over chains on C’, but we need g4 to
be a factor over chains on C'. We therefore process f4 by renaming the variables it
mentions into chains on C (lines 17-18). The Rename operator takes as an argument
a renaming function, which maps variable names to variable names. In our case, the

renaming function ¢ maps a chain o on C’ to 0¢(A.0), its corresponding chain on C.

UTImports(C’) and Exports(C’) are actually supersets of the chains on C’ of the variables
imported and exported by I.A. Theorem 4.5.4 still holds using this set of variables as the interface
set. This definition is simple, easy to compute, and is the same for all instances of a class, but it
may result in larger interfaces than are actually necessary. In the next chapter, we will see a way to
compute the actual interface during the process of solving a query.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 93

Let us examine exactly what this does. Every chain o mentioned by f4 is either a
value chain or an input-value chain on C’. If ¢ is a value chain, A.o is a value chain
on C, so ¢(o) = A.o, exactly as we would expect. If ¢ is an input-value chain H.o’,
Oc(A.0) = 0c(O[A.H].0o"). Since all but the first attribute of ©[A.H] is an output,
©[A.H].0' is either a value chain or input-value chain on C, and ¢ (o) = O[A.H].0".
One might think that the definition of the Rename operator would be trivial:
Rename( f,¥) would be exactly the same as f except that the names of the variables
have changed. In fact, it is a little more subtle. The reason is that the renaming
function ¢ may not be one-to-one, in which case the resulting factor will mention
fewer variables. This situation can arise for our renaming function. For example,
suppose C”’ has two simple inputs H; and H,, and that O[A.H;] = ©[A.H,].'* Then,
if both H; and H, are query chains on I.A, they will both be mentioned by f4, while
Y(Hy) = ¢(Hy). We must therefore be a little careful in the definition. If f is a
factor over the variables X, Rename(f, 1)) is a factor over the image of X under 1,

as follows.

Definition 4.5.7: Let f be a factor over variables X, and let ¥ be a renaming
function from X to some other set of variables Y, such that for each X, Val[(X)] =
Val[ X]. Then Rename(f)(1)) is the factor g defined as follows: For any set of values
y € Val[Y], let v~ '(y) be the set of values & € Val[X] such that for each X, Y where

Y =¢(X), z =y. Then g(y) = f(¢ ' (y)). N

By the end of the first phase of the algorithm, a factor g4 has been computed
for each value attribute A of C'. The variables mentioned by these factors are value
chains and input-value chains on C. Specifically, they are the query variables o, the
simple attributes of C', and the interface variables of the complex attributes of C'. The
remainder of the algorithm performs standard VE over these variables, eliminating
all but the query variables o.

Every value chain on C, except for those that are query variables in o, will be
eliminated at some point during the SVE computation. A chain 7 that is encapsu-

lated inside I.A will be eliminated during the recursive call on I.A. The chains 7

UMore generally, if H; and H» are complex, we could have ©[4;.H}] = o, and O[A;.H}] = o.p.
Then Hi.p. and Hi.r will both be renamed to o.p.7.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 94

eliminated during the VE phase of the SVE computation on I consist of those value
chains on C' that are not query chains and are not encapsulated inside I.A for some
attribute A of C.

What is the meaning of the factor f returned by SVE? Note that it is unnormal-
ized. It is equal to ) __[[.¢;- The g; incorporate the CPFs for all the value chains
on C, and are also conditioned on the evidence e. Let us divide the query variables
into value chains ok and input-value chains og. The factor f is in fact equal to
P(ok,p=e| og). In words, the SVE call on instance I computes, for any assign-
ment of values &g to the query variables inside I and the variables exported by I,
and gy to the variables imported by I, the conditional probability that the query
and exported variables have the values x x and the evidence variables have the values
e, given that the imported variables have the values  g. Since the top-level instance
has no imports or exports, the top-level call returns P(o, p = e), where o and p are
the top-level query and evidence variables. The answer to a query that we want to
return is actually P(o | p = e). We can compute it by normalizing P(o, p = e),

dividing it by the normalizing factor ), P(oc =x,p =€) = P(p = e).

4.5.3 Reuse of Inference

In order to answer any query in an OOBN, we just have to make a call to SVE on the
top-level instance Ir. This will result in a recursive call for each of the instances in the
OOBN. In so doing, the algorithm will take advantage of the hierarchical structure
of the OOBN, but it will fail to exploit the fact that many instances share the same
class model. In fact, all instances of a class have the same probability model. If
we examine the behavior of the SVE algorithm, we see that it does not depend on
specific details about the instance I on which it is called, but only on the probability
model of the class C' of I. We can reuse computation from one SVE call for a class
to another call for the same class; as long as the other arguments are the same, the
result will be the same.

The degree to which the reuse of computation can be exploited in this way depends

on how many query variables and evidence variables there are in a query. If there are



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 95

few query variables and little evidence, the scope for reuse is very high. In particular,
if there are no query or evidence variables in the class, the result of calling SVE
will just be a conditional distribution over the exported variables given the imported
variables. We call this distribution the iconized distribution of the class. If we have
no particular information or interest in the internals of an instance of a class, we can
represent that instance as an “icon”, and the iconized distribution of the class is all
we need to compute the effect of that instance on the probability model.

We achieve the desired effect by changing the first argument of SVE from an
instance to a class object, and by maintaining a cache with the answers to queries

performed on a class. The modified algorithm is as follows:

Algorithm StructuredVariableElimination(C, o, p, e)
If (C,o,p,e) is in Cache
Return Cache[(C,o,p,e)].
Else
f = UncachedSVE(C, o, p,e) .
Cache[{C,o,p,€e)] = f.
Return f.

Procedure UncachedSVE(C, o, p, e)
For each simple value attribute A of C do
If A is a chain p€p
Let a be the value assigned to A in e
ga = CPF 4[A = q].
Else
ga = CPF 4.
For each complex value attribute A of C do
Let C' be the range type of A.
Let o’ = Imports(C’) UExports(C')U{o’ : Ao’ € o}.
Let p'={p : Ap € p}.
Let €’ be the value in Vallp],



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 96

such that for each p' € p’,

the value assigned to p' in €’

is the same as the value assigned to A.p' in e
fa = StructuredVariableElimination(C’, o/, p’, €’).

g4 = Rename(f4,1) where
Y(1) = 0c(A.T).

f={94:A is a value attribute of C}.

Let 7={7:7 is mentioned by some f € f} —o.
For each 7 € 7 do

Let g be {g € f:¢g mentions T}.

hr =11g-

kr=>_h,.

f=f-guU{k}.

f=11f.

Return f.

By maintaining a cache, we can reuse computations not only within one query,
but also across different queries for the same model. We can also reuse computation
between different models in which the same class appears. The cache needs to be
purged of all solutions for queries on a class whenever the class model changes. Also,
if class C' is defined in terms of another class C’, the cache needs to be purged
of solutions for queries on C' when the model for C’ changes. However, solutions
obtained for C' can be kept when new subclasses of C' are created, or when C is used
in defining another class. The class C' can be envisioned as providing a library of
answers to queries. Answers to the most common queries are provided immediately,

while less common queries require computation to solve.

Example 4.5.8: We illustrate the SVE algorithm by showing what happens when
we compute P(DM.Motor.Stiction | Temperature = Cold, Status = Unreadable). We



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 97

start out with a call to

SVE( Hard-Drive, {DM.Motor.Stiction}, { Temperature, Status},
(Temperature : Cold, Status : Unreadable))

Processing the simple attributes is straightforward, just as in BNs. We will condition
the CPF's of the two evidence variables on the values given. Then we process the com-
plex attributes, each one resulting in a recursive call. When we process the attribute
DM, oPM is set to consist of the imports and exports of the class Drive-Mechanism,
as well as the query variable Motor.Stiction. Since none of the evidence variables are

inside DM, pPM and eP™ are empty.'? This results in a recursive call to

SVE( Drive-Mechanism,
{Status, Motor.Stiction, Connected, Controller-Ok, Temperature, Age, Head-Crash},

0,0)-

The result of this recursive call will be a factor over the variables Status,Motor.Stiction,

Connected, Controller-Ok, Temperature, Age, and Head-Crash, expressing
P(Status, Motor.Stiction | Connected, Controller-Ok, Temperature, Age, Head-Crash).

The renaming operation will change the names of the variables in this factor to
DM.Status, DM.Motor.Stiction, Cable.Status, Ctrl.Status, Temperature, Age, and Head-Crash.

The SVE algorithm will continue processing all the other complex attributes.

12Even though the evidence variable Temperature is also imported by DM, we do not need to pass
it to the recursive call. The recursive call will return a factor over the pPM that considers all possible
values of Temperature to be possible, but we have already conditioned the CPF for Temperature to
assign probability 0 to all values other than Cold.

We could, on the other hand, have designed the algorithm so that the values of imported variables
are also passed as evidence to the recursive calls. There is an interesting tradeoff here. On the one
hand, passing the evidence to the recursive call reduces the size of the resulting factor, since it is
already conditioned on the evidence. In addition, in the presence of context specific independence,
it may actually simplify the inference [12, 101]. On the other hand, since the evidence is part of the
signature of the SVE call, passing evidence variables when it is not necessary to do so reduces the
possibility of caching and reusing computation.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 98

Note that only one recursive call
SVE(Disk-Surface, {Age, Head-Crash, Status}, (), ())

is needed for the different disk surfaces. Also note that since there are no query or
evidence variables inside any of the complex attributes other than DM, the queries
on those attributes will just ask for the iconized distributions of their classes.

After eliminating all the complex attributes, the algorithm will be left with a
set, of attribute chains. The chains in this set consist of the simple attributes of
Hard Drive, the chains exported by the complex attributes of Hard Drive, and the
chain DM.Motor.Stiction. Standard VE is now used to eliminate all the chains other
than DM.Motor.Stiction. The eliminated variables are Age, Temperature, Head-Crash,
S1.Status, S2.Status, Surface-Damaged, Usable, Capacity, Used, Full, DBR, MBR, Bootable,
Ctrl.Status, Cable.Status, DM.Status, OS-Status, FAT, Lost-Clusters and Status. I

4.5.4 Complexity

How expensive is the cost of solving a query in an OOBN? Well, if we ignore for the
moment the reuse of computation between different instances of the same class, there
is a call to SVE for each instance in the OOBN. Thus the total cost is the sum of
the costs performed directly within each call.

In the analysis that follows, we use notation similar to that of the previous chapter:
b is an upper bound on the number of values in the domain of a simple attribute in the
OOBN, and the number of variables mentioned by a factor f is denoted by |f|. The
size of f is therefore bl/l. As in the algorithm, o will denote the set of query chains
(the second argument to SVE), while 7 will denote the set of eliminated chains. o4
and p4 will denote the set of query and evidence chains respectively for the recursive
call on complex attribute A. We will let n denote the number of variables in & U T,
while v will denote the total number of attribute chains mentioned during the course
of the SVE computation, including evidence chains, and the chains on the types of

the complex attributes passed as arguments to the recursive calls.

Theorem 4.5.9: The time and space cost of computation performed directly within a



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 99

single call to SVE for an object X is O(nb™ +v), where M is max(max4(|oal), Mo),
My being the mazimal clique size of the induced graph of X for the variable elimination

phase.

Ordinarily, M will be equal to My, since there is a clique containing the variables
named in g4 for each A. However, because of the Rename operator, it is possible
that fs mentions more variables than g4. To take this possibility into account, we
have to ensure that M > [fa| = |oa].

Proof: The work done directly within a single call to SVE can be divided into two

phases:
1. A preprocessing phase, which involves:

(a) Preparing the factor g4 for each simple value attribute A; (cost for each
A; is O(bI°PFal) which is O(bM) since |CPF 4| < My < M;

(b) Computing the arguments to the recursive call for each complex value
attribute A;. Using the given definition of Imports and Exports, the
argument o 4 can be produced in time and space O(|oal), and |oa| < v.
The arguments pa and e4 can be produced in time and space O(|pal),
and |pa| < v. So the cost for this step is O(v).

(c) Renaming and storing the result f4 of the recursive call for each complex
A. Cost for each is O(bf4l) which is O(b™).

Total cost for the preprocessing phase is therefore O(nb™ + v).

2. The variable elimination phase. By Theorem 3.7.9, the cost of this phase is
O(nb™Mo).

Putting all these together, we see that the work done in a single call to SVE, not

counting the recursive computations, is O(nb™ + v). I

Just as in BNs, we see that the critical factor is M. The crucial point is that
OOBNSs provide us with a way of keeping M small using only local considerations.

The basic idea is simple. We stipulate a bound k£ on the number of variables in the



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 100

interface of an object, and m on the width of the dependency graph of a class, relative
to some elimination order. If we take a dependency graph G[C], and replace each
complex attribute A with a clique over the variables mentioned by ga, we essentially
get a graph G of the VE computation. Furthermore, the size of the largest clique
in this graph is at most (m + 1)k.!* However, this graph is not quite good enough.
Recall from Section 3.7 that when we perform a VE computation with more than one
query variable, the query variables must be connected to each other in the induced
graph. In our case, we wish to return a factor over all the query variables o, so we
have to connect each pair of query variables in G. After doing this, G may no longer
be triangulated; to make sure that it is triangulated without actually searching for a
triangulation, we need to connect all the query variables to all other variables. The
resulting graph will certainly be triangulated, but as we now prove its width will now
be less than (m + 2)k + ¢, ¢ being the number of query variables not in the interface
of C. First we need the following definition, relating an elimination ordering used in
the VE phase of SVE to an ordering over the attributes of C.

Definition 4.5.10: Let d be an ordering over the attributes of a class C, and o a
set, of chains on C'. An ordering D over o is consistent with d, if, for any two chains
o1 and o9 in o, if 01 = Aj.p; and 09 = As.ps, and A; precedes A, in d, o1 precedes

09 in D [ |

Theorem 4.5.11: Let I be an OOBN instance, of class C, and let o be the set
of query chains for an SVE call on I. Let k be an upper bound on the number of
variables in the interface of a complex attribute of C', or in the interface of C'. Let
q be the number of additional query variables in the query (Q not in the interface of
C. Suppose that there is an ordering d over the attributes of C such that the induced
width of (G[C,d]) is m. Let D be an ordering over the chains T eliminated during the
VE phase of the SVE computation that is consistent with d. Then the induced width
M for the VE phase of the SVE computation is less than k(m + 2) + q.

13The m + 1 factor arises from the fact that the width of a graph is one less than the size of its
maximal clique.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 101

Proof: Let G be the induced graph for (G[C], d). By hypothesis, the width of (G, d)
is m. Let G be the graph over o U 7 such that there is an edge between o, and oy if
either is a query variable in o, or if they both begin with the same attribute, or they
begin with attributes A; and A, that are connected in G. Let D be an ordering over
o U T formed by prepending any ordering over the query variables o to D. We claim
that the width of (G, D) is less than k(m + 2) + ¢. We show that the width of every
variable o is less than k(m + 2) + ¢. If o is a query variable, it has fewer then &k + ¢
predecessors in 15, so its width is less than k + ¢ < k(m + 2) + g. Now let ¢ be an
eliminated variable beginning with A, and suppose there is an edge between p and o
in G. By definition of G, p must be a query variable, or it must begin with A, or an
attribute that precedes A in d and is connected to A in G. Since there are at most
k + q query variables, at most £ — 1 other variables beginning with the same attribute
as 0, at most m attributes preceding A in G and at most k chains beginning with
each such attribute, o can be connected to at most k(m+2)+¢—1 of its predecessors
in G.

Next, we show that G is the induced graph of (CJ, D). Suppose not. Then in the
course of eliminating the variables in 7 in reverse order of D, edges are added to G.
Let o be the first such node. Then ¢ must be connected to two predecessors p; and
po such that p; and po are not connected in G. We will show that this is impossible.
First, if either p; or p, is a query variable, they will be connected to each other by the
definition of G. So they must both be eliminated variables. If p; and ps begin with
the same attribute, they will be connected in G by definition, so they must begin with
different attributes. Now, suppose (wlog) that p; begins with the same attribute A
as 0. Then p, must begin with an attribute B that is connected to A in G, so again
P2 is connected to p; in G. We are left with the possibility that o, p; and ps begin
with attributes A, By and B; respectively, where A is connected to both B; and B,
in G. Furthermore, since p; and p, are predecessors of ¢ in D, and all are eliminated
variables, B; and B, must be predecessors of A in d. But then, in the process of
constructing G, B; and B, must have been joined together when A was processed (if
they were not already connected), so B; and B; are connected in G. Therefore again

p1 and py must be connected in G.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 102

Now consider the set of factors f = {g4 : A is a value attribute of C' } appearing
at the beginning of the variable elimination phase. Two variables ¢ and p will appear
in the same factor if either they are both in the interface of a complex attribute, or
they both participate in the CPT of some simple attribute. In either case, either o
and p begin with the same attribute, or they begin with two attributes A and B that
are connected in the moral graph for X. Either way, o0 and p are connected in G.
Therefore the graph for f is a subgraph of G. Tt follows that the induced graph for
f under the ordering D is also a subgraph of the induced graph of (G, d), which is
itself G. Therefore the tree-width of the induced graph of f under D is at most the
tree-width of G, which is less than k(m +1). 1

An alternative approach is to connect attributes of C' that begin query variables
to each other in G[C], and still guarantee that the resulting graph has induced width
< m. If we form G from this augmented graph, the width of G will indeed be less
than (m + 1)k.

Theorem 4.5.12: Let I be an OOBN instance, of class C, and let o be the set of
query chains for an SVE call on I. Let Q be the set of attributes of C that begin
a chain o € a. Let G be the graph over attributes of C' formed by augmenting G[C]
by connecting each pair of attributes in Q together. Let k be an upper bound on the
number of variables in the interface of a complex attribute of C, and the number of
query variables in . Suppose that there is an ordering d over the attributes of C
such that the induced width of (G,d) is m. Let D be an ordering over the chains T
eliminated during the VE phase of the SVE computation that is consistent with d.
Then the induced width M for the VE phase of the SVE computation is less than
k(m+1).

Proof: Similar to Theorem 4.5.11. 1

The value of these results lies in the fact that both k£ and m are values that can
be controlled locally by the engineer of a class model. To control k, she only needs
to make sure that the classes for all the complex attributes have interfaces of size

at most k, and that the interface of the class itself has at most k variables. As for



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 103

Aq
A;
Figure 4.4: Bounds from Theorems 4.5.11 and 4.5.12 are not tight.

controlling m, the number of attributes of a class will typically be very small, so it
can be quickly checked whether or not the dependency graph of the class, with all
inputs and outputs connected, has tree width < m. If the bound k(m + 2) + ¢ from
Theorem 4.5.11 is too large, Theorem 4.5.12 can be used to try to obtain a better
bound for certain specific queries on the class. In particular, it may be useful to obtain
a better bound on the cost of computing the iconized distribution for the class, which
will also serve as a bound on the cost of computing any query on the class for which
there are no additional query variables that are not in the interface.

Note that the bounds from Theorems 4.5.11 and 4.5.12 are not tight. The graph
G may contain far more edges than necessary. In particular, following the methods
of both theorems, we connect all pairs of chains in G that begin with attributes
that are connected in G. Many of these pairs may actually not be connected in

the induced graph for the SVE algorithm. Furthermore, following the method of



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 104

Theorem 4.5.11, the query variables are connected to all other variables to ensure that

G is triangulated. Again, many of these connections may not actually be necessary.

Example 4.5.13: The situation is illustrated by the example in Figure 4.4. There is
a single class, with simple input H, simple output K, and two encapsulated complex
attributes A; and A,, as shown in the left of the figure. Each of the A; has an input
A%, and an output A%. Consider a query on C, in which the set of query variables
o is its interface {H, K}. The set of eliminated variables o is {A}, AL, A% A%}
The dependency graph of C' has tree-width 1, while & is 2 and ¢ is 0. Following the
method of Theorem 4.5.11, we replace each complex attribute A; with a clique over
At and A%. Since A; and A, are connected in G[C], we connected each of the newly
introduced variables to each other. In addition, we connect the query variables H
and K to all other variables. As a result G is a clique over the six variables in o and
p- Its tree width is 5, which is indeed less than (m + 2)k + ¢ as guaranteed by the
theorem, but barely.

Following the method of Theorem 4.5.12, we begin by connecting H and K in
G[C], as shown in the center of Figure 4.4. The dashed edge is added in order to
triangulate this graph. The width of the triangulated graph is 2, so m is now 2.
G is then produced by replacing each A; with a clique over A% and A% as before.
Again, the newly introduced variables are connected to each other. In addition K
is connected to all newly introduced variables, while H is connected to A} and Ak.
The graph G (not shown) has tree width 4, which is slightly better than before.

However, the true situation is in fact much better. The figure on the right shows
the actual induced graph for the VE computation in this case. The solid edges show
the graph of the set of factors f, while the dashed edges are edges added in order to
triangulate this graph. The width of the triangulated graph is only 2. i

Theorem 4.5.14: If the maximum number of variables in the interface of any object
in an OOBN O is k, and the tree width of each object is at most m, then SVE can
be used to solve a query on q basic variables of O in time and space O(Nkbk(m”)bq),

where N 1is the total number of attributes of all instances in O.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 105

Proof: Note that the number of variables in oy U 77 is at most N;k, where N; is
the number of attributes of instance I. This is because there are at most £ variables
in that set beginning with any attribute of /. Also, the total number of chains v;
mentioned during the SVE computation for I is at most N, the total number of
attributes of all instances in the OOBN.

Next we show that the number of query variables passed to any instance I not
in the interface of I is at most ¢. If a query variable ¢ not in the interface of I.A is
passed in the recursive SVE call on 7. A, then A.c must have been a query variable
in the SVE call on I. Furthermore, if A.o is in the interface of I, then ¢ must consist
of output attributes of I.A. It follows that if ¢ is not in the interface of I.A, A.c
is not in the interface of I. Therefore, the number of query variables passed to I.A
not in the interface of I.A is at most the number of query variables passed to I not
in the interface of I. Since the top-level query has ¢ variables, the claim follows by
induction.

By Theorem 4.5.9 SVE can be performed for each instance I in time O (N 0™ +v),
where M is the max of M, and the largest |fa| for a complex attribute A of I.
|fa| is clearly less than k& + ¢ < (m + 2)k + ¢, while by Theorem 4.5.11, M, <
(m + 2)k 4+ gq. Therefore M < (m + 2)k + ¢, and the total cost of inference is is
O(ZIT_U(NUkb(m”)kbq + 1)) = O(NEb™2kpa) g

Corollary 4.5.15: If the dependency graph for each object in O is a polytree, and
p s a bound on the number of parents of any attribute, SVE can be used to solve a
query on O in space and time O(NkbP+t2kpa),

Proof: Theorems 3.7.10 and 4.5.14. 1

An important case is a query involving no evidence variables. In this case, we can
use the iconized distributions for each of the classes, so that only one recursive call

needs to be made for each class, rather than one for every instance.

Corollary 4.5.16: For a query Q on q simple attributes of the top-level instance of
O, and no evidence, SVE can be used to solve Q) in space and time O(Nkb(m+2)kbq),

where N is now the number of attributes appearing in all the classes of O.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 106

Proof: Since there are no query variables on attributes of embedded objects, and no
evidence, the call to SVE will be the same for all embedded instances of the same
class. Therefore a separate SVE call will not be made more than once for any class
in O. The result follows from Theorem 4.5.14. i

4.5.5 Discussion

A project manager can stipulate target values for m and k for all the classes used in
the project. Values of 2 for m and 4 for £ would not be unreasonable, for example.

Given such values, the b(m+2)k

term can be treated as a (rather large) constant factor.
The cost of inference would then grow linearly with the size of the OOBN, and
exponentially with the number of query variables. The former is very good news,
while the latter is completely unavoidable, since we have to return a probability
distribution over all the query variables anyway.

Since the interface variables tend to dominate the inference cost, a good design
guideline is to try to keep the number of values of an interface variable to a minimum.
Fortunately, this seems a reasonable thing to do from a modeling point of view, since
interface variables are used to summarize detailed information about an object. For
example, a Hard-Drive object may have a Remaining-Capacity attribute with many dif-
ferent values. In a good design, this attribute will be encapsulated within Hard-Drive.
A binary output attribute Full can be used to summarize the capacity of the Hard-Drive
inasmuch as it affects the rest of the system. If we want to know whether or not a
file of a certain size can be stored, we have to check the size of the file against the
Remaining-Capacity of the drive. For such a situation, Hard-Drive.Remaining-Capacity
can be provided as a query variable.

It is important to note that the inference cost obtained for the SVE algorithm
on some OOBN query can always be obtained by the standard VE algorithm on the
flat BN equivalent, for some elimination order of the variables. After all, even for the
SVE algorithm, all the non-query basic variables do have to be eliminated at some
point. The structured inference procedure of SVE does impose some structure on

the elimination order, namely, that all the variables inside one object are eliminated



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 107

before any of the variables inside another object. Nevertheless, any elimination order
used by the structured algorithm can be emulated in the flat BN. It is quite possible,
in fact, that there exist elimination orders for the flat BN that are better than any
structured elimination order.

What, then, have we gained from the SVE algorithm? For one thing, we now
have a way of designing large probability models with known, controlled inference
costs, and a way of designing class probability models with compositional performance
guarantees. Once we know that SVE can be performed in an OOBN in a certain
amount of time, we know that VE could be performed on the flat BN equivalent in
a similar amount of time, but without the SVE analysis, we would have no way of
knowing that. In addition, the SVE analysis provides the model designer with three
usable design criteria for keeping the cost of inference down: keep the interfaces small,
keep the local graph for each class simple, and keep the domains of the interface
variables small. In building a large flat BN from scratch, a model designer would
have a hard time focusing her design efforts and understanding what compromises
are important to keep the inference costs under control.

Also, the SVE algorithm not only provides an analysis that shows that the infer-
ence costs can be kept down, but also a means of using that analysis, by exploiting
the fact that local interfaces are small and local dependency models are simple. A
structured elimination order will exploit these facts; an unstructured order may not.
As we discussed in the last chapter, finding a good elimination order for a BN is an
NP-hard problem. While fairly efficient algorithms exist for finding optimal or close
to optimal elimination orders(e.g. [90], [8]), they are still quite expensive. Most prac-
tical implementations of BNs have not found it worth their while to employ them,
and instead use a greedy heuristic algorithm to determine the elimination order. Our
experimental results, discussed in Chapter 8, show that using a structured elimina-
tion order can result in orders of magnitude savings compared to inference in the flat
BN using the standard greedy minimum discrepancy heuristic to compute elimination
order. In other words, the structure of an OOBN provides a strong hint as to the

existence of a good elimination order, and SVE provides a way to exploit that hint.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 108

T
N

s
L

c
R

Figure 4.5: Decomposable interfaces.

Finally, SVE provides a way to exploit the reuse of computation between differ-
ent instances of the same class, which cannot be done by VE in the flat BN. Our
experimental results show that exploiting reuse of computation can yield a further
order of magnitude speedup or more.

We close this section by discussing an enhancement to the SVE algorithm. After
the variable elimination phase, the algorithm multiplies together all the remaining
factors to produce a single term over all the query variables. This may not, in fact,

be necessary. Consider the following example:

Example 4.5.17: OOBN O has two classes, C; and Cs, shown in Figure 4.5. Cj is
the top-level class. All attributes of C; are simple boolean attributes. It has a single
input I} and two outputs A} and Al. Each of the outputs has I} as its only parent.

Cs has four attributes: A%, A% and A% which are simple Boolean, and A% which is

complex of class C;. The dependency model is as follows:



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 109

e A?is a root;

e the parent of A3 is A% and O[A2Z.1]] is A%
e A2 has A2.A] as its only parent;

e A% has A% A} as its only parent.

Consider what happens when we run SVE on (5. The first thing is a recursive call
on (. Since C; has no encapsulated attributes, CPF 41 and CPF 43 are multiplied
together to produce a factor over the interface of C';. These are then introduced as
a factor over A? ) A3.A] and A?. A} in the computation for Cy. There is thus an edge
between A2. Al and A?. A} in the induced graph (bottom left of the figure) for the C,
computation, and the width of this graph is 2.

Inference could be performed more cheaply in this example, if, instead of multiply-
ing together CPF 41 and CPF 4 and returning a factor over the interface, the SVE
call for C'; would simply return the pair of factors. These would then be introduced
into the Cy, computation as two separate factors, over A? and A2.Al, and A? and
A2 AL respectively. There would then be no edge between A2.Al and A% A} in the
induced graph for the Cy computation (bottom right of the figure). It is, in fact, a

polytree, and its width is one. I

From the example we see that multiplying together the leftover factors at the end
of the SVE computation to produce a factor over the interface is actually unnecessary,
and may be costly. Instead, we can just return a set of factors over the interface
variables. The leftover factors only need to be multiplied together at the very end of
the computation, after returning from the top-level SVE call, to compute the solution
to a query. A similar idea was used in the multiply-sectioned Bayesian networks
(MSBNs) of Xiang, Poole and Beddoes [100]. The improved SVE algorithm is as

follows (the lines that have changed are indicated with a *):

Algorithm StructuredVariableElimination(/, o, p, e)

14We show the uncached instance-level version. Obviously the cached version of the algorithm can
be modified in the same way.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS

Let C be the type of I.
For each simple value attribute A of C do
If A is a chain p€p
Let a be the value assigned to A in e
ga = {CPF 4s[A =al}.
Else
ga = {CPF 4}.
For each complex value attribute A of C do
Let C' be the class of [.A.
Let o’ = Imports(C’') U Exports(C') U {c': A.o’ € o}.
Let p'={p : A.p € p}.
Let €’ be the value in Val[p’],
such that for each p' € p/,
the value assigned to p' in €’
is the same as the value assigned to A.p/ in e
*  fa = StructuredVariableElimination(/.A, o’, p’, €’).
* ga = {Rename(f4,%): fa € fa} where
(1) = 0c(A.T).

* f=Uasga.
Let 7={7:7 is mentioned by some f € f} —o.
For each 7 € 7 do

Let g be {g € f: g mentions 7}.

h, =1]g-
kr =3 h,.
f=Ff-guik}.

* // We no longer need to compute f=][][f.
* Return f.

110



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 111

4.6 Working with OOBNSs

Unlike a BN, which provides a single, standalone model of a domain, an OOBN
provides a set of class probability models. Such models can be used as a library, that
can be applied to many different specific situations. For example, one may provide a
library of many different PC components that can be used to diagnose a wide variety
of PC configurations.

In order to use a library of classes in a specific situation, the modeler needs to
construct a particular top-level object to describe the specific situation. We call
such an object the scenario object. There are two basic methods for constructing
a scenario object. Ome is to create it from scratch, putting together a bunch of
attributes representing the different objects in the scenario, and connecting them to
each other. For example, one might create a scenario to describe a particular PC
configuration by putting together the components, e.g. a Motherboard attribute of
type 200-MHz-Intel-Pentium-1l, a Monitor attribute of type 15in-SVGA, two Hard-Drive
attributes, and so on. Each particular PC would have a slightly different set of
components, and their types would vary from PC to PC, so the scenario object would
be created for each PC.

An alternative approach is to take an existing object model, and modifying it
to contain the specific features required by the scenario. The Computer object from
Figure 4.1 could have been developed using this approach. Example 4.2.5 could It
could have been constructed by taking a generic model of a PC with its components,
and then adding event objects to it for the particular events that happened in the
scenario — in this case, a print event, a read event, and a write event. One could also
specify particular subclasses for the different components of the particular computer
being examined. However, this does not have to be done all at once, but can be part

of a gradual process.

4.6.1 Defining Class and Subclass Models

An important feature of OOBNs that helps make them flexible and capable of mod-

elling many different situations is the ability to define a hierarchy of classes with



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 112

similar interfaces but different probability models. Although our relational language
contains a class hierarchy, we have not really taken advantage of that feature up to
this point. We simply assumed that the model for each class in the hierarchy was de-
fined somehow, with no relationship between the model for a subclass and the model
for its superclass, except that they share some of the same attributes. Now, however,
we describe how class models may actually be defined, and how a new class can be
defined from existing classes.

A class may be defined from scratch, by completely specifying the object structure
and the dependency and probability models. The process of creating a class model
proceeds in four stages. The first stage is to specify the object structure: the set
of attributes, their partition into input, output and encapsulated attributes. For a
simple attribute A, Val[A] is specified by explicitly enumerating the possible values;
for a complex attribute A, a class name Class[A] is provided to specify its range type.
The second stage is to draw a DAG over the attributes, with the inputs as roots. The
third stage is to choose the parents of simple attributes and bind the inputs of complex
attributes, making sure that all the parents and bindings are visible. The final stage is
to assign a CPF to each of the simple attributes. The probability model for complex
attributes does not have to be provided, since it is drawn from the associated class.

Alternatively, a subclass may be defined from an existing class (its base class)
using the standard mechanism of inheritance. As a default, the subclass will inherit
all aspects of the model of its base class. The definition of the subclass may override
any of the features of the base class, subject to the condition that it should always
be possible to use the subclass when the base class is expected. To formalize this

condition, we define the notion of type-compatibility between classes.®

Definition 4.6.1: A class C' is type-compatible with class C’, if

e for each output attribute K of C’, C' has output attribute K, and Class[K]| in
C is type-compatible with Class[K] in C".

15The purpose of this definition is not to say what it means for one class to be a subclass of
another in a typed relational language (we did that in Chapter 2); rather, it is meant to help show
how a set of class and subclass specifications can work together coherently to form a set of classes
in a typed relational language, with a valid information-passing structure.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 113

e for each input attribute H of C, C' has input H, and Class[H] in C" is type-
compatible with Class[H] in C. }

The condition on outputs ensures that if anything uses a value of C’, that value
will be available in C'. The condition on inputs ensures that if an instance I of C
is used where an instance of C' is expected, all the inputs required by I should be
available to it.

The definition of a subclass may modify the base class following the same four
stages as in the definition of a class from scratch. In the first stage, the object

structure is modified. The following changes are allowed:
e Adding an output or encapsulated attribute.

e Removing an encapsulated attribute or input.

Replacing the range type of a complex output attribute with one that is type-

compatible with it.

If the range type of a complex input attribute is C', replacing the range type
with a class C’ such that C is type-compatible with C".

Changing the type of an encapsulated attribute.

The general rule is that inputs can be removed or made simpler, outputs can be
added or made richer, while anything can be done with an encapsulated attribute.

The second stage in defining a subclass is to update the dependency graph. Any
new attributes must be added to the dependency graph, and any removed attributes
must of course be removed. The graph may be further modified arbitrarily, as long
as it remains acyclic, and inputs are always roots.

The third stage is to supply the local dependency models of the new attributes,
and to update the models of existing attributes. If A is a new simple attribute, or
one whose predecessors in the dependency graph have changed, a new set of parents
v of A must be supplied. The set of parents may optionally be changed for other

simple attributes. Any new parent of A must of course be visible to it.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 114

If A is a new complex attribute, a visible attribute chain of the appropriate type
must be supplied as the binding for each of its inputs. A new binding must also be
supplied for any input of an existing attribute whose previous binding is no longer
visible to it. The bindings of other inputs may also optionally be changed.

The final stage in specifying the model of a subclass is to provide a local conditional
probability function for each new simple attribute, and for any simple attribute whose
set, of parents has changed. The CPF may also optionally be changed for other simple

attributes.

Example 4.6.2: Let us try to develop a class hierarchy of mouse objects. We want
the base Mouse class to describe the kinds of things that can go wrong with a mouse,
without making any assumptions about how the mouse actually works. It has complex
attribute Has-Cable of class Cable, a Clicker attribute of class Clicking-Mechanism, and
a Tracker attribute of class Tracking-Mechanism. It has simple attributes for various
possible faults. It also has an input, OS-Status, because mouse faults can often be
due to problems in the OS.

We now develop a hierarchy for the clicking and tracking mechanisms. The generic
Clicking-Mechanism class has just a single output attribute Stuck. The Clicking-Mechanism
class has three subclasses: One-Button, Two-Buttons, and Three-Buttons. The Three-Buttons
class changes the model of Clicking-Mechanism, by adding three new attributes for each
of the buttons, and making Stuck depend on them. The Three-Buttons class itself has
the subclass Three-Button-Emulator, which describes the mechanism where the third
button is emulated by clicking the two physical buttons simultaneously. The model
for Three-Button-Emulator has the same attributes as Three-Buttons, but Button-3 is
now made to depend on Button-1 and Button-2.

The family of tracking mechanisms has more variety. Again, the generic Tracking-
Mechanism class consists of just the single output Status, whose value ranges over Re-
sponsive, Sluggish, Stuck and No-Response. (Stuck differes from No-Responsein that it
indicates a situation where the response is stuck at a particular value.) One subclass of
Tracking-Mechanism is the standard Ball-And-Mousepad. It has attributes representing
possible causes of problems, such as Fuzzy-Ball, Rough-Pad and Gunky-Wheels, all of

which influence the status. Another subclass of Tracking-Mechanism is the Trackpoint



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 115

(the little ball found on some laptop PCs). The Trackpoint class may change the
Tracking-Mechanism model only by changing the CPF for Status to give higher prob-
ability to Stuck.'®

Now that we have subclasses for particular types of clicking and tracking mecha-
nisms, we can create subclasses for different mouse devices simply by specifying which
particular subclass to use for the Clicker and Tracker attributes. For example, we can
create the Standard-PC-Mouse subclass of Mouse, and change the Mouse model by
specifying only that the class of Clicker is Two-Buttons, and the class of Tracker is
Ball-and-Mousepad. This example illustrates the fact that class hierarchies can be

developed in parallel. The major design decision is which families of classes to use. 1

4.6.2 Abstraction and Refinement

OOBNs provide a natural context for working with models iteratively, beginning with
an abstract description of a situation, and gradually refining it as necessary. The
user can begin with a high-level, abstract scenario object, that can be constructed
very quickly, or may be part of a library. The classes of complex attributes may
be abstract, iconized versions of the types of object they represent. They may have
no internal attributes at all, but only a simple conditional probability distribution
over the outputs given its inputs. The word “iconized” is indicative of the fact that
only the interfaces of the objects appear in the model, but that they are available
for expansion at any time. The iconized distribution of an iconized class, as defined
in the previous section, is in fact the same as the entire distribution defined by the
iconized class model.

If the user decides that the details of a particular component are important, she
can replace the iconized class with a particular concrete subclass of it. For exam-
ple, the iconized Motherboard class may be replaced with the Pentium-Motherboard
subclass of Motherboard, which has specific attributes for the CPU, RAM and so on.
The new subclass may themselves be somewhat abstract, and some of its components

may itself be iconized. The process of focusing on a particular part of the model and

16Based on a sample of size 1, this is a recurring problem for trackpoint mechanisms.



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 116

refining it is an iterative one.

The advantages of this iterative focusing and refinement process are that both
the user’s attention and the computational energy are spent where needed. The user
only needs to state specific information about the parts of the models she considers
important. As for computation, nothing needs to be done for the iconized attributes,
since their class model is exactly the conditional probability distribution that needs to
be returned by SVE. For each refinement step, computation needs to be performed
only for the branch of the part-of hierarchy that gets changed, i.e., the object that
is refined, and each of its containing objects, up to the top-level object. Since the
models of objects in other parts of the hierarchy do not change, computation from
previous iterations can be reused. The caching performed by the SVE algorithm will

ensure that this happens.

4.7 Conclusion

We have presented Object-Oriented Bayesian Networks, a language for building struc-
tured probability models for complex, hierarchical domains. OOBNs provide modu-
lar, composable models of objects. They provide reusable class probability models,
and an inheritance mechanism for creating subclasses. They have coherent proba-
bilistic semantics, both in terms of a natural generative model, and in terms of the
hierarchical structure of the system.

We also presented the SVE algorithm, which provides a way to exploit the hi-
erarchy and redundancy for probabilistic reasoning in OOBNs. In particular, they
allow the designer of a class model to state compositional performance guarantees
on the cost of using the class in an OOBN. With their support for reusable classes,
inheritance, and reuse of computation, OOBNs provide a natural environment for
iterative refinement and focusing of a model as more information is gained about a
particular situation.

In the next three chapters, we will discuss extensions of the OOBN framework that
provide an even more powerful and flexible representation language. In Chapter 8,

we will present an implementation of the SPOOK system for building OOBNs and



CHAPTER 4. OBJECT-ORIENTED BAYESIAN NETWORKS 117

working with them, together with experimental results on the performance gains of

the SVE algorithm, and some example applications.



Chapter 5

Relational Probability Models

5.1 Introduction

In the previous chapter we presented Object-Oriented Bayesian Networks, which allow
us to capture much of the structure of a domain in a probability model. In particular,
they allow us to express the hierarchical structure of a domain, and the fact that many
of the same types of objects reappear over and over again in a model. We showed that
OOBNSs provide a convenient, modular language for constructing complex probability
models. In addition, we showed that both the hierarchical structure and the reuse of
class models can be exploited to support efficient inference.

Unfortunately, OOBNSs are still not quite adequate for modeling some of the com-
plex domains we are interested in. The problem is that the hierarchical structure
they employ is too rigid. All of the objects in the model are forced into the part-of
hierarchy, whether it is natural or not. No relationships other than the whole-part
relationship can be expressed. A strictly hierarchical structure may be adequate for
describing certain kinds of physical systems, such as an airplane or a computer sys-
tem. However, once we move to more general domains, such as modeling a university
or a battlespace situation, the hierarchy is inappropriate. What is the hierarchical
relationship, for example, between a student and a course she is taking? Even when
modeling a computer system for troubleshooting purposes, we may want to describe

different events that happen in a particular situation — events such as a file failing

118



CHAPTER 5. RELATIONAL PROBABILITY MODELS 119

to load correctly, or an application crashing. The relationship between an event and
the components involved in it is not hierarchical. In addition, if we want to model a
situation with multiple computers connected over a network, we want to describe the
relationship between interconnected computers, which cannot be modeled adequately
in a hierarchical manner.

This last example illustrates a related limitation of OOBNSs, namely, that they
do not allow multiple interconnections between the objects in a system. We want to
be able to express the fact, for example, that two different computers in a network
happen to use the same printer. We need a language that allows us to talk not only
about class models, but also to describe the ways that instances are connected to
each other.

In this chapter we address these issues with relational probability models (RPMs).
In RPMs, probability models are still associated with classes of objects, but now the
instances can be connected to each other by any relationship, not just the part-whole
relationship. Objects are no longer organized hierarchically. Given two interrelated
objects, neither one is considered to contain the other in an absolute sense. However,
from a relative point of view, each object can be said to contain the other as part of
its model. In this sense the language is multi-centered: any object can be viewed as
the “center” of a model, with all other objects spreading out from it.

In addition to allowing non-hierarchical relationships between objects, RPMs allow
the class probability models to be augmented with a description of the connections be-
tween instances in the system. Logically, connections between instances are relations
between domain entities. The relations can be represented using a standard relational
database system or a knowledge-based system. Thus, RPMs integrate probabilistic
representations with more traditional logic-based representations.

This approach of decomposing the representation language into the probabilis-
tic class models and statements about instances is very flexible, and works well in
modeling an environment in which the system configuration changes frequently. The
class probability models will remain fixed as the system configuration changes; only

the relational model will change. For example, in a computer network model, new



CHAPTER 5. RELATIONAL PROBABILITY MODELS 120

machines will often be added to the network, and the interconnections between ma-
chines will often change. This type of change can be handled very easily by an RPM,
without the need to specify new object models.

Another restriction of OOBNs that is relaxed in RPMs is the requirement that
classes be non-recursive. So, for example, we may now have a Woman class with a
Mother attribute, and the class of Woman.Mother is also Woman. Even though we
allow recursive class definitions, we do not allow the dependency models themselves
to be recursive — that will have to wait until Chapter 7. So, for example, if the class
Woman has a Happy attribute, we would not allow Happy to depend on Mother.Happy.
This compromise allows RPMs to integrate with many existing knowledge bases that
use recursively defined classes, while still maintaining the relative simplicity of non-
recursive probability models.

The fact that objects are no longer organized hierarchically does not come without
a cost. We can no longer use input and output attributes to describe the information
that flows into and out of an object, since those imply the existence of some higher
level calling object that passes information into the object. Instead, an object receives
its information from many related objects, none of which are hierarchically superior
to it. The way an object depends on other objects is now completely specified within
the dependent object. As a result, an object no longer knows all the ways that other
objects depend on it, and we cannot separate the internals of an object from the
outside world by a simple interface.

One might think to limit the ways other objects can depend on an object by
restricting the the set of values exported by the object, in the same way that we
differentiated between output and encapsulated attributes in OOBNs. However, the
presence of recursive class definitions makes this approach fail. For example, if we
want to allow a woman’s mother to influence objects that are related to the woman,
Mother must be an output attribute of Woman. But then there is no way to stop
other objects depending on the great-great-grandmother of a woman. An interface
consisting of all information that an instance of Woman potentially passes to the
outside world would have to be infinite. In short, the lack of a strict hierachy and the

presence of recursive class definitions make it more difficult to exploit encapsulation



CHAPTER 5. RELATIONAL PROBABILITY MODELS 121

of entire portions of a model within an object. Nevertheless, as we shall see, we can
still design our inference algorithm to exploit encapsulation wherever possible.

The remainder of this chapter is organized as follows. In the next section we de-
cribe the basic relational structure of our models, and in Section 5.3, we describe how
the probability model is specified. We also discuss how to make sure the probability
model is acyclic and non-recursive. In Section 5.4 we present the semantics of RPMs,
giving both intuitive semantics based on a generative process and formal measure-
theoretic semantics. In Section 5.5 we modify the Structured Variable Elimination
algorithm from the previous chapter to account for the complications introduced by

RPMs. We conclude in Section 5.6 with a discussion of various aspects of RPMs.

5.2 Basic Language Definition

In the previous chapter, we had a very restricted relational language appropriate for
describing hierarchical systems. In order to describe more general relational models,
we now relax all the restrictions on the typed relational language, except for the fact
that all attributes are single-valued, i.e., that the set R of relations (multi-valued
attributes) is empty. We will call a typed relational language with no multi-valued
relations a single-valued relational language.

Given a single-valued relational language, we will allow a knowledge base to con-
tain two types of statements. The first type of statement relates named instances to
each other via complex attributes. If the KB contains the statement I.A = J, then
we would expect the value of I.A in any possible world to be equal to the value of J.
The second type of statement relates different complex attributes to each other, by
declaring one to be the inverse of the other. If the KB contains the statement that B
is an inverse of A, then we would expect that in any possible world, if c.A = d, then

d.B = c for any entities ¢ and d. Formally,

Definition 5.2.1: A single-valued relational knowledge base consists of the following:

o A single-valued relational language, i.e., a typed relational language £ =
(C,C,A, f, R, I), where R = ().



CHAPTER 5. RELATIONAL PROBABILITY MODELS 122

o A set of instance statements on L, of the form I.A = J, where I,J € I, A € f,
the type of I is a subtype of the domain type of A, and the type of J is a
subtype of the range type of A.

o A set of inverse statements on L, of the form A inverse-of B, where the domain
type of A is a supertype of the range type of B, and the domain type of B is a
supertype of the range type of A. 1

Instance and inverse statements can together imply other statements about at-
tributes of named instances. For example, if a KB contains the statements I.A = J,
and B inverse-of A, then it is implied that the value of J.B is I. To make our life
easier, we shall always assume that all statements about attributes of named instances
that are implied by other statements will be contained explicitly in the KB. If that
is not the case, we can always generate such statements in a simple preprocessing
phase. We also make the assumption that there is at most one instance statement

for any I.A.

Example 5.2.2: As a simple illustrative example for this chapter, we will consider
a KB K with a Person class, with subclasses Man and Woman. The Person class
has complex attributes Mother and Father, with range type Woman and Man respec-
tively. The Person class also has simple attributes Healthy, Wealthy and Happy, all of
which are boolean. The Woman and Man classes have subclasses Married-Woman and
Married-Man respectively; each has an additional attribute Wife-Of or Husband-Of with
the appropriate range type. K contains the inverse statements Wife-Of inverse-of Husband-Of
and Husband-Of inverse-of Wife-Of.
KC also contains a set of named instances and instance statements describing a fam-

ily. The named instances are Liz of class Married-Woman, Phil of class Married-Man,



CHAPTER 5. RELATIONAL PROBABILITY MODELS 123

Chas of class Married-Man, and Bill of class Man. The instance statements are

Bill.Father = Chas
Chas.Mother = Liz
Chas.Father = Phil
LizWife-Of = Phil
Phil.Husband-Of = Liz

As we did with hierarchical relational languages, we will make some restrictions on
the possible worlds to make sure that they have the structure we want. Of course we
want the possible worlds to satisfy the instance and inverse statements. In addition,
we want the structure of a possible world to be fully known, so that there is no
uncertainty as to the values of complex attributes. (We will deal with the case where
there is uncertainty as to the relational structure of a possible world in the next
chapter.) For hierarchical relational languages, we achieved our goal by stipulating
that the entities in the world must be organized in a tree structure, and that there are
no extraneous entities. Eliminating extraneous entities was achieved by stipulating
that a possible world could not have a proper subworld that was also a possible
world, and we use the same technique here. Organizing the entities into a tree was
achieved through conditions 1 and 2 of Definition 4.2.7, which stipulated that different
complex attributes must have disjoint ranges, and that complex attributes must be
one-to-one.! Here the situation is a little more complex. We cannot state either of
these conditions, because they may be violated by instance and inverse statements,
which can force different attributes of different entities to have the same values. We
use a more complex condition, which seeks to limit the number of identities that hold

between different attribute chains. Conditions 1 and 2 of Definition 4.2.7 are special

!To be precise, in the previous chapter we distinguished between input attributes and value
attributes, and only required the complex value attributes to satisfy these conditions. The conditions
were necessarily violated for complex input attributes, just as they are here for instance and inverse
statements. However, the situation was still simpler in the previous chapter, because the specification
of which attributes violated the uniqueness assumption was a part of the language definition, whereas
here they are part of the knowledge base.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 124

cases of the more complex condition.

Definition 5.2.3: Let £ be a typed relational language, and w an interpretation for
L. An identity in w is a quadruple (I, g, J, p), such that [I.0]Y = [J.p]“. I

Definition 5.2.4: Let I be a single-valued relational knowledge base with language
L. A legal world for IC is an interpretation w of £ such that:

1. For every instance statement I.A = J in I, [[.A]Y = [J]“.

2. For every inverse statement A inverse-of B in K, and every pair of entities
¢,d € AY, ¢ = [B]“(d) implies d = [A]“(c).

3. There is no interpretation w’ of I satisfying conditions 1 and 2 such that the
set of identities in w’ is a proper subset of the set of identities in w. A world

satisfying this condition is said to satisfy the unique names assumption.

4. There is no proper subworld of w satistying conditions 1, 2 and 3. 1

Note that the notion of an inverse presented here one-sided. It is possible for a
KB to contain a statement A inverse-of B but not B inverse-of A. A legal world can
satisfy the former and not the latter. Also note that an attribute can have multiple
inverses. While this may not be particularly useful in practice, it does not present
technical difficulties to allow it.

We can now show that these definitions force legal worlds to have the properties
we want. We will prove analogues of Lemmas 4.2.9 and 4.2.10, and Theorem 4.2.11,
showing that there is a set of attribute chains, called standard chains, that play the
same role as component chains in hierarchical possible worlds.? That is, the different
standard chains have different interpretations, but every chain is the same as some
standard chain. Therefore, the set of entities in every possible world corresponds to
the set of complex standard chains, while the values of the simple standard chains

fully characterize the possible worlds.

2We avoid using the name component chain here, since the term component implies a hierarchical
relationship between a container and its contained object, which we do not wish to assume here.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 125

Definition 5.2.5: Let K be a single-valued relational KB. A standard chain for K
has the form I.0, where I is a named instance, and o is a (possibly empty) attribute

chain on the type of I, such that

1. o does not begin with an attribute A, such that K contains an instance state-
ment of the form I.A = B, and

2. o does not contain any occurence of A.B, where K contains an inverse statement
B inverse-of A. 11

Note that the definition of standard chain here includes the instance I, whereas
it did not in the definition of component chain in the previous chapter. The reason
is that now there may be more than one named instance in the KB, and we need to

indicate to which one the chain is attached.

Lemma 5.2.6: Let K be a single-valued relational KB. For every named instance I,
and every attribute chain o on the type of I, there exists a standard chain J.p for K,

such that in every legal world w, [I.0]¥ = [J.p]”.

Proof: Suppose not. There must be a chain ¢ of minimal length such that I.c
violates the statement of theorem. It cannot be a standard chain. If o = A.0’, and
IC contains the statement [.A = I’ then [I.0]¥ = [I'.0']“. But ¢’ is shorter than o,
so by assumption there is some standard chain J.p such that [I'.0']¥ = [J.p]“. But
then, [I.0]¥ = [J.p]“, contrary to our assumption that [.o violates the statement of
the theorem. We are left with the possibility that o has the form 7.A.B.7', where K
contains the statement B inverse-of A. But then [B]¥([I.7.A]*) = [I.7]¥, so [[.0]¥ =
[I.7.7']“. Since 7.7" is shorter than o, the same reasoning as above shows that this
case is also impossible. We therefore conclude that the statement of the theorem is

satisfied for every I.o. 1

As in the previous chapter, there is a simple way to compute the standard chain

to which an attribute chain is equal. Again, we use the notation #(I.0) to denote the



CHAPTER 5. RELATIONAL PROBABILITY MODELS 126

standard chain to which I.o is equal in every possible world. 6([.0) is computed as

follows:3

While o has the form 7.A.B.7', where B inverse-of A do:
oc=r171".

While 0 = A.0’, and K contains a statement [.A=.J do:
I=1].

oc=o'.

Return o.].

Lemma 5.2.7: Let KC be a single-valued relational KB, w a legal world for K, and
Lo and J.p distinct complex standard chains. Then [I.0]* # [J.p]“.

Proof: We need to show that there are no identities (I, 0, J, p) in w, where .o and
J.p are distinct standard chains. Without loss of generality, we can assume that o is
at least as long as p. We will prove the statement by induction on the lengths of o
and p. For the base case, if both ¢ and p are empty, and /.0 = J.p, I must be the
same as J by Definition 2.2.3. Therefore there are no identities (I, 0, J, p) with .o
and J.p distinct and o and p empty.

For the induction step, consider two standard chains /.0 and J.p, and suppose that
there are no identities (I'.0’, J'.p'), with I'.c’ and J'.p’ standard, such that either o'
is shorter than o, or ¢’ is the same length as ¢ and p' is shorter than p. We must
show that [I.0]¥ # [J.p]”.

Suppose not. We will show that w violates the unique names assumption, i.e.,
that there is a world w' satisfying conditions 1 and 2 of Definition 5.2.4 that has
strictly fewer identities than w. Since ¢ is at least as long as p and at least one is
non-empty, o is non-empty, and we can write 0 = ¢’.A. Let ¢ be [I.0']“, and d be
[I.0]Y = [J.p|*. We will construct a new possible world ' that is identical to w,
except that A“" contains an element e not in A%, the type of e is the same as the type
of d, [A]“ (c) = e, and for every attribute B on the type of e, [B]*' (¢) = [B]*'(d). Note

3We need to process inverse statements before instance statements, since processing inverse state-
ments can cause instance statements to apply, but not vice versa. Consider for example I.A.B.C,
where I contains the statements B inverse-of A and I.C' = J.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 127

that for any instance K and chain 7, if [K.7]* # e, [K.7]*" = [K.7]*. Furthermore, if
[K.7]* = e, then 7 must be 7. A, [K.7']* = ¢, and [K.7]* = d. Therefore any identity
that holds in «w’ must hold in w.

Now, suppose that w’ violates condition 1 of Definition 5.2.4. Then there must be
an instance statement K.B = K’ that holds in w but not in w’. We must then have
[K.B]* # [K.B]*, so [K.B]* = e. By the comments above, this implies that B = A
and [K]¥ = c¢. But, by induction hypothesis, the identity (K¢, I, 0’) cannot hold if
K.e and I.0' are distinct. So I must be K, and ¢’ = e. So K contains the instance
statement I.A = K', contrary to assumption that I.c = I.A is standard. Therefore
w' must satisfy condition 1.

Suppose now that w’ violates condition 2 of Definition 5.2.4. Then /C must contain
an inverse statement B’ inverse-of B that holds in w but not in w’. So there must
be some K.7.B.B' such that [K.7.B.B']*" # [K.7.B.B']*, and again we must have
B' = A, with [K.7]* = d, [K.7.B]* = ¢, [K.7.B.A]* = d, but [[.7.B.A]Y = e,
violating the inverse statement. By induction hypothesis, the identity (I, o, J, p.B)
cannot hold if J.p.B is standard, so p must be p’.C, where B inverse-of C. But then

we must have
¢ = [B]*(d) = [B]*([/J.p]*) = [B]“([J.'.C]*) = [J.p]",

so the identity (I, o', J, p') must hold, contrary to induction hypothesis. Therefore w’
must satisfy condition 2.

Finally, the identity (I, o, J, p), which holds in w, does not hold in w’. Therefore
w'" is a world satisfying conditions 1 and 2, such that the set of identities in w’ is a
proper subset of the set of identities in w. Therefore w violates the unique names

assumption, contrary to hypothesis that w is a legal world. I

Theorem 5.2.8: Let K be a single-valued relational KB, w a legal world for IC,
and let X denote the set of compler standard chains in K. There erists a one-to-
one correspondence ¢ from X to A¥, such that for any standard chain I.oc € X,
¢(I.0) = [1.0]¥, and the class of ¢(I.0) (Definition 2.2.4) is the range type of o.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 128

Proof: The proof is the same as that of Theorem 4.2.11, using the no proper sub-
worlds condition, except that now Lemma 5.2.7 is used instead of Lemma 4.2.9 to

show that ¢ is one-to-one. 1

We can now proceed as in the previous chapter, to fix the set of domain elements

in our possible worlds to be precisely the set of standard chains.

Definition 5.2.9: Let IC be a single-valued relational KB. The set of possible worlds
for IC, written (x, or simply w when K is clear, is the set of legal worlds for K in
which A is {I.0 : I.0 is a standard chain for £}, and the map ¢ from Theorem 5.2.8
is the identity map. I

Example 5.2.10: Consider the KB K of Example 5.2.2. A possible world for K
has the following structure. There are entities [Liz], [Phil“, [Chas]”, and [Bill]*,

corresponding to the four named instances. The instance statements stipulate that

[Chas.Mother|¥ = [Liz]*, [Chas.Father|* = [Phil]*, [ Bill]*.Father = [Chas|®, [ Liz]*.Wife-Of =

[Phil]“, and [Phil]* Husband-Of = [Liz]“. Because the type of Chas is Married-Man,
there must be some entity ¢ that is equal to [Chas.Husband-Of]“. The type of ¢ is
Married-Woman, and [Wife-Of]“(¢) = Chas. Also, there is another entity d that is
equal to [Bill. Mother]“. By the unique names assumption, ¢ # d — if we want to
force these to be equal, we need to introduce a new named instance and two instance
statements. The parents of [Liz]“, [Phil]“, ¢ and d, so their must be eight other do-
main entities representing their parents. Similarly, each of these parents has two other
entities representing their parents, and so on. By the unique names assumption, all
these newly introduced parents are distinct. Also, by the no proper subworlds con-
dition, d and all the other entities introduced as parents must be of the class Man or

Woman, and not married. I

The possible worlds are fully characterized by the values of the simple attributes
of the domain entities, i.e., by the values of the simple standard attribute chains. In
the previous chapter we defined basic variables in terms of component chains. We
no longer have components in the current framework, but standard chains serve the

same purpose as component chains.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 129

Definition 5.2.11: A basic variable is a simple standard attribute chain. B

Example 5.2.12: Continuing our running example, the basic variables for K are all
chains that have one of the following forms, where A is one of the simple attributes
Healthy, Wealthy or Happy, and o is an attribute chain consisting of zero or more

occurences of Mother or Father:

Liz.o.A

Phil.o. A

Chas.A
Chas.Husband-Of.c. A
Bill. A

Bill. Mother.c. A

Note that there are no basic variables beginning with Chas.Mother, Chas.Father, or
Bill.Father, because of instance statements, or beginning with Chas.Husband-Of.Wife-Of,

because of inverse statements. 1

Note that there may be infinitely many basic variables, as in this example. There-
fore, we can no longer define an equivalent attribute-based model for our language as
we did in the previous chapter. As a result, when we come to define the probabilistic

semantics of our language, we will not be able to use a flat BN equivalent of the entire
KB.

Theorem 5.2.13: Let I be a single-valued relational KB. Let X be the set of basic
variables of IC, and let  be an assignment of values to X such that for each X € X,

the assigned value x is in Val|X|. There exists a unique possible world w € Q. such
that for each X € X, [X]|Y =z.

Proof: Same as Theorem 4.2.16. 1



CHAPTER 5. RELATIONAL PROBABILITY MODELS 130

5.3 Probability Model and Acyclicity

5.3.1 Generative Semantics

As we did with hierarchical systems, we create a probability model for more general
relational systems by supplying a local probability model for each class of object. The
local probability model for a class is specified in the same way as in an OOBN. The
dependency model is specified by listing a set of parents for each simple attribute,
each parent being a simple attribute chain. The numeric component of the probability

model is provided by specifying a CPF for each of the simple attributes.

Definition 5.3.1: Let A be a simple attribute of class C. A local probability model

for A consists of:

e A set of parents v = vq,...,v,,, where each v; is a simple attribute chain on
C.

e A conditional probability function CPF 4 from Val[v] to Val[A].

A class probability model for a class C' consists of a local probability model for each

of the simple value attributes of C'. 1

Example 5.3.2: Continuing our running example, we could define the parents of the
Happy attribute of Person to be Mother.Father.Wealthy and Father.Healthy, with an
appropriate CPF. For the Married-Man subclass of Person, we may specify that the
Happy attribute has the single parent Husband-Of.Happy, while the Happy attribute
of the Married-Woman class has the parent Wife-Of.Mother.Happy.

In our example KB, these specifications will induce dependencies between basic
variables. For example, Bill.Happy depends on Bill. Mother.Father.Wealthy and on
Chas.Healthy, while Phil.Happy depends on Liz.Happy. The class probability models
combine together with the relational structure of the KB to specify how the basic

variables in the KB actually influence each other. &

Notice the flexibility of this approach to creating probability models. The prob-

abilistic components of the representation language are associated with classes of



CHAPTER 5. RELATIONAL PROBABILITY MODELS 131

objects. The probability model associated with a class specifies, for each instance of
the class, a conditional probability distribution over properties of the instance given
properties of its related objects. It makes no assumptions about the identity of the
instance, or the identities of the related instances. The class probability models re-
main fixed as the relational structure of the domain varies. The system modeller is
therefore protected from having to redefine a probability model each time the sys-
tem configuration changes. He needs only to design a set of class probability models
once and for all; changes to the system configuration can be handled by updates to a
traditional relational database or knowledge based system.

A set of probability models for all the classes in a single-valued relational KB /C

defines a dependency model over all the basic variables of K.

Definition 5.3.3: Let K be a single-valued relational KB, and P consist of a proba-
bility model P¢ for each class C of K. We define the relation <— over basic variables
of I as follows. For any basic variables X and Y, let X = I.0.A, and let C be the
range type of 0. Then X < Y iff Y is equal to 0(/.0.v) for some parent v of A in
Pe. If X «+ Y, we say that X depends on Y. 1

In order for a set of class probability models to be coherent, we require two
properties of the dependency relation <—. The first is obvious: the relation should be
acyclic, as it is in BNs and OOBNs. The second requirement is that there should be
no infinite chains of dependencies, i.e., no infinite sequence of basic variables (X)$°
such that X; < X;,;. The reason is that we will define the probability model in
terms of a generative process that can generate the value of any basic variable. In
order to generate the value of a variable, the process must first generate the values of
its parents. If there is an infinite dependency chain, the process will not terminate.
For now, therefore, we disallow infinite dependency chains. We shall consider models
with infinite chains in Chapter 7.

Obviously we cannot check that <— has no cycles or infinite chains by examining
the relation directly, because there may be infinitely many variables. Rather, we need

to examine the structure of the probability models. One approach to guaranteeing

that < is acyclic is similar to the one we used in OOBNs. We create a dependency



CHAPTER 5. RELATIONAL PROBABILITY MODELS 132

graph for each class, and make sure that it is acyclic. In OOBNs, the graph took
into account the information-passing structure. Here we have no information-passing
structure, so we have to account for the flow of information between objects in a

different way.

Definition 5.3.4: Let P be a set of probability models for the classes of a single-
valued relational KB. For each complex attribute A, we define the import set of A,
written Imp[A] to be the set of attributes B of the range type of A, such that there
is some class C and some attribute D of C' such that a parent of D in Pc has the
form 0.A.B.7. The export set of A, written Ezp[A], contains all the attributes of C
that are in the import set of an inverse of A, i.e., Fxp[A] = U(p:B inverse-of 4} Imp[B].

The dependency graph of C, written G[C] has an edge from A to B if either:
e B is simple, and some parent of B in P begins with A, or

e B is complex, and A € Fzp[B]. i

The reasoning behind this definition is as follows. Suppose I and J are two ob-
jects,* with I.A = J. If A does not have an inverse, then the only flow of information
between the two objects is from J to I. This is because attributes of I can refer to
J, but not vice versa. However, if A has an inverse B, then attributes of J can refer
to I, and information can flow back and forth between the two objects. The import
set, of B lists those attributes of I that are referred to in the probability model for
J. These attributes will be contained in the export set of A. By making sure that all
attributes in the export set of A precede A in G[C], while attributes that refer to J
follow A in G[C], we ensure that the interaction between I and J does not produce a

cycle.

Example 5.3.5: Suppose we wanted to augment the dependencies specified in Ex-
ample 5.3.2 by specifying that the Happy attribute of Married-Woman also depends
on Wife-Of Happy. This creates a cyclic dependency model, because the happiness

of the husband and wife mutually influence each other. The cycle is detected in

4T and J are general domain entities here, not necessarily named instances.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 133

C C
A, A,
""""""" =B, )
<-. ..............
@
| 1 | 2

(B ==

(b)
Figure 5.1: (a) Infinite and (b) cyclic dependency models.

G[Married-Woman|, as follows: because Happy depends on Wife-Of.Happy, there is an
edge from Wife-Of to Happy. However, because the Happy attribute of Married-Man
depends on Husband-Of.-Happy, Happy is in Imp[Husband-Of]. Since Husband-Of is an
inverse of Wife-Of, Happy is therefore in Exp|Wife-Of]. Therefore there is an edge
from Happy to Wife-Of in G[Married-Woman], and the cycle is detected.

In fact, for a KB that contains no instance statements, acyclicity of all the G[C]
is sufficient to guarantee that < is acyclic. However, this approach is deficient for
several reasons. First, it does not rule out infinite dependency chains. In addition, in

the presence of instance statements, it does not even rule out acyclic chains.

Example 5.3.6: Figure 5.1 (a) shows an example of an infinite dependency chain.

There are two classes, and each class C; has a complex attribute A; and a simple



CHAPTER 5. RELATIONAL PROBABILITY MODELS 134

attribute B;. The range type of A; is Cy, while the range type of A is C;. B; has the
parent A;.Bs, while B, has the parent A,.B;. Neither of the complex attributes has
an inverse, so their export sets are both empty. Each of the class dependency graphs
are as shown, with an edge from A; to B;. There are, in fact, no cyclic dependency
chains in this model. However, if there is a basic variable X = [.0.B;, where the
range type of o is C;, X will depend on I.0.A;.Bs, which will in turn depend on
l.0.A,.A5.B1, and so on.

Figure 5.1 (b) illustrates that in the presence of instance statements, there may
be cyclic dependencies even when all the class dependency graphs are acyclic. In this
example there are two instances: I; of type C1, and I, of type Cs, with the models
of C; and Cy as before. The KB contains the instance statements I;.A; = I, and
I,.Ay = I,. Now I,.B; depends on I,.B, and vice versa.

Examples of infinite and cyclic dependency chains not detected by the class depen-
dency graphs can also be created in our running example. Adding Mother.Happy as a
parent of Happy obviously creates an infinite dependency chain, but there is no edge
going out of Happy in G[Person] so the graph remains acyclic. An example of a cyclic
dependency chain is a little more contrived — if we stipulate that Bill.Father = Bill,

then adding Father.Happy as a parent of Happy creates a cyclic dependency chain. i

One can address these issues by introducing a global dependency graph, in which
dependencies between attributes of different objects, both classes and instances, are
modeled.’® This need for a global dependency graph introduces a slight loss of modu-
larity, since we can no longer guarantee based solely on the class dependency graphs
that a complete dependency model will be coherent. However, the global dependency
graph is a data structure that can be computed by the system, and the user does not
need to worry about it explicitly. Cycles can be presented to the user as they are
detected; when that happens, the user will be alerted of the inter-object interactions

that are causing a problem.

Definition 5.3.7: Let K be a single-valued relational KB, with a set P of probability
models for the classes of . The global dependency graph for K is the graph G[K]

5Even though we are dispensing with the class dependency models for eliminating cycles, they
are still a useful concept, and will in fact be used in our inference algorithm.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 135

defined as follows: G[K] contains a node C.A, for each class C in K and each attribute
A of C, and a node I.A, for each named instance I in K and each attribute A of the
type of I. G[K] contains the following edges:

1. If a parent v of A in P¢ begins with B, G[K] contains

(a) an edge from C.B to C.A;
(b) an edge from I.B to I.A for each instance I of type C.

2. If A € Imp[B], and C; and C, are the range type and domain type of A

respectively, G[K] contains

(a) an edge from C.A to Cs.B;
(b) an edge from C;.A to I.B for each instance I of type Cy such that I does

not contain an instance statement assigning a value to I.B;

(c) an edge from J.A to I.B if I is an instance of type Cy and K contains an

instance statement I.B = J. 1

If the global dependency graph is acyclic, then < is acyclic and contains no infinite
chains. In the examples of Figure reffig:cyclicity-example, the infinite dependency
chain will be detected by the cycle (Cy.B;,C;.A1,C5.By,Cy. A5, C1.By), while the
cyclic instance-level dependency chain will be detected by the cycle (I.By, 1. A1, J.By, J.As, I.By).

Theorem 5.3.8: Let K be a single-valued relational KB, and P be a set of probability
models for the classes of K. If G[K] is acyclic, then < is acyclic and contains no

infinite dependency chains.

Proof: For a standard attribute chain I.0.A, we will let [/.0.A] denote a representa-
tive node for I.0.A in G[K] as follows: If o is empty, [[.0.A] = [.A. If o is non-empty,
[I.0.A] = C.A, where C is the range type of o.

Suppose X and Y are basic variables, and X « Y. We claim that [Y] is an
ancestor of [X] in G[K].

Let X be I.0.A. Y must be equal to §(I.0.v) for some parent v of A. Let Ay be
the first attribute of v, and let Zy = I.0.A4y. By definition of G[K], there is an edge



CHAPTER 5. RELATIONAL PROBABILITY MODELS 136

from [Zy] to [X] in G[K]: clause 1 (a) applies if o is non-empty, while clause 1 (b)
applies if o is empty.

Recall that, in the computation of 6, we first eliminate pairs A.B such that
B inverse-of A, and then process instance statements. Write 0 = o¢'.B;.... .B,,
and v = B7'.... .B{'.w', where B;' inverse-of B;, and the first attribute of v’ is
not an inverse of the last attribute of o’. We allow the cases where ¢’ is empty,
orn =0 (ie, v = wv). Let v = Ay.... Ay, and Z; = 1.0 A;. If n = 0,
Zy = Zy, and [Z1] is an ancestor of [X] in G[K]. Otherwise, for ¢ > 1, since v
contains B; *.B; Y, B;', € Imp[B;']. By clause 2 of Definition 5.3.7, there is an
edge from [I.0.B,!.... .B;'.B; || to [[.o.B,.... .B; '] in G[K]: clause 2 (a) applies,
unless ¢ = n and o is empty, in which case clause 2 (b) applies. Similarly, since v con-
tains By '.A;, there is an edge from [Z;] to [I.0.B;!. ... .B]']. Since [Zy] = [I.0.B;],
[Z1] is an ancestor of [Zy] in G[K], and therefore also an ancestor of [X].

Now, if ¢’ is non-empty, no instance statement can apply to I.0’.v', otherwise
X = I.o.v would not be a standard chain, since ¢’ is a prefix of o. Therefore
Y = 1.0'W = 10" A;.... . A, Also, for i < m, since v contains A;.A;,1, there
is an edge from [I.0".Ay.... . A;. Aj4] to [1.0".Ay. ... .Aj] in G[K], by clause 2 (a) of
Definition 5.3.7. Since Z; = I.0'. Ay, and [Z;] is an ancestor of [X], it follows that
[Y] is an ancestor of [X] as claimed.

If on the other hand ¢’ is empty, we may need to apply instance statements to
I.v" in the process of computing 6(I.0.v). Write I = I, and let I, ... , I, be named
instances such that for j < £, K contains the instance statement I;.A; = I;;q, but K
contains no instance statement on I,.A,. Because A,, is simple, we must have ¢ < m.
Y is now equal to I;. Ay. ... .A,, and [Y] is the same as or an ancestor of I;. A, by the
same reasoning as before. Also, for j < ¢, since I;.A; = I;11, and A; 11 € Imp[A;],
there is an edge from I;;1.A4;11 to I;.A; in G[K] by clause 2 (c) of Definition 5.3.7.
Since Z; = I;.A;, it follows that [Y] is either equal to or an ancestor of [Z;], and
again [Y] is an ancestor of [X] as claimed.

As a result, every dependency chain X; < X3 <— ... corresponds to a sequence
of nodes [X], [X3],... of G[K], such that [X;,;] is an ancestor of [X;]. Since G[K] is

finite and acyclic, there can be no cyclic or infinite dependency chains. I



CHAPTER 5. RELATIONAL PROBABILITY MODELS 137

Definition 5.3.9: A single-valued relational probability model is a pair (IC,P), in
which P consists of a probability model P¢ for each C in K, such that G[K] is

acyclic. 11

The method we have presented here, that uses the global dependency graph G[K]
to prevent models with cyclic and infinite dependency chains, is sound by Theo-
rem 5.3.8, but it is by no means complete. If a dependency model is cyclic or has
infinite chains, that will be detected in the graph. However, it is quite possible for
the dependency graph to be cyclic, but for the dependency relation < to be safe.

The reason is that whenever B € Imp[A], we make C'.B a parent of C.A in G[K],
(C and C" being the domain types of A and B respectively). If D is a simple attribute
of C that has a parent beginning with A, C.D will be a child of C.A in G[K]. This
implies that C'.B will precede C.D in the dependency graph, even if D does not
actually depend on A.B, but only on some other attribute of C' imported by A. In
particular, the dependency graph prevents patterns of interaction where two objects
pass information back and forth several times, in such a way that the total flow of
information is acyclic.

If we want to allow these more sophisticated interaction patterns, we need a de-
pendency graph with a finer granularity, that can model the flow of information in
more detail. One way to do this is to make a simple attribute D of C' depend directly
on C'.B if a parent of D begins with A.B (and the range type of A is C'), rather
than mediate the dependency through the imports set of A. We omit the details of
how the new dependency graph is constructed, and how it prevents cyclic and infinite

dependency chains, as they should be fairly clear. Some details can be found in [27].

5.4 Semantics

5.4.1 Generative Semantics

As usual, we first present intuitive semantics for our language in terms of a gen-
erative process. This process generates values for all simple attributes of all the

objects in the model. It begins with a single top-level process for all the attributes of



CHAPTER 5. RELATIONAL PROBABILITY MODELS 138

named instances. The generation of these attributes needs to be interleaved, because
attributes of different instances may mutually depend on each other, as shown in Ex-
ample 5.3.6. Generating the value of a complex attribute that is not bound via some
instance statement requires a recursive call to a process that generates an instance of
the appropriate class.

In the top-level process, we use an ordering d over the attributes of the named
instances that is consistent with G[K]. ILe., if I.A precedes J.B in G[K|, I.A must
precede J.B in d. For the process that generates values for an instance of a class C,
we use an ordering d¢ over attributes of C' that is consistent with G[K]. Le., if C.A
precedes C.B in G[K], then A precedes B in dc.

Before performing a recursive call to generate the value of a complex attribute,
the process checks to see whether that attribute already has a value. That could
happen due to either instance or inverse statements. We take care of the former by
enforcing all instance statements at the very beginning of the process, while we take
care of the latter by enforcing inverse statements as soon as they become applicable.

The full generative process is as follows. The top-level GenerateWorld call
takes a single-valued relational probability model K as argument, and returns a world

CL)EQ;C.

Procedure GenerateWorld (K)
Let w be an empty world.
Let I be the named instances of K.
For each instance I €1 do:
Let C be the type of I.
AY +—T1:C.
For each attribute A of [ do:
If I contains a statement [.A=J
[A]“(]) < J.
For each [.A in order d do:
If A is simple
GenerateSimple (], A) .
Else



CHAPTER 5. RELATIONAL PROBABILITY MODELS

FindOrGenerateComplex (], A) .

Procedure GenerateSimple(c,A)

Let C be the type of c.

Let v be the set of parents of A in Pg.
Choose v € Val[A], according to CPF 4(v | [v]“(c)).
[A]“(c) .

Procedure FindOrGenerateComplex(c, A)
If [A]“(c) exists
Return.

AY «+— c.A.

Let C be the range type of A.

[A]“(c) «—c.A: C.

If K contains a statement B inverse-of A
[B]“(c.A) = c.

GenerateEntity(c.A, C).

Procedure GenerateEntity(c, C)
For each attribute A of C in order d. do:
If A is simple
GenerateSimple(c, A) .
Else
FindOrGenerateComplex(c, A) .

139

The GenerateWorld process presented here is superficially very similar to the

process for OOBNs. However, there is a major difference. Because there may be

infinitely many domain entities, the process as described here may never terminate. So

we cannot actually envision running the process to generate a complete possible world.

Instead, we can envision a lazy evaluation of the process, in which we specify a set of

attributes of domain entities that we are interested in, and then only generate those

aspects of the world that are actually needed to determine the values of the attributes



CHAPTER 5. RELATIONAL PROBABILITY MODELS 140

we are interested in. Because the dependency model contains no infinite dependency
chains, only a finite portion of the world needs to be generated to determine the
values of a finite number of attributes.

These intuitions suggest a way to formalize the probability model defined by a KB.
Rather than constructing an infinite flat BN equivalent for the entire KB, we generate
a flat BN relative to a finite set of attributes of domain entities. This restricted BN will
be finite, and will define a probability distribution over the values of that particular
set, of attributes. We can then put all these local distributions together, to get a

probability measure over all the attributes of all the domain entities.

5.4.2 Probability Measures

We now briefly present the basic concepts of measure theory needed to understand
the semantics of our language. The reader who is interested in a more thorough

treatment should consult one of the many textbooks on measure theory, such as [34].

Definition 5.4.1: Let € be a set of possible worlds. An algebra over 2 is a set of
subsets of ) that is closed under finite unions and complements. A o-algebra over )

is a set of subsets of () that is closed under countable unions and complements. i

It is clear that an algebra is also closed under intersections and differences. It is
also clear that ) and Q belong to any algebra over Q.

A subset of Q2 essentially defines a property of possible worlds, namely, the property
of being in the subset. Rather than defining the probability of each possible world
directly, we will define the probability that a possible world satisfies some property,
i.e., the probability that it lies in some subset of 2. We characterize the set of
properties whose probabilities we can talk about by specifying a o-algebra £ over ).
Each set £ € £ is called an event, representing the “event” that w € F, and & is
called the event space. The requirement that the event space be an algebra makes
sure that if we can speak of the probabilities of the events E and F', we can also
speak of the probabilities of “not E”, and of “E or F”, which is only reasonable. The

further requirement that the event space be a o-algebra allows us to speak of events



CHAPTER 5. RELATIONAL PROBABILITY MODELS 141

that can only be characterized as the countably infinite union of more basic events.
For example, suppose {2 consists of English sentences, and the event E,, is the set of

sentences of n words beginning with “Once upon a time...”.

If we can specify the
probability of E,, for each n, we ought to be able to talk about the probability of the
event U, F,,, which is the set of sentences of any length beginning with “Once upon

a time...”.

Definition 5.4.2: Let £ be a set of subsets of 2. A real-valued function f on &
is additive if, for every disjoint E,F € £ whose union is also in &, f(EU F) =
f(E) + f(F). The function f is countably additive if for every disjoint sequence
Ey, E,, ... of sets in £ whose union is also in &, f(U2 E;) =Y oo, f(E:).5 1

Definition 5.4.3: Let £ be a o-algebra over Q. A probability measure P over (2, &)
is a countably additive function P : & —[0,1] such that P(Q2) = 1.

The requirement that P be countably additive is natural. It says that if we have
a set of disjoint events, the probability that any of the events occur is the sum of
the probabilities of each of the individual events. For example, the probability that a

Y

sentence begins with the words “Once upon a time...” is the sum over all lengths n of
the probability that a sentence is of n words and begins with “Once upon a time...”.
The second condition just says that the probability that a possible world is a possible
world should be 1.

A probability distribution, as defined in Section 3.2, over a finite set of worlds €2,
is just a special case of probability measure defined here. The event space is 22, and
for any subset E of 2 we define P(E) = ) _p P(w). It is clear that P so defined

satisfies the conditions of a probability measure.

5.4.3 Measure-Theoretic Semantics for RPMs

In order to define a probability measure over {2k, we must first choose an event space.

Formally we proceed as follows:

6The meaning of the infinite sum is the limit of the partial sums > | f(E;) if the limit exists,
or oo if the sum grows without bound.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 142

Definition 5.4.4: Let X be a finite set of basic variables of K, and let & be an
assignment of values to X. The set {w € Qx : [X;]¥ = x;, VX; € X} is called a basic
event, and is denoted [X = x]. The set of all basic events will be denoted F. I

The basic events are the fundamental elements in our event space. We would like
our probability model to define the probability that a possible world will satisfy a
set of assignments to basic variables, for any finite set of assignments. The set of
basic events JF is not an algebra or o-algebra, because it is not closed under unions.
However, it is closed under intersections, and the set of finite or countable unions of
basic events is a o-algebra. We will take this set as our event space £x. The set F of
basic events is called a base for Ex.

One property of this particular event space is that it distinguishes between every
pair of possible worlds. By Theorem 5.2.13, no two possible worlds agree on the
values of all basic variables, so for any pair of worlds w and ', there is a basic event
E such that w € F, and ' ¢ E, and vice versa. Thus the event space is actually
quite a rich one.

We proceed to define a function f, that will specify the probability of any basic

event.

Definition 5.4.5: Let X be a finite set of basic variables of L. The flat BN relative
to X, denoted B[X], is a BN B defined as follows:

e BB contains a node for every variable X € X, and for every ancestor Y of X in

the < relation.
e G[B] contains an edge from Y to X if X « Y.

e Let X =1.0.A be anode in B. If o is empty, let C' be the type of I, otherwise
let C' be the range type of 0. The CPF associated with X in B is derived from
CPF 4 in P¢ as follows. Let U be the parents of X in B. CPFx is a function
from Val[U] x Val[X] to [0,1], defined by CPFx(u,z) = CPFa(x | v(u)),

where v(u) denotes the value assigned to 8(/.0.v) in u.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 143

We define a function f : F — [0,1] by
f(X =z]) = Pgx)(X = ). ]

If G[K] is acyclic, then by Theorem 5.3.8, and the fact that the number of direct
parents of any basic variable is finite, a basic variable has a finite number of ancestors.
So B[X] contains a finite number of nodes. Also, if X is in B[X] and X < Y, then
Y is also in B[X], so §([.0.v) is always a parent of X = [.0.A in B for any parent v
of A in the local probability model of A. Therefore CPF x is well-defined, B[ X] is a
well-defined BN, and the function f is well-defined.

Lemma 5.4.6: If X andY are finite sets of basic variables of KC, and B[Y'| contains
every X € X, then for any value x € Val[X],

Py (X =z) = f([X = z]).

Proof: Since each X € X is a node in B[Y'], X is either in Y or the ancestor of
some Y € Y. So every ancestor of X is in B[Y]. In addition, the parents and CPF
of X in B[Y] are the same as in B[X]. So the portion of B[Y| consisting of X and

ancestors of X is exactly the same as B[X]. Therefore
Pyy)(X = z) = Pgix)(X =) = f([X = z]). i
Lemma 5.4.7: The function f is additive on F.

Proof: Let I be a basic event, and Fi, ... , F,, be disjoint basic events, with UTF; =
F. Write F = [X =], F; = [Y; = y;]. Let Y be UlY;, and consider B[Y']. Each of
the F; must mention all the X, otherwise we would not have F; C F. So X C Y,
and, by Lemma 5.4.6,

Py(X =z) = f([X = z]).



CHAPTER 5. RELATIONAL PROBABILITY MODELS 144

By the same lemma,

Poy)(Yi = yi) = f([Yi = i)

But since the F; are disjoint events whose union is F',

f([(X =2]) = Pgy(X =) = ZPBm(Yé =y;) = Zf([Yi = Yi))- i

Lemma 5.4.8: No basic event is the infinitely countable disjoint union of other basic

events.

Proof: Suppose not. Let (F;)$° be a sequence of disjoint basic events such that
U F; is equal to basic event F'. Each of the F; must agree with F' on the attributes
mentioned by F. Let X*® be the variables mentioned by F; that are not mentioned
by F, and let X be UX®. Consider all possible assignments « to X. Since F' =
Utzevarx]) (F N[X = z]), every F N[X = x] must be contained in some F;. We will
show by diagonalization that this is impossible.

X must be infinite, because there are only a finite number of distinct basic events
that mention only variables in a finite set, and it must be countable, since it is the
countable union of finite sets. Let (X)$° be an enumeration of X. Consider an infinite
tree, in which each node represents a basic event. The root is the event F', and each
node G at depth m has a child G N [X; = z;], for each value z; € Val[X;]. Each
infinite path through the tree represents an event F' N [X = x]. We mark a node
with an event F; if every path going through the node is contained in F;. We will
say that a node in the tree is blocked if it is equal to or a descendant of some node
marked by Fj;, and we will call a node a blocking node if it is blocked but its parent is
not blocked. The depth of a blocking node marked by F; is equal to the largest index
of the variables mentioned by F;. Since the F; are disjoint, no path can be marked
by more than one Fj. Therefore there are blocking nodes marked by each of the F;.
Since all the X are mentioned by some Fj;, there are arbitrarily deep blocking nodes.
Therefore, the subtree consisting of unblocked nodes is infinite, and by Konigs lemma,

it must contain an infinite path. This infinite path corresponds to a F N [X = x]



CHAPTER 5. RELATIONAL PROBABILITY MODELS 145

that is not contained in any F;. I

Lemma 5.4.9: f is countably additive on F.
Proof: Immediate from Lemmas 5.4.7 and 5.4.8. 1

It is a basic fact of measure theory that any countably additive function f on a
base for a o-algebra can be uniquely extended to a measure u on the g-algebra. For
any event E/ € £, if F is the finite union UTF; of disjoint basic events, define u(F) =
S f(F;). If E is the countable disjoint union U F}, define u(E) = lim;_,o 37 f(F}).
If the limit grows without bound, p(E) = oo, though this cannot happen in our case.

Countable additivity of f ensures that p is also countably additive. Formally:

Theorem 5.4.10: Let (K, P) be a single-valued relational probability model. There
is a unique probability measure u on (Qc, Ex), such that for any basic event [ X = x|,
u(1X = 2) = Popy(X = ).

Proof: By Lemma 5.4.9 and the remarks following it, there is a unique measure p
on (Qk, &) such that u([X = z]) = f([X = z]) = Pgx)(X = x). To show that x is
a probability measure, we must show that () = 1. Let X be any basic variable.

Q= Ugevax)[X = ], so

)= Y, wX=2)= ) PyuxpX =2 =1

z€ Val[X] z€ Val[X]

Definition 5.4.11: Let (K, P) be a single-valued RPM. We define the semantics
of (IC,P) to be the unique probability measure u over Qx such that u([X = x]) =
Pyx)(X = ). The probability measure p will be denoted Pk. 1

5.5 Inference

We want to compute the answer to a query of the form Pc(Q | E = e), for some set

of query variables (), and some assignment e to evidence variables E. The query and



CHAPTER 5. RELATIONAL PROBABILITY MODELS 146

evidence variables are basic variables of K.

One way to solve the query is to use the technique called knowledge-based model
construction (KBMC') [98]. In this approach, a BN that is sufficient to answer the
query is constructed, and the query is solved using standard inference algorithms in
that BN. Let X be the set of variables in QU E. From the previous section, we know
that B[X] is sufficient to define a probability distribution over X, and the answer to
our query is equal to Pgx](Q | E = e). We therefore need to construct B[X], and
solve the query in that BN.

As in the previous chapter, we are not satisfied with this approach, because it
fails to exploit the object structure of the domain. Once again, we want a structured
inference algorithm that can exploit the fact that the domain is described in terms of
interacting objects, and that many of these objects have the same probability model.

The SVE algorithm from the previous chapter carries through in its essentials.
Once again, the algorithm behaves recursively. To solve a query on an object, we
eliminate each of the complex attributes of the object using a recursive call, to obtain
a factor over the interface of the attribute. We then use standard VE to solve the
local query. As before, we can exploit the fact that many objects have the same
probability model by defining the SVE algorithm in terms of the class probability
models rather than specific instances.

However, there are two issues that make the algorithm more complicated here.
The first issue that needs to be resolved is that objects no longer have a single,
clearly defined interface. The interface of an object depends on how attributes of
other objects refer to it, and on the particular query asked, and it can be arbitrarily
complex.

The second issue is that in the presence of instance statements, encapsulation does
not hold in the same way that it did in hierarchical models. In an OOBN, all the
objects in a model were organized in a tree structure. That is no longer the case here;
we may have a network of inter-related instances whose structure forms a graph, not
a tree. For example, suppose we have three named instances I, J and K, and suppose
we have the instance statements I.A = J, J B = K and I.C' = K. It is not the case
that K is encapsulated from I by the interface between I and J.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 147

First we describe how the recursive algorithm deals with the first issue. The basic
idea is that when solving a query on class C, we need to compute the interface of each
complex attribute of C' on the fly, as we perform the computation. For this purpose,
we maintain a Needed set for each attribute. The set Needed[A] consists of attribute
chains on the range type of A, that are used by other attributes. At the beginning
of the SVE computation, Needed|A] is initialized to contain the query and evidence
chains beginning with A. When we process an attribute B, we discover what attribute
chains it depends on. If B depends on the chain 7, and 7 = A.7', then we add A.7'
to Needed[A]. We process attributes in a bottom-up fashion, so that an attribute is
not processed until all attributes that may depend on it have been processed. The
class dependency graph G[C] is used to determine the order in which attributes are
processed. We make sure that no attribute is processed until all its children in G[C]
have been processed.

For a simple attribute B, it is easy to determine what chains B depends on —
it simply depends on all the parents v of B in Ps. For a complex attribute A, if
A has no inverse, A cannot depend on any other chains, so we can simply compute
a probability distribution over Needed|[A] when eliminating A. However, suppose A
does have an inverse B. Let ¢ be an entity of the range type of A, and let c.A be
d, of type C'. Since B inverse-of A, d.B is c. Processing the attribute A results in
a recursive call to a query on C’; in which the set of query variables is Needed[A].
Suppose that during the processing of the recursive query, we find that some chain
B.7 is needed. The value of B.7 on d is actually the value of 7 on ¢. Therefore B.7
is not encapsulated from ¢ by the interface between ¢ and d. So the chain 7 must be
part of the interface between ¢ and d.

The fact that 7 is part of the interface between ¢ and d is not known at the time
that A is processed, during the computation on C. It is a result of the fact that
the recursive computation on C' requires the chain B.r. This information is only
available in the model for C’, and is determined during the recursive computation
for the query on C’. For this reason, we have the recursive SVE function return two
values. One is the set of such chains 7 that are part of the interface between ¢ and d,

that are not in Needed[A]. This is the set of chains 7 such that a chain B.7 appears



CHAPTER 5. RELATIONAL PROBABILITY MODELS 148

during the recursive computation for an inverse B of A. The second return value is a
factor over the entire interface between ¢ and d. Le., it is a factor over Needed[A]UT.
In fact, the Needed[A] correspond to the outputs of d in OOBN terminology, and the
T behave like inputs, so the factor returned by SVE expresses P(Needed[A], e | T).

To assist in bookkeeping, SVE maintains Needed|A] also for simple attributes A.
For these attributes Needed|A] serves as a flag to indicate whether the attribute is
needed at all during the computation. If Needed[A] = () at the time A is processed,
then A is ignored completely.

We are now ready to describe the recursive part of the SVE algorithm. It takes five
arguments. The first four are the same as in OOBNSs: a class C, a set of query chains
o, a set of evidence chains p, and an assignment e € Val[p]. The fifth argument
is the attribute D through which SVE was called; it will be used to detect when a
complex attribute of C' should not be processed recursively, but should be treated as
an inverse attribute, as described above. The algorithm returns a set of input chains

T, and a factor over oo U T.

Algorithm StructuredVariableElimination(C', o, p, e, D)
For each attribute A of C do

Needed[A] = 0.
For each c € o Up do:
If 0= A0

Needed[A] = Needed[A] U {o}.

For each attribute A of C,
in a bottom-up order consistent with G[C] do:
If Needed[A] # ()
If A is simple
If A is a chain p€p
Let a be the value assigned to A in e
ga = CPF 4[A =a.
Else
ga = CPF 4.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 149

Else // A is complex
If not A inverse-of D
Let C' be the range type of A.
Let o' = {0’ : A.o' € Needed[A]}.
Let p'={p : A.p € p}.
Let €’ be the value in Vaul[p’],
such that for each p' € p’,
the value assigned to p' in €’
is the same as the value assigned to A.p) in e
(t', fa) = StructuredVariableElimination(C', o/, p’, €', A).
g4 = Rename(f4,1) where
Y(B.r) =71 if B inverse-of A,
Y(B.1) = A.B.T otherwise.
For each B.oc mentioned by f4
Needed[B] = Needed|B] U {c} .

T = U(B:B inverse-of D} Needed | B].
f = {94 : Needed[A] # 0} .
Let ¢ ={¢:¢ is mentioned by some f€ f} —(cUT).
For each ¢ € ¢ do
Let g be {g € f: g mentions ¢}.

hy =11g-
k¢=z¢h¢.
f=f-gu{k}.
f=I1f.

Return (7, f).

Example 5.5.1: We use the dependency model from Example 5.3.2 to illustrate the
use of the Needed sets. First, suppose there is a query on the Person class, asking
for the probability distribution over the value of Happy given that Mother.Healthy
is true. Needed[Happy] is initialized to {Happy}, while Needed[Mother] is initialized
to {Mother.Wealthy}. The Needed sets for the other attributes are initialized to be



CHAPTER 5. RELATIONAL PROBABILITY MODELS 150

empty.

Let us suppose that the attribute of Person are processed in the order Healthy,
Happy, Mother, Father and Wealthy, which is consistent with G[Person]. When Healthy
is processed, Needed[Healthy] is empty, so it is ignored. Next, Happy is processed, and
Needed[Happy]| is non-empty. One parent of Happy is Mother.Father.Wealthy, which
is added to Needed[Mother|, while the other parent is Father.Healthy, which is added
to Needed[Father]. Next, Mother is processed, resulting in a recursive call to SVE.
Needed[Mother| is {Mother.Healthy, Mother.Father.Wealthy}, so the query chains are
Healthy and Father.Wealthy, while the evidence asserts that Healthy is true. Because
Mother has no inverses, the first return value 7 returned by this recursive call is empty.
So no chains are added to the Needed sets of other attributes after the recursive call
returns. The Father attribute is processed next, resulting in another recursive call,
with the query variable Healthy. Again the return value 7 is empty. Finally, the
Wealthy attribute is ignored because Needed Wealthy remains empty.

Now consider a query on the Married-Man class, asking for a distribution over
the value of Happy. In this class, Happy has the parent Husband-Of.Happy, so pro-
cessing Happy results in Husband-Of.Happy being placed in Needed[Husband-Of]. Pro-
cessing Husband-Of then results in a recursive query on the Married-Woman class,
with the query variable Happy. The fifth argument to the recursive call is the at-
tribute Husband-Of. When the Happy attribute of the Married-Woman class is pro-
cessed, Wife-Of.Mother.Happy is added to Needed[Wife-Of]. When Wife-Of is pro-
cessed, the algorithm detects that it is an inverse of Husband-Of, so nothing is done.
At the end of the recursive call, however, the return value 7 contains the chain
Wife-Of.Mother.Happy, which is then renamed to Mother.Happy in the original SVE
computation on the Married-Man class. The chain Mother.Happy is therefore added to
Needed[Mother|. Note that since Mother is in Fzp[Husband-Of], it precedes Husband-Of
in G[Married-Man|, and is therefore processed after Husband-Of. 1

This recursive algorithm is applied only to unnamed, generic instances of a class
C, and not to named instances. As we said earlier, encapsulation does not always ap-

ply in the presence of instance statements. Since there can be no instance statements



CHAPTER 5. RELATIONAL PROBABILITY MODELS 151

about unnamed instances, it is safe to apply the recursive algorithm to them. How-
ever, we need to handle named instances separately. Because attributes of different
named instances may be interleaved in G[K], we must process all the named instances
together. For this purpose, we create a special top-level instance that contains all

attributes of all named instances.

Definition 5.5.2: Let (I, P) be a RPM. The top-level object of K, denoted T, is an

object” defined as follows:

e T contains an attribute [I.A] for each attribute A of a named instance I in K.
[I.A] is simple or complex according to whether A is simple or complex, and its

range type is the same as that of A.

e If [I.A] is simple, let C be the class of I, and let v be the parents of A in Pc.
For each v € v, let J.B.o be 0(I.v). Then [I.A] has a parent [J.B].o in Pr.2
The CPF of [I.A] in Pr is the same as the CPF of A in Pc. 1

A query on a RPM can now be solved via a call to SVE on the top-level object.
The final argument D to this call will be null, since the query on the top-level object
is not invoked from within another query. SolveQuery takes a set of query variables
Q, a set of evidence variables E and a value e € Val[E], and returns P(Q | E = e).
First the query and evidence variables are turned into attribute chains on the top-
level object. SVE is called on the top-level object. The first returned argument will
always be empty, since the last argument to the SVE call is empty. The second
returned argument is equal to P(Q, E = e), but expressed in terms of chains on the
top-level object. It is renamed, and then normalized to obtain the desired answer to

the query.

Algorithm SolveQuery(Q, E, e)
Let o be {[[.A].0c':[.A.0’ € Q}.

"T can be viewed as an instance object or as a class object with a single instance. Since the
distinction is not important, we just call 7' an object.

8The notation [J.B].c indicates the fact that [J.B] is actually a single attribute of 7', as opposed
to J.B.o, which begins with the instance J followed by the attribute B.




CHAPTER 5. RELATIONAL PROBABILITY MODELS 152

Let p be {[[.A]l.p/:I.A.p € E}.

Let €’ be the value in Vaul[p],

such that for each [[.A].p/ € p/,

the value assigned to [[.A].p' in €’

is the same as the value assigned to [.A.p' in e.
(0, 9) = SVE(T, o, p, €, 0).

f = Rename(g, 1), where

Y([[.Al.o)=1.A0.

Return Normalize(f) .

As we did with OOBNs, we can take advantage of the fact that many objects have
the same probability model by caching solutions returned by calls to SVE. We now
need to use all five arguments as indices to the cache. The cache will mainly be useful
for computations on generic unnamed instances of a class, since there is only one call
per query to the top-level object, and this call will vary from query to query. We can
also implement the improvement discussed at the end of Section 4.5.5, in which SVE
returns a set of factors rather than a single factor.

Most of the complexity analysis from the previous chapter carries over to here.
The cost of inference within a single SVE call is dominated by the VE phase at
the end, and is exponential in the induced width M of the graph describing the VE
computation. Once again, M depends on the induced width of G[C] and on the sizes
of the interfaces. However, since the size of the interface of an object is not an inherent
property of the class of the object, but is dependent on other object models and on the
query, it is harder to bound the cost of inference based solely on local considerations.
Furthermore, for the named instances, one needs to consider the induced width of
the top-level object, which cannot be determined locally based on the models of the
individual instances. We could potentially utilize some encapsulation even at the top
level, but we choose not to for simplicity.

As a result, one cannot provide compositional performance guarantees for general
RPMs in the way that one can for OOBNs. This is the price paid for the more general
representation language. It is our intuition that the decomposition of a model in terms

of interacting entities will naturally lead to small interfaces in most cases, so the fact



CHAPTER 5. RELATIONAL PROBABILITY MODELS 153

that the sizes of interfaces are unbounded in principle will often not be an issue in
practice. If the interfaces are in fact small, our algorithm will exploit that fact.

The need to perform inference for all the named instances in a single top-level
object can also lead to performance difficulties. The cost of inference will depend on
the tree-width of the top-level project, and we believe the presence of many intercon-
nected named instances will in some cases lead to a high tree-width for the top-level
object in practice. As a result, exact inference may not be feasible for the top-level
object in these cases. We believe that this may be a more serious issue than the

unbounded sizes of interfaces, and shall discuss this matter further in Section 6.3.

5.6 Discussion

5.6.1 Integration with OOBNs

While relational probability models are more flexible than OOBNSs, because they al-
low general relations and interconnected instances, there are some things that can be
expressed in the OOBN framework but not in RPMs. For one thing, if the relation-
ship between two objects really is hierarchical, this can be exploited in the OOBN
framework, while in the RPM framework the two objects are treated symmetrically.
A RPM can be used to model a hierarchical relationship, but it is harder to do. Sup-
pose C and C' are two RPM classes, and we want a hierarchical relationship between
them. We give C an attribute A of range type C’, and C’ an attribute B of range type
C, and specify that B inverse-of A. As a result, an object of type C' can depend on
attributes of its containing object via B, and the containing object can in turn depend
on the contained object via A. All attributes of the containing object on which the
contained object depends are in Ezp|A], so they must precede all attributes of the
containing object which depend on the contained object in G[C]. In implementing a
hierarchical relationship in this way, it is critical that only one inverse statement is
used, in the specified direction. If a statement A inverse-of B is added, then G[C']
will be cyclic.

Another difference between OOBNs and RMPs is that the OOBN framework uses



CHAPTER 5. RELATIONAL PROBABILITY MODELS 154

the binding mechanism to pass information between objects. The binding mechanism
corresponds to a “push” model of information passing, because the information is
passed to the contained object from its container, whereas the RPM framework uses
a “pull” model of information passing, because the passing of information is controlled
by the object that uses the information. There are situations in which the push model
is advantageous. For example, suppose a class C' has simple attributes A; and A,
with the same range, and complex attributes B; and B; of class C'. We may want
our model to specify that B; depends on A;, while By depends on Ay, but this cannot
be done in a pull model — the model for C' would have to specify a dependence on
one or the other of A; and A,, which would then be used for both B; and B,. The
only way to achieve the desired effect in a pull model is to create two subclasses of C’,
which is unwieldy. A push model, on the other hand, can easily handle this situation,
because the model for C' can state explicitly that A; is passed to B; and A, is passed
to Bs.

As we have discussed, OOBNs also have an advantage over more general RPMs
because OOBN components have clearly defined interfaces, and we can provide com-
positional performance guarantees using these interfaces. Even though hierarchical
models may be insufficient for completely representing a system, it is clear that most
complex systems are at least partly hierarchical. We therefore want to preserve the
advantages of hierarchical models, without losing the flexibility provided by general
relational models. We can easily combine the two representation languages to obtain
the advantages of both. Some of the relations in a relational model can be designated
as component functions, implying a hierarchical relationship between a container and
contained object. The container can define bindings for the contained object, as in
OOBNs. Other relations would behave just as in relational models.

In order for the container to bind the value of an attribute of the contained object,
that attribute should not have parents in the contained object’s model. Otherwise,
we would want to condition the parents of the bound attribute on its value. It would
be difficult to give semantics to the resulting model in terms of a generative process.
Therefore, we only allow roots of the class dependency graph of the contained object

to be bound by its container. All such roots are potential inputs of the object.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 155

The development of the syntax and semantics for the combined representation
language should be clear, so we do not provide any more details. One issue that needs
to be dealt with in inference is combining the on-the-fly computation of interfaces
with the OOBN style of passing information between objects. This can be achieved
by replacing the last argument to SVE, which is currently the attribute through
which SVE is called, with a set of attributes whose values are to be obtained from
the calling object. This set will include both inverses of the attribute through which
SVE is called and attributes whose values are bound by the calling object. An
attribute in this set is be treated in the same way that an inverse of the entry-point
attribute is currently treated — no recursive call is made for the attribute, and chains
beginning with the attribute are not eliminated during the variable elimination phase.
The modified SVE algorithm is as follows (only the changed parts of the algorithm

are shown):

Algorithm StructuredVariableElimination(C', o, p, e, D)
// Initialization and processing of simple attributes are same as before
// Processing of complex attributes is now as follows
Else // A is complex
If not Ae D
Let C' be the range type of A.
Let o’/ = {o': A.0’ € Needed[A]}.
Let p'={p' : Ap € p}.
Let €’ be the value in Val[p],
such that for each p' € p/,
the value assigned to p' in €’
is the same as the value assigned to A.p' in e
Let D' = {B: B inverse-of A} U{B : there exists a binding O[A.B|}.
(t', fa) = StructuredVariableElimination(C’, o', p’, €’, D’).
g2 = Rename(f4,1) where
Y(B.r) =71 if B inverse-of A,
Y(B.1) = O[A.B].7 if there is a binding O[A.B],
Y(B.1) = A.B.T otherwise.



CHAPTER 5. RELATIONAL PROBABILITY MODELS 156

For each B.oc mentioned by f4
Needed|B] = Needed|B] U {c} .

T = UpepyNeeded D).

// Remainder of variable elimination phase is same as before.

5.6.2 Isomorphic Worlds

Recall that in Section 4.2.3, we addressed the issue of isomorphic worlds, that differ
only in the names of the domain entities. As we said there, we do not want to
consider isomorphic worlds as really being different as far as the probability model
is concerned. We resolved the issue there by explicitly specifying the set of domain
entities, and we used the same solution in this chapter. However, we mentioned that
an elegant solution to the problem uses measure theory, and we describe that solution
here.

The solution is in fact very simple. Rather than restricting the set of possible
worlds in our probability space to contain only those worlds containing a particular
set of domain entities, we allow the set of possible worlds to include all worlds that
have the right kind of structure, regardless of the identity of the domain entities.
However, we continue to specify the event space in terms of basic events, which
are formulas on possible worlds. In particular, the basic event [X = x] holds in a
possible world w if for all X; € X, [X;]¥ = ;. For a basic variable Xj, [X;]“ is a well-
constructed term even if the names of the domain elements are different from those
specified in Definition 5.2.9. Furthermore, the value of [X;]* does not depend on the
names of the domain elements, and is the same in all isomorphic worlds. Therefore,
if w and W' are isomorphic, they will belong to exactly the same events in the event

space, and will be indistinguishable as far as the probability measure is concerned.

5.6.3 Conclusion

In this chapter, we extended our probabilistic representation language beyond hier-

archical models to more general relational probability models. After presenting the



CHAPTER 5. RELATIONAL PROBABILITY MODELS 157

basic language definitions and describing the relational structure of the models for
this language, we discussed the problem of making sure that the probability model
is acyclic and non-recursive. We showed that the problem is more complex than for
hierarchical models, and requires a global dependency graph over the attributes of
all objects in the model. We then presented semantics for the language. Intuitively,
the semantics is defined through a generative process, from which values of particu-
lar attributes can be generated using lazy evaluation. We showed that this intuition
can be formalized by defining a probability measure over the set of possible worlds.
Next, we presented a structured inference algorithm for relational probability mod-
els, extending the SVE algorithm for OOBNs to deal with the more general case. In
particular, we showed how object interfaces could be computed on the fly during the
process of solving a query, and how to deal with interconnected instances.

Even though inference in RPMs is more difficult than in OOBNs, we feel that the
added expressive power is well worth the cost. When modeling complex situations,
it is crucial to be able to talk about general, non-hierarchical relationships between
the object, and to be able to talk about interconnected instances. In OOBNs, we
blindly assumed that all the entities in a domain are connected in a tree structure.
This assumption loses a lot of important information, and the properties of different
objects may be assumed to be independent or conditionally independent when in fact
they are not. By allowing interconnected instances in RPMs, we allow richer and
more accurate models to be represented. Importantly, this allows us to derive more
inferences from evidence about one object to properties of other objects.

By separating the domain model into fixed class probability models and a flexi-
ble relational model, we obtain a probabilistic representation language that is both
powerful and flexible. Furthermore, a model designer has the ability to control the
degree to which the interconnectivity structure of the domain objects is modeled in
detail. A model in which the full interconnectivity stucture is made explicit is more
accurate and allows richer inferences, but comes at the cost of more expensive infer-
ence. The modeler needs to represent only those interconnections between objects
that are absolutely crucial. By making the unique names assumption about the ob-

jects that are not made explicitly, we allow the inference algorithm to take advantage



CHAPTER 5. RELATIONAL PROBABILITY MODELS 158

of encapsulation for all the unnamed objects.

In the models discussed in this chapter, we still maintained the restriction that
all complex attributes are single-valued. This restriction will be relaxed in the next
chapter, when we consider multi-valued attributes. In defining the set of possible
worlds, we made certain assumptions, in particular the unique-names assumption,
that guaranteed that the relational structure of the possible worlds are fully known,
for a particular KB. In the next chapter, we will describe extensions to the language
that allow us to express uncertainty about the relational structure of the possible
worlds. We also made the restriction in the current chapter that the dependency
model should not contain infinite dependency chains. In Chapter 7, we consider

recursive probability models that do contain such infinite chains.



Chapter 6

Structural Uncertainty

6.1 Introduction

In the previous chapter, we allowed entities in the domain to be inter-related, but we
made strong assumptions about the relational model. We assumed that all relation-
ships were functional, that is, for every object X with complex attribute A there is
a single object Y such that X.A = Y. Clearly, this assumption severely limits the
expressive power of our models. For example, there may be many students regis-
tered for a course, and each student may take a number of courses. The attributes
Student.Taking and Course.Registered are multi-valued.

In this chapter, we gradually relax the restrictions concerning multi-valued at-
tributes. First, in Section 6.2, we allow multi-valued attributes where the number
of values is fixed in advance. Semantically, this case is a very simple extension of
single-valued relational models, but the introduction of multi-valued attributes even
in this highly restricted manner requires us to introduce new tools for representation
and inference.

Next, in Section 6.3, we consider models in which the number of values of a multi-
valued attribute is allowed to vary, but the set of values is always fully specified.
These types of models are well suited to augmenting a relational database with a
probabilistic model. The semantics of these models is quite different from that of the

previous chapter. We make the closed world assumption, so that the entities in the

159



CHAPTER 6. STRUCTURAL UNCERTAINTY 160

domain and the relationships between them are only those specified explicitly in the
database, and there is no need to consider generic, unnamed instances of a class.

Once we allow the number of values of a multi-valued attribute to vary, and
consider models in which the set of values is not known, we open the door to a whole
new kind of uncertainty, which we call structural uncertainty. This is uncertainty
about the relational structure of the model itself, in this case about the number of
values of a multi-valued attribute. This type of structural uncertainty is called number
uncertainty, and is the topic of Section 6.4. By introducing structural attributes into
the language, we allow the structural uncertainty to be incorporated directly into
the class probability models. The result is a rich and expressive language, in which
we can apply the techniques of Bayesian network inference to reasoning about the
relational configuration of a system.

There are other kinds of structural uncertainty besides uncertainty over the num-
ber of values of a multi-valued attribute. One kind is uncertainty over the type of
a complex attribute. For example, we may not know whether a course taken by a
student is a math course or a humanities course. Another kind is uncertainty over the
value of a complex attribute, i.e., uncertainty over which other entities an entity is
related to. For example, we may not know whether Jane Studious is taking CS121 or
(CS221. Again, we model these kinds of structural uncertainty by introducing explicit
structural attributes. Section 6.5 discusses these kinds of structural uncertainty, and
Section 6.6 discusses possible extensions to the language to model even richer flavors

of structural uncertainty.

6.2 Multi-Valued Attributes

6.2.1 Language

We begin this chapter by considering a relational language that allows multi-valued
attributes, but in which the number of values of a multi-valued attribute is fixed.

Formally, we allow any typed relational language (C,C, A, f, R, I), and no longer



CHAPTER 6. STRUCTURAL UNCERTAINTY 161

require R to be empty, but we associate a value #[R] with each relation R, deter-
mining the number of values of R. If the domain type of R is the class C, and
#[R] = m, then for any entity ¢ of C, there will be exactly m entities d, ... , d,, such
that R(c,d;). We will call a language of this form a fized-number relational language.
We allow a knowledge base to contain instance and inverse statements concerning
multi-valued attributes. A KB may contain the statement J € I.A, where I and J are
named instances, and A is a multi-valued attribute. The meaning of this statement
is that one of the values of I.A is J. The KB may in fact contain up to #[A]
such statements. We assume that different instance statements on the same I.A are
numbered, so we can speak of the first value of I.A, the second value, and so on.
Several different types of inverse statements are possible with multi-valued at-
tributes. All have the form B inverse-of A, where A and B are complex attributes.
An inverse statement involving two single-valued attributes is called a one-one state-
ment. A one-many statement is one in which A is multi-valued and B is single-valued.
A single entity I is related to multiple entities J1, ... , J,, via A, which are all related
to I via B. For example, a professor may teach a number of courses, but a course
normally only has a single instructor — A is the Teaches attribute of Professor, while
B is the Instructor attribute of Course. A many-one statement is one in which A is
single-valued while B is multi-valued. In this case, if I is related to J via A, then
I must be one of the values of J.B. For example, A may now be Course.Instructor
while B is Professor. Teaches. A many-many statement, of course, is one in which
both A and B are multi-valued. In this case, an entity I is related to multiple entities
Ji,...,Jm via A, and for each of the J;, I is one of the values of the J;.A. An example
of this case is the relationship between a course and the students taking the course.
An interpretation w for a typed relational language that has multi-valued at-
tributes must specify [R]* for each relation R € R, in addition to all the other things
specified for single-valued relational languages. In addition, since the language spec-
ifies #[R], we force w to respect that specification by adding the constraint that for
every entity ¢ of the domain type of R, the number of values in [R]“(c) must be #[R].
Also, the instance and inverse statements involving multi-valued attributes must all

be respected. Formally:



CHAPTER 6. STRUCTURAL UNCERTAINTY 162

Definition 6.2.1: Let K be a knowledge base for a fixed-number relational language

L. A possible world for I is an interpretation w of £ such that:

1. For every relation R with domain type C, and every ¢ € [C]¥, |[{d : [R]*(c,d)}| =
#[R].

2. For every instance statement I.A = J in K, where A is single-valued, [[.A]*Y =
[J]°.

3. For every instance statement J € I.A in I, where A is multi-valued, [A]“([I]*, [J]*).

4. For every inverse statement B inverse-of A in K, and every pair of entities
c,d € A, [A]¥(c, d) implies [B]“(d, c)."

5. w satisfies the unique names assumption. l.e, there is no interpretation w’ of K
satisfying conditions 1-4 such that the set of identities in ' is a proper subset

of the set of identities in w.

6. There is no proper subworld of w satisfying conditions 1-4. I

To illustrate what the interconnectivity structure looks like with the unique names
assumption and many-many inverses, consider a KB K with Student and Course
classes, where Student.Taking and Course.Enrolled-In are inverses. It is of course un-
realistic to assume that the number of courses taken by a student and the number
of students in a course are fixed, but for now, assume that #[Taking] is 4, while
#[Enrolled-In] is 30. Suppose that K contains the instance Jane-Student of type
Student and CS221 of type Course, and the statements Jane-Student € CS221.Enrolled-In,
and CS221 € Jane-Student. Taking.

A possible world for I has the following structure. There are two entities cor-
responding to the named instances, which of course are related to each other. In
addition, there are 29 other Student entities related to C5221. Each of those stu-
dents, as well as Jane-Student, is related to three other Course entities besides C'S221.

Because of the unique-names assumption, these other course entities are all distinct.

L This clause applies to all the different kinds of inverse statements.



CHAPTER 6. STRUCTURAL UNCERTAINTY 163

Each of them is related to 29 other students, which are all distinct, and all different
from the students mentioned so far. Each of these new students is related to 3 other
courses, and so on.

At this point we could proceed with the program of the previous two chapters,
showing that the structure of possible worlds is fixed, and that there is a one-to-
one correspondence between some set of attribute chains and domain entities. When
a multi-valued attribute appears in a chain, we would have to include an index to
distinguish between the different values of the attribute, but other than that, the
argument is much the same as before, and we omit the details.

We could also follow the approach in previous chapters of restricting the possible
worlds to be those containing a certain specific set of domain entities. However, from
now on we shall use the approach described at the end of the previous chapter, in
which we use the event space to render indistinguishable worlds that differ only in
the names of the entities that are in them. We therefore allow all worlds satisfying
Definition 6.2.1 into the set 2 of possible worlds.

In defining the class probability models, we need to specify a way for the properties
of an object to depend on properties of other objects that are related to it by a multi-
valued attribute. Rather than depending on each of the individual related objects
directly, we allow the first object to depend on the other objects via some aggregate
property of the set of related objects. Such aggregate properties are expressed through

quantifiers.

Definition 6.2.2: A quantifier on class C has the form #[A.c = v], where A is a
multi-valued attribute of C', o is a simple single-valued attribute chain on the range

type of A, and v is a value in Val[c].? We assume for convenience that a quantifier A.c

2Quantifiers as we define them here are closely related to the traditional existential and universal
quantifiers in first-order logic. For example, the universally quantified expression Ve : [.A = ¢ =
c.0 = v can be expressed as #[A.c = v] = #[A]. Our use of the word “quantifier” is actually very
close to its literal meaning of “counter”.

Other types of aggregation operators, such as average or sum, are used in database query lan-
guages, and may sometimes be meaningful for our models. For example, the evaluation of a school
may depend on the average number of students in a class. In the language presented here we shall not
deal with aggregates other than quantifiers, but they can be added to the language without difficulty.
On the other hand, performing probabilistic inference with these more sophisticated aggregates may
be extremely expensive.



CHAPTER 6. STRUCTURAL UNCERTAINTY 164

will never contain the sequence B.D where D inverse-of B. A quantifier is interpreted

in a possible world w as a function from [C]“ to the integers {0, 1, ... , #[A]} as follows:
[#[A.0c =v]|“(c) = {d : d € [A]“(c) and [0]*(d) = v}]. |

An example of a quantifier is the expression #|Taking.Workload = heavy|, defined
on the Student class, which in our example takes on values between 0 and 4. Quanti-
fiers can appear as parents of simple attributes in a class probability model. Thus, a
dependence on the values of a multi-valued attribute can be modeled by introducing
a quantifier, and making the quantifier a parent of simple attribute. For example,
the quantifier #[Taking.Workload = heavy] may be a parent of the simple attribute
Tired of Student. Of course, we also allow the parent of an attribute to be a simple
single-valued attribute chain, as before.

Multi-valued attributes and quantifiers introduce no new complications when it
comes to making sure that a dependency model is acyclic and non-recursive. If a
simple attribute A of C has a quantifier #[B.c = v] as a parent, we simply add an
edge from B to A in G[C]. In the global dependency graph G[K], we add an edge
from C.B to C.A, and also from I.B to I.A for an instance I of type C. We must
also modify the imports sets of attributes to account for quantifiers. If a quantifier

#[o = v] appears as the parent of some attribute, and o contains the sequence A.B,
then B is added to Imp[A].

6.2.2 Semantics

The generative process semantics for fixed-number RPMs is similar to those for single-
valued RPMs. In the generative process, whenever the values of a multi-valued at-
tribute A need to be generated, #[A] different entities of the appropriate class are
created rather than a single entity. If some of the values of A are already bound due
to instance and inverse statements, only enough new entities are generated to make
up #[A]. The individual values of A are then generated independently of each other,
according to the probability model for the range type of A.

In defining the formal measure-theoretic semantics, we follow the same process



CHAPTER 6. STRUCTURAL UNCERTAINTY 165

as before, defining a set of basic variables, and defining basic events to be formulas
consisting of assignments of values to a finite number of basic variables. We define a
function f that assigns a probability to each basic event, using a flat BN sufficient to
computing the probability distribution over the variables mentioned by that event.
We define the event space to consist of finite and countable unions of basic events,
and extend f to a probability measure over the event space.

Our approach here does differ from that of the previous chapter in one respect.
The set of basic variables no longer consists of all simple attributes of all domain
entities. The reason is that we do not distinguish between different values of the
same multi-valued attribute. For example, suppose instance I has a multi-valued
attribute A with two values, which we will call I.A[1], and I.A[2]. Suppose each of
the I.A[i] have a simple attribute B. In one possible world, I.A[1].B has the value
True, while I.A[2].B is False, and in another possible world the opposite holds. As
far as we are concerned, these two possible worlds should be indistinguishable. They
both satisfy the property I.#[A.B = True] = 1. It is I.#[A.B = True| that we wish
to be a basic variable, not the various I.A[i].B. We therefore distinguish between
variables, which denote chains that have a specific simple value in a possible world,
and basic variables, which are variables with which we describe events.

From a measure-theoretic point of view, two possible worlds w and w’ are indis-
tinguishable if for every event F in the event space, w € £ <= W' € F. By defining
the event space in terms of basic variables, and stipulating that I.#[A[1].B = True]
is a basic variable, but I.A[1].B and I.A[2].B are not, we achieve the desired effect.
If w is a possible world in which I.A[1].B has value True and I.A[2].B has value
False, while ' is a world that agrees with w in every respect except that the values
of I.A[i].B are switched, then indeed there is no event in the event space that can
distinguish between w and W', so they are indistinguishable. Formally, we make the

following definitions.

Definition 6.2.3: Let K be a fixed-number relational language. An indezed chain
of K is a chain I.A;... A,, where, for i < n, A; is either a single-valued complex
attribute, or has the form B[j|, where B is a multi-valued complex attribute and

1 < j < #[B], and A, is one of the above or a simple attribute or a quantifier.



CHAPTER 6. STRUCTURAL UNCERTAINTY 166

A standard indexed chain is an indexed chain o that satisfies the following prop-

erties:

1. o does not begin with I.A, with A single-valued and an instance statement
I1.A=Jin K.

2. o does not begin with I.A[i], with A multi-valued and i less than or equal to

the number of instance statements on I.A in K.
3. o does not contain A.B or A[j].B with B single-valued and B inverse-of A.
4. o does not contain A.B[1] or A[j].B[1] with B multi-valued and B inverse-of A.

A wariable is a standard indexed chain that ends in a simple attribute or a quan-

tifier. A basic variable is a variable with no multi-valued attributes in it. I

Note that the assumption that the instance statements on a multi-valued attribute
are numbered allows us to specify exactly how the I.A[i] are bound. Also, if B is
a multi-valued attribute that is an inverse of A, and some entity c is the value of
the complex standard chain I.0.A (where A is single-valued), there must be some
i such that the value of I.0.A.BJi| is equal to I.0. We stipulate that the indexed
chains I.0.A.BJi] are numbered in such a way that it is always [.0.A.B[1] which is
equal to I.o. This is the reason behind condition 4: I.0.A.B[1] is not a standard
chain, because its value is always equal to that of I.o. Enforcing this numbering can
always be done safely because only one value of I.0.A.B[i| can be equal to I.o, by the
unique names assumption. In addition, inverse and instance statements cannot apply
simultaneously to the same entity, because of the assumption made in the previous
chapter that all instance statements that are implied by inverse statements are made
explicit.

Analogues of Lemmas 5.2.6 and 5.2.7 hold here: for every indexed chain X there
is a unique standard indexed chain Y such that [X]|“ = [Y]“ in every possible world.
The proofs are essentially the same as in the previous chapter. We can define the
function # that maps an indexed chain X = [I.c to the standard indexed chain to

which it is equal, as follows:



CHAPTER 6. STRUCTURAL UNCERTAINTY 167

While o has the form 7.A.B.7" or 7.A[i|.B.7" or 7.A.B[l].7" or 7.A[i].B[1].7',
where B inverse-of A do:
o=r17.
While 0 = A.0’, and K contains a statement [.A=.J
or 0 = Ali].0’, and the i-th instance statement on [.A in K is J € I.A do:
I1=1/J.
c=o0.

Return o.l.

The flat BN constructed relative to a set of basic variables may contain both basic
variables and other variables. The reason is that the variables on which a quantifier
depends are not basic.  Specifically, the quantifier Q = I.0.#[A.p = v] actually
depends on the values of 0([.0.A[i].p), where i ranges from 1 to #[A]. The CPF
for @) is straightforward: it simply counts the number of times I.0.A[i].p takes on the
value v. It is possible that the same actual variable will correspond multiple formal
variables I[.0.A[i].p. For example, if K contains the statements J € [.A, K € I.A,
JB=1and K.B =1, then §(1.A[1].B.C) and §(I.A[2].B.C) are both equal to I.C.
In that case, the actual parent needs to be counted multiple times.

The fact that the flat BN relative to a set of basic variables also contains non-
basic variables is no matter. Non-basic variables are still well-defined terms that
have a value in any possible world. The parents and CPF of non-basic variables are
taken from the local probability model for B, just as with basic variables. If the global
dependency model is acyclic, the flat BN relative to any set of variables constructed in
this manner will be well-defined, and therefore there will be a well-defined probability
distribution over the values of any finite set of basic variables. The fact used to prove
Lemma 5.4.6, namely, that the set of ancestors of a basic variable is the same in
any flat BN in which the variable appears, continues to hold, so the lemma remains
true. All subsequent lemmas proved in section 5.4.3 continue to hold as well, as does
Theorem 5.4.10. We can therefore be confident that the introduction of multi-valued

attributes does not cause problems for the semantics of our language.



CHAPTER 6. STRUCTURAL UNCERTAINTY 168

6.2.3 Inference with Quantifiers

While multi-valued attributes and quantifiers do not pose particularly interesting
problems in the language definition and semantics, except in the technical details,
they do present new challenges for the inference algorithm. As usual, we could use
the technique of constructing the flat BN relative to a set of variables to answer any
query on that set of variables, but we would rather handle multi-valued attributes in
the structured framework of SVE.

One approach to dealing with multi-valued attributes in inference is simply to
transform the model to one containing single-valued attributes, and then use the SVE
algorithm from the previous chapter. Under this approach, a multi-valued attribute
A is converted into #[A] single-valued attributes A[1],... , A[#[A]]. For a quantifier
#[A.c = v], we create a new simple attribute corresponding to the quantifier, and
set its parents to be A[l].o,... , A[#]A]].c. The CPF for the quantifier is obvious: it
counts up the number of its parents that have the required value v.

We can handle inverse statements on A very easily in this approach. If I contains
the statement A inverse-of B, we simply replace it with A[1] inverse-of B. Instance
statements can be handled similarly. Each instance statement J € I.A can be replaced
by the statement I.A[i] = J, using the numbering on the instance statements on I.A.

This approach is very simple, and immediately allows us to use the structured
algorithm from the previous chapter for models with multi-valued attributes. It
automatically benefits from the reuse of computation for different instances of the
same class, because all the A[i] will share the same probability model, and the same
query will be asked on all of them, so only one recursive computation needs to be
performed for A. However, the approach suffers from a serious shortcoming. The
number of parents of a quantifier #[A.c = v] is equal to #[A]. The size of its CPF is
therefore exponential in #[A]. Our experimental results in Chapter 8 show that this
exponential blowup causes the approach to become infeasible as #[A] gets to 7 or 8.

We deal with this problem by exploiting symmetry. When computing the value

of a quantifier, we do not care which of the fillers® of the multi-valued attribute have

3The word “filler” here is a synonym for the value of a complex attribute. We use it to avoid
having always to use the word “value” for the values of both simple and complex attributes, which



CHAPTER 6. STRUCTURAL UNCERTAINTY 169

the value we are looking for, we only care how many of them have that value. We can
therefore use a simple combinatoric calculation to express the probability distribution
over the value of the quantifier in terms of the probability that a single filler has the
required value.

In the following discussion, we will assume that an SVE computation is being
performed on a class C, and that A is a multi-valued attribute of C' with range type
C'. To simplify the presentation, we will assume at first that the KB contains no
instance or inverse statements. As a result, all fillers of A are generic instances of C’.
In addition, the recursive computation on C’ will return a probability distribution
over Needed[A], which is not conditioned on any inputs. The set Needed|A] con-
tains all chains A.o such that a quantifier #[A.c = v| is processed during the SVE
computation on C.

We will first deal with the case where there is only a single quantifier Q = #[A.0c =
v] on A, so that Needed|A] contains only a single element. The recursive call on A
will return a probability distribution over the value of o for a generic instance of C'.
Let a be the computed probability that o has the value v. By simple combinatorics,
the probability that () = m is equal to the binomial term (#T[f}) o™ (1 — ) F#[A] —m).
We can easily compute the CPF for @ in time O(#[A]?), using a recurrence relation.
Let P,(Q = k) denote the probability that & out of the first m fillers of A have value
v. Then Py(Q =0) =1, and

Pun(@=Fk) = (1-a)Pu(@=Fk)+aPu(@=Fk—1). (6.1)

The CPF for @ is then given by Py(a).

Now consider the case where there are multiple quantifiers @, ... ,Q¢ on A, where
Qi = #[A.0; = v;]. In this case, the set Needed[A] is {o1,...,04}, and the recursive
call for A returns a joint probability distribution over the values of the o; for a single
generic instance of C’. We will denote this joint distribution by P4. The method of
computing the CPFs for the quantifiers is a little more complicated now, but similar.

Since, for a particular value of A, the o; may not be independent of each other, the

can be confusing.



CHAPTER 6. STRUCTURAL UNCERTAINTY 170

different quantifiers are also not independent of each other, and we need to compute
a joint distribution over all of them. Therefore, rather than computing a separate
factor for each quantifier, we compute a single factor over all of them. We can encode
the contribution of a single filler A[i] of A to the quantifiers in a contribution vector
of length ¢, in which the j-th component is 1 if Afi].0; = v;, and 0 otherwise. We can
compute a probability distribution over the 2¢ possible contribution vectors from Py as
follows: For each assignment of values y to the o, let k(y) be the contribution vector
in which the j-th component is 1 iff y; = v;. Then the probability of a contribution

vector Kk, denoted ., is given by

o, = Z Pi(o =1y).

{y€ Val[o]:k(y)=x}

The value of a,, for all kK can be computed in time proportional to the size of Py,
which is exponential in /.

Like the contribution vectors, each joint value of the quantifier variables can be en-
coded by a vector of £ components, where each component is between 0 and #[A]. We
can use a similar recurrence relation to Equation 6.1 to compute the joint distribution

over the values of all the quantifiers. Again, Py(Q = 0) = 1, and

Ppi(@=m) = > o - Pn(Q =n) (6.2)
K,E{O,l}l,n'e{o,...,m}l

n=k+n'

We need to compute O((#[A]+1)%!) summations, and each one involves O(2¢) terms,
so the time to compute the joint distribution over the quantifiers is O((2(#[A] +
1))24—1)‘

Now let us complicate matters a little further, by introducing inverse statements.
If K contains a statement B inverse-of A, then the recursive SVE call for A will
return a set of inputs 7, and P4 will be a conditional probability distribution over o
given 7. We now need to repeat the above computation for each of the possible values

u of 7. Each such value will define a different distribution a® over the contribution



CHAPTER 6. STRUCTURAL UNCERTAINTY 171

vectors, which we can then use in Equation 6.2. The result of the computation will
be a factor over 7 U Q, expressing the conditional distribution over the values of the
quantifiers given the values of the inputs.

Now suppose that A is itself an inverse of some other attribute D, and that D was
actually the fifth argument of the SVE call on C. So the first filler of A is actually
the object that generated the SVE call on C'. The probability distribution over the
values of the quantifiers will be conditioned on the value w of the inputs received from
the calling object. The multi-valued attribute A will have #[A] — 1 other, generic
fillers, in addition to the calling object, and a recursive call will still be made for
A to compute a distribution P4 over o for these generic fillers. For each value w
of the inputs received from the calling object, the probability distribution over the
quantifiers can be computed using P4, in a very similar manner to the computation
above. The only difference is that now P, is only used to determine the contributions
of the #[A] — 1 generic values of A. In fact, this situation can be handled with
only a very small change to the recurrence relations. Instead of initializing with the
equation Py(Q = 0) = 1, we initialize with the given value w of the inputs, and set
Pi(Q = k(w)) = 1. The contributions of the generic fillers are then handled using
Equation 6.2. If P4 also has inputs 7, this whole process will have to be repeated
for all values in Val[7T], as described in the previous paragraph. The result of this
computation will be a factor over o U 7 U Q, expressing a conditional distribution
over the values of the quantifiers given both the input values from the calling object
and the inputs of A as determined by the recursive call for A.

Finally, we need to consider multi-valued attributes and quantifiers in the top-level
object used for performing inference about named instances. Suppose [I.A] is a top-
level multi-valued attribute. Instance statements binding some of the values of 1.4
may apply. If there are m such instance statements, each of the form J;, € I.A, the val-
ues of the quantifiers will depend on the values of the [J.A].o. In addition, there will
be #[A]—m generic fillers of [I.A]. We treat this case in a similar manner to the previ-
ous paragraph. For a particular set of m values y',... ,y™ for [J1.Al.a, ... ,[Jy.4].0,
we initialize the recurrence equations with P,(Q = >~ k(y*)) = 1, and use Equa-

tion 6.2 to compute contributions from the generic fillers. The result will be a factor



CHAPTER 6. STRUCTURAL UNCERTAINTY 172

over [J1.A]l.oU...U[J,.A].0 U Q. The total number of variables mentioned by this
factor is (m + 1)¢, so the size of the factor is exponential in both the number of
quantifiers and in the number of instance statements on 1.A.

Despite the exponential dependence on £ and m, this approach is still much better
than the original approach of replacing A with #[A] single-valued attributes. The
exponential dependence on ¢ is unavoidable in both approaches, because the size of
the factor returned by the recursive call for A is already exponential in £. The original
approach also had an exponential dependence on #[A]. For a KB with few instance
statements, m will typically be much smaller than #[A], so the second approach that
exploits symmetry is much better. In fact, our experiments in Chapter 8 show that
in the absence of instance statements, increasing #[A] has very little impact on the
cost of inference. Whether or not a KB contains few or many instance statements
will vary from application to application. In fact, in the next section we will consider
models in which every instance is named, and there are no generic instances. For
such models, there is no symmetry to be exploited, and consequently no advantage

to using the combinatoric approach.

6.3 Closed World Models

We now turn to another language that allows multi-valued attributes, in which the
structure of the world is still fully known. This language allows multi-valued at-
tributes to take on any number of values. Full knowledge of the relational structure
is maintained by requiring that in all possible worlds, the domain entities are the
explicitly named instances, and that all relationships between entities are explicitly
listed in the KB. We call such models closed world models, because they satisfy the
closed world assumption: for any possible world w, an entity ¢ is in A“ if and only
¢ = [I]“ for some named instance, and [A]“([]*,[/]*) holds if and only if the KB
contains an instance statement I.A = J or J € . A.

Closed world models do not require any restrictions on the relational language,
but they do make some restrictions on the statements in a KB. If A is a single-valued

complex attribute with domain type C, then for every named instance I whose type is



CHAPTER 6. STRUCTURAL UNCERTAINTY 173

a subtype of C, the KB must contain exactly one instance statement on I.A. Clearly
there can be no more than one such statement, and the lack of such a statement
would imply that the value of I.A is some unnamed entity, contrary to the closed
world assumption.

Also, inverse statements have no effect in a closed world model. As we have
commented previously, inverse statements in conjunction with instance statements
can cause other statements about named instances to hold, but we assume that all
such implied statements will be made explicitly. Therefore, the only real effect of
an inverse statement is to bind the values of attributes of unnamed entities. Since a
closed world model has no unnamed entities, inverse statements have no effect.

The class probability models are defined as in the previous section, using quanti-
fiers to model a dependency on the fillers of a multi-valued attribute. The range of
the quantifier #[A.0 = v] depends on the number of values of A, which may vary from
instance to instance. If IC contains m instance statements on I.A, then the quantifier
can take on values from 0 to m. However, when defining the class probability models,
we need to take into account all possible values of m. We therefore set the range of
the quantifier to be {0,1,... , max #[A]}, where max #[A] is an upper bound on the
number of values of A.

We may want the probability model for a simple attribute to depend not just
on the number of related objects that have a certain value, but on the fraction of
related objects that have that value, or on whether they all have that value, and so
on. In the language of the previous section, we could derive these values directly
from a quantifier and the fixed value of #[A]. Now, the number of values of A may
vary, and we may want to allow the properties of a simple attribute to depend on
it. We therefore introduce #[A] as an attribute of the domain type of A. For any
instance I, I.#[A] is equal to the number of instance statements on I.A. The range
of #[A] is {0,1,... ,max#[A|}. For the purpose of creating attribute chains that
can be used as the parents of simple attributes, this #[A] attribute is treated like a
simple attribute. However, it does not have its own probability model, and the value
of I.#[A] is always known.

The probabilistic semantics for closed world models is very simple. Since the only



CHAPTER 6. STRUCTURAL UNCERTAINTY 174

entities in the domain correspond to named instances, and there are only finitely
many named instances, the entire state of the world can be captured through a finite
set of basic variables, namely, the values of simple attributes of the named instances.
We can therefore define a probability distribution over the possible worlds using a
flat BN over the basic variables.

This flat BN contains a node I.A for every simple attribute A of a named instance
I. In addition, if a class probability model uses a quantifier QQ = #[A.0.B = v], it
contains a node I.Q) for every instance I of C'. If there are k£ instance statements
I.A=J,...,I1.A=J, I.A.o has k values Ki,..., K, where K; = J;.0.* The
quantifier ) therefore depends on the nodes K;.B, ..., K;.B, and its CPF is defined
in the obvious way.> The flat BN also contains a node I.#[A] for each multi-valued
attribute #[A] of the type of I. Since the value of I.#[A] is always observed, its CPF
is immaterial.

Let X denote the nodes corresponding to simple attributes of named instances, Y
denote the nodes corresponding to quantifiers, and Z denote the nodes corresponding
to the #[A]. The values of Y are fully determined by the values of X, while the Z
have the same value z in every possible world. There is a one-to-one correspondence
between values of the X and possible worlds in Qx. The flat BN as constructed
here defines a joint probability distribution P over the X, Y and Z. We define the
semantics of a closed world model K to be the distribution Px over 2k given by
Pc(w) =P(X =z | Z = z), where z is the value of X in w.

Since there are no generic instances of a class in a closed world model, all inference
happens in the top-level object. There are no recursive calls of the SVE algorithm.
The algorithm in fact performs exactly the same computations as VE in the flat BN.
There is no exploitation of the object structure of the model. A knowledge base with
many interconnected named instances can lead to a horribly multi-connected BN over
the attributes of the named instances. This is the case even if the class models are

very simple, as shown by the following example.

“Recall that in a quantifier #[o = v], all but the first attribute of o is single-valued.
5Some of the K; may be the same, due to instance statements, but we saw how to deal with that
situation in the previous section.



CHAPTER 6. STRUCTURAL UNCERTAINTY 175

Example 6.3.1: Consider a model used to predict the outcomes of sporting events.
There are two classes: a Team class, with simple attribute Quality, and a Game class,
with complex attributes Home-Team and Away-Team, both of type Team, and a simple
attribute Outcome. The class probability models are very simple. In the Team prob-
ability model, Quality has no parents, and a prior probability distribution is specified
over the Quality. In the Game model, Outcome is made to depend probabilistically on
Home-Team.Quality and Away-Team.Quality.

An instantiation of this model may contain a Team instance for every team in
a league, and a Game instance for every game played over the course of a season.
The purpose of the model is to determine the qualities of the teams based on the
outcomes of some games, and use those qualities to predict the outcomes of other
games. Consider the flat BN for this model. If every team plays every other team,
there will be an edge between every pair of teams in the moral graph for this BN.
Thus the set of teams forms a clique of the moral graph, which is a subgraph of the
induced graph for any variable elimination order. The tree-width for this network,
which is the induced width for the best elimination order, is therefore at least the
number of teams. The cost of inference, even for the best elimination order, is at

least exponential in the number of teams. 1

Using a structured inference algorithm will not help in this case. As we discussed in
Section 4.5.5, the computations performed by SVE are the same as the computations
performed by standard VE in the flat BN, for some elimination order. The tree-width
of the flat BN provides a lower bound on the cost of inference for any elimination
order. Even if we found a clever way to exploit structure in the top-level object, we
would still be bound by the tree-width, and inference would be infeasible even for a
moderately sized league.

Example 6.3.1 illustrates that it is the interconnectedness of the relational model,
rather than a complex set of class probability models, that causes inference to become
intractable. While one can encourage the model designer to build simple class models,
one cannot really avoid interconnected relational models, since they reflect the given
structure of the domain. So the problem cannot be circumvented simply through

model design.



CHAPTER 6. STRUCTURAL UNCERTAINTY 176

Our only hope to perform inference in these highly connected models is to use an
approximate inference algorithm. Sampling methods, such as Markov Chain Monte
Carlo (MCMC) methods [72] are always a possible candidate for approximate infer-
ence, but their performance tends to vary from application to application. It would
be interesting to see how well these methods perform here.

Varational methods [51] have performed very well where applicable. There is
reason to believe that they might be applicable to the types of networks produced
by relational probability models with many instances. The network in Example 6.3.1
is a two-layered network. The first layer consists of Team.Quality variables, each of
which has no parents, and the second layer consists of Game.Outcome variables, each
of which has two parents from the first layer. Networks for richer models will exhibit
a similar layered nature, but in which the layers themselves are organized into a
graph. Also, quantifier nodes exhibit a form of causal independence [39]. Causal
independence characterizes the situation in which the different causes of an effect act
independently of each other to produce the effect. A common example is the noisy-or
model of causal influence [79]. Variational methods have proven to work very well
for two-layer networks with noisy-or nodes, the so-called BN20 networks [47]. Since
the networks produced by RPMs share some properties of BN20 networks, there is
reason to hope that variational methods might also work for them.

It is an open question whether the object structure of the domain can be used
to facilitate approximate inference. It is possible, for example, that some sort of
localized MCMC sampling scheme that use the object structure will perform better
than performing MCMC on the entire model. It is also possible that the structured
representation can suggest new structure-based approximation algorithms. This topic

is worthy of future investigation.

6.4 Number Uncertainty

In the previous two sections, we have extended our language to include multi-valued
attributes in such a way that the number of fillers is always known. However, once we

have multi-valued attributes in the language, it is natural to consider the case where



CHAPTER 6. STRUCTURAL UNCERTAINTY 177

we have uncertainty as to the number of fillers. This is an example of structural
uncertainty called number uncertainty. The name “structural uncertainty” arises
from the fact that we have uncertainty over the relational structure of the possible
worlds. Up till now, for any KB K, the interpretation of complex attributes was the
same in all possible worlds in €. This is longer the case when we allow uncertainty

over the number of values of a multi-valued attribute.

6.4.1 Possible Worlds

We deal with number uncertainty over the number of values of A using the same #[A]
quantities as in the previous two sections. Now, however, #[A] will be treated as a
simple attribute, with its own local probability model. The #[A] attributes are called
number attributes. The value of I.#[A] may vary in different possible worlds, but it
does impose a constraint on the possible worlds, namely, that the number of values
of I.A should be equal to I.#[A]. Formally, we make the following definitions.

Definition 6.4.1: A typed relational language with number uncertainty is a typed
relational language (C,C, A, f, R, I), such that for each R € R, with domain type
C, there is an associated simple attribute #[A] with domain type C, whose range is
a set of integers {0, 1,... ,max #[A]}.

Let K be a KB with number uncertainty. A possible world for IC is an interpreta-

tion w of L such that:

1. For every relation R with domain type C, and every ¢ € [C]¥, |[{d : [R]*(c,d)}| =
[#[R]]“(c). A possible world that satisfies this property for a particular R is
said to respect #|R).

2—6. Same as in Definition 6.2.1: instance and inverse statments, unique names as-

sumption, and no proper subworlds assumption must hold. 1

Unlike previously, the set of entities in a possible world and the ways they are
connected to each other are not fixed. There is no set of simple attributes whose

values fully characterize the state of the world. We cannot prove exact analogues



CHAPTER 6. STRUCTURAL UNCERTAINTY 178

of Theorems 4.2.11 and 5.2.8 that completely characterize the structure of possible
worlds. However, we can define the maximal possible world structure, which is the
structure of the world if all multi-valued attributes have their maximum number of
values. We then get a structure like the one of Section 6.2. Indexed chains, standard
indexed chains, variables and basic variables are defined as in Definition 6.2.3. A
complex standard indexed chain denotes an entity that could exist in a possible
world. The f function is defined as in Section 6.2. It has the property that for any

standard chain I.o, if [I.0]¥ exists, so does [f(I.0)]“, and they have the same value.

Definition 6.4.2: A possible entity is a complex standard indexed chain. The set of
all possible entities for a KB IC will be denoted X, or simply . 1

It is convenient to define the [|“ function on indexed chains to be the interpretation

of an entity if it exists, null otherwise. Formally,

Definition 6.4.3: Let C be a KB with number uncertainty, and w a possible world

for K. The function [ on indexed chains is defined by the following rules:
1. [I.e¥ = [I]~.
2. If [I.0]* = ¢, and A is a single-valued attribute, [[.0.A]* = [A]“(c).®

3. If [I.o]“ = ¢, and A is a multi-valued attribute, let [A]“(c) = {d1,... ,dn},
where m = [#[A4]]“(c).” Then for 1 < i < m, [I.0.A[i]]* = d;. For m < i <
max #[A], [[.o. Afi]]* = L2

4. If [I.o]* =1, [l.o.p]Y = L.

If [I.0]” # L, we say that I.0 erists in w.

6As a result of the first two rules, the definition of [| given here is the same as the standard one
for single-valued chains.

"We assume that the d; are ordered in such a way that if o is empty, the value of the j-th instance
statement on I.A is d;, while if ¢ is non-empty and A is the inverse of the last attribute of o, d; is
the value bound by the inverse statement.

81 is an element not in A¥ signifying “undefined”.



CHAPTER 6. STRUCTURAL UNCERTAINTY 179

Lemma 6.4.4: If two distinct possible entities .0 and J.p both exist in w, then
[L.o]* # []p]°.

Proof: Same as for Lemma 5.2.7, using the unique names assumption. i

Theorem 6.4.5: Let K be a KB with number uncertainty, and w a possible world for
IC. There exists a map ¢ from A¥ into ¥ such that for every c € A¥, [¢(c)]¥ = c.

Proof: Let S be the subset of X consisting of the possible entities that exist in w.
Following the proof of Theorem 4.2.11, we use the no-proper-subworlds condition to
show that the image of S under [|“ is A¥. By Lemma 6.4.4, the [|* function from S
to AY is one-to-one, so [| is a one-to-one correspondence between S and A¥, and it

has an inverse ¢ satisfying [¢(c)]¥ = c. I

Note that by Definition 6.4.3, the set S of possible entities that exist in w is fully
determined by the [#[A]]“. Accordingly, we could define a probabilistic model for
a KB with number uncertainty by defining a probability model over the values of
the number attributes, and then proceeding as in Section 6.2 to define a probability
model for the remaining attributes. We would specify, for each multi-valued attribute
A, a probability distribution over #[A]. Following this approach, the probabilistic
semantics would be defined very simply in two stages. The probability model for
number attributes would define a probability distribution over the set of possible
entities in the world, which would determine its structure. For each structure, we
would then have a probability distribution over the values of the remaining simple
attributes as described in Section 6.2. This is essentially the approach we took in [54].

However, if we are going to design a probabilistic language that allows us to express
uncertainty over the relational structure of the domain, we might as well integrate
that uncertainty into our existing probabilistic language. Doing so has the powerful
effect of allowing aspects of the model structure to depend on and influence the values

of simple attributes.

Example 6.4.6: For example, consider a model of the Woman class. Suppose the

class has a multi-valued attribute Children. Uncertainty over the number of children is



CHAPTER 6. STRUCTURAL UNCERTAINTY 180

expressed through the probability model over #[Children]. It is natural for #[Children]
to depend probabilistically on the attribute Age. Also, if the Woman class has an
Available-Time attribute, it is natural for that to depend on #[Children]. I

The desired effect can be achieved by treating a number attribute as a full-fledged
simple attribute in the class probability models. It has its own set of parents and
CPF, and it can also appear as the parent of some other attribute. In the example
above, #[Children] is treated in exactly this way. It has a parent Age, and the CPF
for #[Children] defines a different probability distribution over the number of children
for different values of Age. Also, one of the parents of Available-Time is #[Children].

Introducing number attributes directly into the probability models requires that
we make sure that no cycles are introduced. The value of a number attribute of
an entity determines part of the model structure, namely, the number of values of
the associated multi-valued attribute for that particular entity. The values of other
variables may depend on that aspect of model structure. In particular, the value of
a quantifier on the multi-valued attribute depends on the number of entities that are
contributing to the quantifier. We therefore add the following edges to the dependency
graphs to deal with number attributes: if C' has a multi-valued attribute A, we add
an edge from #[A] to A in G[C], an edge from C.#[A] to C.A in G[K], and an edge
from I.#[A] to I.A for each instance I of type C.

As it happens, we also need another, rather technical, condition. For reasons that
will become clear later, we need to prevent the following type of situation: A is a
multi-valued attribute of C', that happens to be the inverse of some attribute, and
there is a chain p, such that for an entity I.o of type C, I.0.#[A] and I.0.p.#[A] have
a common ancestor. Such a circumstance will produce an infinite “sideways” chain

of dependencies:
Lo#[A] Uy — Lop#[Al Uy = Lo.pp#[A]...

As we shall see, a sideways chain like this one can cause trouble, but only if A is an
inverse attribute. To prevent this situation from occuring, we stipulate that if A is

an inverse attribute, #[A] must precede all complex attributes in G[C].



CHAPTER 6. STRUCTURAL UNCERTAINTY 181

6.4.2 Semantics

Even though the structure of the world is not known, and we are allowing aspects
of the structure to depend probabilistically on values of other attributes, we already
have most of the tools needed to define the probabilistic semantics for this integrated
language. As we did previously, we will define a probability measure over the set
of possible worlds. Our event space will again be generated by basic events, which
consist of assignments of values to a finite number of basic variables. The basic
variables will now include variables of the form I.0.#[A], by virtue of the number
attributes being treated just like other simple attributes. A basic variable of this
form is called a number variable. As before, we define a probability for each basic
event using a local BN, and combine these together to create a probability measure
over the possible worlds.

One might think that defining basic events in this way could now produce an
incoherent model. For example, suppose we could formulate the sentence “I.A has
three fillers, and the fourth filler of 7.4 has value = for B” as a basic event. It is not
even clear what probability this event should have. One could interpret the second
half of the sentence as implying that 7. A has at least four values, so the event should
have probability zero. On the other hand, perhaps the second half of the sentence is
a counterfactual statement. If I.A had had at least four fillers in w, the fourth filler
would have had a specific value in w. We can ask for the probability that the fourth
value of I.A would have had certain properties, had I.A had at least four values.
Using our approach of defining the probabilities of basic events using local BNs, it
would be much easier to enforce the second interpretation, but it is far from clear
that that is the right thing to do.

Fortunately, we do not have to worry about such matters. We defined the event
space so that the only statements that can be expressed about the values of multi-
valued attributes are quantified statements. In our language, I.A[4].B is not a basic
variable, but I.#[A.B = v| is. Certainly, the value of I.#[A.B = v] depends on the
number of fillers of I.A. However, there is no ambiguity to the sentence “I.A has
three fillers, and four fillers of I.A have value v for B”, and the probability of the
basic event [[.#[A] = 3,1.4#[A.B = v| = 4] should clearly be zero. We can easily



CHAPTER 6. STRUCTURAL UNCERTAINTY 182

enforce this in a local BN by making the CPF for the quantifier depend on the number
variable.

A key issue that must be dealt with in defining the semantics is that a KB may
encode implicit constraints on the values of number variables We must make sure
that the probability measure over possible worlds defined by our semantics assigns
probability zero to worlds that violate the constraints. The constraints arise due to
instance and inverse statements. If there is an instance I with multi-valued attribute
A, and m instance statements on I.A, then we know that in all possible worlds
[I.#[A]]* > m. Meanwhile, if B inverse-of A, then we know that I.0.A.#[B] > 1.°
We can summarize by defining /. min #[A] to be the number of instance statements
on I.A, and I.0.A.min#[B] to be 1 if B inverse-of A, 0 otherwise. We know that
I.o#[A] > I.0. min #[A] must hold in every possible world.

Since the number variables are included in our probability model, we must design
the model in such a way that a possible world that violates these constraints has prob-
ability zero. We can achieve this effect in one of two ways. One way is to change the
model for the relevant number attributes to enforce these conditions. This process is
sometimes known as surgery or intervention [80]. An intervention changes the prob-
ability model for the affected variable, and, as a result, the probability distributions
over all variables that depend on the affected variable are changed. Note that since
we are directly intervening in the model for the affected variable, its dependence on
other variables is circumvented, so the distribution over the affected variable’s parents
is not changed as a result of the intervention. In our framework, the desired result
can be achieved by changing the CPF of a variable X = I.0.#[A], so that for each
set of values u of the parents, CPFx(k | u) = 0 for £ < I.o. min #[A]. Each CPF
row is then normalized so that it sums to 1.

An alternative way to enforce the constraints is conditioning. In this approach,
the CPFs of the affected variables are left unchanged, but the entire probability
distribution defined by the BN is changed by observing that the constraints hold.
The constraints serve not only to change the distribution over the affected variable

and its descendants, but also act as evidence, changing the distribution over the

9Fortunately, the two conditions cannot both apply to the same entity.



CHAPTER 6. STRUCTURAL UNCERTAINTY 183

parents of the affected variable.

We argue that conditioning is the right approach in our framework. This is despite
the fact that the model intervention approach would be easier to implement, since we
could use the same flat BN we have used all along and just change the CPFs of the
number variables that appear in it. The reason that conditioning is better should be

clear from the following example.

Example 6.4.7: Consider again the Woman class from Example 6.4.6. Let us add
a Mother attribute to the class, and declare that Children inverse-of Mother. Now,
let I be an instance of Woman, and let J be equal to I.Mother. The inverse state-
ment constrains J.#[Children] to be at least one. Since J.Available-Time depends on
J.#[Children], the probability distribution over .J.Available-Time should be affected by
the constraint that J.#[Children] > 1. Intuitively, if I know that a particular woman
is a mother, then I will believe that she is less likely to have much free time. This
will in fact be the case using both the intervention and conditioning approaches.

It is also intuitively clear that J.Age should be affected by the constraint. My
distribution over the age of a mother will provide a higher likelihood of her being an
adult, than my distribution over the age of a woman about whom I know nothing.
This effect, however, is achieved only by the conditioning approach, and not by model

intervention. 1

We now show how to construct the flat BN relative to a set of basic variables X.
Two things are of note here. First, the BN contains nodes for the simple attributes
of all possible entities that may influence the value of a quantifier, even though
some of these possible entities do not exist in some possible worlds. For example,
if max #[A] = 2, then I.#[A.B = v] depends on I.A[1].B and I.A[2].B, as well as
on I.#[A], even though the entity I.A[2] does not exist if I.#[A] < 2. The number
variable controls which of the possible entities actually have an influence on the
quantifier. In this example, if .#[A] < 2, the CPF for I.#[A.B = v] does not depend
on the value of I.A[2].B. This is an example of context-specific-independence [12]. The
variable I.A[2].B is only relevant to I.#[A.B = v] in the context I.#[A] = 2.

The second issue is that in order to enforce the correct semantics of conditioning



CHAPTER 6. STRUCTURAL UNCERTAINTY 184

on the constraints on number variables, the flat BN must contain not only the vari-
ables X and their ancestors, but also the number variables that can condition the
variables in the network. We say that a number variable I.0.#[A] is conditionable
if I.o. min#[A] > 0. A number variable is relevant to the variables in a BN if it is
conditionable, and it is a descendant of one of the variables in the BN. Fortunately,
as we shall see, there is a limited number of number variables that are relevant to any

set, of variables.

Definition 6.4.8: Let X be a set of basic variables. The ancestor set X~ of X is

defined as follows:
1. X~ contains all nodes in X.

2. If X~ contains I.0.A, X~ contains 6(.0.v) for every parent v in the probability
model of A.

3. If X~ contains I.0.#[A.p = v], X~ contains #[I.0.A], and §(I.0.A[i].p) for
1 <i < max#[A].

A number variable Y is relevant to X if Y is conditionable, and Y has some

ancestor in X. 1

Fortunately, not all number variables in a model can be relevant to X. In fact,
only a number variable on a named instance, or on an instance that is a prefix of
some X € X, can be relevant. As a result, there can only be finitely many relevant

number variables, and we can find those by examining the candidates systematically.

Lemma 6.4.9: Let X be a set of variables, and Y a number variable relevant to X.
Then Y is either equal to I.#[A] for some named instance I, or to I.0.4#[A], where

I.0.B is a variable in X.

Proof: Suppose Y is a relevant number variable, but not directly attached to a
named instance. Because Y is conditionable, it must be equal to [.0.D.#[A], with
A inverse-of D. Let C be the range type of D. By the technical condition on the de-
pendency graph, #[A] must precede every complex attribute of C' in G[C]. Therefore,



CHAPTER 6. STRUCTURAL UNCERTAINTY 185

SN
NN

s
(1x) (I#MA) (1.BHD]

(@

O e
| BAHA]

(b)

Figure 6.1: Relevant number variables.

every ancestor of [.0.D.#[A] must be equal to I.0.D.B for some simple attribute B
of C'. In particular, since Y is relevant to X, X must contain a variable of this form.
|

Definition 6.4.10: The complete set of relevant variables for X is defined by the

following equations:

X% = the ancestor set of X.
Y™ = the set of number variables relevant to X™.
Xntl — X"™U the ancestor set of Y.

The complete set of relevant variables for X, written X*, is then UXX?. I

Why do we need an iterative process to compute the complete set of relevant
variables? The reason is illustrated in Figure 6.1 (a). In this example, X consists of
the single variable I.X. This variable has a single ancestor I.U, so X° is {I.X, [.U}.



CHAPTER 6. STRUCTURAL UNCERTAINTY 186

Suppose that the number variable I.#[A] is conditionable, and depends on I.U. It
then needs to be added to the relevant set of variables, because conditioning I.#[A]
affects the distribution over I.U, which in turn affects the distribution over I.X.
Since I is a named instance, and I.#[A] is conditionable, I.#[A] will be placed in
Y? and added to the set of variables. Since I.#[A] depends on I.B.V, the ancestor
set of YO is {I.#[A],I.B.V}, and X' is {I.X,I.U, I.4[A],I1.B.V}. Now, suppose
that I.B.#[D] is conditionable, and depends on I.B.V. Note that I.B.#[D] is not
d-separated from I.X by the conditioned variable I.#[A], because the path between
them has converging arrows at I.#[A]. Therefore, conditioning I.B.#[D] will affect
the distribution over I.X, so I.B.#[D] needs to be added to the set of relevant vari-
ables. In fact, I.B.#[D] will be in Y'*. This “sideways” chain of relevant variables
could be carried on further, with I.B.#[D] sharing an ancestor with some other con-
ditionable number variable. The process of constructing the set of relevant variables
is therefore iterative, to capture all number variables that can be reached in this way.

This set is indeed sufficient:

Lemma 6.4.11: Let X* be the complete set of relevant variables for X, and let Y
be a conditionable number variable not in X*. Let B be a flat BN relative to some

set of variables Z, containing X and Y. Then'Y is d-separated from X in B by any
subset of X*.

Proof: It is clear that any number variable relevant to X* is in X*. For suppose
number variable Y is relevant to X € X*. Since X € X™ for some n, Y € X*+! C
X

Therefore, if YV is a conditionable number variable not in X™*, it cannot be the
descendant of a variable in X*. Neither can it be an ancestor of a variable in X™.
So a path between Y and X must have converging arrows at a common descendant
Z of Y and X™*. Neither Z nor any of its descendants can be in X™*, so the path is
blocked by any subset of X ™. 1

By Lemma 6.4.9, we can construct X**! from X* by considering only condition-
able number attributes on named instances or on prefixes of variables in X. Thus the

number of relevant number variables added at any stage is finite. In order to show



CHAPTER 6. STRUCTURAL UNCERTAINTY 187

that Definition 6.4.13 makes sense, we must show in addition that the construction
process terminates — that is, there is some number N such that for all m > N,
X™ = XN. If this is the case, the complete set of relevant variables is finite, and
the BN is well defined. Figure 6.1 (b) shows the type of situation that we need to
prevent: an infinite sideways chain of dependencies. If I.B.#[A] and I.B.B.#[A]
share an ancestor I.B.B.U, then I.B* #[A] and I.B¥*1. A will both share the ances-
tor I.B¥t1.U. As a result, we will have an infinite sideways chain of conditionable
variables I.B.#[A],[.B.B.#[A|,I.B.B.B.#[A],.... In fact, preventing this type of
situation was the motivation for the technical constraint we made on the the depen-

dency graph.

Lemma 6.4.12: If G[K] is acyclic, then there exists an integer N, such that for all
m>N, X™=XN,

Proof: We show that the length of chains ¢ such that .0 € X™ is bounded. A
variable X € X* must be in X°, or an ancestor of a conditionable number variable on
a named instance, or an ancestor of a conditionable number variable on an unnamed
instance. It is clear that the number of variables of the first two kinds is finite. Let
¢ be an upper bound on the lengths of the chains for those two kinds. We show by
induction that no variable I.0 with length of o greater than £ is in X*. No variable
not of the first kind is in X©, by definition, and / is an upper bound on the lengths of
the chains for those variables. Suppose a variable X is in X*+! — X*. Then it must
be an ancestor of a conditionable number variable that is the descendant of a variable
in X. If X is a variable of the second kind, the length of its chain is bounded by
£. If X is a variable of the third kind, let Y = I.0.#[A] be the common descendant
of X and X*. Since Y is conditionable, A must be the inverse of the last attribute
in 0. So, the technical condition that #[A] must precede every complex attribute in
G[C] holds (C being the range type of o). Therefore, every ancestor of Y must be a
simple variable on I.o0. This applies in particular to X and to the ancestor of Y in
X*. Therefore X has the same chain length as a variable in X®. It follows that if the
length of chains of variables in X* is bounded by ¢, the same is true for X*+! and

for X* by induction.



CHAPTER 6. STRUCTURAL UNCERTAINTY 188

Since there are only finitely many variables with chain length at most ¢, there
must be some N for which XV*+1 = X¥_ But then for all m > N, inductively,
X™ = XN, as required. 1

We can now proceed as in the previous chapter, defining the flat BN relevant
to a set of variables vara, and using that to define a function f over basic events,
specifying the probability of a basic event [X = ] using Bx. Formally, we proceed

as follows.

Definition 6.4.13: The flat BN relative to X is a BN Bx over X*, in which the
parents of a node are as specified in the definition of ancestor set. The CPF of
a node I.0.A is the same as the CPF in the local probability model for A. The
CPF of a node @ = I.o.#[A.p = v| is defined as follows: Let u be the values
of (I.0.A[l].p),...,0(l.c.Almax #[A]].p). Let m be the value of I.0.#[A]. Then
CPF g(n|m,u) =1 if there are exactly n out of 6(1.0.A[1].p),... ,08(I.0.A[m].p) such
that the value of §(I.0.A[i].p) in u is v, and 0 otherwise. 1

Definition 6.4.14: f is a function from the set F of basic events to [0, 1] defined as
follows. Let [X = ] be a basic event. Let Z be the set of number variables in Bx,
and let [Z > min #[Z]] denote the event in which for each Z € Z, [Z]¥ > min #[Z].
We define f by

f([X =z]) = Peix)(X =« | Z > min #[Z]). |

In order to carry out our program of defining a probability measure over possible
worlds, we must now prove that the function f is indeed additive on the set of basic
events. In the previous chapter, this fact (Lemma 5.4.7) rested on the fact that
the probability of an event involving X was the same in all By that contained X

(Lemma 5.4.6). We can now use Lemma 6.4.11 to show that this still holds.

Lemma 6.4.15: Let X and Y be finite sets of basic variables of IC, with X C Y™*.

Let Z be the set of conditionable number variables in By. Then for any value x €



CHAPTER 6. STRUCTURAL UNCERTAINTY 189

Val[ X],
Pgy|(X =z | Z > min #[Z]) = f([X = z]).

Proof: Let W be the set of conditionable number variables in Bx. Since X C Y™,
Xt C Y* for all i (inductively), and X* C Y*. Therefore Bx is a subnetwork of By
By Lemma 6.4.11, for any variable Z € Z — W, Z is d-separated from X by W in
By . Therefore

Pay((X =2 | Z > min#[Z]) = Pgy)(X =z | W > min#[W])
= Pyx)(X = [ W > min #[W])

Once this lemma goes through, it follows as in the previous chapter that there
exists a unique probability measure that agrees with f on the basic events. We can
safely define the semantics of a KB with number uncertainty to be this probability

measure.

Theorem 6.4.16: Let (IC, P) be a RPM with number uncertainty. There is a unique
probability measure p on (Qx,Ex), such that for any basic event [ X = x|, p([X =
z]) = f(X = ).

6.4.3 Inference

In setting up the semantics of our language, we conditioned on the constraints on
values of number attributes. When performing inference, therefore, we must take
these constraints into account and condition on them. Fortunately, this is easy to do.
We must make sure that if a variable is processed during the course of computation,
any conditionable number variable that is descended from it is also processed. Luckily,
we know that such a conditionable number variable is either a variable on the same

instance as its ancestor, or a variable on a named instance. In the latter case, it



CHAPTER 6. STRUCTURAL UNCERTAINTY 190

will be represented by a top-level variable [I.#[A]]. We can take care of this case
by setting Needed([I.#[A]]) to be true whenever A is a multi-valued attribute and K
contains instance statements on I.A. This will force [I.#[A]] to be processed during
the SVE computation. We can take care of the former case similarly, using the fifth
argument D to SVE. At the beginning of the SVE computation, we check if there
is a multi-valued attribute A that is an inverse of D. If so, we set Needed(#[A]) to
be true. It is sufficient to mark only those multi-valued attributes that are inverses
to be needed, because only those can be conditionable for a call to SVE that is not
on the top-level object.

In addition to forcing the relevant number variables to be processed, we must also
condition on the constraints on their values. This can be acheived very simply by
adding the following lines to SVE, just after the factor g4 for a simple variable A

has been computed.

If A is a number attribute #[B]
g4 = ga[A € {min#[B],... ,max #[B]|}].

If there is explicit evidence on B, and the evidence agrees with the constraint,
this operation will have no effect, since all values of B not in agreement with the
constraint will already have been eliminated as possibilities. Evidence that disagrees
with the constraint will result in the entire factor having the value zero, and the result
of the entire computation will be the zero factor. This will eventually be detected
when SolveQuery tries to normalize the result. Of course, evidence disagreeing with
the constraints is nonsensical — an example is asserting the sentence “My mother
has no children”.

Inference with quantifiers in the presence of number uncertainty is done in much
the same way as in Section 6.2.3, where the number of values of the multi-valued
attributes was fixed. As we did there, we compute a joint distribution over the values
of the quantifiers @ on A.' Now, #[A] will be a parent of Q. As before, we use the

10For simplicity, we ignore the attributes on which A depends in the following discussion, as well as
asserted values of A. It is clear that we can treat these situations in the same way as in Section 6.2.3.



CHAPTER 6. STRUCTURAL UNCERTAINTY 191

recurrence relation of Equation 6.2 to compute P,,(Q = n), where m varies from 0 to
max #[A]. The meaning of P,,(Q = n) is now the probability that the first m fillers
of A will contribute the vector n to the quantifiers Q, if there are at least m fillers.
The CPF for Q, given #[A], is given by

PQ=mn|#[A]=m)=P,(Q =mn).

6.5 Reference Uncertainty

In addition to uncertainty over the number of objects that are related to an object,
one may also have uncertainty as to the identities of the related objects. This is a
type of structural uncertainty that we call reference uncertainty. The reason for this
name is that when we mention an object I.A, and we have uncertainty as to which
object is related to I via attribute A, we do not know to which object the term I.A
actually refers. One can think of A as a pointer in a programming language, with
the value of the pointer itself being uncertain. There is an element of indirection in
getting from the term 7.A to the actual object related to I by A. First one needs to
access the pointer, and then take the value of the pointer to find the related object.
In our terminology, the pointer whose value is the identity of the related object is
called a reference variable.

Reference uncertainty is quite natural at the instance level. If we have a knowledge
base containing a number of named instances, we may know that I is related to either
J or K via A, but not which. However, as we will see in Section 6.5.3, there is also a
form of reference uncertainty that is appropriate at the class level. We shall begin by
discussing instance-level reference uncertainty. For simplicity, we develop the theory

for a KB with no multi-valued attributes.

6.5.1 Instance-Level Reference Uncertainty

The representation of instance-level reference uncertainty is quite simple. Instead of
instance statements of the form I.A = J, instance statements can now take the form

I.A={Jy:wy,...,Jn: wy}, where the J; are all instances of the range type of A,



CHAPTER 6. STRUCTURAL UNCERTAINTY 192

and w is a probability distribution over {1,... ,n}. Such a statement corresponds to
a situation where I.A is equal to one of the J;, but exactly which one is unknown. We
have a probability distribution over the identity of I.A, with the probability that I.A
is J; being w;. We associate I.A with a reference variable Ref[I.A] whose value ranges
over {Jy,...,J,}. We will require that in any possible world w, if [Ref[I.A]]* = J;,
then [I.A]* = [J;]“. A standard instance statement of the old kind can be viewed
as a special case of the new kind of instance statement: I.A = J is equivalent to
I.A = {J : 1}. We can therefore assume for simplicity that the KB contains no
instance statements of the old kind.

As we have formulated things so far, the value of a reference variable is independent
of the values of all other variables. However, we can treat a reference variable just
like a number attribute, giving it parents and a local conditional probability function.
Each of the parents of a reference variable should be a basic variable of the KB.
This allows the value of a reference variable to depend on other properties of the
named instances, which can be a natural thing to do. For example, the identity of
Jane-Student.Advisor could be Professor-Koller or Professor-Mitchell, depending on
whether Jane-Student.Studies-Al is true or false.

Defining the probabilistic semantics for models with reference uncertainty is fairly
straightforward. As with number uncertainty, even though we do not know the exact
structure of the world, the structure is fixed given the values of the reference variables.
We can once again define a probability measure over possible worlds in terms of the
probabilities of assignments of values to basic variables. The basic variables now
include reference variables.

One issue to be dealt with is that if a variable I.A has a parent I.B.o, and I.B is
referentially uncertain, with Ref[I.B] ranging over Ji, ... ,J,, we know that one of
the J;.o is the actual parent of I.A, but we do not know which. In other words, the
function that was used to find which variable is actually the parent of another variable
is not uniquely defined. We resolve this issue by making all of the J;.c parents of
I.A, as well as Ref[I.A], and making the CPF of I.A use the value of Ref[I.A] to
choose the appropriate parent.

Formally, we replace the 6 function with one that returns two values. The first is



CHAPTER 6. STRUCTURAL UNCERTAINTY 193

a set of possible referents. The second is the set of reference variables on which the

identity of the chain depends. (I.0) is now defined as follows:

Function 6([.o)
If o has the form 7.A.B.7", where B inverse-of A
Return O(I.7.7").
Else if 0 = A.o’, and I.A has an associated reference variable Ref[I.A]
Let the range of Ref[l.A| be {Ji,...,J,}.
Let (X;, R;) =0(J;.0").
Return (U, X;, U R; U Ref[I.A]).
Else
Return ({I.0},0}).

Let the second return value of §(I.0) be R. If R is non-empty, we say that I.o
is referentially uncertain, otherwise it is referentially certain. For each value r of the
reference variables R we define 6,.(I.0) to be the referent corresponding to the given

values of the reference variables. Formally:

Function 6,.(I.0)

If o has the form 7.A.B.7", where B inverse-of A
Return 0,(I.7.7").

Else if 0 = A.o’, and I.A has an associated reference variable Ref[I.A]
Let J; be the value of Ref[I.A] in r.
Return 0,(J;.0").

Else

Return l.o.

We change the definition of the dependency relationship < so that X « Y iff
Y is in either return value of #(I.0.v) for some parent v of A. This causes both the
possible parents and the reference variables used to resolve them to be parents of X.

In order to guarantee acyclicity of the dependency model using the global depen-
dency graph G[K], we must treat each of the possible values of I.A in the same way
we used to treat the actual asserted value. Namely, if B € Imp[A], and J; is a possible
value of I.A, there is an edge from J;.B to I.A in G[K].



CHAPTER 6. STRUCTURAL UNCERTAINTY 194

We need to define the CPF of each variable to take into account all the possible
parents as well as the relevant reference variables. Let X = [.0.A be a variable,
and let the parents in the probability model for A be vy,...,v,. Let (U;, R;) be
6(I.0.v;). The parents of X will then be U™, (U; U R;). Let wu;,r; be the values
of U; and R; respectively. Using the 6, function defined above, 6, (u;) is the value
of the particular actual parent of X corresponding to the formal parent v; of A, as
determined by the values of the reference variables. We therefore define the CPF for

X as follows:

CPFx(z | %1,P1,- . U, ) =
CPF A(z | (Op,(I.ov1)) (1), ..., (Or,, (I.0.03)) (Um)).

As was the case with number uncertainty, the CPF for X exhibits context-specific
independence (CSI) [12]. The CSI is in fact much stronger in this case than it was
previously. For any given value r; for the reference variable 7;, only one of the U;
will be relevant. Any U that is not equal to some 6, will be irrelevant to X in the

context R =r.

6.5.2 Inference With Reference Uncertainty

How do we do inference with reference uncertainty? One possibility is to condition

over all the possible values of the reference variables. This uses the fact that

P(QE)= Y PQER=r).

r€ Val[R)

For each assignment 7 of values to the reference variables, we have a model with known
structure, for which we already know how to do inference. The obvious difficulty with
this approach is that the number of different possible structures, and therefore the
number of terms in the summation, is exponential in the number of reference variables.

An alternative possibility is to use the fact that the reference variables behave
just like simple variables, and can appear as variables in the probability model for

the top-level object. Variables that have referentially uncertain parents will depend



CHAPTER 6. STRUCTURAL UNCERTAINTY 195

on the reference variables, and their CPFs will be as we have described. We can then
use the same inference algorithms that we have used until now, and they will work
unchanged to deal with the reference uncertainty. The problem with this approach is
that if a reference variable Ref[I.A] has many values Ji,... ,Ji, and some variable
X depends on I.A.o, all the variables corresponding to J;.c will have to be parents
of X. Therefore the size of the CPF for X will be exponential in k. Furthermore,
because all the J;.0 are parents of X, they will all be connected to each other in the
moral graph. In fact, the different J;.0 are not conditionally independent of each
other given X, but they are conditionally independent of each other given both X
and Ref[I.A].

By conditioning on the value of Ref[I.A], we can make X depend on only one of
the J;.o. Furthermore, we succeed in disconnecting the J;.o from each other in the
moral graph, so the resulting inference will be much cheaper. It seems then, that we
are in a bind. Not conditioning results in exponential blowup in the number of values
of the reference variables. However, as we said earlier, conditioning on the values
of all reference variables results in exponential blowup in the number of reference
variables.

It seems that what we need is a way to exploit the benefits of conditioning locally,
so that we do not need to consider all values of all reference variables simultaneously,
but only those that affect a particular part of the network. Zhang and Poole [101] have
developed algorithms for performing inference with CSI that achieves just this. Their
machinery is fairly sophisticated, and requires a significant extension to standard
BN inference algorithms. As it turns out, in our case we can achieve the same effects
using standard inference algorithms with a simple trick.!* The idea is that rather than
represent the CPF for a variable X with referentially uncertain parents explicitly, we
represent it as a product of factors. The idea is as follows. Let us start with a simple

case: X = 1.0.A, A has a single parent v, and the identity of v rests on one reference

" The method presented here resembles the network transformation described by Boutilier, Fried-
man, Goldszmidt and Koller [12] in some ways, but in fact the two methods are orthogonal, and
complement each other. Their methods transforms a tree-structured CPF into a BN that contains
multiplexer nodes, while our method can be used to perform inference efficiently in the resulting
network.



CHAPTER 6. STRUCTURAL UNCERTAINTY 196

variable R, that ranges over Ji,...,J;. Let U; be 8,,(I.0.v), i.e., the actual parent
of X in the case that R = J;. As defined above, the CPF of X is

CPF x(xz | u,r) = CPF 4(z | (6,(I.0.v))(u)).

CPF x can be decomposed into a product Hle fi(z,u;, ), where f; is a factor over
{X,U;, R} defined by

1 if r # J; (6.3)

fi(xauiaT) = {
It is easy to see that CPF x =[], fi, because

Hz’ fz(l‘, Uy, 7') = fj!TZJj (x’ Uj, T) Hi#j fl(x’ U, 7')
CPF 4(z | uj) [1; 451
— CPFA(z | (6,(I.0w))(w)).

The benefit of this decomposition is that each of the factors is small. Each factor
involves only the child, the reference variable, and one of the possible actual parents.
The total size of the factors is linear in the number of values of the reference variable,
whereas the size of the product CPF is exponential. Also, since no two possible
parents appear in the same factor, there does not have to be an edge between them
in the moral graph. Therefore the inference algorithm can exploit the fact that the
different possible parents are conditionally independent given the reference variable
and the child. This is precisely the effect obtained by conditioning on the value of
the reference variable, but it is achieved locally.

If X has other, referentially certain, parents Wy,... ,W,,, each of the f; will be
a factor over the W as well as over X, U; and R. Also, if the identity of 6(I.0.v)
depends on a set of reference variables R, there will be a factor f, for each r € R.

Let U, denote 6,(I.0.v), i.e., the actual parent of X selected by r. Equation 6.3 is



CHAPTER 6. STRUCTURAL UNCERTAINTY 197

replaced by

CPF s(x | w,u,) ifr=mr
fr(z,w,up, 7) = alz | r) i (6.4)
1 otherwise.
Now suppose that for several parents v',...,v™ of A, I.0.v" is referentially uncer-

tain. Let R® be the set of reference variables determining the value of I.0.v*. For each
such v*, we let (U*, R?) be 0(I.0.v'). We could deal with this situation in the same
way as before, by creating a factor f, for each complete assignment r = (r! ... r™)
to all the reference variables. Each factor would mention X, the referentially certain
parents W, all the reference variables R, and one variable from each of the U%. We

would set

CPF (x| w,uly,... ,ult) fF=r

_ (6.5)
1 otherwise.

fr(x,'w,uil,... U, ) = {
Unfortunately, the number of factors f, we will need is equal to the number of
different values of the R, so it exponential in the number of referentially uncertain
parents of X. In addition, each u’ appears in a factor with all the reference variables,
even those that do not determine the identity of the actual i-th parent. In fact, a
further decomposition is possible. For each v?, we define a factor ¢° that mentions
the possible parents U?, the reference variables R* and a dummy variable Y?. The

range of Y is the same as that of v*, and ¢° is defined by

1 if (0,:(I.0.0%))(u?) =

| (6.6)
0 otherwise.

g (ut, vty = {

The effect of ¢’ is to ensure that the dummy variable Y contains the correct value

of the i-th actual parent of X, as determined by r¢. Each ¢’ can be decomposed into



CHAPTER 6. STRUCTURAL UNCERTAINTY 198

product form as before: g*(uf, 7%, yt) = [Lricvarri gli(uls, 7%, 4%), where

1 if 7 =7*and u¢; =9
r
1

gra(uls, ¥, y") = ¢ 0 if # =riand ul, # ¢’ (6.7)

1 otherwise.

We can now use the dummy variables to select the correct values of the parents
of X, and define the CPF for X in terms of the CPF for A and the dummy variables:

CPFx(zr |w,u,r) = Z CPFA(z | w,y) Hg’u ré YY)
ye ValY] i=1
= Z CPFAx\'wa H Ei(uls, P YY),
y€e Val[Y] 1=1 ric Val[R?]

To see that this transformation is correct, observe that g*(u®, r,y") is 0 if y # ul;,

and 1 otherwise. Therefore, for a given value of r,

m

> CPFu(x|w,y)[[o'(ui,r' ') = CPFA(z | w,y),

y€e Val[Y] i=1

where each y* = u,:. This is exactly as required.

Figure 6.2 illustrates the effect of this decomposition on inference. In this example,
variable X has a single referentially certain parent V', as well as three referentially
uncertain parents. The i-th referentially uncertain parent has two possible values U?
and U, selected by the reference variable R'. Y is the dummy variable added by
the decomposition. The figure shows the graph for the set of factors making up the
CPF of X. There is a clique over X,V,Y! Y2 and Y. This clique corresponds to the
CPF 4 term, and its size is the same as that of CPF 4 in the local probability model
for A. There would be a clique of this size even if all parents of X were referentially
certain. In addition, each of the Y? and R’ are connected to each other, and also
to each of the U; However, the different U;: are not connected to each other. The

graph is in fact triangulated, and so we can eliminate variables in some order without



CHAPTER 6. STRUCTURAL UNCERTAINTY 199

Figure 6.2: Induced graph for decomposed CPF with reference uncertainty.

adding edges to the graph. In fact, the graph shows that the dummy variables Y

serve to separate the reference variables and possible parents from X and V.

6.5.3 Class-Level Reference Uncertainty

Thus far we have focused on structural uncertainty about the relationships between
individual instances. We can also model a more general kind of reference uncertainty
at the class level. The basic mechanism for this is the same-as statement. A same-as
statement has two possible forms. One form is A same-as o, where o is an attribute
chain whose domain type is a supertype of the domain type of A, and whose range type
is a subtype of the range type of A. A statement of this form imposes the constraint on
possible worlds w that for every ¢ € [C]¥ (C being the domain type of A), [A]“(c) =
[0]“(c). An example of this type of statement is that for the PhD-Student class,
Taking-Reading-Course same-as Advisor.Teaches-Reading-Course. The second form of
same-as statement is A same-as I, where I is a named instance whose type is a
subtype of the range type of A. This type of statement imposes the constraint that for
all ¢ € [C]Y, [A]“(c) = [I]”. An example is the statement that for the Stanford-Student



CHAPTER 6. STRUCTURAL UNCERTAINTY 200

subclass of Student, Attends same-as Stanford-University.

Arbitrary same-as statements can cause difficulties. For example, consider the
statement A same-as A.A. From this statement we can deduce that if the value of
c.A is d, then so is the value of d.A. The introduction of arbitrary same-as statements
therefore produces a very expressive logical language. To avoid dealing with such an

expressive language, we restrict the same-as statements in the following way.

Definition 6.5.1: A set of same-as statements in a KB K is said to be stratified if

we can number the attributes and named instances of K in such a way that:

1. If K contains a statement A same-as o, A has a higher number than every

attribute in o.
2. If K contains a statement A same-as I, A has a higher number than I.
3. If K contains a statement /.A = J, A has a higher number than J. |

In the absence of reference uncertainty, restricting the same-as statements to be
stratified means that we can uniquely resolve any attribute chain in a finite amount
of time. The reason is that any application of a same-as statement replaces elements
of a chain with lower-ranked elements. Application of an instance statement shortens
a chain without increasing the highest rank of elements in the chain. Application of
an inverse statement results in removing two elements from a chain. Therefore, only
a finite number of statements can be applied to any chain. As a result, we can prove
analogues of Lemmas 5.2.6 and 5.2.7, and define a function € such that 0(/.0) is a
chain J.p to which no instance, inverse or same-as statements can be applied, and
such that [I.0]Y = [J.p]“ in every possible world. We omit the details since they are
very much the same as before.

Another restriction we make on the use of same-as statements is that an attribute
on which a same-as statement is defined may not participate in an inverse statement.
Allowing inverse statements to interact with same-as statements can particularly
cause trouble with named instances. For example, the statements A same-as I, and
B inverse-of A would force I.B to be equal to every entity of C, which means that

C must have exactly one instance.



CHAPTER 6. STRUCTURAL UNCERTAINTY 201

We can use same-as statements to model reference uncertainty, by associating a
number of possible same-as statements with an attribute A, and defining a prob-
ability distribution over them. The attribute A will have an associated reference
attribute Ref[A], whose range is a set {o1,...,0m,I1,..., I}, such that for each o;
or I;, A same-as o; or A same-as I; is a valid same-as statement. We enforce the
stratification requirement of Definition 6.5.1 in a strict manner: we require that it be
possible to enumerate all the attributes and named instances of K as if each of the
A same-as o and A same-as I; was an actual same-as statement in K. We impose
the constraint on possible worlds that [Ref[A]]“(c) = o implies [A]“(c) = [0]“(c),
while [Ref[A]]“(c) = I implies [A]“(c) = [I]“.

Semantically, we can treat class-level reference uncertainty in much the same way
that we did instance-level reference uncertainty. If attribute A of domain type C' has
an associated reference variable Ref[A], then for each entity I.o of type C' we will
have a reference variable I.0.Ref[A]. We redefine the 6 function as in the previous
section to return two values, the first being a set of potential parents, and the second
being the reference variables that are used to select the actual parent.

We do need to make some modifications to the global dependency graph to guar-
antee acyclicity of the dependency model in the presence of same-as statements.
Specifically, we need to make sure that for every possible parent Y of X, [Y] precedes
[X] in G[K]. First, we add an edge from C.Ref[A] to C.A. Also, for each B € Imp[A],
we do the following. If I is a value in Val[Ref[A]], we add an edge from I.B to C.A.
If o = D.o’ is a value in Val[Ref[A]], we add B to Imp[D]. The latter step will cause
an edge from C'.B to C.D to be added (C' being the range type of D), and may
cause other edges to be added, if D is associated with its own reference variable. This
process must terminate due to the stratification requirement.

When performing inference with class-level reference uncertainty, we would like
to exploit the same types of decompositions that we used for instance level reference
uncertainty. In addition, we want to perform the inference in the SVE framework.
We accomplish this as follows. When processing an attribute A which is referentially
uncertain, we know the set of chains beginning with A that are needed to solve the

query — these are the chains in Needed[A]. We treat each such chain A.o as its



CHAPTER 6. STRUCTURAL UNCERTAINTY 202

own variable, that serves the same purpose as the dummy variables introduced in
Section 6.5.2.

The variable A.o is treated as a simple attribute. One of its parents is Ref[A],
and it also has a parent p.o or I.c for each p or I in Val[Ref[A]]. The CPF for the
variable A.o selects the value of the appropriate actual parent, according to the value
of Ref[A]. As described in Section 6.5.2, this CPF can be represented as a product
of factors, each one mentioning Ref[A] and one of the possible parents. The SVE
algorithm is modified by adding the following lines to the part in which complex

attributes are processed:

If A has a reference attribute Ref[A]
For each A.c in Needed[A] do:
For each value B.p in Val[Ref[A]] do:
Needed[B] = Needed|B] U {B.p.o}.
g5? is the factor over A.g, B.p.o and Ref[A] such that
9a5(@,y,z) =1 if z# Bop,
g5 (z,y,2) =1 if =y and z = B.p,
95 (x,y,2) =0 if z#y and z = B.p.

Else // A is not referentially uncertain

In addition, we replace the line defining the set of factors for the variable elimi-

nation phase with the following:

f ={ga : Needed[A] # D}U
{g5?: A.oc € Needed[A] and B.p € Val[Ref[A]]}.

Allowing statements of the form A same-as I poses additional issues. Such a
statement means that for every entity ¢ of C, the probability model for ¢ can de-
pend on the specific instance I. The probability models for the generic entities of C'
are no longer independent of each other, but are correlated through their common
dependence on I. Furthermore, c.A is no longer encapsulated inside C.

We can deal with this issue in the SVE framework as follows: if, in processing a

query on C, a chain [.o is required, /.o is added to the set of inputs 7 returned by



CHAPTER 6. STRUCTURAL UNCERTAINTY 203

the SVE call. The SVE call also returns a conditional distribution over the answer
to the query given the value of I.0. The same conditional distribution will hold for
all generic instances of C, and for all such instances, the values of the query variables
will be conditionally independent given the values of the inputs 7. The input I.o will

be passed upwards to the top-level instance, where it can be processed naturally.

6.5.4 Enumerated Classes and the Ace of Spades Problem

Once we allow the value of an attribute of a class to be a named instance, and we
allow uncertainty over which named instance it is, a natural extension is to define
enumerated classes, which consist of a specific set of named instances, together with

a probability distribution over the instances in the class.

Definition 6.5.2: Let [;,..., I, be named instances, and let C' be a common su-
perclass of the types of the I;. Let w be a probability distribution over {1,...,n}.
Then (C, I, w) defines an enumerated class C' which is a subclass of C. The class C

is called the base class of C'. 11

We allow the range type of a complex attribute A to be an enumerated class
C" = (C,I,w). We can treat this situation simply as syntactic sugar for the model
in which A has range type C, and is associated with a reference variable Ref[A]. The
range of Ref[A] is {[1,...,I,}, Ref[A] has no parents in its local probability model,
and the CPF for Ref[A] is defined by CPF gesiai(1;) = w;.

We can also allow the type of a named instance to be an enumerated class. This
situation is also dealt with as syntactic sugar. A named instance J whose type
is enumerated class (C, I, w) is not actually considered to be a named instance in
the KB. However, if there is an instance statement K.A = .J, it is replaced by the
referentially uncertain instance statement K.A = {I; : wy,... , I, : w,}. If J is a value
in the range of reference attribute A, it is replaced by Iy, ... , I,. The CPF for Ref[A]
is modified by defining, for any value w for the parents of Ref[A], CPF pepia1(L; | u) =
w; CPF gesra)(J | w).



CHAPTER 6. STRUCTURAL UNCERTAINTY 204

Enumerated classes provide us with a way of addressing the ace of spades prob-
lem [19, 87, 36]. This problem arose in attempts to combine logical and probabilistic

representations. Consider the following reasonable sentence:
(A) The probability that a card is the Ace of Spades is 1/52.

Cheeseman proposed that such a sentence should be represented by the statement
(B) VzP(x = AceOfSpades | Card(z)) = 1/52.

As Schubert points out, the formula (B) does not capture the sentence (A). Under the
rules of classical logic, one should always be able to instantiate a universally quantified

variable. However, instantiating x with AceOfSpades produces the sentence
(C) P(AceOfSpades = AceOfSpades | Card(AceOfSpades)) = 1/52,

which is clearly wrong. Halpern points out that the confusion is the result of con-
founding statements about degrees of belief with statistical statements. The sen-
tence (A) is a statistical statement about the distribution of cards in the world,
while the formula (C) is a statement about the degree of belief in the sentence
AceOfSpades = AceOfSpades. Both Schubert and Halpern hold that the correct
translation of sentence (A) uses a quantifier V'z meaning “for a randomly chosen
x”. Logics with this type of quantifier have been developed by Bacchus [4] and
Halpern [35].

The semantics of our language is defined in terms of a probability measure over
possible worlds. Our language is avowedly concerned with describing degrees of belief
in statements characterized by events in the event space, and not with describing
statistical statements. Nevertheless, the use of enumerated classes allows us to deal
easily with sentences like (A). The key is to formalize the notion of a “randomly
chosen card” by specifying the process through which the card is chosen. We can
formalize the process of choosing a card from a deck with uniform probability, by
creating an enumerated subclass Card-From-Deck of Card, containing all the different
cards, with a uniform probability over them. If we then want to talk about the

probability that a randomly chosen card is the Ace of Spades, we create a Draw class,



CHAPTER 6. STRUCTURAL UNCERTAINTY 205

with a complex attribute Drawn-Card of type Card-From-Deck. Observing that for a
particular drawing I, the drawn card is the Ace of Spades is performed by setting
I.Ref [Drawn-Card] = Ace-Of-Spades. It holds that for an instance I of class Draw,
P(I.Ref[Drawn-Card] = Ace-Of-Spades) = 1/52, which is the meaning of the sentence
(A).

6.5.5 Type Uncertainty

In addition to uncertainty about the number of objects in the domain and the rela-
tionships between them, we may also have uncertainty about their types. We call this
kind of structural uncertainty type uncertainty. One may represent type uncertainty
at both the class and instance level. Type uncertainty can be handled quite simply
using the mechanisms we have developed for reference uncertainty.

At the instance level, suppose I is a named instance, whose type is known to be
a subclass of C, and let C,... ,C, be subclasses of C. We may be uncertain as to
which of the C; is the actual type of I. For example, we may not know whether
Jane-Student is an Undergraduate-Student or Graduate-Student, but we have a proba-
bility distribution over the two possibilities. To model this situation, we associate a
type variable Type[I] with I, whose value ranges over C1,... ,C,. The type variable
has a local probability model, with a set of parents and a CPF.

We can deal with this situation using syntactic sugar. We introduce named in-
stances Iy, ... ,I,, with the type of I; being C;. The type variable Type[I] is replaced
with a reference variable Ref[I], ranging over I,...,I,. Ref[I] will have the same
parents as Type[I], and the CPF of Ref[I| will be defined by CPF gesip(I; | u) =
CPF 131(C; | w)

At the class level, we may have uncertainty as to the range type of the complex
attribute A on C. For example, we may have uncertainty over whether a value of the
Taking attribute of Seminar-Course is a Undergraduate-Student or a Graduate-Student.
If it is known that the range type of A is a subclass of D, and D;,...,D, are
subclasses of D, we can associate A with a type attribute T[A].

Again we treat this situation as syntactic sugar. We introduce attributes A;,... , A,



CHAPTER 6. STRUCTURAL UNCERTAINTY 206

on C, where the range type of A; is D;. We replace Type|A] with reference attribute
Ref[A], ranging over the chains Aj,..., A,, set the parents of Ref[A] to be the
same as those of Type[A], and define the CPF of Ref[A] by CPF pesa)(Ai | u) =
CPF 1ype(4)(Ci | ).

It is clear that one can combine type uncertainty with other kinds of reference
uncertainty using this method. For example, we may not know whether the value of
A is the instance I, the same as the value of chain o, or a different entity whose type
is either C; or C5. We can model this situation by introducing two new attributes
A; and A, of class C; and C5 respectively, and associate A with a reference variable
Ref[A] taking values in the range {I, 0, A1, Ay}.

6.6 Discussion and Possible Extensions

We began this chapter by considering languages with multi-valued attributes, in situ-
ations where the number of values is always known. We then presented the two main
kinds of structural uncertainty: number uncertainty and reference uncertainty, and
also described type uncertainty as a variation on reference uncertainty. We devel-
oped the theory of reference uncertainty in the context of a language with no multi-
valued attributes. It is possible to combine reference uncertainty with multi-valued
attributes, but the range of linguistic possibilities is large.

In its most general form, we are talking about uncertainty over the set of values of
a multi-valued attribute. Such a set can be described by listing the identities of the
individual members, as they would have appeared as the values of reference attributes.
So, for example, if A is multi-valued, a possible value for Ref[A] is {I,0,C,C,C"},
meaning that A has five fillers, one of which is I, another of which is the same as o,
while the other three are generic, two from class C' and one from class C’. This is an
extremely general language, but the range of values of Ref[A] may be enormous, and
completely impractical to list explicitly.

One can imagine a variety of ways to specify such set-valued reference uncertainty
more compactly. For example, a number attribute may specify the number of variables

in the set, and then a separate reference attribute may specify uncertainty over the



CHAPTER 6. STRUCTURAL UNCERTAINTY 207

particular fillers. Care must be taken in defining the semantics, to make sure that
two different fillers are not the same entity. Alternatively, a more restricted language
may combine a number attribute and a type attribute, with both the number of fillers
and the types of the individual fillers being uncertain. A third alternative would have
a variable for each of a specified set of instances, specifying whether that instance is
a filler, and an additional number variable determining the number of possible fillers.
The space of possible languages is large, and we do not yet have a strong sense for
which would be the most practical.

Reference attributes allow the value of a filler to be selected from some set of
possibilities. The set is extensionally specified — the different possibilities are listed
explicitly. One can also imagine selecting the value of a filler from some intensionally
specified set. This may be expressed by saying that for a single-valued attribute A, the
filler of A is one of the fillers of a multi-valued attribute B. Thus far, accomodating
this extension would not be too difficult, but one can easily imagine that the identity
of the filler of A depends probabilistically on the properties of the fillers of B. This
kind of selection process is a very natural one — for example, the winner of a race
is one of the participants in the race, and the identity of the winner depends on the
speed of the various participants. This is such a natural situation that we want to
find a way to model it in the language, but we have not as yet found an appropriate

way to express this situation that is natural, compact and supports efficient inference.



Chapter 7

Recursive Probability Models

7.1 Introduction and Examples

In Chapter 5, we went to some trouble to make sure that the dependency model for a
RPM contains no infinite dependency chains. There are two reasons for this. The first
reason is semantic. In the absence of infinite chains, the probability distribution over
any finite set of variables can be specified by looking at the finite set of ancestors of
those variables. We used this fact to guarantee that for any KB, there exists a unique
probability measure embodying the statements in the class probability models. The
second, related reason is that eliminating infinite chains guarantees that any query
can be answered by looking at only a finite set of variables, and so exact probabilistic
inference can be performed in a finite amount of time.

Despite the usefulness of doing so, eliminating infinite dependency chains does
limit the expressiveness of our language in a fundamental way. Probability mod-
els with infinite dependency chains are quite natural and common. We call such
models recursive probability models. The reason for the name goes back to our in-
tuition of defining a probabilistic model in terms of a stochastic generative process
that generates instances of the model. If the model has infinite dependency chains,
the behavior of the process is similar to the behavior of a recursive program in a
programming language. The program may never terminate due to the recursion, but

we can still consider what the state of the world would look like if we allowed the

208



CHAPTER 7. RECURSIVE PROBABILITY MODELS 209

program to run for an infinite amount of time. In particular, the program will define
local relationships between the variables that can be expressed in terms of condi-
tional probabilities. These local relationships can be used to define semantics for the
language.

We begin with some examples.

Example 7.1.1:

A very common example of a recursive probability model is a Markov chain. We
consider here only discrete, finite-state, homogeneous chains. In such a chain, the
state of the world X? at any time ¢ is an element in a set D of cardinality n. The
chain is characterized by an initial probability distribution P° over D, and a transition
function, that specifies the conditional probability of the state X! given the state
X*. The transition function can be described using a n X n matrix 7', in which T'(z, z)
specifies the probability of transitioning from state x to 2’. The matrix 7" must satisfy
the constraint that for all z, ), T'(z,2") = 1. In other words, T is a CPF from D to
D.

A Markov chain describes a probability distribution over the state of the world
at time ¢, by P* = T*P?. The state of the world at time 0 is described by the initial
distribution P°, and the distribution at time ¢+ 1 is taken by applying the transition
matrix 7' to the distribution at time ¢. Two natural questions arise with regard to a
Markov chain. The first is whether there exists a distribution P such that P = TP.
Such a distribution is called an invariant of the chain. The second question is, given
that an invariant P exists, is P unique, and does T*P° converge to P for any P°?
A chain that satisfies the second property is called ergodic, and the distribution P

1 A sufficient but not necessary

is called the stationary distribution of the chain.
condition for a chain to be ergodic is that all of the entries of T are non-zero.

The theory of Markov chains is extremely well-studied, and can be found in
many textbooks (see, for example [52]). Our interest here is not in the theoretical
properties of Markov chains but in their representation. A homogeneous finite-state

Markov chain can be represented very simply in our language as follows. There is

Various definitions of ergodic can be found in the literature, not all of which are exactly equiv-
alent to the one here. Our definition is the same as that of [72].



CHAPTER 7. RECURSIVE PROBABILITY MODELS 210

an Instant class, with simple attribute State, ranging over D, and complex attributes
Previous and Next, which are inverses of each other. The State attribute has as parent
Previous.State, and its CPF is the transition matrix 7. There is also a First-Instant
subclass of Instant. In the First-Instant model, State has no parents, and its CPF is
specified by the initial distribution P°. With this representation, one can take both
a “forwards” and a “backwards” view of the chain. An instance I of First-Instant de-
fines the sequence of variables I.State, I.Next.State, I.Next.Next.State, . . ., embodying
a Markov chain beginning in the initial state. On the other hand, an instance J of
Instant defines the variables J.State, J.Previous.State, J.Previous.Previous.State,. ...
The distribution over J.State is the result of an infinite dependency chain, in which
each step in the chain is associated with the transition matrix 7". If the chain is
ergodic, the distribution over J.State is the stationary distribution of the chain.

We would like an inference algorithm for our language that is capable of handling
both these situations. It should be able to answer queries looking forward from an
initial state, or queries about the stationary state of the distribution. Of course,
it should be a general algorithm, and not perform computations that rely on the
knowledge that the model is a Markov chain.

The first type of query can be answered by only looking at a finite number of
states, and can be handled by the SVE algorithm described in previous chapters. To
solve the second type of query exactly requires looking at infinitely many variables.
However, as we shall show, we can compute an iterative approximation to the answer
to the query, that will produce better and better bounds. In the case of an ergodic
chain, the bounds will converge to the correct answer. For a non-ergodic chain, there
may not be a single correct answer. Nevertheless, the computed bounds will be sound,

in the sense that a correct answer to the query will always lie between them. I

Example 7.1.2: Many natural extensions to Markov chains have been explored. A
simple extension is the Hidden Markov Model (HMM) [85]. In a HMM, the state
at time ¢ is decomposed into a hidden state X' and observed state Y!. In addition
to the distribution over the initial state, an HMM is characterized by a transition
model T, specifying the conditional probability of X**! given X*, and an observation

model, specifying the conditional probability of the observations Y given the state



CHAPTER 7. RECURSIVE PROBABILITY MODELS 211

X*t. HMMs can be very easily modeled in our language by adding an Observation
attribute to the Instant class from Example 7.1.1. The parent of Observation is State,
and its CPF is the observation model O.

In a dynamic Bayesian network [21, 53|, the state at time ¢ is further decomposed
into a set of variables X' = X?,..., X!. Each of the X} has a set of parents, which
are other variables from the previous or current instant, and a local CPF. A DBN
can obviously be represented in our framework, with the Instant class now containing
an attribute for each of the X;, and each parent of X; being either an attribute X;
from the same time slice, or a Previous.X; from the previous time slice.

All the models discussed so far are well-studied models, recast in our relational
language. However, once we have a relational representation, we can imagine repre-
senting more complex dynamic models. One such representation, dynamic OOBNs
(DOOBNs) was proposed in [27]. A DOOBN consists of a number of subsystems,
each of which evolve in time. The state of an object at time ¢ can depend on its state
at a previous time, or on the states of other objects at time t. We allow the different
subsystems to evolve at different rates, so for example, in a model of freeway traffic,
the weather may evolve much more slowly than the position of a car. Although the
representation of complex dynamic systems requires further study, it appears that the
use of an object-based representation language can greatly facility the representation

and inference for these types of systems. I

Example 7.1.3: So far, we have considered models in which the infinite dependency
chains are linear. The state at each point in time has one parent, which is the state
at the previous instant. A natural non-linear recursive probability model is a model
for the transmission of genetic material from generation to generation. For simplicity,
we will describe a model for the propagation of a single gene, with two states. This
model can easily be extended to multiple genes, with multiple states, and to model
the correlations between propagation of different genes due to their proximity in the
genome.

Our example model contains a single Person class, with two complex attributes
Mother and Father. The class has the simple attributes Phenotype, describing the

observed property of the person, and M-Chromosome and P-Chromosome, representing



CHAPTER 7. RECURSIVE PROBABILITY MODELS 212

the gene type inherited from the mother and father respectively. The parents of
Phenotype are M-Chromosome and P-Chromosome, and the CPF for Phenotype takes
into account which state of the gene is dominant and which is recessive. The parents of
M-Chromosome are Mother.M-Chromosome and Mother.P-Chromosome, with a person
inheriting one of the mother’s two chromosomes at random. Similarly, the parents of
P-Chromosome are Father.M-Chromosome and Father.P-Chromosome.

A family tree can be modeled by instantiating a set of Person instances, and
connecting parents to children as specified in the tree. A knowledge base of this
form defines a probability distribution over the genetic properties of the people in the
tree, given the genetic material at the roots. Typically, one will observe the Phenotype
attribute for some of the people in the tree, and use that to predict properties of other
people. The properties of the people at the roots of the tree are actually not known,
however. In fact, they are the result of an infinite chain of genetic transmissions.
This infinite model is only an approximation to the true model — presumably life
does not go back infinitely far. Also, in the true family tree, presumably the same
ancestor will show up via different paths. This can be modeled exactly if the ancestor
is a named instance actually appearing in the tree, but for unnamed instances, the
unique names assumption forces the model to assume that all unnamed ancestors are
distinct. Nevertheless, it is not an unreasonable way to model things. For a large and
richly detailed family tree, the information about named people in the tree will tend

to dominate the uncertainty about the roots. 1

Example 7.1.4: Recursive probability models are often used in modeling natural
language. A commonly used model is a stochastic contezt-free grammar (SCFG) [17],
which is a probabilistic variant of a context-free grammar (CFG). A CFG has an
alphabet of symbols, divided into non-terminal and terminal symbols. Each non-
terminal X is associated with a set of productions of the form X — a;...a,, where
each a; is a terminal or non-terminal symbol. One of the non-terminals is identified
as a special sentence symbol S. In a SCFG, X also has an associated probability
distribution Px over the productions associated with X.

A SCFG specifies a generative process that generates strings of non-terminals.

The process is as follows:



CHAPTER 7. RECURSIVE PROBABILITY MODELS 213

String = S.

While String contains non-terminals do:

Choose the leftmost non-terminal X in String.?
Choose a production X —a;...a,, according to Px.
Replace X in String by a;...a,.

Return String.

If the process terminates, it will return a string of terminal symbols. However,
there may be a positive probability of non-termination, depending on the specific
probabilities over the productions. For example, consider a grammar with a single
terminal @, a single non-terminal S, and two productions S — SS and S — a.
Let the probability of the first production be a. It can be shown that the process
terminates with probability 1 iff @ < 1/2. In case of non-termination, we may say
that the process generates the special symbol L, or alternatively, we may view it
as generating an infinitely long string of symbols. The latter view is particularly
appropriate if the grammar is in Greibach normal form, in which every production
begins with a terminal symbol. In that case, each application of a production adds
a terminal to the string. We view the generative process as defining a probability
measure over strings of non-terminals.

A SCFG can be specified in our language as follows. There is a String class,
with three attributes, the simple attribute First, ranging over the terminal symbols,
the boolean simple attribute Is-Empty,and the complex attribute Rest of range type
String. Since we will never actually instantiate instances of String, but only of its
subclasses, the local probability models of the simple attributes are immaterial, but
for definiteness we specify them to have no parents and the uniform CPF.

There is an Concat subclass of String, representing the concatenation of two strings.
This subclass illustrates how something that we normally think of as a function can
be represented in our language. The Concat class has two complex attributes Left and
Right of type String, corresponding to the arguments of the function. The Is-Empty
attribute of Concat depends on Left.Is-Empty and Right.ls-Empty, and its CPF is the
and function. The First attribute of Concat depends on Left.First, Left.Is-Empty and

2 Any non-terminal could be chosen here. The leftmost one is specified for the sake of definiteness.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 214

Right.First, and its CPF specifies it to be equal to Left.First if Left.Is-Empty is false,
otherwise it is equal to Right.First.

To specify the Rest attribute of the Concat class, we use a reference attribute
Ref[Rest]. Ref[Rest] has two possible values and depends on Left.Is-Empty. One
possible value is Right.Rest — Ref[Rest] takes this value if Left.Is-Empty is true. The
other possibility is that we need to “compute” the value of Concat(Left.Rest, Right),
and assign this value to the Rest attribute of Concat. This type of argument passing
to a function can be modeled using the binding mechanisms of OOBNs. We add
a Subcall attribute to Concat, itself of type Concat, to represent the result of the
recursive subcall. The arguments are passed to the Subcall attribute by binding the
Left and Right attributes: ©[Subcall.Left] is Left.Rest, and ©[Subcall.Right] is Right.
The result of the recursive computation can be referred to by setting the value of the
Ref [Rest] reference attribute to be Subcall.

Given basic String and Concat classes, we can now construct a class for every
symbol in a SCFG. We will assume that the grammar is in Chomsky normal form:
every production is either X — X; X, or X — a, where X; and X, are non-terminals,
and «a is a terminal. Every CFG can be transformed into Chomsky normal form. The
class C, for a terminal symbol a is a subclass of String, in which the CPF for First sets
the value of First to be a with probability 1, while the CPF for Is-Empty sets Is-Empty
to be false with probability 1. The range type of Rest is the subclass Empty-String of
String. In the Empty-String class, Is-Empty is true with probability 1.

There is an abstract Non-Terminal class, with complex attribute Value of range
type String. The class C'x for a non-terminal X is a subclass of Non-Terminal, defined
as follows. For each production R; = X — a, Cx has an attribute R; of range type
C,. For each production R; = X — X; X5, Cx has complex attributes X; and Xa,
of range type Cx, and Cy, respectively, and a complex attribute R; of range type
Concat, with the bindings ©[R;.Left] = X;.Value, ©[R;.Right] = X,.Value. The Value
of X could be the value of any of the R;, and it is determined using the reference
attribute Ref[Value|, ranging over the R;. Ref[Value] has no parents, and its CPF is

specified according to Px.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 215

In [55], we presented a stochastic functional language for describing recursive prob-
ability models. This simple language makes it very easy to specify generative processes
functionally. The focus of the language is on the generative process itself, rather than
the objects and attributes, which makes it more convenient for describing models that
have a generative flavor, such as SCFGs. In this language, we could use a standard
functional definition of Concat, and each non-terminal is also represented by a simple
function. The stochastic functional language is only superficially different from the
langauge of relational probability models. The procedure we have outlined here for
transforming a SCFG into our framework is a general one that can be applied to any
functionally specified model.

The standard inference task in a SCFG is to compute the probability that a certain
string s was generated by the grammar. The algorithm used for this task is the inside
algorithm. The algorithm works bottom up, computing for each substring s and non-
terminal X the probability 7% that s was generated by X. If s is a single symbol a,
7X is the probability according to Px of the production X — a. If s consists of more
than one symbol, the probability 7 is computed by considering all possible ways in

which s could have been formed using some production R; = X — X;; X;». Le.,

¥ = H Py (R;)P(s was generated by R;).

The probability that s was generated by R; is equal to the sum over all ways in
which s can be decomposed into substrings s; and s, of the probability that s; was

generated by X;; and s, was generated by X;;. As a result, we have

X _ , Xi1, Xio
Ty = HPX(R,) E w2
i

51,52
8§152=S8

The inside algorithm uses dynamic programming, so that 7% is computed using
the previously computed and stored values for 7rs),(' for all substrings s’ of s and all
non-terminals X’. As it turns out, the SVE algorithm, adapted for recursive models
as we shall describe in this chapter, mimics the behavior of the inside algorithm.

In processing a query on a string s, it recursively generates subqueries for each of



CHAPTER 7. RECURSIVE PROBABILITY MODELS 216

the substrings of s. Eventually the process bottoms out and results are propagated
upwards. The caching mechanism of SVE serves to implement the dynamic program-
ming aspect of the algorithm — the results of the low-level queries are stored and
reused and do not need to be recomputed each time.

Of course, once we have expressed SCFGs in our language, we can easily go on to
specify richer grammars. For example, we may want high-level non-terminals to pass
case, gender and number information to lower-level non-terminals. This can easily
be achieved by adding the appropriate attributes to the higher-level non-terminal
object, and have the lower-level non-terminals refer to them. Another possibility
is to include contextual information such as the topic of discussion in the object
models. Our language and inference algorithm provide a ready-made framework for

experimenting with these richer models. 1I

7.2 Language Definition

The language used in this chapter is a selection of language features discussed in earlier
chapters that are particularly well suited to representing recursive probability models.
Specifically, we want the power of the relational language discussed in Chapter 5,
together with the ability to define OOBN-style bindings, so we use the integrated
language discussed in Section 5.6.1 that supports OOBN-style bindings in relational
probability models. Also, as we saw in the SCFG example, reference uncertainty
is important when defining recursive stochastic functions, so we allow that in our
language.

However, we restrict the values of reference attributes to be attribute chains, which
are treated like same-as statements. That is the type of reference uncertainty that
is useful for defining stochastic functions. Furthermore, allowing named instances
as values of reference attributes causes difficulties in recursive models. The problem
is that if a value of a reference attribute of C' is the named instance I, then every
instance of C' can depend on I. This was also true for non-recursive models; however,
in the case of non-recursive models, only finitely many instances of C' can be relevant

for a particular query. In recursive models, however, there may be infinitely many



CHAPTER 7. RECURSIVE PROBABILITY MODELS 217

instances of C that are relevant to a query and depend on I. An attribute of I may
therefore receive evidence from infinitely many children. Our whole analysis in this
chapter rests on the fact that even though infinitely many variables may be relevant
to answering a query, the probability model is made up of local interactions, and each
variable is still only connected to a small number of neighbors. We therefore disallow
reference attributes to take on named instances as values.

We also disallow multi-valued attributes and number uncertainty in this language.
However, that is only for convenience, so as not to include too many features in the
language that are not really relevant to recursive models. Multi-valued attributes and
number uncertainty are orthogonal to recursive models, and incorporating them into
the analysis of this chapter does not pose special difficulties.

Because we now allow infinite dependency chains, we can relax the constraints
placed on the global dependency graph described in Section 5.3. We still want to
prevent cyclic dependencies, while allowing infinite dependencies. The global depen-
dency graph can still be used for this purpose. Recall that a cycle in the global
dependency graph can represent a cyclic chain of dependencies or an infinite chain
of dependencies. If a cycle in the graph is detected, we check to see which kind
of dependency chain it reprensents. If the cycle contains a node I.A where [ is a
named instance, it represents a cyclic dependency chain. If not, it may represent ei-
ther kind of dependency chain. For example, the cycle [Person.Happy, Person.Mother,
Person.Happy] represents the infinite dependency chain resulting from the dependency
of a person’s happiness on their mother’s happiness. On the other hand, the cycle
[Person.Happy, Person.Mother, Person.Healthy, Person.Child, Person.Happy] represents
the cyclic dependency resulting from the dependence of a mother’s health and her
child’s happiness on each other.

We can detect which type of dependency chain a particular cycle represents by
making the following observation. If a cycle does not contain a complex attribute,
then the cycle represents a dependency chain among attributes of the same object,
so it represents a cyclic dependency chain. If the cycle contains complex attributes,
it involves dependencies among attributes of multiple objects, and only represents a

cyclic dependency chain if it ends up back in the object in which it started. That can



CHAPTER 7. RECURSIVE PROBABILITY MODELS 218

only happen if each time the chain moves from one object to another via a complex
attribute, that move is later cancelled via an inverse attribute.

We can therefore test whether a cycle represents a cyclic or infinite dependency
chain by the following procedure. Let the cycle consist of a sequence of nodes
Ci.Aq,...,C,.A,. First, all nodes C;.A; where A; is simple are removed from the se-
quence. Then, if the resulting sequence contains a pair of consecutive nodes C;.A4;, C;. A;,
where A; inverse-of A;, the pair is removed. This operation is repeated until no more
such pairs exist. If the resulting sequence is empty, the cycle represents a cyclic de-
pendency chain, otherwise it represents an infinite dependency chain. In the first
example above, the sequence after removing simple attributes consists of the single
node Person.Mother. The sequence cannot be reduced, so the cycle represents an infi-
nite dependency chain. In the second example, the sequence of complex attributes is
[Person.Mother, Person.Child]. Since Child inverse-of Mother, the pair of nodes can be
removed, resulting in an empty sequence, and the cycle represents a cyclic dependency

chain.

7.3 Measure-Theoretic Semantics

For the semantics of recursive models, we use a measure-theoretic approach that
is similar to that for relational probability models. The set of possible worlds 2
and event space & are defined in the same way as before. The difference between
our approach here and before is that we can no longer specify exactly what the
measure over ({2, Ex) should be. Instead, we specify constraints on the measure.
These constraints are expressed through Bayesian network fragments that describe
the probability model.

Each of these BN fragments describes a conditional probability distribution over
some set of nodes given their parents. In order for the fragments to represent the
probability model in a coherent way, we require that the set of variables contained in
the fragment be self-contained, in the sense that every dependency chain between two
variables in the set should be fully contained in the set. If a set of nodes is not self-

contained, the fragment containing those nodes does not capture all the dependencies



CHAPTER 7. RECURSIVE PROBABILITY MODELS 219

(b)

Figure 7.1: Self-contained sets: (a) Normal case. (b) Pathological case.

between variables in the set, and cannot be expected to capture the probabilistic

relationships between the variables in a faithful manner.

Definition 7.3.1: A set X of variables is self-contained if there is no dependency
chain from X; € X to X, € X that passes through anode Y ¢ X. 11

The notion of self-containedness is reasonable and natural, and in fact all the
examples we have considered so far, such as dynamic Bayesian networks, genetic
models and stochastic context free grammars have natural self-contained sets of nodes.

For example, Figure 7.1(a) shows a dynamic Bayesian network with three variables



CHAPTER 7. RECURSIVE PROBABILITY MODELS 220

in each time slice. The set of variables in any time slice is self contained, as is the set
of variables in any adjacent sequence of time slices.

However, there are pathological examples of models in which some finite set of
variables is not contained in any finite self-contained set. Such a model is illustrated in
Figure 7.1(b). This example consists of a single class C, with two complex attributes
A and A,, and two simple attributes B; and By. B; depends on A;.B;, while B,
depends on B; and on Ay.Bs. The problem arises because A; and A, are inverses of

each other. For an instance I of C, there is a dependency chain of the form
I.By —...— A, (ntimes) B T A, (mes) B 5 1.B,,

for all n. Since there are infinitely many and arbitrarily long dependency chains from
1.By to I.B,, the model can have no finite self-contained sets containing these two

variables.

Definition 7.3.2: A recursive probabilistic KB IC is normal if, for every finite set of
variables X of IC, X, there is a finite set of variables Y such that X C Y and Y is
self-contained. We define X™* to be

MY : X CY and Y is self-contained. 11

Remark 7.3.3: It is clear that X™ is self-contained, since the intersection of any
two self-contained sets is self-contained. Also, if Xy C X3, then X} C X. 1

We define the probabilistic semantics by requiring that a probability measure over
the set of basic variables respect the network fragments for all finite self-contained sets
of variables. This is a reasonable definition, and makes good sense for the examples we
considered in the introduction, even though it is not particularly useful in pathological

cases. First we need to define a network fragment relative to a set of variables.

Definition 7.3.4: Let X be a finite set of variables. The Bayesian network fragment
relative to X, denote Bx, consists of X U Pa[X]. For each X = [.0.A € X, the
parents of X in Bx are the nodes Y such that X < Y and the CPF of X is derived



CHAPTER 7. RECURSIVE PROBABILITY MODELS 221

from the CPF of A, as described in Definition 5.4.5. Nodes in Pa[X] — X are called

the roots of Bx, and have no parents or CPF in Bx.? 1

A BN network fragment does not define a probability distribution, because no
CPFs are provided for the root nodes, but it does specify a conditional probability
distribution over X given the roots. We require that any model of a recursive prob-
abilistic KB satisfy the conditional distributions so defined, whenever X is a finite

self-contained set of variables.

Definition 7.3.5: A probability measure p over (Qx,Ex) is a model for K if, for

every finite self-contained set of variables X in K,
mX | Yx) = Bx(X | Yx),

where Yx is Pa[X]| — X. 1

For non-recursive probability models, we used a set of flat BNs to define the
probability distributions over assignments of values to basic variables, and generated
the measure p over (2 from them. Lemma 5.4.6 shows that the y defined in this way
does in fact satisfy the constraints of Definition 7.3.5, while Theorem 5.4.10 shows
that it is the only measure satisfying these constraints. Thus the semantics presented
here for recursive models is an extention of the semantics of Chapter 5.

We will now prove that for recursive probability models, a measure satisfying Def-
inition 7.3.5 always exists. However, unlike in Chapter 5, we can no longer guarantee
uniqueness of such a measure.

The basic idea of the proof is as follows. We wish to show that there exists an ad-
ditive function over basic events, that can then be extended to a probability measure.
We grow this additive function by considering larger and larger self-contained sets of
variables. We show that for any pair of variables X; and X3, with X; C X, it is

possible to define the function over events mentioning the variables in X; in such a

3The term “roots” used here does not denote the set of nodes with no parents in Bx. A node
in X that happens to have no parents is not considered a root; it has a CPF, and its probability
model is defined by Bx. Rather, a root is a node that is present only because it is the parent of
some node in X, and it does not have an CPF.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 222

Y1

X X1

Figure 7.2: Tllustrative figure for Lemma 7.3.7.

way that it is consistent with the BN fragment for X,. We then use compactness
to show that we can therefore define the function over events mentioning variables
in X in such a way that it is simultaneously compatible with the BN fragment for
every set containing X;. The function defined in this way is additive and agrees with
all the BN fragments, so can be used to generate the required probability measure.
For the key proof step we require the following lemmas. Lemma 7.3.6 states simply
that if X is self-contained and Y is a root of Bx, it cannot be a descendant of any
X € Bx. Lemma 7.3.7 uses this fact to show that as we go from one self-contained
set to a larger self-contained set, the roots of the smaller set d-separate the smaller
set from the roots of the larger set. This lemma is very useful, and we shall use it a
number of times. This is used in turn to prove Lemma 7.3.9, which states that any
distribution over the larger set of variables that is compatible with the BN fragment
for the larger set marginalizes down to a distribution over the smaller set of variables
that is compatible with the BN fragment for the smaller set. It is this property that

allows us to grow the function over basic events in a consistent manner.

Lemma 7.3.6: Let X be a finite self-contained set of variables, and Y a root of Bx.
Then Y cannot be a descendant of any X € X.

Proof: Suppose not. Then there exists a dependency chain from some X; € X to Y.
But Y € Pa[X], so it is a parent of some X5 € X. Therefore there is a dependency
chain from X; to X, that goes through Y ¢ X, contrary to assumption that X is

self-contained. 1

Lemma 7.3.7: Let X, and Xo be two finite self-contained sets of variables, with



CHAPTER 7. RECURSIVE PROBABILITY MODELS 223

X; € Xo. Let Y7 and Ys be the roots of Bx, and Bx, respectively. Then X is
d-separated from Ya by Yy in Bx,.

Figure 7.2 illustrates Lemma 7.3.7. The figure shows each of the four sets Xj,
X, Y; and Y; as rectangles. We can consider all probabilistic dependencies to flow
vertically downwards. X; and Y; are disjoint, but every dependency into X; from
outside X; must come from Y7, so we draw the two rectangles adjacent, with the
bottom border of Y; completely covering the top border of X;. By Lemma 7.3.6, we
are justified in not drawing part of Y; underneath X; to allow dependencies to flow
in the other direction. The situation is similar for X, and Y. Also, X5 contains X7,
while Y2 — X5 contains Y; — X. It is intuitively clear from the figure that there can
be no path from Y2 down to X; that does not pass through Y3, and that X; has no
descendants in Y; or Y. We prove the lemma formally as follows.

Proof: Suppose not. Then the set S of nodes X € X; such that there is an active
path from Y> to X is non-empty. Since X is finite, there must be some node S such
that none of its parents are in S. Let Z be such a node. Suppose the path from Y5
to Z has an edge entering Z. The predecessor of Z in the path cannot be in X, or
else it would be a parent of Z in S, contrary to definition of Z. So the predecessor
of Z in the path must be a node Y € Y;. But then the path is blocked at Y. We
are left with the possibility that path has an edge leaving Z. By Lemma 7.3.6, no
node in Y3 can be a descendant of Z (since Z € X; C X5), so the path must have
converging arrows at some node W descended from Z. But, again by Lemma 7.3.6,
since W and all its descendants are descended from Z, none of those nodes can be
in X7. So the path is blocked at W. We conclude that there can be no active path

from Yy to Z, contrary to assumption. I

The proof of Lemma 7.3.9 and Theorem 7.3.10 rely on a mapping defined for the
BN fragment corresponding to a set of variables X. This mapping maps probability
distributions over the roots of the fragment to probability distributions over X. We
use the notation Ax to denote the space of probability distributions over X. It is
a subset of R", where n is the number of values in Val[X]. Ax consists of points

p € R" satisfying the constraints that p; > 0 and > ., p; = 1. Ax is a closed and



CHAPTER 7. RECURSIVE PROBABILITY MODELS 224

bounded, and therefore compact, subset of R".

Definition 7.3.8: Let X be a finite set of nodes, and Y the roots of Bx. We define
the mapping F'x from Ay to Ax as follows. For each p € Ay,

Fx(p)= Y py)Bx(X|y). 1
ye Val[Y]
Lemma 7.3.9: Let X, and X3 be finite self-contained sets of variables, with X, C
X5, and let Y7 and Yz be the roots of Bx, and Bx, respectively. If p € Ax, is in the

image of Ay, under Fx,, then ZXer s in the image of Ay, under Fyx,.

Proof: If p € Ax, is in the image of Ay, under Fx,, there is some ¢ € Ay, such
that

p(X2) = a(y2)Bxa (X2 | p2)-

Y2

Let p’ be ) . x, p- We have

P(e1) = Z:cgeVal[Xz—Xl]p(mhwz)
Zm q(y2) Zm Bx,(z1, T2 | Y2)
v 1(Y2)Bx, (1 | y2)
(y2) Zyle Val[Yi] Bx, (y1 | y2)Bx, (21 | y1,Y2)
(y2)
(y2)

=

>
2y
Dy 0(Y2) 2oy, Bxa (Y1 | y2)Bx, (21 | y1) (by Lemma 7.3.7)
D2 €(Y2) Doy, Bxa (Y1 | y2)Bx, (21 | Y1)
Zyl Zw 4(y2)Bx. (Y1 | y2)Bx, (1 | y1)

- )
= Fx,(3_,, 9(y2)Bx,(y1 | y2))-

Therefore p’ is in the image of Ay, under F,, as required. 1

We are now ready to prove our main result of this section.

Theorem 7.3.10: Let K be a normal recursive probabilistic KB. There exists a

probability measure p over (Qx, Ex) that is a model for K.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 225

Proof: We begin by constructing an increasing sequence of finite self-contained sets

that covers all the variables of IC. For n > 0, define
X,, = {X : the length of X is at most n}.

Let Z, denote the self-contained set X, defined in Definition 7.3.2. Z, is finite
since K is normal, and self-contained by Remark 7.3.3. By the same remark, Z; C
Zy C ...

Next, for each Z,,, we define a set of probability distributions over Z,, that are
consistent with the BN fragment Bz_, for some distribution over the roots of Bz_. Let
Y,, be the roots of Bz,_,. Define the set S, C Az, to be the image of Ay, under the
mapping Fz_. S, is the continuous image of the compact set Ay, , so it is compact.
Sy, is obviously also non-empty, since it is the image of a non-empty set.

Next, we use compactness to show that for each Z,,, there is some non-empty
subset of S,, of distributions that are consistent with some distribution in S,, for
every m > n. For m > n, define the set 7" C Az to be the image of S,, under the

marginalization operator ), _, . We show the following:

1. T7" is closed. This is clear, since it is the continuous image of a compact set,

and therefore compact, and therefore closed.
2. T7" is non-empty. This is obvious, since it is the image of a non-empty set.
3. T;* C 5,. This follows immediately from Lemma 7.3.9.

4. If my < mg, T)™ D T;™2. This follows from point 3, as follows. 77" is the
image of S,,, under the marginalization operator Gy = Zumg—Zn which is the
composition of the operators H = Ezm_ Zom,g and G; = ) Ly Z” Since the
image of H is a subset of S,,, by point 3, and 7" is the image of S,,, under
G, it follows that T D T2,

It follows, therefore, that (777")o°_ is a decreasing sequence of closed, non-empty
subsets of S,,. Define 7}, to be N°_ T'™. By compactness of S,,, T}, is a non-empty

m=n-—n
subset of S,,.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 226

Each T, is a set of distributions over Z,, such that for every p in T},, p is consistent
with the BN fragment Z,, for some distribution ¢ over Y,,, and furthermore, for every
m >mn,pisequal to ), _, p'for some p’ € T,. The final stage of the construction
is to use the T;, to define a function F' over basic events, as follows.

We construct a sequence of distributions F; over Z; as follows. For Fi, choose
any element of T'z,. For F; with ¢ > 1, choose an element of Tz, such that F;_; =
ZZ-:'._Z':'.—I F;. Since F;_; € Ty, ,, such a choice must exist. For i < j, we have
inductively that F; = > z,—z; Ij- It follows that we can define the function F" over
basic events unambigously by setting F'(E) = F;(F) for any ¢ such that all variables
mentioned by E are in Z;.

It is easy to see that F'is additive. Let E1,... , E, be a set of disjoint basic events
such that their union F is a basic event. Let ¢ be such that all variables mentioned

in any of the F; or in F are in Z;. Then, since F; is a probability distribution,
F(E) = F(E) = F,(Uj_,Ej) = Y F(E;) =) F(E)).
j=1 j=1

Lemma 5.4.8, which states that no basic event is the infinitely countable disjoint
union of basic events, still applies, so additivity is sufficient to ensure countable
additivity. Therefore F' extends to a measure p over (Qx, Ex). It is easy to see that
p is a probability measure, since (2 can be expressed as the event [V Val X]X = z].
Letting Z; be such that X € Z;, u(Qx) = Fi([V, ValpX = z]) = 1.

Finally, p satisfies the condition of Definition 7.3.5. Let X be a finite self-
contained set of variables, and W be Pa|X;]— X;. Let Z; be such that XUW C Z;.
WX UW)=F(XUW),and F; € T; C S;, so there is some distribution ¢ over Y;,
such that

WUXUW)= > q)Bz(XUW |y).

y€ Val[Y;]



CHAPTER 7. RECURSIVE PROBABILITY MODELS 227

It follows that

WX (W) = > a(y)Bz
= Y. qy)Bz,(X | W) (by Lemma 7.3.7)
| W)

y 4
Bz (X | W
= Bx(X |W)

Therefore 1 is a model of K, as required. i

7.4 Approximate Inference

Exact inference is in general infeasible in recursive probability models, since it may
require solving an infinite BN. However, one can consider approximate inference. A
natural approach is to use an idea along the lines of the localized partial evaluation
(LPE) algorithm of Draper and Hanks [23]. LPE is an algorithm for approximate
inference in standard BNs. The basic idea is to identify some active subset of the nodes
in the network. Information about nodes outside the active subset is summarized
through [0, 1] interval bounds on their probabilities. The bounds on the nodes outside
the subset are then combined with the CPFs for the nodes inside the subset to
compute bounds on the probabilities of the active nodes. This process results in
the computation of valid interval bounds to the answer to any query.

LPE is an iterative, anytime algorithm. By considering larger and larger active
subsets, better and better bounds are computed to the answer to the query. In the
limit, the active subset is the entire network, and a point-valued answer is returned.

The extension of the LPE idea to recursive models is natural. An active set of
nodes is constructed by growing the BN backward a certain number of generations
from the query and evidence variables. The parents of this active set are summarized
by [0, 1] probability bounds. The bounds on the roots and the local probabilities of
nodes in the active set are used to compute better and better bounds on the answer
to the query.

Computing with interval-bounded rather than point-valued probabilities requires



CHAPTER 7. RECURSIVE PROBABILITY MODELS 228

a slight modification to the VE framework. The basic operands of the algorithm
are now interval-bound factors, and the product and marginalization operations must
now be redefined for interval-bound factors. An interval-bound factor f over variables
X is a function from Val[X] to intervals [p;, po], where p; and py are real numbers.
A convenient way to represent an interval-bound factor f is as a pair of factors f,
and f*, with f,(x) < f*(x) for all x € Val[X]. A naive way to define the product of
two interval bound factors f = (f., f*) and g = (g., g*) is to define the product h by
h. = f.g. and h* = f*g*. Similarly, ), f can be defined to be the factor g specified
by g. =Y x fr and g* =" f*.

These operations are certainly sound. That is, if the true value of f lies between
f« and f*, and similarly for g, then the true value of fg lies between f,g, and f*g*.
Likewise, the true value of ) . f lies between ) f. and ), f*. So propagating
interval bounds on the answer to a query using these operations will certainly result
in a valid bound on the answer, as long as the initial bounds are valid. However, these
operations are very conservative, and the bounds on the product and marginals can
be tightened considerably. The reason is that in addition to the bounds on the true
values of f and g, we also have constraints on the values resulting from the fact that
the factors correspond to CPFs, or are computed from CPFs. For example, if f is
P(Y | X), we have the constraint »_ f(z,y) =1 for all z. So in fact )y f is known
to be 1 for all values of z. However, f.(z,y) may be less than f(z,y), so >, f.(z,y)
may be some number «a, less than 1. Using the conservative marginalization operator
will allow us only to derive that Y v f > «,.

A better approach to computing with interval-bound probabilities was developed
by Tessem [96], and used by Draper and Hanks in LPE. At the core of Tessem’s
approach is the following observation. Suppose we are in the process of eliminating
variable X, which appears in factors f!,...,f". Let the variables other than X
mentioned by f? be Y¢. Suppose also, that we have the constraint that for all y! €
VallY], 3", c Val[X] fi(z,yt) = 1. There is only one factor that has this property, since
a variable is appears as a parent in all but one of the factors in which it participates.
We want to compute g = > [, /%, which is a factor over Y = U, Y%, So for each

y € Vul[Y'], we want to compute lower and upper bounds on g(y) from the given



CHAPTER 7. RECURSIVE PROBABILITY MODELS 229

interval bounds for the f! subject to the constraint. Write p = fi(z,y*) (y* being
the projection of y on Y?), p, = [[/_,p% and ¢, = pL. Also, let pi, and pi* be the
lower and upper bounds on pi as specified by the interval bounds for f? and write

Pos = [ 1o Phy, PE = [ 11y P&, Our goal is to solve

minimize (or maximize) Y. pyqs

Das < Pe <D
subject to  pl, < ¢ < p¥

This is a simple linear programming problem. Because of its special form, the mini-

mization problem can be solved by the following procedure:

For all z, set ¢, =0.
S = Val[X].
r=1.
While » > 0 do:
Choose z € S that minimizes p,..
Set ¢, = min(r,pl*).
S=8—-{z}.
r=1r-—q.

Return ), ¢uPu«-

The solution to the maximization problem is analogous.

In presenting our algorithm, we assume that the factor sums and products are
sound operations on interval-valued factors, perhaps implemented as described by
Tessem. The algorithm itself is independent of the actual specification of these oper-
ations.

The following theorem states that the approach outlined here to approximate
inference in recursive probability models is sound. That is, for any recursive prob-
abilistic KB K, and any query on X, if we expand the network backwards from the
set of query and evidence variables, use interval bounds for the roots, and compute

interval bounds for the answer to the query, then the answer to the query lies within



CHAPTER 7. RECURSIVE PROBABILITY MODELS 230

the bounds for any model of K.

Theorem 7.4.1: Let X be a finite well-contained set of variables in a recursive prob-
abilistic KB KC, and Bx be the BN fragment over X as described in Definition 7.3.4.
Let Q and E be subsets of X, and q and e assignments of values to Q and E re-
spectively. Let' Y be the roots of Bx. If we use [0,1] bounds for the prior probability
distributions over Y, and compute interval bounds [pi,ps] on P(Q = q | E = e)

using VE with valid operations on interval-bounds factors, then for any model u of
K.,pi <u@Q=gq|E=e)<ps.

Proof: By Definition 7.3.5, for any value y of the roots Y, u must satisfy u(Q = q |
E=¢Y=y)=Px(Q=q|FE=eY =y). Therefore y satisfies

pQ=q|E=e)=) uy)Px(Q=q|E=eY =y).

Let y, and y* be the values of y that minimize and maximize Px(Q = q | E =
e,Y = y) respectively. Since }_, p(y) =1, we have

Px(Q=q|E=eY=9,)<u(Q=q|E=¢e)<Px(Q=q|E=¢eY =y").

Now, it is clear that composition of valid interval-bound operators yields a valid
interval-bound operator. That is, if fi,..., f, is a set of point-valued factors, and
g1,-.-,09, & set of interval-bound factors such that for each f;, gix < fi < g,
and ® is an operation on factors composed of valid interval-bound operators, then
[®(g1y--- 5 9n)]s < ®(f1,--, fn) < [®(g1,---,9n)]"- Now, let the computed answer
to P(Q = q | E = e) from Bx using VE with interval-bound operations be [py, ps].
The operations performed by VE are the composition of valid interval-bound opera-
tions, and hence define a valid interval-bound operation ®. For each root Y;, let f; be
the CPF for Y; that assigns probability 1 to y;,. Each f; is within the interval bounds
[0, 1] used for Y;. Therefore

Mm<®(f1,.--, fn)=Px(Q=q|E=¢Y =y,) < u(Q=q | E=e).



CHAPTER 7. RECURSIVE PROBABILITY MODELS 231

Similarly

P>Px(Q=q|E=eY=y")>puQ=gq|E=e).

It also holds, as we show next, that as we expand larger and larger networks to
solve a query, the bounds on the answer to the query as defined by the network do
not get worse. In fact, if all CPF entries are positive, then the bounds will always

improve.

Theorem 7.4.2: Let X; and Xo be two finite self-contained sets of variables, with
X; C X, and let Y; be the roots of Bx,. Let yz and y} be the values of y; that
minimize and mazimize Px,(Q = q | E = e, Y; = y;) respectively. Let Q and E be

subsets of X1, and q and e assignments of values to Q and E respectively. Then

PX1(Q:q|E:anr1:yl*) S PX2(QZQ|E:‘3,Y2:ZU2*) and
Px,(Q=q|E=eY2=y;) < Px,(Q=q|E=¢eY:=yj).

Furthermore, if Y1 C X3, the CPFs of all variables contain only positive entries, and
Px,(Q=q|E=¢eY =y1.) <Px,(Q=q| E=¢eY =yj), then the inequalities

are strict.

Proof: By Lemma 7.3.7, Y2 is d-separated from QU E by Y7 in Bx,. We therefore

have

Px,(gl e ya) = >, Pxa(y1 | y2.)Pxz(q | €91, 924)
> Pxa (Y1 | y24)Px, (g | €, 1)
= Y Px2(y1 | y24)Px,(a | €,91)
Px, (q ‘ €, yl*)-

v

The > in the above sequence holds because Zyl Px,(y1 | y2«) = 1, and because yi.
minimizes Px, (Q | E,y1). If the roots of X are in Y, and all CPT entries are
positive, Px,(y; | y2.) > 0. If in addition Px,(q | e,y1.) < Px,(q | €,y1.), the >



CHAPTER 7. RECURSIVE PROBABILITY MODELS 232

can therefore be replaced by >, and the inequality is strict. The proof for the second

inequality is similar.

Note that this theorem only applies to the optimal bounds defined by the network.
Unfortunately, propagating the interval bounds using methods such as those of Tessem
may not actually produce the optimal bounds. So, while the theorem says that
considering larger and larger networks should in theory produce better and better
bounds, it remains to be seen whether this holds true in practice.

Also note that the theorem does not say that the bounds eventually converge. In
fact, it is possible that the lower and upper bounds may eventually converge to p;
and p, with p; strictly less than py. Indeed, the query may have a different answer in
different models of the KB, and any number between p; and p, may be the correct
answer for some measure p that is a model of the KB.

An alternative to propagating interval bounds is to pick a particular probability
distribution for the roots of By — the uniform distribution is a reasonable choice.
The query can then be solved in By for that particular distribution, yielding an ap-
proximate solution to the answer to the query. The produced solution is approximate
in the sense that it lies between the optimal interval bounds for By, and the answer
to the query in any model of the KB also lies within those bounds. Therefore, if the
optimal bounds eventually converge for larger and larger KBs, the approximate solu-
tion will eventually converge to the unique true solution to the query. This approach
is certainly easier to implement, since it does not require computing with interval-
bound factors. However, it provides no guarantees as to the quality of the solution

produced.

7.5 Structured Approximation Algorithms

7.5.1 Iterative SVE

Throughout this thesis, we have demonstrated the advantages of an inference algo-

rithm that exploits the object structure of the domain. This leads us to believe that



CHAPTER 7. RECURSIVE PROBABILITY MODELS 233

the same should be true for an approximate inference algorithm for recursive proba-
bility models. We therefore develop the ideas of the previous section in the context of
the object-based SVE algorithm. The version of SVE for recursive models is called
Iterative SVE or ISVE. Iterative SVE takes one more argument than standard
SVE, namely, the order of the desired approximation. A 0-th order approximation
to the answer to the query is a [0, 1] interval bound over the joint probability of the
query variables, if we are propagating interval bounds, or a uniform distribution over
the query variables, if we are computing a point-valued approximation. For n > 0,
the n-th order approximate solution is computed using the (n — 1)-th order solution
for the recursively generated queries on complex attributes.

The Iterative SVE algorithm is closely based on the SVE algorithm developed
in previous chapters. The version of SVE on which the following pseudocode is
based reflects the particular language elements used in this chapter. Because we wish
to allow OOBN style bindings to accomodate stochastic programs, as described in
Example 7.1.4, we use the version of SVE that can handle both OOBN style and RPM
style interfaces, as presented in Section 5.6. We also accomodate same-as statements,
as described in Section 6.5.3, because these are also useful in defining stochastic
functions, as in Example 7.1.4. As it turns out, caching makes interesting things
happen in the iterative framework, so we present the cached version of the algorithm.
In fact, the UncachedISVE subroutine contains almost no changes from the non-
iterative version of SVE. However, this is the first time that the algorithm has been
presented for this combination of language features, so we present the subroutine in
full. Lines of code that are changed from non-iterative versions of the algorithm are

marked with a *.

*Algorithm IterativeSVE(C, o, p, e, D, n)
* If (C,o,p,e,D) is in Cache and
* Order((C,o,p,e,D)) >n
* Return Cache[(C,o,p, e, D)].
Else
* (1,f) = UncachedISVE(C, o, p,e,D,n).
* Cache[(C,o,p,e,D)] = (7, f).



CHAPTER 7. RECURSIVE PROBABILITY MODELS 234

* Order((C,o,p,e,D)) = n.
Return (7, f).

*Algorithm UncachedISVE(C, o, p, e, D, n)
* If n=0

* Return ((), ZeroOrderApproximation(o)).

For each attribute A of C do
Needed[A] = 0.

For each o € o Up do:
Let 0 = A.o'.
Needed[A] = Needed[A] U {o}.

For each attribute A of C,
in a bottom-up order consistent with G[C] do:
If Needed[A] # 0
If A is simple
If A is a chain p€p
Let a be the value assigned to A in e
ga = CPF4[A = q].
Else
ga = CPF 4.
Else // A is complex
If not A€ D
If A has a reference attribute Ref[A]
For each A.0 in Needed[A] do:
For each value B.p in Val[Ref[A]] do:
Needed[B] = Needed|B] U {B.p.c}.
gh? is the factor over A.0, B.p.o and Ref[A]
such that ¢4”(z,y,2) =1 if 2z # B.p,



CHAPTER 7. RECURSIVE PROBABILITY MODELS 235

g5 (x,y,2) =1 if =y and 2z = B.p,
95 (z,y,2) =0 if z#y and z = B.p.
Else // A is not referentially uncertain
Let C' be the range type of A.
Let o' = {0’ : A.0’ € Needed[A]}.
Let p/={p : Ap € p}.
Let €’ be the value in Val[p’],
such that for each p' € p/,
the value assigned to p/ in €’
is the same as the value assigned to A.p) in e
Let D' ={B: B inverse-of A} U {B : there exists a binding O[A.B]}.
* (', fa) = IterativeSVE(C', o', p',€’, D',n —1).
g4 = Rename(f4,1) where
Y(B.1) =1 if B inverse-of A,
Y(B.7) = O[A.B].7 if there is a binding O[A.B],
Y(B.1) = A.B.T otherwise.
For each B.oc mentioned by f4
Needed[B] = Needed|B] U {c} .

T = UpepyNeeded D).

f ={94a : Needed[A] # 0}U

{g57: Ao € Needed[A] and B.p € Val[Ref[A]]}.

Let ¢ ={¢:¢ is mentioned by some f€ f} —(cUT).
For each ¢ € ¢ do

Let g be {g € f: g mentions ¢}.

he =11g-

ko =, hy.

f=rf-guik}.

f=I1f.

Return (7, f).

ISVE is called from a call to SolveQuery, which generates repeated ISVE calls



CHAPTER 7. RECURSIVE PROBABILITY MODELS 236

on the top-level object, requesting approximations of increasing order to the answer
to the query. SolveQuery is an anytime algorithm, which can be run as long as
desired, using any termination criteria to trade off running time versus quality of

solution.

Algorithm SolveQuery(Q, E, e)
Let o be {[I[.A].0':I.A.0' € Q}.
Let p be {[[.A].p/: [.A.p) € E}.
Let €’ be the value in Vaul[p],
such that for each [[.A].p' € p’,
the value assigned to [[.A].p in €’
is the same as the value assigned to [.A.p' in e.
*x n=1.
* Repeat as long as desired:
* (0,9) =ISVE(T,o,p,e',0,n).
h = Rename(g,1), where
Y([[.Al.o)=1.A0.
f = Normalize(h).
x n=n-+1.

Return f.

In addition to the standard benefits of using SVE, namely exploiting small inter-
faces between objects and reoccurence of the same type of object many times in a
model, SVE provides an additional benefit in the framework of an iterative approxi-
mation algorithm. This benefit is that the results of earlier iterations can be used in
later iterations. In particular, if a call to ISVE(C, &, p, e, D, n) recursively generates
a call to ISVE(C, o, p, e, D,n — i), the (n — i)-th approximate solution to the query
will have been computed i iterations previously, and can simply be retrieved from the
cache. Actually, if i > 1, there is no need to use the (n — i)-th approximation, since
the (n — 1)-th approximation will also be in the cache. Therefore, the cache needs
only to maintain the best computed approximate solution to the query, along with

the order of the approximation. Whenever the n-th order approximation for a query



CHAPTER 7. RECURSIVE PROBABILITY MODELS 237

is needed, the algorithm first checks whether the cache contains at least an n-th order
approximate answer; if it does, it returns it, otherwise it computes it and places it in

the cache.

Example 7.5.1: Consider the genetic model from Example 7.1.3. Suppose the
KB has a single named instance I of Person, and we wish to compute a proba-
bility distribution over I.Phenotype. We begin with a call to SolveQuery, with
Q = {I.Phenotype}, and E = e = (. This results in a call to

ISVE(T, {[I.Phenotype]},®,0,0,1).

The arguments (T, {[I.Phenotype|},, 0, ?) are not found in the cache, so a call is

made to
UncachedISVE(T, {[I.Phenotype|}, D, 0,0, 1).

In this call, [I.Phenotype] is needed, and it is the first attribute processed. Processing
it results in [I.M-Chromosome| and [/.P-Chromosome] becoming needed. Processing
[I.M-Chromosome]| results in Needed[Mother| containing Mother.M-Chromosome and
Mother.P-Chromosome. Similarly, after processing [I.P-Chromosome]|, Needed[Father]
contains Father.M-Chromosome and Father.P-Chromosome. Now, processing I.Mother

will result in a recursive call to
ISVE(Person, {M-Chromosome, P-Chromosome}, 0, (), 0, 0).

The arguments are not found in the cache, so a call to UncachedISVE is made
with the same arguments. Since n is 0, a zero-order approximation is returned. For
example, if we are computing with point-valued probabilities, this is the uniform
distribution over the query variables. This approximation is then stored in the cache,
together with the fact that its order is 0. Next, I.Father is processed, resulting in

another call to

ISVE(Person, {M-Chromosome, P-Chromosome}, %, 0, (), 0).



CHAPTER 7. RECURSIVE PROBABILITY MODELS 238

These arguments are now in the cache, and the associated order is 0, so the stored
solution is immediately returned. This is the standard benefit of caching that we have
exploited all along — the fact that the Mother and Father share the same probability
model. All complex attributes of the top-level object have now been eliminated, so
the variable elimination process is performed, and the 1st-order approximate answer
to the query is returned.

In SolveQuery, we decide that we want to continue the computation, so we ask

for a 2nd-order approximation. After looking in the cache, this results in a call to
UncachedISVE(T, {[I.Phenotype|}, 0, ), 0, 2).
Eventually, I.Mother will be processed, resulting in a call to

ISVE(Person, {M-Chromosome, P-Chromosome}, ), 0, 0, 1).

Although (Person, {M-Chromosome, P-Chromosome}, ?, (), @) is now in the cache, the

associated order is 0, so the stored answer is not used. Instead, a call is made to
UncachedISVE(Person, {M-Chromosome, P-Chromosome}, (), 0, ), 1).
Again, Mother will eventually be processed, and a call to

ISVE(Person, {M-Chromosome, P-Chromosome}, 0, ), 0, 0)

will be generated. This time, the zero-order approximation in the cache can be used,
so it is returned immediately. It will also be used when Father is processed. After
eliminating variables, the UncachedISVE for Mother will return, and the new ap-
proximation for the arguments (Person, {M-Chromosome, P-Chromosome}, (), (, #) will
be stored, along with its order, 1. This approximation is immediately reused when
processing [.Father. After eliminating variables, the call to UncachedISVE for the

top-level object will return, with the 2nd-order approximation to the answer to the

query.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 239

If we then continue, asking for a 3rd-order approximation to the answer to the
query, we will eventually call UncachedISVE, asking for a 2nd-order approximation
for (Person, {M-Chromosome, P-Chromosome}, (), @, (). This will in turn result in a re-
quest for the 1st-order approximation for (Person, {M-Chromosome, P-Chromosome}, (), 0, (),
which is found in the cache. In general, asking for the n-th order approximate answer
to the top-level query will result in two calls to UncachedISVE, one for the top-level
object, and one when processing I.Mother.

We see here the great savings resulting from exploiting structure in the iterative
approximation algorithm. The amount of work done in each successive approximation
is constant. This is in contrast to performing the inference in ever expanding flat BNs.
Because each person has two parents, the size of the flat BN going back n generations

is O(2"), so the amount of work done in successive iterations grows exponentially. I

7.5.2 Analysis

A question that arises is whether the phenomenon in Example 7.5.1 is true in general.
Does the amount of computation performed in successive iterations always become
constant, after a certain number of iterations? The answer, in many cases, is yes.
After a certain number of iterations in which the query expands, a recursive fringe
is reached, in which the only queries asked at the fringe are queries that were asked
earlier during the computation process. As a result, approximations of adequate order
will always be found in the cache for the fringe queries, and no further work will need
to be performed for them.

Whether or not a recursive fringe is reached depends on whether or not the KB
contains OOBN-style bindings. We can prove that if a KB contains no OOBN-style
bindings, a recursive fringe is always reached. We begin by defining some notation

and terminology.

Definition 7.5.2: We let ) stand for the arguments (C, o, p, e, D) to SVE, so that
a call to ISVE is described by the pair (Q,n). We say that Q' = (C,o’, p, e, D)
subsumes @) if o’ O o. The set of input chains 7 returned by the ISVE call on (Q, n)
will be denoted 79. For an ISVE call (Q,n) (n > 0), we let (Q.A,n — 1) denote



CHAPTER 7. RECURSIVE PROBABILITY MODELS 240

the recursive call on complex attribute A of C, with the appropriate arguments as
generated by the algorithm. We say that (Q,n) directly generates (@Q.A,n —1). This
notation is extended to attribute chains, so (Q.A; ... Ap_1.4,, n—m) is the recursive
call directly generated by (Q.A;...A;,_1,n —m + 1) on attribute A,,. We say that
(Q,n) generates (Q.A;...Ap,n—m). 1

Lemma 7.5.3: Let K be a KB with no OOBN-style bindings. For every query @Q on
IC there is a bound (3, such that if (Q1,n —m) is generated by (Q,n), the lengths of

all chains in the arguments o and p to Q1, and in T,?_lm are bounded by (3.

Proof: We first prove the theorem under the assumption that K contains no same-as
statements or reference attributes. The bound f is then the maximum length of all
chains in arguments to () and of parents of simple attributes of K.

The proof is by induction on n. The statement is clearly true for n = 0, since the
only query generated by (Q,0) is (@, 0), and 7 is empty for a zero-order approxima-
tion. Now, consider n > 0 and assume the theorem is true for all n’ with n’ < n.
For m = 0, the statement is again clearly true. We will show that it is true for
any (Q.A,n — 1). The result will then follow from the induction hypothesis for all
(Q.A.o,n—m) ={(Q.A.o,(n—1) — (m —1)).

By the definition of the ISVE algorithm, the arguments to Q.A are o’ = {0’ :
A.o" € Needed[A]}, and p/ = {p' : A.p' € p} where p is part of the argument to Q.
The length of chains in p' is clearly bounded by 5. We must show that the lengths
of chains in Needed[A] is bounded by 3. A chain A.o can be placed in Needed[A]
for one of three reasons. First, A.c could be a query or evidence chain in o or p,
in which case its length is bounded by ( by definition. Second, A.c could be the
parent of some simple attribute, in which case its length is again bounded by g by
definition. Finally, it could be that for some complex attribute D that was processed
before A, A.oc = 9(B.7), for some B.7 in the return value 7% from the call to
(Q.D,n — 1). We show by induction on the complex attributes A, in the order that
they are processed by ISVE, that the length of a chain placed in Needed[A] for the
third reason is also bounded by . The third case cannot apply to the first complex

attribute processed, so the base case of the induction holds trivially. For the induction



CHAPTER 7. RECURSIVE PROBABILITY MODELS 241

step, we may assume by induction that for any B processed before A, the lengths of
chains in 'r;?'_li is bounded by (. Therefore the length of B.7 is bounded by 3. Since
the KB contains no OOBN-style bindings, B must be an inverse of D, and A.c = 7,
so the length of A.o is also bounded by £, as required.

We now relax the assumption that the KB contains no same-as statements or
reference attributes, but require that all same-as statements be stratified, as defined
in Definition 6.5.1. We can therefore define the potential length of any chain o as
being the maximal length of the chain produced from o by processing all possible
same-as statements. We set the bound # now to be the maximum potential length
of all chains in the query arguments and of all parents of attributes in . We repeat
the argument above, showing that the potential length of any chain in Needed[A] is
bounded by 3. It is clear that the length of a chain is bounded by its potential length,
so this is sufficient. For the three reasons mentioned above that a chain could be in
Needed|o], the same argument as above applies. There is now an additional reason
why A.o could be in Needed|A], namely, if A.c = A.p.7, B.T € Needed|B], and there
is a same-as statement B same-as A.p, or A.p is a value in Val[Ref[B]]. But if the
potential length of B.7 is bounded by [, the same is true for the potential length
of A.p.7 by the definition of potential length, so the inductive argument presented

above continues to hold. I

It follows from the lemma that there are only finitely many distinct queries gen-
erated by any query (). There are only finitely many attributes, so the number of
chains whose length is bounded by ( is also finite. A query @ is defined by subsets
of these chains, so the number of such queries is also finite. This fact immediately
suggests that the set of queries generated by () stops growing at some point, and,
therefore, that after a certain number of iterations, the set of queries generated be-
comes constant. In order to prove that this assertion is indeed true, we need to show
that the work done in each iteration grows monotonically. Formally, we define a tree
representing the work done in a particular iteration, and then show that the tree
corresponding to one iteration can be embedded in the tree corresponding to the next

iteration.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 242

Definition 7.5.4: For any (Q, n), we define a tree T2 as follows. The root of T¢ is
Q. If Q' is a node of T.¢ at depth m, Q' has a child Q'.A for each (Q'.4A,n —m — 1)
directly generated by (Q',n — m). The node @' is annotated with the input chains
‘r,?im returned by (Q',n — m). The edge from (Q',n — m) to (Q@".A,n —m — 1) is

annotated by the attribute A. The children of ) are listed in the order in which the
attributes are processed by ISVE. 1

Lemma 7.5.5: If Q? subsumes Q', then there is a one-to-one mapping ¢ from the

nodes in T,?l to the nodes in Tanl,4 such that
1. the depth of Q' in T,?l equals the depth of ¢(Q') in Tanl;

2. ¢(Q'") subsumes Q';

3. ‘rQ’

n—

w © T8 (m being the depth of Q' in TZ');

4. if there is an edge from Q' to Q" in Tan annoted by A, there is an edge from
d(Q') to p(Q") in T,?jl annotated by A.

Proof: By induction on n. For the base case, n = 0, and TOQ1 contains only Q.
Define ¢ to take Q' to @Q?. It is clear that conditions 1-4 are satisfied.

For the induction step, let Q!,..., QL be the children of Q' in T?', with the
edge from Q' to @} annotated by A;. Let C be the first argument of Q' and @2,
representing the class on which they are defined. For each attribute A of C, let
Needed'[A] be the set Needed[A] produced when processing (Q', n), and Needed’[A]
be Needed[A] when processing (Q?,n+1). We claim that Needed'[A] C Needed?[A] for
all A. Tt will follow from this claim that for each of the @}, (Q?, n+1) generates (Q?, n)
on attribute 4;, with Q? subsuming Q;. By the induction hypothesis, therefore, there
is a one-to-one mapping ¢; from Tf_"ll to Ty?? satisfying conditions 1 and 2. We can
therefore define a one-to-one mapping ¢ from Tr?l to Trf22 + 1 by defining ¢ to be the
union of the ¢;, together with the assignment ¢(Q') = (Q?). It is clear that ¢ satisfies

4Tt turns out that the theorem is also true for 79" and TQ”, but we are interested in proving that
the generated computation grows richer from one iteration to the next, which is why we compare

2
T9' and TS, .



CHAPTER 7. RECURSIVE PROBABILITY MODELS 243

conditions 1, 2 and 4 because the ¢; satisfy them Condition 3 is satisfied because it
holds for all non-root nodes by the fact that the ¢; satisfy condition 3, and it holds
for the root because 79" C TT?_T_I, which is true because Needed'[D] C Needed?[D]
for all D in the input set D.

The claim is proved by induction on the attributes of C, following the order in
which they are processed. A chain can be placed in Needed|A] either at the beginning
of the computation, while processing o and p, or after processing some other attribute
B. For the first attribute A processed, only the first reason can apply, and since
Q? subsumes Q', Needed'[A] C Needed®[A]. For the induction step, assume that
Needed'[B] C Needed?[B] for all attributes processed before A. In particular, if B
is the complex attribute A; annotating the edge from Q' to Q}, (Q* ,n + 1) will
generate a query (Q% n) on attribute B, with Q? subsuming Q}. Therefore, by
the main induction hypothesis, there is a mapping ¢; from Tanll to T,?g with the
required properties. In particular ¢; must map Q} to Q?, and T,,?_}l - TﬁQ 3. Now,
a chain A.c could be placed in Needed'[A] in several ways. A.c could be placed
in Needed'[A] at the beginning of the computation of (Q',n), in which case it will
be placed in Needed?[A] at the beginning of the computation of (Q?, n), because Q?
subsumes Q'. A.o could be the parent of a simple attribute B such that Neededl[B]
is non-empty, in which case Needed?[B] is also non-empty by induction hypothesis,
so A.o is in Needed®[A]. A.oc could be in T,?El, in which case it is also in Tn?
as we have shown, and again A.o is in Needed’[A]. Finally, A.c could be equal
to A.p.7, with B.1 € Needed'[B] and B.p a possible value of Ref[B]. Again by
induction hypothesis B.7 € Needed?[B], so A.c € Needed®[A]. We therefore see that

Needed'[A] C Needed?[A], and the claim is proven by induction. W

Definition 7.5.6: If ); and (), are two nodes of a tree 7', with the depth of ),
greater than the depth of Q,, and Q; = Q»,® we say that Q, is shielded by Qs in T.
The unshielded part of a tree T consists of nodes of T" that are reached by a path

consisting of only unshielded nodes. 1

Consider processing a query ). The computation performed in the n-th iteration

5Equality here means equality of the arguments (C, o, p, e, D).



CHAPTER 7. RECURSIVE PROBABILITY MODELS 244

is represented by the tree T.9. If ), at depth m is shielded in T.¢

n

calling ISVE
on (Q1,n — m) will result in a cache hit for @)y, with order greater than n — m, so
the result in the cache will be used. Calls to UncachedISVE are only made for

unshielded queries.®

Theorem 7.5.7: Let K be a KB with no OOBN-style bindings, and let Q) be a query
on the top-level object of KC. There exists an N such that for alln > N, the unshielded
part of T2 equals the unshielded part of Tlf,z , and for each unshielded Q' at depth m
in TR, TQLm = Tlel_m. The unshielded part of T will be denoted T, and is called

n

the limit tree for Q).

Proof: We define a tree T9

‘9 representing the limit of the T2, as follows. For each

n?

complex attribute chain p on C, of length m > 0, we define Q¥ and 7% as follows. If
QI
n—m?

otherwise Q% and 7% are ). It follows from Lemma 7.5.5 that if Q% is not 0, Q" is

TR contains a node @' reached by a path annotated by p, Q% is Q" and 77 is T

not () and subsumes @7, and 72 C 5 +1- By Lemma 7.5.3, the size of the arguments
to QF is bounded. Therefore the limits QQ” = lim,,_,o QF and 77 = lim,,_,,, T/ exist,
and the limits are achieved after a certain number nf of iterations. T2 contains a
path for each complex attribute chain on C'; and the node reached by chain p of length
m is Q°. Let T?9 be the unshielded part of 2. By Lemma 7.5.3, T is finite. Let 7"
be T?, together with all children of nodes in T9. T" is also finite, and every leaf of
T' either corresponds to a query on a class with no complex attributes, or is shielded
in T". Let N be the maximum, over all nodes Q” in 7", of n?. Then for all n > N,
QL = Q*, for all ), in T", and the unshielded part of T.¢ is T9. Also, since N > n*,
and the limit 7 is achieved by the nf-th iteration, 72 = 7y, or, letting @' = Q”,
T,?im = Tﬁ'_m. 1

Corollary 7.5.8: If K is a KB with no OOBN-style bindings, and Q) is a query on K,
the asymptotic complexity of computing an n-th order approximation to the solution

of @ using the Iterative SVE algorithm s linear in n.

6A cache hit is also possible for an unshielded query (Q1,n —m), if there is a query (Q2,n — m)
with Q1 = @2 that is processed first. However, it is enough to show that the set of unshielded
queries becomes constant to show that the number of calls to UncachedISVE is bounded by a
constant.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 245

Proof: Immediate from Theorem 7.5.7, since after the N-th iteration, the amount of

work done in each successive iteration is constant. 1

Note that this result does not say that the number N of iterations that must be
performed before the recursive fringe is reached is small, nor does it say that the
amount of work done in each iteration after the recursive fringe is reached is small.
In fact, both may be very large compared to the size of the KB.

The assumption that K contains no OOBN-style bindings was used in the proof of
Lemma 7.5.3 to limit the ways in which a chain could be placed in Needed[A]. In the
presence of a binding ©[D.B], A.p could be (B.7) = O[D.B].r. Since it is possible
that the length of ©[D.B].p is greater than (3, the proof breaks down. In fact, as
the following example shows, bindings can cause the theorem to fail for quite natural

models.

Example 7.5.9: Suppose we wish to define a stochastic function F' that takes a
string as argument, and returns a symbol. The first symbol in the string is returned
with probability 1/2, the second with probability 1/4, and so on. F(X) can be defined
recursively: with probability 1/2, it returns S.First, otherwise it returns F'(X.Rest).
We can define the function in our language by defining a class F with three attributes.
Attribute Input corresponds to the input of the function, and is of type string. At-
tribute Call is of type F, and corresponds to the recursive call. The argument to the
recursive call is passed by the binding ©[Call.Input] = Input.Rest. Attribute Output
is a simple attribute, ranging over the set of symbols. It depends on Input.First and
Call.Output, and its CPF sets it to be equal to one or the other of the parents, each
parent being chosen with probability 1/2.

Now, suppose that we have a program in which a string is generated by some
interesting SCFG, and then a symbol is extracted from the string by the function F'.
This program is encoded in a class that has two attributes, an attribute The-String
whose type is the sentence symbol of the SCFG, and an attribute The-Symbol, whose
type is F. The generated string is passed to F by the binding ©[The-Symbol.Input] =
The-String.

Let @ denote the argument list (F, {Output}, ®,, {Input}). Let 7" denote the set



CHAPTER 7. RECURSIVE PROBABILITY MODELS 246

of needed input chains returned by (@, n). The only complex non-input attribute of
F is Call, and when Call is processed, Needed[Call] = {Output}, so the only recursive
call directly generated by (Q,n) is (Q,n — 1). Let us examine what happens when
we call SolveQuery to compute a probability distribution over The-Symbol.Output.
The n-th iteration results first in a call to (Q,n — 1) — this will return a set of
chains beginning with Input on which Output depends, and a conditional probability

distribution over Output given these chains. We will let 7™ denote the set
{7 : Input.7 is in the set T returned by (Q,n — 1)}.

On renaming, each of the chains Input.7 will be changed to The-Sentence.r, and
The-Sentence.r will be placed in Needed|The-Sentence]. The set of query chains passed

to the recursive call on The-Sentence is
{7 : The-Sentence.7 € Needed[The-Sentence|},

which is equal to 7. Computation therefore proceeds by querying the SCFG for a
distribution over 7.

What is the set 77 For n = 1, it is the set of input chains resulting from a call
to (@, 0). Since a zero-order approximation does not depende on any inputs, 71 = §.
For n > 1, the call to (@), n—1) recursively generates a call to (@, n—2). The solution
to (@, n — 2) was computed in the (n — 1)-th iteration, so will be found in the cache.

The set of input chains required by (Q,n — 2) is
{lnput.7 : 7 € 7771},
After renaming, using the binding ©[Call.Input| = Input.Rest, this becomes the set
{Input.Rest.7 : 7 € 7"},

Since Output also depends directly on Input.First, the set of input chains required by



CHAPTER 7. RECURSIVE PROBABILITY MODELS 247

(Q,n—1)is
{Input.First} U {Input.Rest.7 : 7 € 771},
so T™ is
{{First} U {Rest.7 : 7 € 7"~ 1}.
It is easy to see by induction that
™ = U ?Rest" First .

We see therefore that the set of inputs to the call on The-Sentence grows with each
iteration. There is nothing pathological about this example. In fact, this is exactly
the type of behavior we would want — in each iteration, we consider more and more
of the string generated by the grammar. Perhaps the surprising thing is that this
type of behavior cannot be generated without the OOBN-style bindings. I

7.5.3 ISVE and Fixed-Point Equations

If the limit tree 79 exists, then after a certain number N of iterations the algo-
rithm starts performing exactly the same computations on each iteration. We can
understand the algorithm as executing a set of fixed point equations. Following the
notation of the proof of Theorem 7.5.7, we will label a node in T by Q*, we will
denote the query chains argument to Q) by o”, the class argument to ” by C”, and
the input chains return value by 7°. In the n-th iteration, with n > N, the algorithm
computes a factor f?, which is a conditional distribution over o” given 7°. We will
let ff denote the value of f? computed in the n-th iteration.

Now, fFf is computed by performing a variable elimination computation over the
CPFs for the simple attributes of C?, and the factors computed from recursive queries
on complex attributes of C”. The query on p.A may or may not result in a cache

hit. If it is shielded, it will result in a cache hit. If the solution is retrieved from



CHAPTER 7. RECURSIVE PROBABILITY MODELS 248

the cache, it is equal to f{;l_l for some other chain p'. If the query on p.A does not
result in a cache hit, its solution will be f#-4. Therefore, f? is defined as a sum-of-
products of factors expression involving local CPFs of C”, values of f,fl_l computed
in the previous iteration, and values of f#4 for complex attributes of C? computed

in the same iteration. Since the local CPFs are constant, we can write

f?g = Fp( 111.)’—1:f£.A): (71)

where ff:l_l denotes the set of factors on all chains p’ computed in the (n — 1)-th
iteration, and fjl"A denotes the set of factors computed for complex attributes A in
the n-th iteration. We have an equation of this form for each Q* in T9. The values of
fP can be computed in a bottom up fashion. Values for leaves depend only on values
of factors from the previous iteration. If a node is processed only after all its children,
all factors on which it depends will be available at the time that it is processed. This
is in fact exactly the way ISVE does things — the variable elimination process for a
query happens only after factors have been computed for all its subqueries.

Each function F” is a polynomial in its arguments.” The reason it is a polyno-
mial and not necessarily a linear function is because the same argument may appear
multiple times in the sum-of-products expression. This will happen if different at-
tributes have the same queries asked on them, as, for example, the Mother and Father
attributes in Example 7.5.1. If we substitute the equations defining fT’:'A in Equa-
tion 7.1, we obtain inductively that each F” is a polynomial in fﬁ'_l. We can therefore
take all the F? as defining a polynomial fixed-point equation F, defining f# in terms
of ff_,. We can view the behavior of the ISVE algorithm, after the limit tree is
reached, as computing successive iterations of this fixed point equation.

The fact that when a recursive fringe is reached, the solution to a query is defined
by a polynomial fixed point equation, suggests that once the recursive fringe is found

the algorithm can stop iterating and produce the fixed point equations explicitly.

"To be precise, it is only a polynomial if its arguments are point-valued probabilities, because
then each element in the result is defined in terms of sums and products of the arguments. If the
arguments are interval-bound probabilities, then the operations used are interval-bound operations
which are not exactly sums and products.



CHAPTER 7. RECURSIVE PROBABILITY MODELS 249

These can then be solved directly, using a standard mathematical computing package
such as Mathematica [99]. Detecting whether a recursive fringe is found is easy. At
the beginning of each iteration a Changed flag is set to False. The Changed flag is set
to True for one of two reasons. The first is obvious: ISVE is called for a query that
is not in the cache. In that case it is clear that a recursive fringe has not yet been
reached. The second situation is when ISVE is called on a query that is in the cache,
but the order of the cached result is lower than the order of the desired approximation,
and the set of input chains 7 returned by the call to UncachedISVE is larger than
the set in the cache. Although a new query is not asked in this situation, enlarging
the set of input chains changes the structure of the computation. The number of
variables in the fixed point equation depends on the number of input chains, so the
fixed point equation should not be defined until the set of input chains converges.
If, at the end of an iteration, the Changed flag is still False, we know a recursive
fringe has been reached. At that point, a symbolic variable is created for each of the
unshielded queries in the query tree.® The symbolic variable is then stored in the
cache as the solution to the query. One last iteration is then performed, resulting in
UncachedISVE being executed once again for each of these queries. For a query
on the recursive fringe, the symbolic variable representing its solution is returned
immediately. The variable elimination phase is performed symbolically.® That is, the
solution to the query is defined as the expression >, [[;c; f. Some of the f will
be numeric CPFs, while others will be symbolic expressions. In general, each factor
entry is a polynomial in the symbolic expressions, and products and marginalizations
of factors are defined in terms of products and sums of polynomial expressions. The
result is a single factor, defining the conditional probability distribution over o given 7
as a polynomial expression in the symbolic variables. This expression is then returned
as the solution to the query. At the conclusion of the extra iteration, we will have in

the cache a symbolic expression defining the solution to each query. These expressions

8The set of unshielded queries can be detected by marking each query in the cache with the
number of the last iteration for which it was solved. All queries that were solved in the iteration
when Changed ended up False are unshielded.

9The process is similar to Li and D’Ambrosio’s Symbolic Probabilistic Inference (SPI) algo-
rithm [62].



CHAPTER 7. RECURSIVE PROBABILITY MODELS 250

define a system of fixed point equations, which can then be solved directly.

7.6 Conclusion

In this chapter, we developed a powerful extension to our relational probabilistic
modeling language, by allowing the language to express recursive models. As we have
shown, these types of models are very natural in many domains. We provided a se-
mantics for recursive models that generalizes the semantics for the non-recursive case,
and proved a strong existence theorem showing that all knowledge bases satisfying a
natural and reasonable assumption have a model under this semantics.

We also developed approximate inference algorithms for reasoning about recursive
probability models. As usual, we obtained major benefits from exploiting the object
structure. In addition to the standard benefits of encapsulation and reuse of compu-
tation between different objects, we found dramatic benefits resulting from reuse of
computation between different iterations of the approximation algorithm.

We believe that the added expressive power of a recursive language will be vital
in many domains. On the other This extra power does not come without a price.
We are no longer guaranteed that a KB will have a unique model. It is up to the
knowledge engineer to design the KB in such a way that it has a unique model,
or at least is sufficiently well-defined so that many queries have a unique answer.
Designing recursive probability models is a skill much akin to programming. Very
little is understood at this point about the behavior of these models.

Some important open questions are:

e Are there simple but non-trivial conditions that guarantee that a recursive prob-

abilistic KB has a unique model?

e Are there simple but non-trivial conditions that guarantee that inference for a

query on a KB with OOBN-style bindings reaches a recursive fringe?

e Is there a way to analyze the general form of a specification of a model so as to

understand the complexity of inference for the model?



CHAPTER 7. RECURSIVE PROBABILITY MODELS 251

e Closely related to the last question: are there methodologies for designing re-

cursive probabilistic representations that lead to efficient inference.

We hope that answers to some or all of these questions will be provided in the com-
ing years. A good theoretical understanding of the properties of complex probabilistic
models will go a long way towards making probabilistic knowledge representation a

practical technology.



Chapter 8
Implementation and Applications

We have implemented a system called SPOOK (for “System for Probabilistic Object-
Oriented Knowledge”) for building and reasoning with the richer probabilistic lan-
guages defined in this dissertation. In this chapter we describe the SPOOK system,
along with three example applications: military situation awareness, computer sys-
tem diagnosis, and modeling a university. In conjunction with the situation awareness
application, we present experimental results that show how the advantages of using
the SVE algorithm compared to the KBMC approach.

8.1 The SPOOK System

SPOOK is a system for representing and reasoning with object-based probabilistic
models. A high-level diagram of the SPOOK architecture is shown in Figure 8.1.
The SPOOK system itself consists of four main components: a core module, that
contains all the data structures necessary for representing SPOOK models; a user
interface, through which the user can create SPOOK models and ask queries about
them; and two inference engines, one using the knowledge-based model construction
approach and the other using the Structured Variable Elimination algorithm.
Both SPOOK inference engines use a Bayesian network reasoning system to perform

the underlying BN computations. This system, called Phrog, is a high-performance

252



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 253

User
Interface| SPOOK

Externd CoreKR KBMC
Knowledge OKBC System [ | Engine
Server

SVE | /| PHROG
Engine == BN Reasoning
: .| System

Figure 8.1: The SPOOK systen architecture.

BN reasoning engine developed at Stanford.! SPOOK can also integrate with external
knowledge servers using a protocol called OKBC [18], as will be described below.
The core modules of SPOOK were developed by Brian Milch, Ken T. Takusagawa,
Ryan Shaw and myself. We have implemented much of the functionality described
in this thesis. In particular, we have implemented relational probability models de-
scribed in Chapter 5, including the version of the SVE algorithm described in Sec-
tion 5.5. We have also implemented multi-valued attributes and number uncertainty,
as described in Chapter 6, including the combinatoric algorithms for inference with
number uncertainty described in Section 6.2.3. Things not yet implemented include
reference uncertainty, the version of SVE that integrates RPMs with OOBN-style
bindings, and the Iterative SVE algorithm for recursive probability models.
SPOOK was designed as a frame representation system (FRS), or just frame

system for short. Frame systems are a common kind of object-based knowledge

1The Phrog system was developed by a number of people, in particular Uri Lerner and Lise
Getoor.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 254

representation system. The basic unit of discourse in a frame system is a frame. A
frame has a set of slots, each of which may have slot values or fillers. Formally, a
slot represents a binary relation on frames; if the filler of slot A in frame X is frame
Y, then the relation A(X,Y’) holds. A slot in a frame may have associated facets. A
facet is a ternary relation: if the facet value of facet F' on slot A in frame X is Y,
then the relation F(X, A,Y) holds. A facet is often used to represent information
about the values of slots, without specifying the slot values themselves. For example,
a standard facet is VALUE-TYPE, which specifies a value restriction on the values of
a slot.

One frame may inherit from another in a frame system. Slots, facets, slot values
and facet values may all be inherited. The exact inheritance mechanism is system-
dependent. Frame systems normally distinguish between instance-class relationships
and subclass-class relationships, but there is no strong dichotomy between classes
and instances. Any frame that has instances is considered a class, and a class may
itself be an instance of another class (a metaclass). The slots of a class frame may be
own slots, which describe a property of the class itself, and template slots, which are
slots inherited by all instances and subclasses of the class. The facets associated with
template slots are template facets, and are also inherited. An instance or subclass
may override the values of inherited slots or facets.

The language of relational probability models maps very naturally into that of
an FRS. Class and instance objects are of course frames, and attributes are slots.
The probabilistic knowledge is represented using facets. We can view the probability
model associated with a slot as a natural extension of the VALUE-TYPE facet. Whereas
the VALUE-TYPE restricts the possible set of values of a slot, the probability model
in addition defines a probability distribution over that set of values.

The specific protocol for defining probability models in facets is as follows. Prob-
ability models are associated with template slots of class frames. Each such slot
will have a VALUE-TYPE facet. If the VALUE-TYPE is an explicitly enumerated set,
the slot is simple; otherwise the VALUE-TYPE must be a class frame, and the slot is
complex. In an ordinary FRS system, the VALUE-TYPE facet serves the purpose of

making sure that no value of an inappropriate type is ever asserted for the slot. Here,



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 255

we take advantage of that to make sure that no value will ever be asserted that is not
envisioned by the probability model.

A simple slot has two additional facets: PARENTS and DISTRIBUTION. The value
of the PARENTS facet lists the parents of the slot, represented as a list of lists of slots,
each list of slots denoting a slot-chain. The value of the DISTRIBUTION facet is an
instance of the conditional-distribution class, and defines the conditional probability
function of the slot.

The use of a frame to represent the CPFs makes it possible to develop an ontol-
ogy of probability distributions and conditional distributions which can then be used
in developing a particular probability model. We use a two-tiered system for repre-
senting CPFs, with the first tier consisting of instances of the probability-distribution
class, and the second tier consisting of instances of the conditional-distribution class.
There are many ways to represent both probability distributions and conditional
probability distributions; different representations can be supported using subclasses
of probability-distribution and conditional-distribution. In SPOOK, we have focused
on discrete probability distributions, defined by the discrete-distribution subclass of
probability-distribution, and on CPF's represented as tables, defined by the conditional-
probability-table subclass of conditional-distribution. However, our use of an ontol-
ogy allows our protocol to extend naturally to other representations of probability
distributions and CPFs. For example, probability-distribution may have a subclass
continuous-distribution, which may itself have a subclass gaussian-distribution.

The discrete-distribution class has two slots. The RANGE slot is an enumerated list

of values. The value of the PROBABILITIES slot is a function.?

The function maps
values in the RANGE to real numbers in the interval [0, 1]. We require that the values
of the probability function sum to 1, and ask that the FRS enforce this constraint if
it is able to do so.

The conditional-probability-table class has three slots. The RANGE slot is an enu-

merated list of values. The PARENT-VALUES slot is a list each of whose elements

2We assume that the FRS being used as the external knowledge server supports reified functions,
so that they can be the values of slots. Many but not all FRSs have this capability. For an
FRS that does not support this feature, an explicit representation must be used, such as a list of
(value, probability) pairs.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 256

is an enumerated list of values, representing the range of values of each parent.
The value of the DISTRIBUTIONS slot is a function that maps a tuple of values
from the cross-product of the values of the PARENT-VALUES to an instance of the
discrete-distribution class. As above, the function can be specified in the FRS as a
set of ground facts, one for each combination of parent values. We require that ev-
ery value of the DISTRIBUTIONS function has the same value of RANGE as does the
conditional distribution, and ask that the FRS enforce this constraint if it is able to.
We also require that for any simple slot, the value of its DISTRIBUTION has the same
value for its RANGE as does the simple slot, and again ask the FRS to enforce this
constraint.

Complex slots also have facets in addition to the VALUE-TYPE to describe their
probability model. The INVERSE facet is fairly standard in FRSs; its value (if it
exists) should be a slot of the VALUE-TYPE of the complex slot. A complex slot also
has an IMPORTS facet, and may also have an EXPORTS facet. The values of each of
these are lists of slots. These facets have the same meaning as in Definition 5.3.4.

Number uncertainty can handled be handled very simply in the protocol. FRSs
have standard MIN-CARDINALITY and MAX-CARDINALITY facets, indicating the min-
imum and maximum number of allowed fillers for the slot. A slot for which the values
of these facets differ has number uncertainty. A slot with number uncertainty has
an additional NUMBER-SLOT facet, whose value is an associated number slot. The
number slot is a simple slot of the same frame, with the appropriate numeric range.
The number uncertainty is expressed in the probability model of the number slot.

SPOOK was developed as a basic FRS, with particular emphasis on the function-
ality needed to represent probability models. There are a number of highly developed
FRSs in existence, including Ontolingua [25], LOOM [64] and CYC [61]. These sys-
tems provide many features not available in SPOOK, such as support for extensive
libraries of shared knowledge, and various non-probabilistic reasoning mechanisms.
In particular, CYC and Ontolingua have full first-order expressive power. In order
to allow the user to take advantage of these capabilities, and to augment existing
knowledge bases with probabilistic knowledge, SPOOK can use an external knowl-

edge representation system as its knowledge server.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 257

SPOOK communicates with its external knowledge server using the Open Knowl-
edge Base Connectivity (OKBC) protocol developed by SRI and the Knowledge Sys-
tems Laboratory at Stanford [18]. OKBC is a protocol for communication between
knowledge representation systems. The knowledge model of OKBC is frame-based,
so it fits easily with the frame-based specification of SPOOK models. One of the
features of OKBC is that it allows a system to specify its capabilities in the protocol,
so SPOOK can inquire of a server whether or not a particular server has the capa-
bility to represent SPOOK models. In particular, SPOOK can inquire whether it
allows all the facets required by SPOOK to be defined, and whether template facets
are inherited. Both of these functionalities are required for SPOOK to work. We
have successfully integrated SPOOK with the Ontolingua server [25] developed by
Stanford’s Knowledge Systems Laboratory.

We have recently learned that OOBNs have been implemented in the commercial

HUGIN probabilistic reasoning system [46]

8.2 Example: Military Situation Awareness

Military situation awareness is the task of reasoning about the status and activities of
units in a battlespace, based on intelligence reports about the units in the space. This
task is naturally suited to probabilistic reasoning. There will typically be only very
limited information about the different units, which must be used as evidence to infer
the properties and configuration of the units. However, as shown by Mahoney and
Laskey [66], the situation awareness domain is a very challenging one for traditional
BN technology. The reason is that there are typically many units in a battlespace,
with highly flexible configurations. The configurations of enemy units are in fact
generally not known.

Our model deals specifically with missile battalions, the batteries within those
battalions, and the individual basic units — vehicles, radar emplacements, missile
launchers, etc. — within the batteries. A scenario consists of multiple battalions,
some of which may be at the same location. A battalion typically has four batteries,

each with about 50 basic units. Let us consider trying to model this domain with a



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 258

flat BN. With, say, four or five variables for each basic unit, a flat BN for a battalion
model will typically contain over a thousand nodes. The sheer size of this network is
a major obstacle to its construction. In addition, the resulting BN will be too rigid
for practical purposes. The configuration of a battalion is highly flexible, with the
exact number of units of each type varying considerably between different battalions.

These difficulties have led to an alternative approach, in which several different
BNs are used, one for each aspect of the model. Figure 8.2 (a) shows a Bayesian
network for an SCUD battalion, while Figure 8.2 (b) shows a network for a SCUD
battery.® There are similar networks for other types of units, such as SA2 battalions
and batteries. Although a SCUD battalion contains SCUD batteries, the battalion
model does not replicate all the details of the battery model; rather, it summarizes
the status of all the batteries with nodes, indicating the initial number of batteries,
the number of damaged batteries, and the current number of batteries present. Sim-
ilarly, the battery model does not contain detailed models of all its individual units,
but rather summaries of the units of different kinds. These summaries serve two
purposes: to keep the network reasonably simple; and to account for changing model
configuration by making the initial number of subunits a variable.

A major disadvantage of this approach is that it is very difficult to reason between
the different networks. The only way to reason from one network to another is to
reach conclusions about the state of variables in one network and assert them as evi-
dence in the other network. For example, the only way to transfer conclusions from
a battery to a battalion is to condition one of the summary nodes in the battalion
model; going from one battery to another requires conditioning the battalion model,
reasoning about the battalion, and then conditioning the other battery model. This
type of reasoning has no sound probabilistic semantics. In fact, it can yield incorrect
results when the conclusions from reasoning in one network are not close to determin-
istic, and is particularly problematic when the conditioning is performed on multiple

random variables. Furthermore, this type of reasoning between fragments must be

3Grateful thanks to Suzanne Mahoney, KC Ng, Geff Woodward and Tod Levitt of IET Inc. for
these models.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 259

Eml i amber ) P -
g:ﬂfg: Pa— D{Transtmdm J o (oﬁﬁihuvdﬁclﬂ )E»h, Bute
Transloaders - P T l g Dams

- - g - ™~ e . N -
l fnitisl bo. T e i -
‘l";l:-l:lu:“:‘: Curreino. |, | Engpagement Initia) mumber of 'C'f““‘:’.:;’ of a. .
frdem Foance ) - (/ Corvent number
Fder \ . | oF Other Venicles
Bate Dum
Emgugemene 53‘":::, o
gmmu pumber S—
. u’iﬂ'.'f’ ~— | Batlle
~| Damage
T Sln'vdlmu
B T Baille Dlmlxr.
c3v
oy .
obpu 0 . —
Nﬂlmww o — e
&"’"‘Mjmml Pt ]
i ol

Muvele Mover |4

ot —

Dispersion

{ Mission=Driven | ~—"""7 . T

T—wfBetwees 0} ¥ —
I T Tormsin s-numm

Deferd Element - s e Operstions y
E’“‘E"““’ J oo }-A_W—»M—M n'ﬁ.‘m”“‘s,m‘“ 7T survosabisy for Open

— —t A Prepared Sitex
Defendes) Defended Logistics Support Hide
Elemeot it |aer—————| Element Enemy Spatial Constraints Supporubility || 5
Coverage J Location J Location ;g,'m"'

— N
_._L \ [gd“PP‘mb'"W } ****** (wm-uny for Muve ]

Activity

Umbrelia

e

Figure 8.2: (a) SCUD Battalion Bayesian network. (b) SCUD Battery Bayesian
Network.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 260

performed by a human or a program. It requires some model of the relationship be-
tween the fragments, e.g., that the status node of the battery model is related to the
number-damaged-batteries node of the battalion model. Nowhere is this relationship

made explicit.

N

\\ [m rscted

\ =)™
)

[

poeseat

-

Figure 8.3: SCUD battalion network with repeated substructures circled.

Another disadvantage is that multiple BNs do not allow us to take advantage of
redundancy within a model and similarities between models. For example, the battal-
ion model in Figure 8.2(a) contains many similar substructures, summarizing groups
of basic units of different kinds, as illustrated by the circled regions in Figure 8.3. In
addition, different battalions may all have substructures describing their locations,
as shown in the bottom right corner of the figure. Furthermore, some battalions will
have very similar structures, and their models will contain many of the same sub-
structures. This is illustrated in Figure 8.4, showing the models for SA-2 and SA-3
battalions. In the multiple BNs approach, the only mechanism for exploiting these
redundancies is cut-and-paste. This makes it very hard to maintain these models,
because each time one of the reused components is changed, it must be updated in
all the different networks that use it.

OOBNSs solve the problems inherent in the multiple BN approach. In fact, the
hierarchical nature of a military organization falls naturally into the OOBN frame-

work. By allowing a battalion to contain a battery as a sub-object, we can easily



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 261

Figure 8.4: (a) SA2 Battalion Bayesian network, (b) SA3 Battalion Bayesian network.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 262

have the battalion model encompass the complete models of the different batteries
in it, which in turn contain complete models of their subunits, without making the
battalion model impossibly complex. We can then reason between different objects
in the part-of hierarchy in a probabilistically coherent manner. In addition, by al-
lowing us to define a class hierarchy, OOBNs allow us to exploit the redundancy in
the model. For example, we capture the commonalities shown in Figure 8.4 by cre-
ating an SA-Battalion superclass of SA2-Battalion and SA3-Battalion. In addition, we
can exploit the redundancy between the different groups in a battery by representing
them all using a group class.

However, the language of OOBNSs is insufficient to model the situation awareness
domain to our satisfaction, and we need the more expressive language of relational
probability models. If we want to model the effect of a unit’s location on the unit, we
need to represent the relationship between the unit and its location. In our model,
this was the only relationship that did not fall into the part-of hierarchy, but richer
models of the battlespace domain require more sophisticated relationships, such as
that between a unit supporting another unit. In addition, our domain requires multi-
valued attributes and quantifiers. A battalion contains several batteries, and each
battery contains several units of different types. The higher level objects do not de-
pend directly on the individual lower level objects, but only on aggregate properties
of the set of objects, expressed through quantifiers. The ability to create named in-
stances and hook them together via relations is also important in our domain. For
example, we want to be able to describe situations in which two battalions share the
same location, so as to reason from one battalion to another via their common loca-
tion. Finally, the battlespace domain contains a great deal of structural uncertainty,
in particular uncertainty over the number of subunits of a unit.

Our SPOOK model of the battlespace domain includes a natural class hierarchy,
with Military-Unit, Environment, Location and Weather as root classes. Our model
also has a natural part-of hierarchy, with Battalion classes containing Battery classes,
which contain Group classes, which in turn contain Basic-Unit classes. While we only
modeled the domain up to the battalion level, we could easily extend our model

to higher-level groups in the military hierarchy. The Battalion, Battery, Group, and



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 263

Scud Battalion_Class

Graph  Slot

ronment

¢Single-alued Canplex)

SY-Canplex batteries

ulti-Yalued Comples:

M=Canp | &x

Figure 8.5: SCUD-Battalion class model.

Basic-Unit families are all part of the Military-Unit hierarchy.

Figure 8.5 is a screenshot from the SPOOK system, showing the model for a SCUD
battalion. The model contains simple attribute for the current and next mission of the
battalion, and whether or not it is under fire. The next mission depends probabilis-
tically on the current mission, and on its current ability to operate, defend itself and
move. The model contains a single-valued complex attribute for the environment, en-
capsulating the location, weather and terrain. (The location describes general, fixed
properties of the location, such as whether or not it is hilly, whereas the terrain de-
scribes temporary aspects that can also be affected by the weather, such as whether
or not it is muddy.) It also contains a multi-valued complex attribute representing

the batteries in the battalion, with an associated number attribute. The battalion



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 264

influences the batteries via the environment and whether or not it is under fire, and
is influenced by them through the quantifiers indicating the number of batteries that

are capable of performing operations, defending themselves, and moving.

© CIMid_Level_Class
® [ Unit_Class
3 Crane_Unit_Class
3 Tel_Unit_cClass
3 Transloader_Unit_Class
@ [ Vehicle_Unit_Class
3 other_Vehicle_Unit_Class
3 Missile_Transporter_Wehicle_Unit_Class
] washdown_Yehicle_Unit_Class
® [ Nen_Spec_Wehicle_Unit_Class
3 C2_¥ehicle_Unit_Class
3 Computer_Yan_Yehicle_Unit_Class
3 Cargo_Truck_Wehicle_Unit_Class
3 Command_Vehicle_Unit_Class
3 Security_Mehicle_Unit_Class
3 cavan_Wehicle_Unit_Class
3 Survey_Vehicle_Unit_Class
1 faa_Unit_Class
3 Launcher_Unit_class
® [ Command_Unit_Class
[ Command_Post_Command_lnit_Class
3 Bnhg_Command_Unit_Class
3 Warning_Receiver_Unit_Class
3 Tech_Support_Unit_Class
@ [ Radar_Unit_Class
3 Engagement_Radar_lnit_Class
3 Straight_Flush_Radar_Unit_Class
3 Surveillance_Radar_Unit_Class
3 Early_Warning_Radar_Unit_Class

Figure 8.6: Class hierarchy of basic units in the battlespace model.

Batteries do not contain basic units directly, but instead contain a Group object for
each type of basic unit. For instance, a battery has (among others) groups of missile
launchers, command vehicles, and anti-aircraft artillery units. Each Group has a
multi-valued attribute relating it to the individual units, as well as a number attribute
and a set of quantifier attributes that summarize the status of the units. The purpose
of adding the extra Group layer to the hierarchy is to allow the same quantifiers to
be reused across many different groups of individual units. The Basic-Unit class
represents the basic military units, and has a rich family of subclasses, illustrated in
Figure 8.6 (another SPOOK screen-shot).

An object of class Basic-Unit has simple attributes reported, operational, damaged
and reported-damaged. These attributes are influenced by the location of the battalion
— specifically, the location’s support for concealment and defense — and by the
battalion being under fire. We represent these influences in SPOOK by specifying,

for example, in-battery.in-battalion.at-location.defense-support as a parent of damaged.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 265

The number of damaged units in turn influences the battery’s operational attribute,
and a quantifier slot that counts the number of operational batteries in a battalion
influences the battalion’s current-activity. Subclassing gives us the ability to provide
models for certain types of units that are similar to the general unit model but not
exactly the same. For instance, Missile-Launcher has an additional activity attribute
that indicates whether it is launching, reloading, or idle.

In our current model, all units in a battalion share a common environment, which
is referred to by the in-environment attribute of the battalion. The environment is
composed of Location and Weather objects, which between them determine the current
support of the environment for various activities such as moving, hiding and launching
missiles.

One might want to associate a different environment with each battery or unit,
making locations of lower-level objects related probabilistically to higher level objects.
Adding a hierarchy of environments, in parallel with the hierarchy of units, would
not have been difficult if the environments were generic. That is, each individual
unit could be associated with an environment with certain properties, depending
probabilistically on the properties of the environment of the containing object. On
the other hand, without a hierarchy of environments, one can easily associate the
environments with specific map locations, so that every battalion is at a particular
location on the map. In addition, one can model structural uncertainty over the
locations of the particular battalions without difficulty.

However, combining a hierarchy of environments with named map locations is
very challenging, if the lower level units are also associated with map locations. The
difficulties are two-fold. First of all, creating a correct model for the spatial distri-
bution of the units in the hierarchy is difficult. One needs to model the different
possible configurations of the batteries in a battalion, and of the subunits in a bat-
tery, and integrate that model with the terrain models. Secondly, one would like to
make independence assumptions, stating that the configurations of the subunits in
the different batteries are independent of each other, but it is far from clear that these

assumptions are correct.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 266

We see therefore that although our framework goes a long way towards represent-
ing the situation awareness domain, and certainly makes it easier to represent than
existing frameworks, it is not up to the task of representing the domain in all of its
detail. Nevertheless, even without creating an extremely detailed model, one can still
obtain a rich and useful representation of the domain.

To give an example of the power of reasoning at multiple levels of the hierarchy
and between different objects, we present a series of queries we asked the model.
First we queried the prior probability that a particular SCUD battery was hit, and
found it to be 0.06. We then observed that the containing battalion was under
heavy fire, and the probability that the battery was hit went up to 0.44. We then
observed, however, that none of the launchers in the battery had been reported to be
damaged, and the probability that the battery was hit went down to 0.28. We then
explained away this last observation, by observing that the environment has good
support for hiding; the probability that the battery was hit went back up to 0.33.%
This example combines causal, evidential and intercausal reasoning, and involves
battery and battalion objects, individual launcher objects, the launcher group, and

the environment object.

8.3 Experimental Results

In our experimental setup, we constructed SCUD battalion models of different sizes.
We varied the size of the model by varying the number of basic units of each kind
within a battery. Each model consists of a single battalion with four batteries, each
containing 11 groups of different kinds of units. The number of units in each group
varied from 1 to 10. The model also contains objects for the environment, location
and weather. The size of the constructed BN grows linearly in the number of units

per group, and varies from 750 to 5500 nodes.

4The model encoded the assumption that good hide support helps units to avoid detection, but
does not make it less likely for them to be hit, which is why observing good hide support made
the probability of hit go up. If the model had also encoded a dependence of a unit being hit on
the existence of good hide support, observing good hide support would have provided direct causal
evidence that a unit had not been hit, counteracting the explaining away effect.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 267

6000

Flat BN -~
SVE, No reuse ---------
SVE, With reuse

5000

4000 |-

3000

2000

1000 |-

a1 2 3 a 5 6 7 8 i= 10

Figure 8.7: Comparison of unstructured and structured inference algorithms.

In our experiments, which were performed on a Sun Ultra-2 machine, we com-
pared the performance of the object-based SVE algorithm with that of the KBMC
algorithm, which constructs a flat BN and then performs inference in that BN. In
order to measure separately the benefits from exploiting interfaces and from reusing
computation, we tried two different versions of the object-based algorithm, with and
without reuse. We also compared the naive and combinatoric approaches to dealing
with multivalued attributes described in Section 6.2.3. We compared the different
algorithms on a query on Battalion.Next-Mission, which depends (indirectly) on the
status of most of the individual units in the model. Figure 8.7 shows the running
time of KBMC, SVE with no caching, and SVE with caching, on models of different
sizes. The z-axis shows the maximum number of units in each group within a battery,
while the y-axis shows running time in seconds.

From the graph, we see that all versions of the object-based algorithm outper-
form the KBMC algorithm by a large margin, and that the algorithm with reuse

outperforms the algorithm without reuse. For example, with four units per group,



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 268

the object-based algorithm with reuse takes 9 seconds, without reuse takes 46 sec-
onds, while the KBMC algorithm takes 1292 seconds.® In this particular experiment,
we did not have evidence about many different indivudal units in the battlespace,
and the scope for reuse was great. If we had evidence about the individual units,
we would not be able to reuse inference between them, and we would only obtain
the gains from exploiting the interfaces between the objects. Nevertheless, the graph
shows that those gains alone are quite significant. In addition, the interconnectivity
structure of the objects in the model was very simple — nearly a tree structure, as in
OOBNSs. It is likely that with a more complex structure the results would not have
been quite as impressive.

The reason for the great disparity between the inference times for the flat BN and
for the object-based algorithm without reuse, is that the BN reasoning algorithm is
failing to find optimal junction trees in the flat BN. The largest clique constructed
for the flat BN contains 18 nodes, whereas the largest clique over all of the local BN
computations for the structured algorithm contains only 8 nodes. The BN inference
engine uses the standard minimum discrepancy triangulation heuristic to construct
the junction tree. We see that at least for a standard BN implementation, exploit-
ing object structure and the small interfaces between objects is vital to scaling up
inference. While algorithms do exist for computing optimal triangulations [90], these
tend to be quite expensive; and most implementations of Bayes nets do not use them:;
furthermore, these algorithms do not address the issue of reuse.

The curves in Figure 8.7 for structured inference, both with and without reuse of
computation, show the results for the algorithm using the naive approach to reasoning
with multi-valued attributes, in which a separate single-valued attribute is created for
each of the fillers. In Figure 8.8 we show the improvement obtained from exploiting
symmetry and using combinatorics. The model used for the experiments of Figure 8.8
also used number uncertainty. The curves are exactly as we would expect. Without
combinatorics, the curves exhibit an exponential blowup as the number of possible

units in each group increases. With the combinatorics, the growth is linear in the

5In our original experiments, the junction tree construction code was not fully optimized. We
have run some more experiments on an optimized version of the code, and found that the KBMC
algorithm runs approximately 30% faster. This does not change the qualitative nature of the results.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 269

2500

SVE, No combinatorics -~
SVE, With combinatoric

/
2000 |- ! —
/

/
1500 |- ! —
/

|
1000 ! —
|

|
500 |- ! -
/

Figure 8.8: Comparison of naive and combinatoric approaches to inference with quan-
tifiers.

number of possible units.® The running time topped out at 11 seconds for a maximum

of 10 units per group.

8.4 Example: Computer System Diagnosis

For our next example, we describe a model for diagnosis of a computer system. This
domain falls very naturally into the OOBN framework, as does diagnosis of complex
manufactured systems in general, such as locomotives or satellites. Manufactured
systems are constructed out of components, which map naturally onto the OOBN
part-of hierarchy. Computer systems have both “hard” components such as hard
drives, and “soft” components like the operating system, but the principle is the
same. We developed this example in a fair amount of detail in Chapter 4. The
model describes a basic standalone PC system. The knowledge engineering was based

on [68].” Here we consider various design issues encountered while designing the

6The curve is hard to see since it is almost parallel to the z-axis and close to it.
"We do not claim to be knowledgeable about PC maintenance and repair. Any egregious errors
in the model should be attributed to our lack of expertise.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 270

model.

One design issue involves the organization of the part-of hierarchy: should it be
organized along physical or functional lines? For example, should the video con-
troller be encapsulated inside a functional Display subsystem, that also includes the
monitor, even though physically the video controller is found on a circuit board in-
side the computer? From the point of view of localization of probabilistic influence,
both design decisions make sense, since both functional and physical influences flow
around the system. For example, the quality of the observed display depends on the
state of the monitor and the video controller, suggesting that the controller should
be encapsulated within the Display subsystem. On the other hand, overheating inside
the computer can affect the video controller, suggesting that the controller should
be encapsulated according to its physical location inside the computer. Choosing
to organize the hierarchy along functional lines would require us to pass physical
information through the interfaces, and vice versa. We chose to use a functional hier-
archy, since the number of functional variables that would have to be passed around
is greater than the number of physical variables. As can be seen from Example 4.2.5,
the physical variables Age and Temperature get passed from the Computer class to its
contained Hard-Drive.

Another, related, design issue is to determine the degree of encapsulation that is
beneficial. More encapsulation can lead to more locality of inference, but too much
encapsulation can require passing a lot of information through interfaces. An example
of over-encapsulation would be to encapsulate the power supply unit inside the moth-
erboard, where it is physically located. The reason is that the entire system depends
on the stability of the power supply, not just components on the motherboard. On
the other hand, we found it useful to encapsulate cables within other components.
Most cables are more readily associated with the component at one end than the
one at the other. For example, the cable connecting the mouse to the computer is
associated with the mouse, while the cable connecting the printer to the computer is
associated with the printer.

Once we have determined the basic design of the computer system model, we can

create families of subclasses for the different types of components. An example of a



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 271

family of mouse classes was presented in Example 4.6.2.

After creating the computer model, we need to determine how to use it in a diagno-
sis situation. As described in Section 4.6, a way to do this in the OOBN framework is
to add various types of events to the computer class model, such as file read and write
events, and print events. Each event depends on the status of some of the components
of the system. For example, a print event may depend on the status of the printer
and the operating system. This approach is not very flexible, since it does not allow
us to consider arbitrary collections of events and use them to diagnose a situation.
It is here that we run into the limitations of OOBNs, and must use the more gen-
eral relational framework. We create a high-level abstract Event class, with a single
complex Of-Computer attribute, of type Computer. The event class has concrete sub-
classes for the different types of events. For example, the Print-Event subclass of Event
has an Outcome attribute that may depend on Of-Computer.Has-Printer.Connected and
Of-Computer.Has-OS.Printer-Driver-Installed among other things. Using this approach,
a scenario can be created involving any number of events.

The model can be further refined by introducing Application objects. An Event
object can now be associated with a particular application, rather than with the
computer as a whole. Adding this extra level to the model can help determine whether
a fault is with the way the computer system is set up or with a particular application.
For example, if a Print-Event associated with a word-processing application works
successfully, while one associated with a music printing application fails, then with
high probability there is a problem in the way printing has been set up in the music
application.

Using a relational model also allows us to diagnose multiple computers connected
over a network. In particular, Event objects may refer to more than one system. For
example, a Networked-Print-Event depends on both the computer issuing the print
command and the printer on the network, while a Client-Server-Event requires that
both the client and server objects be functioning correctly. Similarly, a File-Read-Event
on a networked file system depends both on the computer with which the data is stored
and on the computer into which the data is read.

Adequately modeling an event involving multiple systems requires modeling whether



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 272

or not the network connection between them is alive. A simple way to model this
is to introduce a Connection object for each pair of systems on the network. This
scheme is wasteful, since the number of Connection objects required is quadratic in
the number of computers in the network. Furthermore, correlations between differ-
ent Connection objects are lost. If the connection between machines A and C passes
through machine B, then whether or not the connection between A and C' is alive
depends on the connections between A and B and between B and C.

A much better approach would be to follow the actual physical structure of the
network, and create a Connection object for each physical connection. For any event
involving two computers A and B, the outcome of the event will depend on whether
there exists a path of live connections between A and B. Formally, if we define the
relation Live to consist of those pairs of machines that have a live physical connection
between them, we want to know if the pair (A, B) lies in the transitive closure of the
Live relation. Unfortunately, transitive closure cannot be expressed in our represen-
tation language. Even if we were to introduce a transitive closure primitive, we would
be faced with an extremely difficult inference problem. Suppose we were to observe
that A and B are not in the transitive closure. This provides us with evidence that
one or more links that could have connected them is down. But how do we deter-
mine the posterior probability over the liveness of each of the physical links in an
efficient manner? There is no problem in principle in calculating this probability, but
the inference is very expensive, because the probability of failure of all the different

physical links becomes correlated.

8.5 Example: Modeling a University

For our final example, we present an application of a very different flavor: modeling
students and courses in a university. This example illustrates the use of a combined
logical and probabilistic representation language for reasoning about ordinary, every-
day situations. We start with a BN describing a single student taking a single course,
shown in Figure 8.9. This BN is very similar to that of Example 3.3.2, with extra
nodes representing the quality of the teacher and the difficulty of the final.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 273

Hard working Good Teacher

Understands M ateria

Good Test Taker

Homework Grade

Figure 8.9: A Bayesian network describing a single student taking a single course.

Next, we extend the network to model the same student taking two different
courses. A BN for this situation is shown in Figure 8.10 (a). The nodes Good-Teacher,
Hard-Final, Homework-Grade, Final-Grade, and Understands-Material have been repli-
cated for the two different courses. (Node names are abbreviated for convenience.)
The Smart, Hard-Working and Good-Test-Taker attributes pertain to the student, and
are shared between the two different courses.

Figure 8.10 (b) shows a BN for the contrasting situation of two students tak-
ing the same course. In this network, the Smart, Hard-Working, Good-Test-Taker,
Understands-Material, Homework-Grade and Exam-Grade nodes are replicated, while
the Good-Teacher and Hard-Final are shared. Observe that the Understands-Material,
Homework-Grade and Exam-Grade nodes are replicated in both networks. These at-
tributes are associated with student/course pairs, whereas the other attributes are
associated either with a student or with a course.

It is clear that in order to generalize to multiple students taking multiple courses,
a relational model is appropriate. We need four classes: a Student class with sim-
ple attributes Smart, Hard-Working and Good-Test-Taker, a Course class with simple

attribute Hard-Final, a Registration class with simple attributes Understands-Material,



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 274

Figure 8.10: (a) BN for single student in two courses. (b) BN for two students in
single course.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 275

Homework-Grade, and Exam-Grade, and a Professor class, with simple attribute Good-Teacher.
Modeling the teacher in a separate class from the course allows us to model multiple
courses taught by the same person. An instance of the Registration class corresponds
to a particular student taking a particular class. The Registration class therefore has
the complex attributes Of-Student and In-Course, both of which are single-valued. The
Student class has the multi-valued complex attribute Taking, which is an inverse of
Of-Student, while the Course class has the multi-valued Registered attribute, which is
an inverse of In-Course. The Course class also has the single-valued Teacher attribute,
while the Professor class has the multi-valued Teaching attribute, which is an inverse
of Teacher.

The local probability models for each of the simple attributes can be derived
directly from the network of Figure 8.9. For example, the Understands-Material at-
tribute of the Registration class depends probabilistically on Of-Student.Hard-Worker,
Of-Student.Smart, and Of-Course.Teacher.Good-Teacher. Its CPF will be exactly the
same as in the network of Figure 8.9. This example shows how a standard BN can be
converted easily into a relational probability by associating each of the attributes with
particular classes. Once this has been done, one can take a relational database — in
this case, a database of students registered in courses — and construct a probability
model for the entire domain, using the closed world semantics of Section 6.3.

Alternatively, once we have converted the model into the relational language,
we can use other features of RPMs such as structural uncertainty. For example, one
could associate number attributes with the Taking, Registered and Teaching attributes.
Defining subclasses is natural in this domain — for example, the Seminar subclass of
Course would have a different distribution over #|Registered] from that in its base
class. In addition, the model can easily be integrated into models describing other
aspects of university life. For example, the Professor class will have other attributes
describing the research performed by the professor and the papers written. This part
of the model will be nearly independent from the teaching model, but perhaps not
completely, because Good-Teacher and #[Papers| may both depend probabilistically

on Time-Spent-On-Research.



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 276

Knowledge representation in the combined logical-probabilistic language is in gen-
eral quite natural and easy. However, there are some things that are challenging to
represent. For example, a student’s grade point average depends on her performance
in all classes. It cannot be defined using the simple quantifiers we presented in Sec-
tion 6.2. Rather, it is the average of the grades achieved in the different classes.
Representationally it is not difficult to include to introduce average as a quantifier
in the language, but inference with it becomes very hard. If one observes that a
student’s GPA is 3.5, and wants to know the probability that the student received an
A in a course, one has to consider all the possible ways the student’s grades in the
different courses could combine to produce a GPA of 3.5.8 A more difficult challenge
is to model the grade of a student taking a class graded on the curve. Here, the nu-
meric grade of the student (contained in the Registration object) must be compared
with the median grade of all students taking the course to produce a letter grade.
The median can be an attribute of the Course object, computed as an aggregate from
the numeric grades of all the students. It is again challenging to perform inference
with this aggregate operator. It is possible that variational methods [51], which are
also known as “mean-field methods” because they exploit the law of large numbers
to reason about the average effect of a large number of influences, will work well for

the types of aggregates discussed here.

8.6 Discussion

We have presented examples of relational probability models from several different
domains. While we feel that the language does allow us to describe many interesting
aspects of the domains, there are some things that are challenging, as seen in the
examples. In this section we try to analyze what aspects of a system make it difficult
to deal with in our language. Some of the challenging types of situations are as

follows:

8Tronically, the problem is easier if the student takes many courses, because of the Gaussian
approximation to the sum of a large number of i.i.d. random variables. (The grades are i.i.d. given
the student’s smartness, work ethic and test-taking skills.)



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 277

Many inter-connected instances We have already discussed this situation in Sec-
tion 6.3, in the context of the sports teams example. The same type of problem
shows up in the students/courses example. If there are many named students
and many named courses, all the courses taken by a student will be correlated.

As a result, the cost of exact inference for this model will be huge.

Uncertainty over complex combinatoric structures This is the situation en-
countered in Section 8.2, in which we saw that associating each unit in the
military hierarchy with a specific map location is very difficult. Our approach
to reasoning with structural uncertainty relies on the fact that the structural
variables are independent of each other, or at least conditionally independent
given a small number of other variables. If this assumption is violated, our

approach is not feasible.

Mutual exclusion relationships These are notoriously difficult to deal with in
standard BNs, and just as troublesome in our language, in particular in con-
junction with reference uncertainty. In fact, if we have the constraint that no
two battalions may be at the same location, then no independencies between
the structural variables modeling the locations of the different battalions hold.
Inference in this model quickly becomes infeasible even without a hierarchy of

environments.

Numeric relationships We have seen this problem in the context of the students/courses
example. Dealing with numeric relationships is difficult, because there are so
many combinations of values for the arguments of a numeric formula that pro-
duce the same result. Observing a value for the result requires computing a
joint probability distribution over the values of the arguments. The mean and

median aggregates encountered in Section 8.5 are difficult for this reason.

Logical concepts Computing the probability of a logically defined concept such as
transitive closure is very difficult, as we discussed in Section 8.4. The reason
is similar to the previous case — there are often many different ways in which

to satisfy a logical formula. For example, asserting that there is no path on



CHAPTER 8. IMPLEMENTATION AND APPLICATIONS 278

the network between machines A and B requires us to adjust the probability
that each link between them is down. In order to do that properly, we have to
compare the probabilities that there would be a path if the link was up and if

1t was not.

All of the problems discussed here are problems of inference, not of representation.
Once we have the relational framework, it is generally not difficult to represent these
more complex types of situations. On the contrary, the relational framework makes it
very easy to envision and express very rich probability models for which inference is
very difficult. The issue of performing probabilistic inference in very rich models may
become increasingly important, as our ability to represent these models increases.
Since exact inference will generally be impossible, the challenge will be to find a way
to do inference in a reasonable amount of time, with a reasonable amount of accuracy.
A judicious choice of domain-specific independence assumptions, together with the
right approximation algorithms, could lead to the right answer in many cases.

For example, Pasula et al. [78] have addressed the problem of matching the obser-
vations of different sensors in a freeway traffic surveillance domain. In this domain,
sensors are positioned at multiple positions in a freeway system. Each sensor reports
the appearances of vehicles at its location. The challenge is to match up the sensor
reports from different locations, and determine which ones correspond to the same
vehicle. Pasula et al. have found that, with appropriate independence assumptions
such as trajectory independence of the different vehicles, a Markov Chain Monte Carlo
algorithm [72] works well in this domain. It remains to be seen whether any general
answers can be found to the problem of probabilistic inference in very rich models,

or whether domain-specific approaches will always be required.



Chapter 9

Related Work

9.1 Axiomatic Approaches

There are a number of directions from which researchers have approached the topic of
integrating logical and probabilistic representations. Coming from the viewpoint of
classical symbolic Al, probabilistic approaches are seen as a way of addressing many
of the problems with logical representations, particularly the problem that real world
knowledge is rarely the hard and fast kind that can be modeled using purely logical
languages. If probability is to be used to address fundamental KR issues, it must be
integrated with the classical logical languages which are seen as necessary components
of KR.

Much of the early work in this direction focused on understanding the seman-
tics of a combined logical and probabilistic representation. Bacchus [4] developed a
framework in which probabilistic statements are understood as statistical statements
about entities in the world. In this framework, there is a single relational possi-
ble world, which comes equipped with a probability distribution over the domain
elements. Halpern [35] offered an alternative semantics, in which a probability dis-
tribution is defined over a set of possible worlds, each of which is an interpretation
of the relational language. Probabilistic statements are understood as expressing de-
grees of belief, in terms of the probability distribution over possible worlds. We have

adopted this approach in this thesis. Halpern also showed that the two different types

279



CHAPTER 9. RELATED WORK 280

of semantics can be combined.

A basic impasse between traditional logical approaches and probabilistic approaches
as embodied in Bayesian networks is that logical approaches tend to be axiom-based,
in that only knowledge that is known for certain is expressed, while probabilistic
approaches tend to be model-based, in that all possible states of the world are con-
sidered and a single probability distribution is specified over all the possible states.
A logical KB typically has many possible models, while a BN has a unique model,
which is itself a probability distribution over many possible models. Logical inference
attempts to draw conclusions that hold in all possible models of a KB. In contrast,
probabilistic inference attempts to determine the unique answer to a query, in terms of
the unique probability distribution over possible worlds. Early attempts to integrate
probability and logic generally took the minimalist approach. For example, Nilsson’s
probabilistic logic [76], which integrated probability with propositional logic, allowed
probabilistic statements with inequalities. The semantics of Nilsson’s language al-
lowed a space of models, each of which is a probability distribution over possible
worlds. The first-order probabilistic languages of Bacchus and Halpern are similar in
this regard.

Much of the recent focus in KR has been on restricted subsets of first-order logic,
such as description logics [11, 64, 81]. Accordingly, researchers attempted to create
probabilistic variants of these logics. For example, Shastri [89] integrated probabili-
ties into semantic networks, while Heinsohn [41] presented a probabilistic description
logic. Both Shastri’s and Heinsohn’s logics use an axiomatic approach, augment-
ing an existing logical language with probabilistic knowledge, and drawing whatever
conclusions could be drawn from that knowledge.

It was only with the success of Bayesian networks that the power of the model-
based approach to probabilistic reasoning was appreciated. Experience also showed
that the axiomatic approach was quite limited, in that without specifying a unique
probability distribution over the domain it is hard to draw any interesting and mean-
ingful conclusions from a knowledge base. One way to circumvent the limitations
of the minimalist approach, while still allowing a logical language to be augmented

with a small amount of probabilistic knowledge, is to allow many different models of



CHAPTER 9. RELATED WORK 281

a KB, and then to choose one according to some criterion. A number of researchers
have followed this path, often using the principle of maximum entropy [91] to select
a particular probability distribution from the space of distributions consistent with
a KB. Paris and Vencovska [77] implemented this approach for a highly restricted
logic, while Bacchus, Grove, Halpern and Koller [6, 33] developed it for a much more
expressive language. Jaeger used this approach to develop a probabilistic description
logic [48].

Although the maximum entropy principle has some theoretical justifications, it
also has some severe limitations, and using it to choose a probability distribution can
have unexpected and unfortunate results [37]. Experience with Bayesian networks has
shown that it is better to specify a complete distribution directly, using independence
statements to make the representation feasible, rather than to rely on a principle such

as maximum entropy to choose a distribution.

9.2 Model-Based Approaches

9.2.1 Structure Bayesian Networks

Another direction from which to approach the topic of expressive probabilistic rep-
resentations is research in probabilistic reasoning methods and Bayesian networks.
Researchers in this area have investigated various ways in which to extend the power
and applicability of BNs. One has been to introduce hierarchy into the representa-
tion, as we did in OOBNs. The multiply sectioned Bayesian networks (MSBNs) of
Xiang, Poole and Beddoes [100] are an inference framework based on the hierarchical
clustering of network nodes. The basic idea of MSBNs is to create a “hypertree”
of junction trees, with each node in the hypertree itself being a junction tree. Each
pair of adjacent nodes has a separator between them, which is also a junction tree.
The inference framework of MSBNSs is quite similar to that of SVE for OOBNs. In
particular, we exploit the same idea that they do of organizing the inference in a
tree structure, and using the interfaces between a node and its parent in the tree to

communicate between them during inference. In addition, their idea of representing



CHAPTER 9. RELATED WORK 282

the interfaces in a decomposed form as a junction tree is a very good one; we show
how to exploit this idea in our framework in the version of SVE in Section 4.5.5.
Srinivas [94] presented an approach to model-based diagnosis based on a hierarchy
of BNs. His ideas contain the germ of some of our work on OOBNSs. In his framework,
each component in a component hierarchy has an associated probabilistic model, just
as our OOBN objects do. However, his language is quite limited in the ways the
objects in the hierarchy can communicate with each other. A component does not
share any variables with its containing object. Rather, each component is represented
in its containing object as an abstract node, that mimics several possible modes of
behavior of the component. As a result, his approach is suitable for fault models, but

not for general models of hierarchical systems.

9.2.2 Knowledge-Based Model Construction

A major thrust of research in the probabilistic reasoning community has been to
use knowledge-based model construction to construct BNs tailored to specific situa-
tions from a general knowledge base. The basic approach of KBMC, pioneered by
Breese [16], is to create a knowledge base containing the rules needed to build BNs
for a particular domain. A particular situation is described by ground facts in the
knowledge base. The ground facts and BN construction rules work together to pro-
duce a particular BN for a specific scenario, which can then be used to answer queries
about that scenario. A review of early work using KBMC can be found in [98].
There have been a number of variants on the KBMC approach, differing mainly
in the language used to express the BN construction rules, the types of rules allowed,
and the method used to implement the knowledge base. For example, Goldman and
Charniak [32] present a network construction language that uses forward-chaining
rules to specify how to construct the network, and special combination rules to specify
how the CPFs of nodes in the network are computed. Their framework, based on a
truth maintenance system, was applied to natural language tasks such as word-sense
disambiguation and pronoun resolution. Bacchus [5] allows a much more general

first-order probabilistic logic. Poole [83], meanwhile, uses a more restricted language,



CHAPTER 9. RELATED WORK 283

based on probabilistic Horn rules, in which probabilities are associated with different
possible explanations of a fact.

Poole’s framework is closely related to that of probabilistic logic programming
(PLP). In this approach, developed by Ngo, Haddawy and others [74, 75], probabilities
are associated with the rules in a logic programming language such as Prolog. Each
rule is interpreted as a causal relationship, with an associated “noise” factor indicating
the probability that the cause has the normal effect. The different causal rules that
can have the same effect are combined using a combination rule, with noisy-or being
a typical choice. Glesner and Koller [30] have applied PLP to dynamic systems.

At the core of the PLP framework is a backward-chaining process, that is very
similar to the process used to prove facts in logic programming. The process con-
structs a Bayesian network, in which each node is a ground term, i.e., a predicate with
all of its arguments instantiated. The process begins by placing each of the query
terms in the network. Whenever a term is placed in the network, it is matched with
the heads of all the causal rules. If it matches the head of a rule, then each of the
terms in the body of the rule is added to the network, if not already there.

Several issues must be addressed in order to make sure that the process produces a
coherent network. First, the causal rules must be acyclic, so that no two ground terms
can depend on each other. Second, the process must terminate. This is achieved by
limiting the values of predicate arguments to ground terms in the knowledge base
— the assumption is similar to the closed world assumption normally made in logic
programming. Third, there can be no variables in a rule body that are not bound in
the rule head. The reason is that a ground term must be produced for each possible
binding of the variable, which typically can be any atom in the knowledge base. This
is in contrast to standard logic programming, in which reasoning is performed on
terms containing variables, and not solely on ground terms. A workaround to deal
with the third issue is to use fully-known, non-probabilistic context predicates, that

can be used to bind variables not in a rule head. For example, in the rule
Has-Gene(X,G) :- Parent(X,Y), Has-Gene(Y,G).

the Parent predicate functions as a context predicate, specifying the structure of the



CHAPTER 9. RELATED WORK 284

family tree.

There are a number of differences between the KBMC framework in general, and
the PLP framework in particular, and our approach. Syntactically, in the KBMC
approach, the representation is centered around facts and rules, whereas our ap-
proach emphasizes objects, their properties, and the relationships between them.
Our language is therefore more closely related to object-centered languages such as
frame-based systems and object-relational database languages. Our language sup-
ports the ability to create classes and subclasses and to use an inheritance hierarchy.
Another syntactic difference is that numbers in languages that use KBMC are typi-
cally associated with causal rules, and combination rules must be applied to translate
these numbers into conditional probabilities, whereas for us the numbers are directly
specified in CPFs, as in Bayesian networks.

The expressive power of the various KBMC languages varies. The more expressive
ones, such as that of Goldman and Charniak, come with no guarantees as to whether
the BN construction process terminates, or whether it is acyclic. On the other hand,
the probabilistic logic programming languages are more limited in their expressive
power than our language. In particular, they do not allow structural uncertainty:
the context predicates used to bind variables in the body of a rule can be viewed as
determining which objects are related to other objects. They must be fully known in
the probabilistic logic programming framework.

From the point of view of semantics, the KBMC approaches can generally be
viewed as procedural. The usual approach is to attempt to construct the BN, and if
the BN is successfully constructed it defines a probability distribution over the vari-
ables of interest. The probabilistic logic programming languages rely on the closed
world assumption to show that the BN construction is successful. In Section 6.3, we
offered a semantics based on the closed world assumption as one possible interpre-
tation of our language, but for the most part we have followed alternative semantics
that does not make that assumption.

A major difference between our approach and that of all the KBMC languages is
in the way probabilistic inference is performed. In the KBMC approach, inference

is performed by constructing a BN and using standard BN inference algorithms. In



CHAPTER 9. RELATED WORK 285

contrast, inference in our framework is performed within the structured models. As
we have shown, a structured inference algorithm is able to exploit encapsulation of
variables within objects and reuse of inference between objects, both of which have
major computational benefits. In addition, none of the KBMC languages deal with

issues involving inference with structural uncertainty.

9.2.3 Network Fragments

A more recent approach, related to KBMC but similar in spirit in some ways to ours,
is the network fragments of Laskey and Mahoney [59, 65]. They provide network frag-
ments for different aspects of a model, and operations for combining the fragments to
produce more complex models. Network fragments exploit the same types of domain
structure as do OOBNs. Because they allow complex fragments to be constructed
out of simpler ones, models can be composed hierarchically. Similarly, because they
allow the same fragment to be reused multiple times, they exploit the redundancy in
the domain.

The main difference between the two approaches is that ours focuses on building
structured models, while theirs focuses on exploiting the domain structure for the
knowledge engineering process, but the constructed models themselves are unstruc-
tured. An analogy from programming languages is that network fragments are like
macros, which are preprocessed and substituted into the body of a program before
compilation. Our class models, on the other hand, are like defined functions, which
become part of the structure of the compiled program. The advantages of the two ap-
proaches are comparable to those of their programming language analogues. Network
fragments, like macros, are very flexible, since no assumptions need be made about the
relationship between combined fragments. Our language, on the other hand, provides
a stricter, more semantic approach to combining models. Like a structured program-
ming language, it allows strong type-checking in the definition of models. The most
important advantage of our approach compared to network fragments is that the
models are themselves structured. As a result, we can exploit the domain structure

for efficient inference, whereas in the network fragments approach a KBMC process



CHAPTER 9. RELATED WORK 286

must be used, and inference is performed in the flat constructed BN. In addition,
because the domain structure is an explicit part of our language, we can integrate

uncertainty over the structure directly into the probability model.

9.2.4 Other Model-Based Approaches

There are a number of other approaches to building expressive probabilistic models
that do not use KBMC. One recent approach is the relational Bayesian networks
framework of Jaeger [49]. In his framework, a single BN is created in which each
node represents an entire relation, rather than a ground term. The CPF of a node
specifies how the entire value of the relation depends on the entire values of other
relations. While the framework is quite expressive, it does not allow conditional inde-
pendence relationships that hold between ground terms to be represented explicitly
in the network. Since probabilistic influences generally flow between ground terms,
representing these relationships explicitly is crucial to extending the advantages of
BNs to relational domains.

Probabilistic Prolog [20] is a variation on the probabilistic logic programming idea.
Here, probabilities are associated not with individual facts, but with clauses in the
knowledge base, including Horn clauses. The probability of a fact is then interpreted
as the probability that a set of clauses sufficient to prove the fact actually hold.
Inference in this framework is not performed by constructing a BN, but rather by
using standard Prolog theorem-proving methods.

Researchers from the inductive logic programming (ILP) community have also
been concerned with integrating probabilities into logic programs. The goal of ILP
is to induce a logic program from data. One of the major problems in ILP has been
dealing with noisy data, and probabilities have been proposed as a means of addressing
this problem. Muggleton [70] has presented stochastic logic programs, which are yet
another variant on the probabilistic logic program theme. Stochastic logic programs,
which are based on stochastic context free grammars, define a generative probability
model that generates possible facts in a knowledge base. In some ways, stochastic

logic programs are similar in flavor to the stochastic functional language we described



CHAPTER 9. RELATED WORK 287

in [55], which forms the basis for much of our work. In particular, his work shares
with ours the idea of using a generative model to define probability distributions over
a rich space. However, while Muggleton shows how stochastic logic programs can be
used to define rich probability models, he does not provide a method for performing
probabilistic inference with these models.

Another extension of stochastic context free grammars has been developed by
researchers working on Bayesian approaches to computer vision. In the Bayesian
approach, the vision problem is presented as a problem in hierarchical probabilistic
reasoning, with the representation of a scene at each hierarchical level depending
probabilistically on the representation at the level above it. It is clear that in order
to represent the complex types of relationships that hold between representations at
different levels of abstraction, a rich probabilistic model is needed. Geman, Potter
and colleagues [9, 29] have proposed compositional systems, an extension of stochastic
context free grammars that can be used to define hierarchical probabilistic models.
Like our work and Muggleton’s, their framework uses the idea of specifying a rich

probabilistic model through a generative process.

9.3 Miscellaneous

Other communities have also approached the issue of integrating logical and proba-
bilistic representations. For example, researchers in the deductive database commu-
nity have investigated a language in which probabilities are attached to the rules in
the database [73]. This language, which is also called probabilistic logic program-
ming, is quite different from the probabilistic logic programming variants described
earlier. The approach is axiom-based, in that many probability distributions over
the relevant facts are possible, and is more akin to the primarily logical approaches
discussed in Section 9.1.

Wong et al. [93] have proposed using relational databases as a framework for
implementing Bayesian networks. However, their framework is not really a combined
logical and probabilistic representation language. Rather, a relational database is

used to organize and perform the computations needed for inference in standard



CHAPTER 9. RELATED WORK 288

BNs.

As this survey of related work shows, creating expressive probabilistic represen-
tation languages is a topic of interest in a variety of communities. We hope that
our framework provides a strong combination of expressivity, semantic clarity and

effective inference, that can provide the basis for work in a number of different areas.



Chapter 10

Conclusion and Future Work

10.0.1 Summary

In this thesis, we have presented a framework for probabilistic reasoning in complex
systems. Our framework builds on the strengths of Bayesian networks: the notion
of conditional independence is used to provide a natural, compact representation
language; the language has clear probabilistic semantics, defining a probability distri-
bution or probability measure over possible worlds; and the explicit representation of
conditional independence relationships supports effective probabilistic inference algo-
rithms. Our language also incorporates the advantages of relational representations:
the ability to describe the world in terms of objects and the relationships between
them; the ability to build a large model out of small modular components; and the
ability to make general statements about objects, that can be reapplied in many
situations.

We first described Object-Oriented Bayesian Networks, a probabilistic representa-
tion language for hierarchical systems. Every object in the hierarchy has an associated
local probability model. Information about an object’s environment is passed to it
from its containing object. The environmental information can probabilistically in-
fluence the properties of its object, and the object can in turn influence other aspects
of the environment. Local probability models are associated with classes of objects,

and all instances of the same class have the same probability model. We showed that

289



CHAPTER 10. CONCLUSION AND FUTURE WORK 290

OOBNs have clear probabilistic semantics, and define a unique probability distribu-
tion over the properties of all the objects in the hierarchy. We described an inference
algorithm that exploits the object structure as well as the conditional independence
structure traditionally exploited in BNs. Specifically, we exploited the fact that all
the information that needs to be passed between an object and its containing object
can be summarized in a relatively small interface, and the fact that reasoning can be
reused between different objects of the same class.

We then described a more general language for relational probability models, that
is capable of describing systems with a wide variety of relationships between objects,
and systems with many interconnected objects. As in OOBNSs, a local probability
model is associated with each class of objects, with a property of an object depending
probabilistically on other properties of the same object and on properties of related
objects. These class models are augmented with a relational model, describing the
objects in the system and the relationships between them. This approach of combining
the probabilistic and relational components of the representation is very flexible, as
it allows the same class probability models to be used in systems with very different
configurations. We showed that the language of relational probability models has
clear probabilistic semantics, in terms of defining a probability measure over possible
worlds. We also described how the structured inference algorithm for OOBNs can
be extended to the more general language, so as to allow us to exploit the object
structure in these more general models.

We went on to consider extending the language of relational probability models,
so as to allow an object to depend on multiple related objects in an aggregate manner.
We showed that the reuse of class probability models, as well as symmetry, can be
exploited to provide efficient inference with aggregate relationships. After discussing
languages in which the number of objects related to any other object is known, we
considered models with structural uncertainty, in which the number, identity or type
of related objects is unknown. We showed that the structural uncertainty can be inte-
grated directly into the probability model, thereby allowing the structural properties
of a system and the individual properties of the objects within it to participate in the

same probability model. As a result, BN inference techniques can be used to reason



CHAPTER 10. CONCLUSION AND FUTURE WORK 291

about structural properties of a system configuration.

Next, we discussed a powerful extension to our framework, allowing recursive
probability models, in which a property of an object can depend on an infinite chain
of properties of other objects. We defined a semantics for this language in terms of
the local conditional probability tables, and showed that every knowledge base has a
model, but not necessarily a unique one. We defined a sound iterative approximation
algorithm for recursive probability models, and showed how the object structure can
be exploited to reuse computation between different iterations. We showed that using
this method, the amount of work performed in each iteration eventually becomes
constant for a large class of models.

Finally, we described an implemented system called SPOOK that allows a user to
build and query relational probability models. We described three example applica-
tions, one to military situation awareness, another to diagnosis of a computer system,
and the third to modeling a university. We presented experimental results that show
that exploiting the object structure for probabilistic inference has beneficial effects,
and that each of the aspects of structure exploited by our algorithm has a cumulative
benefit.

10.0.2 Future Work

It is our hope that the advances presented in this thesis will lead to more widespread
application of probabilistic reasoning systems. In order for this to happen, a number
of issues need to be addressed. One such issue, that we touched on in Section 6.3,
is the need for efficient inference algorithms for systems with many named, non-
generic, inter-related objects. It appears that approximate inference algorithms will
be needed, and it is an open question whether the best approach will be to apply
existing BN algorithms or to develop new approximate algorithms that exploit the
object structure.

We have not implemented all possible representational features in our language.
There are a number of possible extensions, including the integration of more expressive

logical reasoning formalisms, and more ways of describing structural uncertainty.



CHAPTER 10. CONCLUSION AND FUTURE WORK 292

Some of these may turn out to be important in practice. For example, we believe
that biased selection of an element from an intensionally specified set, described
at the end of Chapter 6, is a common and naturally occuring phenomenon, and it
will be important to model that kind of situation. The only way to find out which
functionality is really important is to attempt to apply our framework to more real-
world problems, and discover what the key limitations are in practice.

One very valuable feature of BNs is that they do not always have to be constructed
by experts, but instead can be learned from data. In fact, they provide a very
good method of combining expert knowledge with observed data. We would like
our language to share this feature of BNs. We have done some work on learning
relational probability models from data, including [56] where we showed how to learn
the probabilistic parameters of such a model, and [26], where we learned aspects of
the model structure. Learning RPMs has great potential, since it allows learning to
be performed directly on a relational model, and the resulting learned model is also
relational. This is in contrast to most traditional learning algorithms, including BN
learning algorithms, which can only be applied to flat data, and for which the learned
models are attribute-based. There is much work remaining to be done on learning
our more expressive probability models.

Many real systems are dynamic, and a model of a dynamic system should take
into account the system dynamics. As we described in Chapter 7, dynamic Bayesian
networks extend standard BNs to deal with dynamic systems. In [27], we developed an
extension of the OOBN language for representing dynamic models. Other work [13,
14] has shown that a structured representation of a dynamic system may lead to
better approximate inference algorithms. We believe there is still a good deal of work
to be done on the structured representation of complex dynamic models, in a way that
cleanly and efficiently integrates the temporal and relational structure of a system.

Finally, we want to be able to use our probabilistic representation language not
only for reasoning about an uncertain world, but also for making decisions in the face
of that uncertainty. Influence diagrams [45] extend Bayesian networks to incorporate
decision and utility nodes, and allow BN reasoning and inference algorithms to be

used for making decisions. Influence diagrams suffer from the same limitations as



CHAPTER 10. CONCLUSION AND FUTURE WORK 293

BNs that we have addressed in our thesis. We would like to include decisions and
utilities into our structured probabilistic representation language, and exploit the

system structure for more efficient decision making algorithms.

10.0.3 Conclusion

Knowledge representation is a field with a long and rich history. For the most part, it
has developed in a purely logical framework, and has not been able to deal adequately
with issues of uncertainty. Probabilistic reasoning methods, and Bayesian networks in
particular, have been developed to address the issues of reasoning under uncertainty.
However, the field has mainly focused on propositional representations, and issues of
large scale probabilistic knowledge representation have for the most part been ignored.

There are many important lessons to be learned from both fields. From knowledge
representation, we learn the importance of relational representations, that provide
the flexibility and modularity needed to model large domains. We also learn the
importance of making general statements, rather than explicitly having to model
every single aspect of the world, and the importance of reasoning at the most general
level possible — lifted inference in the first order logic setting.

From Bayesian networks we learn the value of a model-based rather than axiomatic
approach to knowledge representation. Model-based approaches have two major ad-
vantages: they allow a model to provide a useful answer to any query, and inference
is performed by well-specified operations on the model, rather than by search over
the space of proofs. BNs also teach us the value of conditional independence as a key
organizing feature of a model, and also the importance of having an inference algo-
rithm that exploits the structure encoded in a model — the conditional independence
structure in the case of BNs.

In this thesis, we have tried to develop a language that implements the lessons
learned from both fields. We developed an object-based probabilistic representa-
tion language that is flexible and modular, and allows the modeler to make general
statements about large classes of objects. At the same time, our framework remains

model-based, just like BNs, and conditional independence is still a key organizing



CHAPTER 10. CONCLUSION AND FUTURE WORK 294

feature of our models. Our inference algorithms take advantage of the different types
of structure represented in the language: both the relevance information as encoded
by conditional independence relationships, and the encapsulation resulting from the
object structure. Our algorithms also exploit the fact that the language supports gen-
eral statements by reasoning at the class level wherever possible. We believe that our
language achieves a happy synthesis of logical and probabilistic representations, and
provides a strong foundation for scaling up probabilistic reasoning to large real-world

domains.



Bibliography

1]

2]

3]

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability. BIT, 25:2-23, 1985.

S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM Journal of Algorithms and Discrete Math, 8:277-284,
1987.

F. Bacchus. Representing and Reasoning with Probabilistic Knowledge. MIT
Press, Cambridge, MA, 1990.

F. Bacchus. Using first-order probability logic for the construction of Bayesian
networks. In Proceedings of the Tenth Conference on Uncertainty in Artificial
Intelligence (UAI-94), 1994.

F. Bacchus, A.J. Grove, J.Y. Halpern, and D. Koller. From statistical knowledge
bases to degrees of belief. Artificial Intelligence, 87:75-143, 1997.

J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, and H.-J.
Kim. Data model issues for object-oriented applications. ACM Transactions
on Office Information Systems, 5(1):3-27, 1987.

A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to
optimal junction trees. In Proceedings of the Twelfth Conference on Uncertainty
in Artificial Intelligence (UAI-96), 1996.

295



BIBLIOGRAPHY 296

[9] E. Bienenstock, S. Geman, and D. Potter. Compositionality, mdl priors, and
object recognition. In Advances in Neural Information Processing Systems 9
(NIPS-97), 1997.

[10] G. Booch. Object-oriented analysis and design with applications. Addison Wes-
ley, 1994.

[11] A. Borgida and P. Patel-Schneider. A semantics and complete algorithm for
subsumption in the CLASSIC description logic. Journal of Artificial Intelligence
Research, 1, 1994.

[12] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific
independence in Bayesian networks. In Proceedings of the Twelfth Conference
on Uncertainty in Artificial Intelligence (UAI-96), 1996.

[13] X. Boyen and D. Koller. Tractable inference for complex stochastic processes.
In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intel-
ligence (UAI-98), 1998.

[14] X. Boyen and D. Koller. Exploiting the architecture of dynamic systems. In Pro-
ceedings of the Sizteenth National Conference on Artificial Intelligence (AAAI-
99), 1999.

[15] R. Brachman, A. Borgida, D. McGuinness, P. Patel-Schneider, and L. Resnick.
Living with cLAssIC: When and how to use a KL-ONE-like language. In John

Sowa, editor, Principles of Semantic Networks. Morgan Kaufmann, 1991.

[16] J.S. Breese. Construction of belief and decision networks. Computational In-
telligence, 1992.

[17] E. Charniak. Statistical Language Learning. MIT Press, 1993.

[18] V.K. Chaudhri, A. Farquhar, R. Fikes, P. Karp, and J.P. Rice. A programmatic
foundation for knowledge base interoperability. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), 1998.



BIBLIOGRAPHY 297

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

P. Cheeseman. An inquiry into computer understanding. Computational Intel-
ligence, 5(1), 1989.

E. Dantsin and V. Valkovsky. Abductive reasoning in probabilistic prolog. In
Second workshop of the INTAS-93-1702 project: Efficient Symbolic Computing,
1996.

T. Dean and K. Kanazawa. A model for reasoning about persistence and cau-

sation. Computational Intelligence, 5(3), 1989.

R. Dechter. Bucket elimination : a unifying framework for probabilistic in-
ference. In Proceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence (UAI-96), 1996.

D.L. Draper and S. Hanks. Localized partial evaluation of belief networks. In
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence
(UAI-94), 1994.

H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

A. Farquhar, R. Fikes, and J. Rice. The Ontolingua server: A tool for collabo-
rative ontology construction. Technical report, Stanford KSL 96-26, 1996.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic re-
lational models. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99), 1999.

N. Friedman, D. Koller, and A. Pfeffer. Structured representation of complex
stochastic systems. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI-98), 1998.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images. In M. A. Fischler and O. Firschein, editors,
Readings in Computer Vision: Issues, Problems, Principles, and Paradigms.

Morgan Kaufmann, 1987.



BIBLIOGRAPHY 298

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

S. Geman, D. Potter, and Z. Chi. Composition systems. Technical report,
Department of Applied Mathematics, Brown University, 1998.

S. Glesner and D. Koller. Constructing flexible dynamic belief networks from
first-order probabilistic knowledge bases. In Ch. Froidevaux and J. Kohlas,
editors, Proceedings of the FEuropean Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty (ECSQARU). Springer Verlag, 1995.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementa-
tion. Addison-Wesley, 1983.

R.P. Goldman and E. Charniak. A language for construction of belief net-
works. IEFEE Transactions on Pattern Recognition and Machine Intelligence,
15(3):196-208, 1993.

A.J. Grove, J.Y. Halpern, and D. Koller. Random worlds and maximum entropy.
Journal of Artificial Intelligence Research, pages 33-88, August 1994.

P.R. Halmos. Measure Theory. Springer Verlag, 1983.

J. Y. Halpern. An analysis of first-order logics of probability. Artificial Intelli-
gence, 46, 1990.

J.Y. Halpern. Let many flowers bloom: a response to “An inquiry into computer
understanding”. Computational Intelligence, 6:184-188, 1990.

J.Y. Halpern and D. Koller. Representation dependence in probabilistic infer-
ence. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI-95), 1995.

D. Heckerman. A tutorial on learning with Bayesian networks. In M. 1. Jordan,
editor, Learning in Graphical Models. MIT Press, Cambridge, MA, 1998.

D. Heckerman and J.S. Breese. A new look at causal independence. Technical
report, Microsoft Research MSR-TR-94-08, 1994.



BIBLIOGRAPHY 299

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

D.E. Heckerman. An empirical comparison of three inference methods. In
Proceedings of the Fourth Workshop on Uncertainty in Artificial Intelligence
(UAI-88), 1988.

J. Heinsohn. Probabilistic description logics. In Proceedings of the Tenth Con-
ference on Uncertainty in Artificial Intelligence (UAI-94), 1994.

M. Henrion. Propagation of uncertainty in Bayesian networks by probabilistic
logic sampling. In John F. Lemmer and Laveen N. Kanal, editors, Uncertainty
i Artificial Intelligence 2, pages 149-163. Elsevier, 1988.

E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The Lumiere
project: Bayesian user modeling for inferring the goals and needs of software
users. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI-98), 1998.

E. Horvitz, S. Srinivas, C. Rouokangas, and M. Barry. A decision-theoretic
approach to the display of information for time-critical decisions: The Vista
project. In Proceedings of SOAR-92, 1992.

R.A. Howard and J.E. Matheson. Influence diagrams. In Readings on the Prin-
ciples and Applications of Decision Analysis, pages 719-962. Strategic Decisions
Group, Menlo Park, California, 1981.

HUGIN. Hugin newsletter. http://www.hugin.dk/newsletters/nl070799.html,
july 1999.

T.S. Jaakkola and M.I. Jordan. Variational probabilistic inference and the
QMR-DT network. JAIR, 1999. in press.

M. Jaeger. Probabilistic reasoning in terminological logics. In Proceedings of
the Fourth International Conference on Principles of Knowledge Representation

and Reasoning (KR-94), 1994.

M. Jaeger. Relational Bayesian networks. In Proceedings of the Thirteenth
Conference on Uncertainty in Artificial Intelligence (UAI-97), 1997.



BIBLIOGRAPHY 300

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

F.V. Jensen. An Introduction to Bayesian Networks. Springer Verlag, 1996.

M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to
variational methods for graphical models. In M.I. Jordan, editor, Learning in
Graphical Models. Kluwer Academic Publishers, 1998.

S. Karlin and H.M. Taylor. A first course in stochastic processes. Academic
Press, New York, 2 edition, 1975.

U. Kjeerulff. dHugin: A computational system for dynamic time-sliced Bayesian
networks. International Journal of Forecasting, 11:89-111, 1995. Special Issue

on Probability Forecasting.

D. Koller, A. Levy, and A. Pfeffer. P-Classic: A tractable probabilistic descrip-
tion logic. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 1997.

D. Koller, D. McAllester, and A. Pfeffer. Effective Bayesian inference for
stochastic programs. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), 1997.

D. Koller and A. Pfeffer. Learning probabilities for noisy first-order rules. In
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(1JCAI-97), 1997.

D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Proceedings of
the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-97),
1997.

D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proceedings of
the Fifteenth National Conference on Artificial Intelligence (AAAI-98), 1998.

K. Laskey and S.M. Mahoney. Network fragments: Representing knowledge for
constructing probabilistic models. In Proc. UAI 1997.



BIBLIOGRAPHY 301

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society, pages 157224, 1988.

D.B. Lenat and R.V. Guha. Building Large Knowledge-Based Systems: Repre-
sentation and Inference in the CYC Project. Addison-Wesley, 1990.

7. Li and B. D’Ambrosio. Efficient inference in Bayesian networks as a combina-

torial optimization problem. International Journal of Approzimate Reasoning,
11(1):55-81, 1994.

F.M. Donini M. Buchheit and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research,
1:109-138, 1993.

R. MacGregor. The evolving technology of classification-based knowledge rep-
resentation systems. In J. Sowa, editor, Principles of semantic networks, pages
385-400. Morgan Kaufmann, 1991.

S.M. Mahoney and K. Laskey. Constructing situation specific Bayesian net-
works. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI-98), 1998.

S.M. Mahoney and K.B. Laskey. Network engineering for complex belief net-
works. In Proc. UAI-96, pages 389-396, 1996.

J.C. McCarthy. Programs with common sense. In Teddington Conference on
the Mechanization of Thought Processes, 1958.

M. Minasi. The complete PC Upgrade and Maintenance Guide. SYBEX, 8
edition, 1997.

M.A. Morjaia, F.J. Rink, W.D. Smith, G. Klempner, C. Burns, and J. Stein.
Commercialization of EPRI’s generator expert monitoring system (gems). In

Expert System Application for the Electric Power Industry, Phoenix, 1993.
EPRI. Also: GE techreport GER-3790.



BIBLIOGRAPHY 302

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

S. Muggleton. Stochastic logic programs. Journal of Logic Programmaing, 1999.

Accepted subject to revision.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate
inference: an empirical study. In Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence (UAI-99), 1999.

R.M. Neal. Probabilistic inference using Markov chain Monte Carlo methods.
Technical report, Dept. of Computer Science, University of Toronto CRG-TR-
93-1, 1993.

R. Ng and V.S. Subrahmanian. Probabilistic logic programming. Information
and Computation, 101(2):150-201, 1993.

L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic

knowledge bases. Theoretical Computer Science, 1996.

L. Ngo, P. Haddawy, and J. Helwig. A theoretical framework for context-
sensitive temporal probability model construction with application to plan pro-
jection. In Proc. UAI-95, pages 419-426, 1995.

N.J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71-87, 1986.

J.B. Paris and A. Vencovska. On the applicability of maximum entropy to
inexact reasoning. International Journal of Approrimate Reasoning, 3:1-34,
19809.

H. Pasula, S. Russell, M. Ostland, and Y. Ritov. Tracking many objects with
many sensors. In Proceedings of the 16th International Joint Conference on

Artificial Intelligence (IJCAI-99), 1999.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University
Press, 2000.



BIBLIOGRAPHY 303

[81]

[82]

[83]

[84]

[85]

[86]

[87]

88

[89]

[90]

[91]

C. Petalson. The BACK system : an overview. In SIGART bulletin, volume
2(3), 1991.

A. Pfeffer, D. Koller, B. Milch, and K.T. Takusagawa. SPOOK: A system for
probabilistic object-oriented knowledge representation. In Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI-99), 1999.

D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial In-
telligence, 64(1):81-129, 1993.

D. Poole. The use of conflicts in searching Bayesian networks. In Proceedings of
the Ninth Conference on Uncertainty in Artificial Intelligence (UAI-98), 1993.

L.R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2), 1989.

M. Sahami, S. Dumais, D. Heckerman, , and E. Horvitz. A Bayesian approach to
filtering junk e-mail. In AAAI Workshop on Learning for Text Categorization,
July 1998.

L.K. Schubert. Comments on ’An inquiry into computer understanding’ (by P.

Cheeseman, with his reply). Computational Intelligence, 4(1):67-9, 1988.

R.D. Shachter and M. Peot. Simulation approaches to general probabilistic
inference on belief networks. In Fifth Workshop on Uncertainty in Artificial
Intelligence (UAI-89), 1989.

L. Shastri. Default reasoning in semantic networks: a formalization of recogni-
tion and inheritance. Artificial Intelligence, 39(3), 1989.

K. Shoikhet and D. Geiger. A practical algorithm for finding optimal trian-
gulations. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97), 1997.

J.E. Shore and R.W. Johnson. Axiomatic derivation of the principle of maxi-
mum entropy and the principle of minimum cross-entropy. IEEE Transactions
on Information Theory, 26(1):26-37, 1980.



BIBLIOGRAPHY 304

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

H. Simon. The Sciences of the Artificial. MIT Press, 2nd edition, 1981.

C.J. Butz S.K.M. Wong and Y. Xiang. A method for implementing a probabilis-
tic model as a relational database. In Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence (UAI-95), 1995.

S. Srinivas. A probabilistic approach to hierarchical model-based diagnosis. In
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence
(UAI-94), pages 538-545, 1994.

H. J. Suermondt and G. F. Cooper. Probabilistic inference in multiply con-
nected belief networks using loop cutsets. International Journal of Approximate
Reasoning, 4:157-224, 1990.

B. Tessem. Interval probability propagation. International Journal of Approz-
imate Reasoning, 7:95-120, 1992.

J.D. Ullman. Principles of Database and Knowledge-Base Systems. Computer
Science Press, 1988.

M.P. Wellman, J.S. Breese, and R.P. Goldman. From knowledge bases to deci-
sion models. The Knowledge Engineering Review, 7(1):35-53, November 1992.

S. Wolfram. The Mathematica Book. Cambridge University Press, 4 edition,
1999.

Y. Xiang, D. Poole, and M.P. Beddoes. Multiply sectioned Bayesian networks
and junction forests for large knowledge based systems. Computational Intelli-
gence, 9(2):171-220, 1993.

N. L. Zhang and D. Poole. On the role of context-specific independence in
probabilistic inference. In Proc. IJCAI, pages 1288-1293, 1999.



