
Max-Margin Markov Networks

Max-Margin Markov Networks

Ben Taskar taskar@cs.berkeley.edu
Division of Computer Science
University of California
Berkeley, CA 94720, USA

Carlos Guestrin guestrin@cs.cmu.edu
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Vassil Chatalbashev vasco@cs.stanford.edu
Department of Computer Science
Stanford University
Stanford, CA 94305, USA

Daphne Koller koller@cs.stanford.edu

Department of Computer Science
Stanford University
Stanford, CA 94305, USA

Editor: Leslie Pack Kaelbling

Abstract

Standard classification problems involve assigning a single label to an object given its fea-
tures. We address a more complex setting of structured classification, where multiple and
interdependent labels must be assigned to objects with sequential, spatial, or relational
structure. Probabilistic graphical models, such as Markov networks, have been widely used
to represent correlations between labels by exploiting the structure of such tasks. Tradition-
ally, graphical models are estimated by maximizing likelihood or conditional likelihood. An
alternative estimation criterion, based on large-margin principle underlying support vec-
tor machines, has been recently proposed for sequence models (Collins, 2001; Altun et al.,
2003), resulting in an exponential-size quadratic programming formulation. We develop
maximum margin Markov (M3) networks, which efficiently incorporate kernels and capture
label correlations in structured data, using an explicit polynomial-size quadratic program-
ming formulation. We present an efficient estimation algorithm that exploits dynamic
programming for learning M3 networks. In an important class of models (binary networks
of arbitrary topology with attractive potentials), likelihood-based estimation is believed to
be intractable. However, our margin-based estimation provides an exact polynomial-time
solution. We provide a novel margin-based generalization bound for structured domains
and show experiments on the tasks of handwritten character recognition, web page classi-
fication and 3D object segmentation that demonstrate very significant gains over previous
approaches.

Keywords: Markov networks, support vector machines, structured classification, kernel
methods, large-margin classification

1

Taskar, Guestrin, Chatalbashev, Koller

1. Introduction

In standard classification, our goal is to learn how to label an instance using a set of discrete
categories. Two successful and popular approaches to this task are margin-based models,
such as support vector machines, and conditional probabilistic models, such as logistic
regression. Probabilistic models offer good estimates of conditional probability of label given
the features and an established set of tools for dealing with background knowledge using
priors, as well as partially observed data. Margin-based methods offer sparse, more efficient
learning in high-dimensional feature spaces via kernels and strong theoretical generalization
guarantees.

In many cases, however, we need to label a set of inter-related instances. For example:
optical character recognition (OCR) or part-of-speech tagging both involve labeling an entire
sequence of elements into some number of classes; image segmentation involves labeling all of
the pixels in an image; and collective webpage classification involves labeling an entire set of
interlinked webpages. These problems involve labeling a set of related objects that exhibit
local correlations: between labels of adjacent letter images in handwriting recognition,
neighboring pixels in an image, linked pages in a website. In all of these cases, we need
to assign multiple labels simultaneously, leading to a classification problem that has an
exponentially large set of joint labels. We refer to this setting as structured classification.

Probabilistic graphical models offer a solution in this setting: we can define and learn
a joint probabilistic model over the set of label variables. For example, we can learn a
hidden Markov model, or a conditional random field (CRF) (Lafferty et al., 2001) over the
labels and features of a sequence, and then use a probabilistic inference algorithm (such as
the Viterbi algorithm) to classify these instances collectively, finding the most likely joint
assignment to all of the labels simultaneously.

Markov networks are extensively used to model complex sequential, spatial, and rela-
tional interactions in prediction problems arising in many fields (Pearl, 1988; Cowell et al.,
1999). They compactly represent complex joint distributions of the label variables by mod-
eling their local interactions. Such models are encoded by a graph, whose nodes represent
the different object labels, and whose edges represent and quantify direct dependencies
between them.

We address the problem of max-margin estimation the parameters of Markov networks
for such structured classification problems. We show a compact convex formulation that
seamlessly integrates kernels with graphical models. Recent margin-based formulations
for sequence models involve an exponential-size quadratic program (Collins, 2001; Altun
et al., 2003). In this paper, we show an explicit polynomial-size quadratic programming
formulation for learning maximum margin Markov (M3) networks. This formulation is exact
for networks where inference is tractable (low-treewidth graphs, including sequences, trees,
and other common structures). For non-triangulated networks, we provide an approximate
formulation based on the relaxation used by belief propagation algorithms (Yedidia et al.,
2000). We present an efficient online-style estimation algorithm called structured SMO that
exploits dynamic programming and scales to very large datasets.

We also define an important subclass of Markov networks for which margin-based es-
timation provides an exact solution for arbitrary network topology. This subclass, called
associative Markov networks (AMNs), contains networks of discrete variables with K labels

2

Max-Margin Markov Networks

and arbitrary-size clique potentials with K parameters that favor the same labels for all
variables in the clique. Such positive interactions capture the “guilt by association” pattern
of reasoning present in many domains, in which connected (“associated”) variables tend to
have the same label. AMNs are a natural fit object recognition and segmentation, web-
page classification, and many other applications. We show that in binary AMNs, for which
likelihood-based estimation is believed to be intractable, our margin-based framework pro-
vides a polynomial-time solution. To our knowledge, our method is the first to allow exact
training Markov networks of arbitrary connectivity and topology. We present an AMN-
based method for object segmentation from 3D range data. By constraining the class of
Markov networks to AMNs, our models can be learned efficiently and at run-time, scale
up to tens of millions of nodes and edges. The proposed learning formulation effectively
and directly learns to exploit a large set of complex surface and volumetric features, while
balancing the spatial coherence modeled by the AMN.

We provide a novel margin-based theoretical bound for generalization in structured do-
mains. Unlike previous results (Collins, 2001), our bound grows logarithmically rather than
linearly with the number of label variables. We present experiments on the tasks of hand-
writing recognition, web page classification and 3D terrain segmentation that demonstrate
very significant gains over previous approaches.

The rest of this paper is organized as follows. In Sec. 2, we briefly review basic concepts in
classification and describe logistic regression and support vector machines, two approaches
that highlight differences between likelihood and margin based estimation we explore in
this paper. We define structured classification and graphical models in Sec. 3, and review
inference and learning in general and associative Markov networks in Sec. 4 and Sec. 5. We
present our general framework in Sec. 6 and apply it to general Markov networks (Sec. 7)
and AMNs (Sec. 8). In Sec. 9, we provide a novel margin-based generalization bound and
describe an efficient structured SMO algorithm for solving the max-margin QP in general
Markov networks in Sec. 10. We present experiments in Sec. 11 and conclude with related
work (Sec. 12) and discussion (Sec. 13).

2. Classification

In standard classification, we seek a function h : X 7→ Y that maps inputs x ∈ X to outputs
y ∈ Y. The input space X is an arbitrary set (often X = IRn), while the output space Y is
a small number of discrete classes. In handwritten character recognition, for example, X is
the set of images of letters and Y is the alphabet (see Fig. 1). Our input is a set of m i.i.d.
(independent and identically distributed) samples S = {(x(i), y(i))}m

i=1 drawn from a fixed
but unknown distribution D over X ×Y. Our output is a hypothesis h such that h(x) will
approximate y on new samples from the distribution (x, y) ∼ D.

Learning algorithms can be distinguished among several dimensions, chief among them
is the hypothesis class H of functions h. We will concentrate on the generalized linear
model class for several reasons, including accuracy, efficiency, and extensibility to more
complex structured classification tasks we consider next. The second crucial dimension of a
learning algorithm is the criterion for selection of h from H. We arrive at such a criterion by
quantifying what it means for h(x) to approximate y. The risk functional R`

D[(h)] measures

3

Taskar, Guestrin, Chatalbashev, Koller

the expected error of the approximation:

R`
D[h] = E(x,y)∼D[`(x, y, h(x))], (1)

where the loss function ` : X × Y × Y → IR+ measures the penalty for predicting h(x) on
the sample (x, y). In general, we assume that `(x, y, ŷ) = 0 if y = ŷ. The standard loss
function for classification is 0/1 loss

`0/1(x, y, h(x)) ≡ 1I(y 6= h(x)),

where 1I(·) denotes the indicator function, that is, 1I(true) = 1 and 1I(false) = 0.
Since we do not generally know the distribution D, we estimate the risk of h using its

empirical risk R`
S , computed on the training sample S:

R`
S [h] =

1
m

m∑

i=1

`(x(i), y(i), h(x(i))) =
1
m

m∑

i=1

`i(h(x(i))), (2)

where we abbreviate `(x(i), y(i), h(x(i))) = `i(h(x(i))). For 0/1 loss, R`
S [h] is simply the

proportion of training examples that h misclassifies. R`
S [h] is often called the training error

or training loss.
If our set of hypotheses, H, is large enough, we will be able to find h that has zero or

very small empirical risk. However, simply selecting a hypothesis with lowest risk

h∗ = arg min
h∈H

R`
S [h],

is generally not a good idea. For example, if X = IR,Y = IR and H includes all polynomials
of degree m−1, we can always find a polynomial h that passes through all the sample points
(x(i), y(i)), i = (1, ..., m) assuming that all the x(i) are unique. This polynomial is very likely
to overfit the training data, that is, it will have zero empirical risk, but high actual risk.
The key to selecting a good hypothesis is to trade-off complexity of class H (e.g. the degree
of the polynomial) with the error on the training data as measured by empirical risk R`

S .
For a vast majority of supervised learning algorithms, this fundamental balance is achieved
by minimizing the weighted combination of the two criteria:

h∗ = arg min
h∈H

(
D[h] + CR`

S [h]
)

, (3)

where D[h] measures the inherent dimension or complexity of h, and C ≥ 0 is a trade-off
parameter. We will not go into derivation of various complexity measuresD[h] here, but sim-
ply adopt the standard measures as needed and refer the reader to Vapnik (1995); Devroye
et al. (1996); Hastie et al. (2001) for details. The term D[h] is often called regularization.

Depending on the complexity of the classH, the search for the optimal h∗ in Eq. (3) may
be a daunting task1. For many classes, for example decision trees and multi-layer neural
networks, it is intractable (Bishop, 1995; Quinlan, 2001), and we must resort to approximate,

1. For classification, minimizing the objective with the usual 0/1 training error is generally a very difficult
problem with multiple maxima for most realistic H. See discussion in the next section about approaches
to dealing with 0/1 loss.

4

Max-Margin Markov Networks

a b c d e
Figure 1: Handwritten character recognition: sample letters from Kassel (1995) data set.

greedy optimization methods. For these intractable classes, the search procedure used by
the learning algorithm is crucial. Below however, we will concentrate on models where the
optimal h∗ can be found efficiently using convex optimization in polynomial time. Hence,
the learning algorithms we consider are completely characterized by the hypothesis class H,
the loss function `, and the regularization D[h].

2.1 Generalized linear models

We consider the generalized linear family of hypotheses H. Given n real-valued basis func-
tions fj : X × Y 7→ IR, a hypothesis hw ∈ H is defined by a set of n coefficients wj ∈ IR
such that:

hw(x) = arg max
y∈Y

n∑

i=1

wjfj(x, y) = arg max
y∈Y

w>f(x, y). (4)

We assume that ties in the arg max are broken using some arbitrary but fixed rule. As
we discuss below, this class of hypotheses is very rich and includes many standard models.
The formulation in Eq. (4) of the hypothesis class in terms of an optimization procedure
will become crucial to extending supervised learning techniques to cases where the output
space Y is more complex.

Consider the character recognition example in Fig. 1. Our input x is a vector of pixel
values of the image and y is the alphabet {a, . . . , z}. We might have a basis function
fj(x, y) = 1I(xrow,col = on ∧ y = char) for each possible (row, col) and char ∈ Y, where
xrow,col denotes the value of pixel (row, col). Since different letters tend to have different
pixels turned on, this very simple model captures enough information to perform reasonably
well.

The most common loss for classification is 0/1 loss. Minimizing the 0/1 risk is generally
a very difficult problem with multiple maxima for any large class H. The standard solution
is minimizing an upper bound on the 0/1 loss, `(x, y, h(x)) ≥ `(x, y, h(x)). (In addition
to computational advantages of this approach, there are statistical benefits of minimizing a
convex upper bound (Bartlett et al., 2003)). Two of the primary classification methods we
consider, logistic regression and support vector machines, differ primarily in their choice of
the upper bound on the training 0/1 loss. The regularization D[hw] for the linear family is
typically the norm of the parameters ||w||p for p = 1, 2. Intuitively, a zero, or small weight
wj implies that the hypothesis hw does not depend on the value of fj(x, y) and hence is
simpler than a hw with a large weight wj .

5

Taskar, Guestrin, Chatalbashev, Koller

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

3.5 log−loss

hinge−loss

0/1−loss

Figure 2: 0/1-loss upper bounded by log-loss and hinge-loss. Horizontal axis shows
w>f(x, y) − maxy′ 6=y w>f(x, y′), where y is the correct label for x, while the
vertical axis show the value of the associated loss. The log-loss is shown up to an
additive constant for illustration purposes.

2.2 Logistic regression

In logistic regression, we assign a probabilistic interpretation to the hypothesis hw as defin-
ing a conditional distribution:

Pw(y | x) =
1

Zw(x)
exp{w>f(x, y)}, (5)

where Zw(x) =
∑

y∈Y exp{w>f(x, y)}. The optimal weights are selected by maximizing the
conditional likelihood of the data (minimizing the log-loss) with some regularization. This
approach is called the (regularized) conditional maximum likelihood estimation. Common
choices for regularization are 1 or 2-norm regularization on the weights; we use 2-norm
below:

min
1
2
||w||2 + C

∑

i

log Zw(x(i))−w>f(x(i), y(i)), (6)

where C is a user-specified constant the determines the trade-off between regularization
and likelihood of the data. The log-loss log Zw(x)−w>f(x, y) is an upper bound (up to a
constant) on the 0/1 loss `0/1 (see Fig. 2).

2.3 Logistic dual and maximum entropy

The objective function is convex in the parameters w, so we have an unconstrained (differ-
entiable) convex optimization problem. The gradient with respect to w is given by:

w + C
∑

i

Ei,w[fi(x(i), y)]− fi(x(i), y(i)) = w − C
∑

i

Ei,w[∆fi(y)],

6

Max-Margin Markov Networks

where Ei,w[f(y)] =
∑

y f(y)Pw(y | x(i)) is the expectation under the conditional distribu-
tion Pw(y | x(i)) and ∆fi(y) = f(x(i), y(i)) − f(x(i), y). Ignoring the regularization term,
the gradient is zero when the basis function expectations are equal to the basis functions
evaluated on the labels y(i). It can be shown (Cover and Thomas, 1991) that the dual of the
maximum likelihood problem (without regularization) is the maximum entropy problem:

max −
∑

i,y

Pw(y | x(i)) log Pw(y | x(i)) (7)

s.t. Ei,w[∆fi(y)] = 0, ∀i.
We can interpret logistic regression as trying to match the empirical basis function expec-
tations while maintaining a high entropy conditional distribution Pw(y | x).

2.4 Support vector machines

Support vector machines (Vapnik, 1995) select the weights based on the “margin” of con-
fidence of hw. In the multi-class SVM formulation (Weston and Watkins, 1998; Crammer
and Singer, 2001), the margin on example i quantifies by how much the true label “wins”
over the wrong ones:

γi =
1

||w|| min
y 6=y(i)

w>f(x(i), y(i))−w>f(x(i), y) =
1

||w|| min
y 6=y(i)

w>∆fi(y),

where ∆fi(y) = f(x(i), y(i))− f(x(i), y). Maximizing the smallest such margin (and allowing
for negative margins) is equivalent to solving the following quadratic program:

min
1
2
||w||2 + C

∑

i

ξi (8)

s.t. w>∆fi(y) ≥ `0/1(y)− ξi, ∀i, ∀y ∈ Y.

Note that the slack variable ξi is constrained to be positive in the above program since
w>∆fi(y(i)) = 0 and `0/1(y(i)) = 0. We can also express ξi as maxy `

0/1
i (y) − w>∆fi(y),

and the optimization problem Eq. (8) in a form similar to Eq. (6):

min
1
2
||w||2 + C

∑

i

max
y

[`0/1
i (y)−w>∆fi(y)]. (9)

The hinge-loss maxy[`
0/1
i (y) − w>∆fi(y)] is also an upper bound on the 0/1 loss `0/1

(see Fig. 2).

2.5 SVM dual and kernels

The form of the dual of Eq. (8) is crucial to efficient solution of SVM and the ability to use
a high or even infinite dimensional set of basis functions via kernels.

max
∑

i,y

αi(y)`0/1
i (y)− 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,y

αi(y)∆fi(y)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(10)

s.t.
∑

y

αi(y) = C, ∀i; αi(y) ≥ 0, ∀i, y.

7

Taskar, Guestrin, Chatalbashev, Koller

b r a c e
Figure 3: Handwritten word recognition: sample from Kassel (1995) data set.

In the dual, the αi(y) variables correspond to the w>∆fi(y) ≥ `0/1(y)−ξi constraints in the
primal Eq. (8). The solution to the dual α∗ gives the solution to the primal as a weighted
combination of basis functions of examples:

w∗ =
∑

i,y

α∗i (y)∆fi(y).

The pairings of examples and incorrect labels, (i, y), that have non-zero α∗i (y), are called
support vectors.

An important feature of the dual formulation is that the basis functions f appear only
as dot products. Expanding the quadratic term, we have:

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,y

αi(y)∆fi(y)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

=
∑

i,y

∑

j,ȳ

αi(y)αj(ȳ)∆fi(y)>∆fj(ȳ).

Hence, as long as the dot product f(x, y)>f(x̄, ȳ) can be computed efficiently, we can
solve Eq. (10) independently of the actual dimension of f . Note that at classification time,
we also do not need to worry about the dimension of f since:

w>f(x, ȳ) =
∑

i,y

αi(y)∆fi(y)>f(x, ȳ) =
∑

i,y

αi(y)[f(x(i), y(i))>f(x, ȳ)− f(x(i), y)>f(x, ȳ)].

For example, we might have basis functions that are polynomial of degree d in terms of
image pixels, fj(x, y) = 1I(xrow1,col1 = on ∧ . . . ∧ xrowd,cold = on ∧ y = char) for each
possible (row1, col1) . . . (rowd, cold) and char ∈ Y. Computing this polynomial kernel can
be done independently of the dimension d, even though the number of basis functions grows
exponentially with d (Vapnik, 1995).

In fact, logistic regression can also be kernelized. However, the hinge loss formulation
usually produces sparse solutions in terms of the number of support vectors, while solutions
to the corresponding kernelized log-loss problem are generally non-sparse (all examples are
support vectors) and require approximations for even relatively small datasets (Wahba et al.,
1993; Zhu and Hastie, 2001).

3. Structured classification

Consider once more the problem of character recognition. In fact, a more natural and
useful task is recognizing words and entire sentences. Fig. 3 shows an example handwritten

8

Max-Margin Markov Networks

word “brace.” Distinguishing between the second letter and fourth letter (‘r’ and ‘c’) in
isolation is far from trivial, but in the context of the surrounding letters that together form
a word, this task is much less error-prone for humans and should be for computers as well.
However, transferring margin-based techniques from standard classification has met with
several computational challenges which our work addresses.

We consider prediction problems in which the output is not a single discrete value y,
but a set of values y = (y1, . . . , yL), for example an entire sequence of L characters. We
assume that the input x is pre-segmented into L images corresponding to each letter. The
output space Y(x) = Y1 × . . . × YL is a product of output spaces of single variables. In
word recognition, each Yj is the alphabet, while Y(x) is the set of L-letter sequences. The
joint spaces we consider have a rich correlation structure. In word recognition, we observe
that the letter ‘q’ (almost) never follows ‘z’ in English words, and in general, consecutive
letters are highly correlated. In 2D image or 3D range data segmentation, the goal is to
break up a set of a set of pixels or points into coherent regions that correspond to object
types: for example, trees, buildings, roads (see Fig. 22). Our output space again is the joint
space, where each Yj is a small number of object types. The correlations in this problem
are spatial, since physically adjacent points often belong to the same object type. Similarly,
when classifying a set of hyperlinked pages of a website, our output space is the joint space
of all page label assignments, and the correlations are strongest between linked pages. We
refer to joint spaces with such local correlations as structured. Structured models, like
Markov networks we describe in the next section, predict the outputs jointly, exploiting
such correlations in the output space to make more globally informed decisions.

The range of prediction problems these broad definitions encompass is immense, arising
in fields as diverse as natural language analysis, machine vision, and computational biology,
to name a few. The class of structured models H we consider is essentially of the same form
as in previous chapter, except that y has been replaced by a vector y:

hw(x) = arg max
y∈Y(x)

w>f(x,y), (11)

where as before f(x,y) is a vector of functions f : X × Y 7→ IRn. We assume that the
output space Y(x), the set of label variables to be predicted and their possible assignments,
is given by some deterministic procedure. This formulation is very general. Clearly, for
many models f , finding the optimal y is intractable. For the most part, we will restrict our
attention to models where this inference problem can be solved in polynomial time. This
includes, Markov networks with special structure (low-treewidth or binary associative). In
other cases, we use an approximate polynomial time inference procedure.

3.1 Probabilistic models: generative and conditional

Probabilistic models can be subdivided into generative and conditional with respect to the
prediction task. A generative model assigns a normalized joint distribution P (x,y), or more
generally, a density p(x,y), to the input and output space X × Y with

p(x,y) ≥ 0,

∫

x∈X

∑

y∈Y(x)

p(x,y) = 1.

9

Taskar, Guestrin, Chatalbashev, Koller

A conditional model assigns a normalized distribution p(y | x) only over the output space
Y with

P (y | x) ≥ 0,
∑

y∈Y(x)

P (y | x) = 1 ∀x ∈ X .

Probabilistic interpretation of the model offers well-understood semantics and an im-
mense toolbox of methods for inference and learning. It also provides an intuitive measure
of confidence in the predictions of a model in terms of conditional probabilities. In addi-
tion, generative models are typically structured to allow very efficient maximum likelihood
learning. A very common class of generative models is the exponential family:

p(x,y) ∝ exp{w>f(x,y)}.

For exponential families, the maximum likelihood parameters w with respect to the joint
distribution can be computed in closed form using the empirical basis function expectations
ES [f(x,y)] (DeGroot, 1970; Hastie et al., 2001).

Of course, this efficiency comes at a price. Any model is an approximation to the true
distribution underlying the data. A generative model must make simplifying assumptions
(more precisely, independence assumptions) about the entire p(x,y), while a conditional
model makes many fewer assumption by focusing on P (y | x). Because of this, by opti-
mizing the model to fit the joint distribution p(x,y), we may be tuning the approximation
away from optimal conditional distribution P (y | x), which we use to make the predictions.
Given sufficient data, the conditional model will learn the best approximation to P (y | x)
possible using w, while the generative model p(x,y) will not necessarily do so. Typically,
however, generative models actually need fewer samples to converge to a good estimate of
the joint distribution than conditional models need to accurately represent the conditional
distribution. In a regime with very few training samples (relative to the number of param-
eters w), generative models may actually outperform conditional models (Ng and Jordan,
2001).

3.2 Prediction models: normalized and unnormalized

Probabilistic semantics are certainly not necessary for a good predictive model if we are
simply interested in the optimal prediction (the arg max in Eq. (11)). As we discussed in the
previous section, support vector machines, which do not represent a conditional distribution,
typically perform as well or better than logistic regression (Vapnik, 1995; Cristianini and
Shawe-Taylor, 2000).

In general, we can often achieve higher accuracy models when we do not learn a nor-
malized distribution over the outputs, but concentrate on the margin or decision boundary,
the difference between the optimal y and the rest. Even more importantly, in the case of
associative Markov networks we discuss below, normalizing the model, which requires sum-
ming over the entire Y, is (believed to be) intractable. This fact makes standard maximum
likelihood estimation infeasible. The learning method we advocate in this paper circum-
vents this problem by requiring only the maximization problem to be tractable. We still
heavily rely on the representation and inference tools familiar from probabilistic models for
the construction of and prediction in unnormalized models, but largely dispense with the
probabilistic interpretation when needed.

10

Max-Margin Markov Networks

4. Markov networks

Markov networks provide a rich framework for modeling the structure of correlations in
many domains (Pearl, 1988; Cowell et al., 1999). The models treat the inputs and outputs
as random variables X with domain X and Y with domain Y and compactly define a con-
ditional density p(Y | X) or distribution P (Y | X) (we concentrate here on the conditional
Markov networks or CRFs (Lafferty et al., 2001)). The advantage of a graphical framework
is that it can compactly exploit sparseness in the correlations between outputs Y . The
graphical structure of the models encodes the qualitative aspects of the distribution: direct
dependencies as well as conditional independencies. The quantitative aspect of the model
is defined by the potentials that are associated with nodes and cliques of the graph. Before
a formal definition, consider a first-order Markov chain a model for the word recognition
task. In Fig. 4, the nodes are associated with output variables Yi and the edges correspond
to direct dependencies or correlations. We do not explicitly represent the inputs X in the
figure. For example, the model encodes that Yj is conditionally independent of the rest of
the variables given Yj−1, Yj+1. Intuitively, adjacent letters in a word are highly correlated,
but the first-order model is making the assertion (which is certainly an approximation) that
once the value of a letter Yj is known, the correlation between a letter Yb before j and a
letter Ya after j is negligible. More precisely, we use a model where

P (Yb | Yj , Ya,x) = P (Yb | Yj ,x), P (Ya | Yj , Yb,x) = P (Ya | Yj ,x), b < j < a.

For the purposes of finding the most likely y, this conditional independence property means
that the optimization problem is decomposable: given that Yj = yj , it suffices to separately
find the optimal subsequence from 1 to j ending with yj , and the optimal subsequence
starting with yj from j to L.

4.1 Representation

The structure of a Markov network is defined by an undirected graph G = (V, E), where
the nodes are associated with variables V = {Y1, . . . , YL}. A clique is a set of nodes c ⊆ V
that form a fully connected subgraph (every two nodes are connected by an edge). Note
that each subclique of a clique is also a clique, and we consider each node a singleton
clique. In the chain network in Fig. 4, the cliques are simply the nodes and the edges:
C(G) = {{Y1}, . . . , {Y5}, {Y1, Y2}, . . . , {Y4, Y5}}. We denote the set of variables in a clique
c as Yc, an assignment of variables in the clique as yc and the space of all assignments
to the clique as Yc. We focus on discrete output spaces Y below, but many of the same
representation and inference concepts translate to continuous domains. No assumption is
made about X .

Definition 4.1 A Markov network is defined by an undirected graph G = (V, E) and a set
of potentials Φ = {φc}. The nodes are associated with variables V = {Y1, . . . , YL}. Each
clique c ∈ C(G) is associated with a potential φc(x,yc) with φc : X × Yc 7→ IR+, which
specifies a non-negative value for each assignment yc to variables in Yc and any input x.
The Markov network (G, Φ) defines a conditional distribution:

P (y | x) =
1

Z(x)

∏

c∈C(G)

φc(x,yc),

11

Taskar, Guestrin, Chatalbashev, Koller

Figure 4: First-order Markov chain: φi(Yi) are node potentials, φi,i+1(Yi, Yi+1) are edge
potentials (dependence on x is not shown).

where C(G) is the set of all the cliques of the graph and Z(x) is the partition function given
by Z(x) =

∑
y∈Y

∏
c∈C(G) φc(x,yc).

In our example Fig. 4, we have node and edge potentials. Intuitively, the node potentials
quantify the correlation between the input x and the value of the node, while the edge
potentials quantify the correlation between the pair of adjacent output variables as well as
the input x. Potentials do not have a local probabilistic interpretation, but can be thought
of as defining an unnormalized score for each assignment in the clique. Conditioned on
the image input, appropriate node potentials in our network should give high scores to the
correct letters (‘b’,‘r’,‘a’,‘c’,‘e’), though perhaps there would be some ambiguity with the
second and fourth letter. For simplicity, assume that the edge potentials would not depend
on the images, but simply should give high scores to pairs of letters that tend to appear often
consecutively. Multiplied together, these scores should favor the correct output “brace”.

In fact, a Markov network is a generalized log-linear model, since the potentials φc(xc,yc)
could be represented (in log-space) as a sum of basis functions over x,yc:

φc(xc,yc) = exp

[
nc∑

k=1

wc,kfc,k(x,yc)

]
= exp

[
w>

c fc(x,yc)
]

where nc is the number of basis functions for the clique c. Hence the log of the conditional
probability is given by:

log P (y | x) =
∑

c∈C(G)

w>
c fc(x,yc)− log Zw(x).

In case of node potentials for word recognition, we could use the same basis functions as for
individual character recognition: fj,k(x, yj) = 1I(xj,row,col = on∧yj = char) for each possible
(row, col) in xj , the window of the image that corresponds to letter j and each char ∈ Yj

(we assume the input has been segmented into images xj that correspond to letters). In

12

Max-Margin Markov Networks

general, we condition a clique only on a portion of the input x, which we denote as xc. For
the edge potentials, we can define basis functions for each combination of letters (assume
for simplicity no dependence on x) : fj,j+1,k(x, yj , yj+1) = 1I(yj = char1∧ yj+1 = char2) for
each char1 ∈ Yj and char2 ∈ Yj+1. In this problem (as well as many others), we are likely
to “tie” or “share” the parameters of the model wc across cliques. Usually, all single node
potentials would share the same weights and basis functions (albeit the relevant portion of
the input xc is different) and similarly for the pairwise cliques, no matter in what position
they appear in the sequence.2

With slight abuse of notation, we stack all basis functions into one vector f . For the
sequence model, f has node functions and edge functions, so when c is a node, the edge
functions in f(xc,yc) are defined to evaluate to zero. Similarly, when c is an edge, the node
functions in f(xc,yc) are also defined to evaluate to zero. Now we can write:

f(x,y) =
∑

c∈C(G)

f(xc,yc).

We stack the weights in the corresponding manner, so the most likely assignment according
to the model is given by:

arg max
y∈Y(x)

log Pw(y | x) = arg max
y∈Y(x)

w>f(x,y),

in the same form as Eq. (11).

4.2 Inference

There are several important questions that can be answered by probabilistic models. The
task of finding the most likely assignment, known as maximum a-posteriori (MAP) or most
likely explanation (MPE), is just one of such questions, but most relevant to our discussion.
The Viterbi dynamic programming algorithm solves this problem for chain networks in
O(L) time. Let the highest score of any subsequence from 1 to k > 1 ending with value yk

be defined as
φ∗k(yk) = max

y1..k−1

∏

j

φj(x, yj)φj(x, yj−1, yj).

The algorithm computes the highest scores recursively:

φ∗1(y1) = φ1(x, y1), ∀y1 ∈ Y1;
φ∗k(yk) = max

yk−1∈Yk−1

φ∗k−1(yk−1)φj(x, yk)φj(x, yk−1, yk), 1 < k ≤ L, ∀yk ∈ Yk.

The highest scoring sequence has score maxyL φ∗L(yL). Using the arg max’s of the max’s in
the computation of φ∗, we can back-trace the highest scoring sequence itself. We assume
that score ties are broken in a predetermined way, say according to some lexicographic order
of the symbols.

In general Markov networks, MAP inference is NP-hard (Cowell et al., 1999). However,
there are several important subclasses of networks that allow polynomial time inference.

2. Sometimes we might actually want some dependence on the position in the sequence, which can be
accomplished by adding more basis functions that condition on the position of the clique.

13

Taskar, Guestrin, Chatalbashev, Koller

Figure 5: Diamond Markov network (added triangulation edge is dashed).

The most important of these is the class of networks with low tree-width. We need the
concept of triangulation (or chordality) to formally define tree-width. Recall that a cycle
of length l in an undirected graph G is a sequence of nodes (v0, v1, . . . , vl), distinct except
that v0 = vl, which are connected by edges (vi, vi+1) ∈ G. A chord of this cycle is an edge
(vi, vj) ∈ G between non-consecutive nodes.

Definition 4.2 (Triangulated graph) An undirected graph G is triangulated if every
one of its cycles of length ≥ 4 possesses a chord.

Singly-connected graphs, like chains and trees, are triangulated since they contain no cycles.
The simplest untriangulated network is the diamond in Fig. 5. To triangulate it, we can
add the edge (Y1, Y3) or (Y2, Y4). In general, there are many possible sets of edges that can
be added to triangulate a graph. The inference procedure creates a tree of cliques using the
graph augmented by triangulation. The critical property of a triangulation for the inference
procedure is the size of the largest clique.

Definition 4.3 (Tree-width of a graph) The tree-width of a triangulated graph G is
the size of its largest clique minus 1. The tree-width of an untriangulated graph G is the
minimum tree-width of all triangulations of G.

The tree-width of a chain or a tree is 1 and the tree-width of Fig. 5 is 2. Finding the mini-
mum tree-width triangulation of a general graph is NP-hard, but good heuristic algorithms
exist (Cowell et al., 1999).

The inference procedure is based on a data structure called junction tree that can be
constructed for a triangulated graph. The junction tree is an alternative representation
of the same distribution that allows simple dynamic programming inference similar to the
Viterbi algorithm for chains.

Definition 4.4 (Junction tree) A junction tree T = (V, E) for a triangulated graph G is
a tree in which the nodes are a subset of the cliques of the graph, V ⊆ C(G) and the edges E

14

Max-Margin Markov Networks

Figure 6: Diamond network junction tree. Each of the original potentials is associated with
a node in the tree.

satisfy the running intersection property: for any two cliques c and c′, the variables in the
intersection c ∩ c′ are contained in the clique of every node of the tree on the (unique) path
between c and c′.

Fig. 6 shows a junction tree for the diamond network. Each of the original clique potentials
must associated with exactly one node in the junction tree. For example, the potentials for
the {Y1, Y3, Y4} and {Y1, Y3, Y4} nodes are the product of the associated clique potentials:

φ134(Y1, Y3, Y4) = φ1(Y1)φ4(Y4)φ14(Y1, Y4)φ34(Y3, Y4),
φ123(Y1, Y2, Y3) = φ2(Y2)φ3(Y3)φ12(Y1, Y2)φ23(Y2, Y3).

Algorithms for constructing junction trees from triangulated graphs are described in detail
in Cowell et al. (1999).

The Viterbi algorithm for junction trees picks an arbitrary root r for the tree T and
proceeds recursively from the leaves to compute the highest scoring subtree at a node by
combining the subtrees with highest score from its children. We denote the leaves of the
tree as Lv(T) and the children of node c (relative to the root r) as Chr(c):

φ∗l (yl) = φl(x,yl), ∀l ∈ Lv(T), ∀yl ∈ Yl;

φ∗c(yc) = φc(x,yc)
∏

c′∈Chr(c)

max
yc′∼yc

φ∗c′(yc′), ∀c ∈ V(T) \ Lv(T), ∀yc ∈ Yc,

where yc′ ∼ yc denotes whether the partial assignment yc is consistent with the partial
assignment yc′ on the variables in the intersection of c and c′. The highest score is given
by maxyr φ∗r(yr). Using the arg max’s of the max’s in the computation of φ∗, we can back-
trace the highest scoring assignment itself. Note that this algorithm is exponential in the
tree-width, the size of the largest clique. Similar type of computations using the junction
tree can be used to compute the partition function Zw(x) (by simply replacing max by

∑
)

as well as marginal probabilities P (yc|x) for the cliques of the graph (Cowell et al., 1999).

4.3 Linear programming MAP inference

In this section, we present an alternative inference method based on linear programming.
Although solving the MAP inference using a general LP solver is less efficient than the

15

Taskar, Guestrin, Chatalbashev, Koller

0000

0010

0000

0000

0000

0010

0000

0000

0

1

0

0

0

1

0

0

0010 0010

Figure 7: Example of marginal agreement: row sums of µ12(y1, y2) agree with µ1(y1), col-
umn sums agree with µ2(y2).

dynamic programming algorithms above, this formulation is crucial in viewing Markov net-
works in a unified framework of the structured models we consider and to our development
of common estimation methods in later chapters. Let us begin with a linear integer pro-
gram to compute the optimal assignment y. We represent an assignment as a set binary
variables µc(yc), one for each clique c and each value of the clique yc, that denotes whether
the assignment has that value, such that:

log
∏
c

φc(x,yc) =
∑
c,yc

µc(yc) log φc(x,yc).

We call these variables marginals, as they correspond to the marginals of a distribution
that has all of its mass centered on the MAP instantiation (assuming it is unique). There
are several elementary constraints that such marginals satisfy. First, they must sum to one
for each clique. Second, the marginals for cliques that share variables are consistent. For
any clique c ∈ C and a subclique s ⊂ c, the assignment of the subclique, µs(ys), must be
consistent with the assignment of the clique, µc(yc). Together, these constraints define a
linear integer program:

max
∑
c,yc

µc(yc) log φc(x,yc) (12)

s.t.
∑
yc

µc(yc) = 1, ∀c ∈ C; µc(yc) ∈ {0, 1}, ∀c ∈ C, ∀yc;

µs(ys) =
∑

y′c∼ys

µc(y′c), ∀s, c ∈ C, s ⊂ c, ∀ys.

For example, in case the network is a chain or a tree, we will have node and edge marginals
that sum to 1 and agree with each other as in Fig. 7.

Clearly, for any assignment y′, we can define µc(yc) variables that satisfy the above
constraints by setting µc(yc) = 1I(y′c = yc). We can also show that converse is true: any
valid setting of µc(yc) corresponds to a valid assignment y. In fact,

16

Max-Margin Markov Networks

Lemma 4.5 For a triangulated network with unique MAP assignment, the integrality con-
straint in the integer program in Eq. (12) can be relaxed and the resulting LP is guaranteed
to have integer solutions.

A proof of this lemma appears in Wainwright et al. (2002). Intuitively, the constraints force
the marginals µc(yc) to correspond to some valid joint distribution over the assignments.
The optimal distribution with the respect to the objective puts all its mass on the MAP
assignment. If the MAP assignment is not unique, the value of the LP is the same as
the value of the integer program, and any linear combination of the MAP assignments
maximizes the LP.

in case the network is not triangulated, the set of marginals is not guaranteed to represent
a valid distribution. Consider, for example, the diamond network in Fig. 5 with binary
variables, with the following edge marginals that are consistent with the constraints:

µ12(0, 0) = µ12(1, 1) = 0.5, µ12(1, 0) = µ12(0, 1) = 0;
µ23(0, 0) = µ23(1, 1) = 0.5, µ23(1, 0) = µ23(0, 1) = 0;
µ34(0, 0) = µ34(1, 1) = 0.5, µ34(1, 0) = µ34(0, 1) = 0;
µ14(0, 0) = µ34(1, 1) = 0, µ14(1, 0) = µ14(0, 1) = 0.5.

The corresponding node marginals must all be set to 0.5. Note that the edge marginals for
(1, 2), (2, 3), (3, 4) disallow any assignment other than 0000 or 1111, but the edge marginal
for (1, 4) disallows any assignment that has Y1 = Y4. Hence this set of marginals disallows
all assignments. If we triangulate the graph and add the cliques {Y1, Y2, Y3} and {Y1, Y3, Y4}
with their corresponding constraints, the above marginals will be disallowed.

In graphs where triangulation produces very large cliques, exact inference is intractable.
We can resort to the above LP without triangulation as an approximate inference procedure
(augmented with some scheme for rounding possibly fractional solutions). In Sec. 5, we
discuss another subclass of networks where MAP inference using LPs is tractable for any
network topology, but with a restricted type of potentials.

4.4 Maximum conditional likelihood estimation

A standard discriminative estimation method for Markov networks is based on likelihood.
The regularized maximum conditional likelihood approach of learning the weights w of a
Markov network is similar to logistic regression we described in Sec. 2.2. The objective is
to minimize the training conditional log-loss with an additional regularization term, usually
the squared-norm of the weights w (Lafferty et al., 2001):

1
2
||w||2 − C

∑

i

log Pw(y(i) | x(i)) =
1
2
||w||2 + C

∑

i

log Zw(x(i))−w>fi(y(i)),

where fi(y) = f(x(i),y). This objective function is convex in the parameters w, so we have
an unconstrained convex optimization problem. The gradient with respect to w is given
by:

w + C
∑

i

[
Ei,w[fi(y)]− fi(y(i))

]
= w − C

∑

i

Ei,w[∆fi(y)],

17

Taskar, Guestrin, Chatalbashev, Koller

where Ei,w[fi(y)] =
∑

y∈Y fi(y)Pw(y | x(i)) is the expectation under the conditional distri-
bution Pw(y | x(i)) and ∆fi(y) = f(x(i),y(i))− f(x(i),y), as before. To compute the expec-
tations, we can use inference in the Markov network to calculate marginals Pw(yc | x(i)) for
each clique c in the network Sec. 4.2. Since the basis functions decompose over the cliques
of the network, the expectation decomposes as well:

Ei,w[fi(y)] =
∑

c∈C(i)

∑

yc∈Y(i)
c

fi,c(yc)Pw(yc | x(i)).

As long as the network has low-treewidth, computing these expectations is tractable.
Second order methods for solving unconstrained convex optimization problems, such

as Newton’s method, require the second derivatives as well as the gradient. Let δfi(y) =
fi(y) − Ei,w[fi(y)]. The Hessian of the objective depends on the covariances of the basis
functions:

I + C
∑

i

Ei,w

[
δfi(y)δfi(y)>

]
,

where I is a n×n identity matrix. Computing the Hessian is more expensive than the gradi-
ent, since we need to calculate joint marginals of every pair of cliques c and c′, Pw(yc∪c′ | xi)
as well as covariances of all basis functions, which is quadratic in the number of cliques and
the number of functions. A standard approach is to use an approximate second order
method that does not need to compute the Hessian, but uses only the gradient informa-
tion (Nocedal and Wright, 1999; Boyd and Vandenberghe, 2004). Conjugate Gradients or
L-BFGS methods have been shown to work very well on large estimation problems (Sha
and Pereira, 2003; Pinto et al., 2003), even with millions of parameters w.

5. Associative networks

Associative interactions arise naturally in the context of image processing, where nearby
pixels are likely to have the same label (Besag, 1986; Boykov et al., 1999b). In this setting,
a common approach is to use a generalized Potts model (Potts, 1952), which penalizes
assignments that do not have the same label across the edge: φij(k, l) = λij , ∀k 6= l and
φij(k, k) = 1, where λij ≤ 1.

For binary-valued Potts models, Greig et al. (1989) show that the MAP problem can be
formulated as a min-cut in an appropriately constructed graph. Thus, the MAP problem
can be solved exactly for this class of models in polynomial time. For L > 2, the MAP
problem is NP-hard, but a procedure based on a relaxed linear program guarantees a factor
2 approximation of the optimal solution (Boykov et al., 1999b; Kleinberg and Tardos, 1999).
Our associative potentials extend the Potts model in several ways. Importantly, AMNs allow
different labels to have different attraction strength: φij(k, k) = λij(k), where λij(k) ≥ 1,
and φij(k, l) = 1, ∀k 6= l. This additional flexibility is important in many domains, as
different labels can have very diverse affinities. For example, foreground pixels tend to have
locally coherent values while background is much more varied.

In a second important extension, AMNs admit non-pairwise interactions between vari-
ables, with potentials over cliques involving m variables φ(µi1, . . . , µim). In this case, the
clique potentials are constrained to have the same type of structure as the edge potentials:

18

Max-Margin Markov Networks

There are K parameters φc(k, . . . , k) = λc(k) ≥ 1 and the rest of the entries are set to 1.
In particular, using this additional expressive power, AMNs allow us to encode the pattern
of (soft) transitivity present in many domains. For example, consider the problem of pre-
dicting whether two proteins interact (Vazquez et al., 2003); this probability may increase
if they both interact with another protein. This type of transitivity could be modeled by a
ternary clique that has high λ for the assignment with all interactions present.

More formally, we define associative functions and potentials as follows.

Definition 5.1 A function g : Y 7→ IR is associative for a graph G over K-ary variables if
it can be written as:

g(y) =
∑

v∈V

K∑

k=1

gv(k)1I(yv = k) +
∑

c∈C\V

K∑

k=1

gc(k)1I(yc = k, . . . , k); gc(k) ≥ 0, ∀c ∈ C \ V,

where V are the nodes and C are the cliques of the graph G. A set of potentials φ(y) is
associative if φ(y) = eg(y) and g(y) is associative.

5.1 LP Inference

We can write an integer linear program for the problem of finding the maximum of an
associative function g(y), where we have a “marginal” variable µv(k) for each node v ∈ V
and each label k, which indicates whether node v has value k, and µc(k) for each clique c
(containing more than one variable) and label k, which represents the event that all nodes
in the clique c have label k:

max
∑

v∈V

K∑

k=1

µv(k)gv(k) +
∑

c∈C\V

K∑

k=1

µc(k)gc(k) (13)

s.t. µc(k) ∈ {0, 1}, ∀c ∈ C, k;
K∑

k=1

µv(k) = 1, ∀v ∈ V;

µc(k) ≤ µv(k), ∀c ∈ C \ V, v ∈ c, k.

Note that we substitute the constraint µc(k) =
∧

v∈c µv(k) by linear inequality con-
straints µc(k) ≤ µv(k). This works because the coefficient gc(k) is non-negative and we are
maximizing the objective function. Hence at the optimum, µc(k) = minv µv(k) , which is
equivalent to µc(k) =

∧
v∈c µv(k), when µv(k) are binary.

It can be shown that in the binary case, the linear relaxation of Eq. (13), (where the
constraints µc(k) ∈ {0, 1} are replaced by µc(k) ≥ 0), is guaranteed to produce an integer
solution when a unique solution exists.

Theorem 5.2 If K = 2, for any associative function g, the linear relaxation of Eq. (13)
has an integral optimal solution.

See Appendix A.1 for the proof. This result states that the MAP problem in binary AMNs
is tractable, regardless of network topology or clique size. In the non-binary case (L > 2),
these LPs can produce fractional solutions and we use a rounding procedure to get an
integral solution.

19

Taskar, Guestrin, Chatalbashev, Koller

Theorem 5.3 If K > 2, for any associative function g, the linear relaxation of Eq. (13)
has a solution that is larger than the solution of the integer program by at most the number
of variables in the largest clique.

In the appendix, we also show that the approximation ratio of the rounding procedure is the
inverse of the size of the largest clique (e.g., 1

2 for pairwise networks). Although artificial
examples with fractional solutions can be easily constructed by using symmetry, it seems
that in real data such symmetries are often broken. In fact, in all our experiments with
L > 2 on real data, we never encountered fractional solutions.

We can also use efficient min-cut algorithms to perform exact inference on the learned
models for K = 2 and approximate inference for K > 2 (Boykov et al., 1999a). See appendix
for the details of the reduction.

However, for associative Markov networks, maximum conditional likelihood requires
computing the partition function Zw(x) (or clique marginals), which is #P-Complete. The
marginals can be approximated using MCMC methods (Jerrum and Sinclair, 1993) or loopy
belief propagation Yedidia et al. (2000).

6. Maximum margin estimation

We finally turn to the estimation method we propose in this paper. Given a sample
S = {(x(i),y(i))}m

i=1, we aim to find parameters w such that:

arg max
y∈Y(i)

w>f(x(i),y) ≈ y(i), ∀i,

where Y(i) = Y(x(i)). We develop a compact convex formulation for finding such parameters
w. There are several reasons to derive compact convex formulations. First and foremost, we
can find globally optimal parameters (with fixed precision) in polynomial time. Second, we
can use standard optimization software to solve the problem. Although special-purpose algo-
rithms that exploit the structure of a particular problem are often much faster (see Sec. 10),
the availability of off-the-shelf software is very important for quick development and testing
of such models. Third, we can analyze the generalization performance of the framework
without worrying about the actual algorithms used to carry out the optimization and the
associated woes of intractable optimization problems: local minima, greedy and heuristic
methods, etc.

Throughout, we will adopt the hinge upper bound `i(h(x(i))) on the loss function for
structured classification inspired by max-margin criterion:

`i(h(x(i))) = max
y∈Y(i)

[w>fi(y) + `i(y)]−w>fi(y(i)) ≥ `i(h(x(i))),

where as before, `i(h(x(i))) = `(x(i),y(i), h(x(i))), `i(h(x(i))) = `(x(i),y(i), h(x(i))), and
fi(y) = f(x(i),y). With this upper bound, the min-max formulation for structured classifi-
cation problem is analogous to multi-class SVM formulation in Eq. (8) and Eq. (9):

min
1
2
||w||2 + C

∑

i

ξi (14)

s.t. w>fi(y(i)) + ξi ≥ max
y∈Y(i)

[w>fi(y) + `i(y)], ∀i.

20

Max-Margin Markov Networks

The above formulation is a convex quadratic program in w, since maxy∈Y(i) [w>fi(y)+`i(y)]
is convex in w (maximum of affine functions is a convex function).

The problem with Eq. (14) is that the constraints have a very unwieldy form. An-
other way to express this problem is using

∑
i |Y(i)| linear constraints, which is generally

exponential in Li, the number of variables in yi.

min
1
2
||w||2 + C

∑

i

ξi (15)

s.t. w>fi(y(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Y(i).

This form reveals the “maximum margin” nature of the formulation. We can interpret
1

||w||w
>[fi(y(i))− fi(y)] as the margin of y(i) over another y ∈ Y(i). Assuming ξi are all zero

(say because C is very large), the constraints enforce

w>fi(y(i))−w>fi(y) ≥ `i(y),

so minimizing ||w|| maximizes the smallest such margin, scaled by the loss `i(y). The slack
variables ξi allow for violations of the constraints at a cost Cξi.

As in the univariate prediction, we measure the error of approximation using a loss
function `. In structured problems, where we are jointly predicting multiple variables, the
loss is often not just the simple 0-1 loss. For structured classification, a natural loss function
is a kind of Hamming distance between y(i) and h(x(i)): the number of variables predicted
incorrectly. If the loss function is not uniform over all the mistakes y 6= y(i), then the
constraints make costly mistakes (those with high `i(y)) less likely. In Sec. 9 we analyze
the effect of non-uniform loss function (Hamming distance type loss) on generalization, and
show a strong connection between the loss-scaled margin and expected risk of the learned
model.

The formulation in Eq. (15) is a standard QP with linear constraints, but its expo-
nential size is in general prohibitive. We now return to Eq. (14) and transform it to a a
more manageable problem. The key to solving Eq. (14) efficiently is the loss-augmented
inference

max
y∈Y(i)

[w>fi(y) + `i(y)]. (16)

Even if maxy∈Y(i) w>fi(y) can be solved in polynomial time using convex optimization, the
form of the loss term `i(y) is crucial for the loss-augmented inference to remain tractable.
The range of tractable losses will depend strongly on the problem itself (f and Y). Even
within the range of tractable losses, some are more efficiently computable than others.
We focus on decomposable loss functions (like Hamming loss), which we will define more
formally below.

Assume we can use the linear programming formulation of inference in general Markov
networks (Eq. (12)) and AMNs (Eq. (13)) to compute this loss-augmented maximum:

max
y∈Y(i)

[w>fi(y) + `i(y)] = di + max
µi≥0

Aiµi≤bi

(Fiw + li)>µi, (17)

where Ai,bi depend only on x(i) and f(x,y) and di,Fi, li additionally depend on y(i), w and
`. We will specify the exact dependence below. Such formulation is compact if the number

21

Taskar, Guestrin, Chatalbashev, Koller

of variables µi and constraints Aiµi ≤ bi is polynomial in Li, the number of variables in
y(i).

We can assume that the LP on the right-hand-side of Eq. (17) is feasible and bounded
if Eq. (16) is, so the its LP dual is feasible and bounded as well. By strong duality, we have

di + max
µi≥0

Aiµi≤bi

(Fiw + li)>µi = di + min
λi≥0

A>
i

λi≥Fiw+li

b>i λi, (18)

where λi is a vector of dual variables (Lagrange multipliers). Plugging Eq. (18) into Eq. (14),
we get

min
1
2
||w||2 + C

∑

i

ξi (19)

s.t. w>fi(y(i)) + ξi ≥ di + min
λi≥0

A>
i

λi≥Fiw+li

b>i λi, ∀i.

Moreover, we can combine the minimization over λ with minimization over {w, ξ}. The
reason for this is that if the right hand side is not at the minimum, the constraint is tighter
than necessary, leading to a suboptimal solution w. Optimizing jointly over λ as well will
produce a solution to {w, ξ} that is optimal.

min
1
2
||w||2 + C

∑

i

ξi (20)

s.t. w>fi(y(i)) + ξi ≥ di + b>i λi, ∀i;
A>

i λi ≥ Fiw + li, ∀i;
λi ≥ 0, ∀i.

Hence we have a joint and compact convex optimization program for estimating w. We
investigate the exact form of this program for general Markov networks and AMNs in
sections below. Before moving on to the particulars however, we consider general methods
of approximating the estimation problem.

6.1 Approximations: upper and lower bounds

We have described several classes of Markov networks for which we can not solve the in-
ference problem efficiently. Often, we cannot compute maxy∈Y(i) [w>fi(y) + `i(y)] exactly
or explicitly, but can only upper or lower bound it. Fig. 8 shows schematically how ap-
proximating of the max subproblem reduces or extends the feasible space of w and ξ and
leads to approximate solutions. The nature of these lower and upper bounds depends on
the problem, but we consider two general cases below.

6.1.1 Constraint generation

When compact inference formulation as an LP is infeasible, but the maximization problem
can be solved or approximated by a combinatorial algorithm, we can resort to constraint
generation or cutting plane methods. Consider Eq. (15), where we have an exponential

22

Max-Margin Markov Networks

Upper-bound
Exact
Lower-bound

×
+

Figure 8: Exact and approximate constraints on the max-margin quadratic program. The
solid red line represents the constraints imposed by the assignments y ∈ Y(i),
whereas the dashed and dotted lines represent approximate constraints. The
approximate constraints may coincide with the exact constraints in some cases,
and be more stringent or relaxed in others. The parabolic contours represent the
value of the objective function and ‘+’, ‘x’ and ‘o’ mark the different optima.

number of linear constraints, one for each i and y ∈ Y(i). Only a subset of those constraints
will be active at the optimal solution w. In fact, not more than the number of parameters
n plus the number of examples m can be active in general, since that is the number of
variables. If we can identify a small number of constraints that are critical to the solution,
we do not have to include all of them. Of course, identifying these constraints is in general
as difficult as solving the problem, but a greedy approach of adding the most violated
constraints often achieves good approximate solutions after adding a small (polynomial)
number of constraints. If we continue adding constraints until there are no more violated
ones, the resulting solution is optimal.

We assume that we have an algorithm that produces y = arg maxy∈Y(i) [w>fi(y)+`i(y)].
The algorithm is described in Fig. 9. We maintain, for each example i, a small but growing
set of assignments Ỹ(i) ⊂ Y(i). At each iteration, we solve the problem with a subset of
constraints:

min
1
2
||w||2 + C

∑

i

ξi (21)

s.t. w>fi(y(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Ỹ(i).

The only difference between Eq. (15) and Eq. (21) is that Y(i) has been replaced by Ỹ(i).
We then compute y = arg maxy∈Y(i) [w>fi(y) + `i(y)] for each i and check whether the
constraint w>fi(y(i)) + ξi + ε ≥ w>fi(y) + `i(y), is violated, where ε is a user defined
precision parameter. If it is violated, we set Ỹ(i) = Ỹ(i) ∪ y. The algorithm terminates

23

Taskar, Guestrin, Chatalbashev, Koller

Input: precision parameter ε.

1. Initialize: Ỹ(i) = {}, ∀ i.

2. Set violation = 0 and solve for w and ξ by optimizing

min
1
2
||w||2 + C

∑

i

ξi

s.t. w>fi(y(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Ỹ(i).

3. For each i,
Compute y = arg maxy∈Y(i) [w>fi(y) + `i(y)],
if w>fi(y(i)) + ξi + ε ≤ w>fi(y) + `i(y),
then set Ỹ(i) = Ỹ(i) ∪ y and violation = 1

4. if violation = 1 goto 2.

Return w.

Figure 9: A constraint generation algorithm.

when no constraints are violated. In Fig. 8, the lower-bound on the constraints provided
by Ỹ(i)∪y keeps tightening with each iteration, terminating when the desired precision ε is
reached. We note that if the algorithm that produces y = arg maxy∈Y(i) [w>fi(y)+ `i(y)] is
suboptimal, the approximation error of the solution we achieve might be much greater than
ε. The number of constraints that must be added before the algorithm terminates depends
on the precision ε and problem specific characteristics. See (Bertsimas and Tsitsiklis, 1997;
Boyd and Vandenberghe, 2004) for a more in-depth discussion of cutting planes methods.
This approach may also be computationally faster in providing a very good approximation
in practice if the explicit convex programming formulation is polynomial in size, but very
large, while the maximization algorithm is comparatively fast.

6.1.2 Constraint strengthening

In many problems, the maximization problem we are interested in may be very expensive or
intractable, as in MAP inference in large tree-width Markov networks or multi-class AMNs.
Many such problems can be written as integer programs. Relaxations of such integer pro-
grams into LPs, QPs or SDPs often provide excellent approximation algorithms (Hochbaum,
1997; Nemhauser and Wolsey, 1999). The relaxation usually defines a larger feasible space
Ỹ(i) ⊃ Y(i) over which the maximization is done, where y ∈ Ỹ(i) may correspond to a
“fractional” assignment. For example, a solution to the MAP LP in Eq. (12) for an un-
triangulated network may not correspond to any valid assignment. In such a case, the
approximation is an over-estimate of the constraints:

max
y∈Ỹ(i)

[w>fi(y) + `i(y)] ≥ max
y∈Y(i)

[w>fi(y) + `i(y)].

24

Max-Margin Markov Networks

Hence the constraint set is tightened with such invalid assignments. Fig. 8 shows how the
over-estimate reduces the feasible space of w and ξ.

Note that for every setting of the weights w that produces fractional solutions for the
relaxation, the approximate constraints are tightened because of the additional invalid as-
signments. In this case, the approximate MAP solution has higher value than any integer
solution, including the true assignment y(i), thereby driving up the corresponding slack ξi.
By contrast, for weights w for which the MAP approximation is integer-valued, the margin
has the standard interpretation as the difference between the score of y(i) and the MAP
y (according to w). As the objective includes a penalty for the slack variable, intuitively,
minimizing the objective tends to drive the weights w away from the regions where the so-
lutions to the approximation are fractional. In essence, the estimation algorithm is finding
weights that are not necessarily optimal for an exact maximization algorithm, but (close
to) optimal for the particular approximate maximization algorithm used. In practice, we
will show experimentally that such approximations often work very well.

7. Maximum margin Markov networks

We now address the problem of max margin estimation in general Markov networks. We
are given a labeled training sample S = {(x(i),y(i))}m

i=1, drawn from a fixed distribution D
over X × Y. We assume the structure of the network is given: we have a mapping from
an input x to the corresponding Markov network graph G(x) = {V, E} where the nodes V
map to the variables in y. We abbreviate G(x(i)) as G(i) below. In handwriting recognition,
this mapping depends on the segmentation algorithm that determines how many letters
the sample image contains and splits the image into individual images for each letter. It
also depends on the basis functions we use to model the dependencies of the problem, for
example, first-order Markov chain or a higher-order models. Note that the topology and
size of the graph G(i), might be different for each example i. For instance, the training
sequences might have different lengths.

We know from Sec. 4.3 how to express maxy w>fi(y) as an LP, but the important
difference is the loss function `i. The simplest loss is the 0/1 loss `i(y) ≡ 1I(y(i) 6= y).
In fact this loss for sequence models was used by Collins (2001) and Altun et al. (2003).
However, in structured problems, where we are predicting multiple labels, the loss is often
not just the simple 0/1 loss, but may depend on the number of labels and type of labels
predicted incorrectly or perhaps the number of cliques of labels predicted incorrectly. In
general, we assume that the loss, like the basis functions, decomposes over the cliques of
labels.

Assumption 7.1 The loss function `i(y) is decomposable:

`i(y) =
∑

c∈C(G(i))

`(x(i)
c ,y(i)

c ,yc) =
∑

c∈C(G(i))

`i,c(yc).

We will focus on decomposable loss functions below. A natural choice that we use in our
experiments is the Hamming distance:

`H(x(i),y(i),y) =
∑

v∈V(i)

1I(y(i)
v 6= yv).

25

Taskar, Guestrin, Chatalbashev, Koller

With this assumption, we can express this inference problem for a triangulated graph
as a linear program for each example i as in Sec. 4.3:

max
∑
c,yc

µi,c(yc)[w>fi,c(yc) + `i,c(yc)] (22)

s.t.
∑
yc

µi,c(yc) = 1, ∀i, ∀c ∈ C(i); µi,c(yc) ≥ 0, ∀c ∈ C(i), ∀yc;

µi,s(ys) =
∑

y′c∼ys

µi,c(y′c), ∀s, c ∈ C(i), s ⊂ c, ∀ys,

where C(i) = C(G(i)) are the cliques of the Markov network for example i.
As we showed before, the constraints ensure that the µi’s form a proper distribution. If

the most likely assignment is unique, then the distribution that maximizes the objective puts
all its weight on that assignment. (If the arg max is not unique, any convex combination of
the assignments is a valid solution). The dual of Eq. (22) is given by:

min
∑

c

λi,c (23)

s.t. λi,c +
∑
s⊃c

mi,s,c(yc)−
∑

s⊂c, y′s∼yc

mi,c,s(y′s) ≥ w>fi,c(yc) + `i,c(yc), ∀c ∈ C(i), ∀yc.

In this dual, the λi,c variables correspond to the normalization constraints, while mi,c,s(yc)
variables correspond to the agreement constraints in the primal in Eq. (22).

Plugging the dual into Eq. (14) for each example i and maximizing jointly over all the
variables (w, ξ, λ and m), we have:

min
1
2
||w||2 + C

∑

i

ξi (24)

s.t. w>fi(y(i)) + ξi ≥
∑

i,c

λi,c, ∀i;

λi,c +
∑
s⊃c

mi,s,c(yc)−
∑

s⊂c, y′s∼yc

mi,c,s(y′s) ≥ w>fi,c(yc) + `i,c(yc), ∀c ∈ C(i), ∀yc.

In order to gain some intuition about this formulation, we make a change of variables from
λi,c to ξi,c:

λi,c = w>fi,c(y(i)
c) + ξi,c, ∀i, ∀c ∈ C(i).

The reason for naming the new variables using the letter ξ will be clear in the following. For
readability, we also introduce variables that capture the effect of all the agreement variables
m:

Mi,c(yc) =
∑

s⊂c, y′s∼yc

mi,c,s(y′s)−
∑
s⊃c

mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.

With these new variables, we have:

min
1
2
||w||2 + C

∑

i

ξi (25)

26

Max-Margin Markov Networks

s.t. ξi ≥
∑

c

ξi,c, ∀i;

w>fi,c(y(i)
c) + ξi,c ≥ w>fi,c(yc) + `i,c(yc) + Mi,c(yc), ∀i, ∀c ∈ C(i), ∀yc;

Mi,c(yc) =
∑

s⊂c, y′s∼yc

mi,c,s(y′s)−
∑
s⊃c

mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.

Note that ξi =
∑

c ξi,c at the optimum, since the slack variable ξi only appears only in the
constraint ξi ≥

∑
c ξi,c and the objective minimizes Cξi. Hence we can simply eliminate

this set of variables:

min
1
2
||w||2 + C

∑

i,c

ξi,c (26)

s.t. w>fi,c(y(i)
c) + ξi,c ≥ w>fi,c(yc) + `i,c(yc) + Mi,c(yc), ∀i, ∀c ∈ C(i), ∀yc;

Mi,c(yc) =
∑

s⊂c, y′s∼yc

mi,c,s(y′s)−
∑
s⊃c

mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.

Finally, we can write this in a form that resembles our original formulation Eq. (14), but
defined at a local level, for each clique:

min
1
2
||w||2 + C

∑

i,c

ξi,c (27)

s.t. w>fi,c(y(i)
c) + ξi,c ≥ max

yc

[w>fi,c(yc) + `i,c(yc) + Mi,c(yc)], ∀i, ∀c ∈ C(i);

Mi,c(yc) =
∑

s⊂c, y′s∼yc

mi,c,s(y′s)−
∑
s⊃c

mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.

Note that without Mi,c and mi,c,s variables, we essentially treat each clique as an indepen-
dent classification problem: for each clique we have a hinge upper-bound on the local loss,
or a margin requirement. The mi,c,s(ys) variables correspond to a certain kind of messages
between cliques that distribute “credit” to cliques to fulfill this margin requirement from
other cliques which have sufficient margin.

As an example, consider the first-order Markov chain in Fig. 10. The set of cliques
consists of the five nodes and the four edges. Suppose for the sake of this example that
our training data consists of only one training sample. The figure shows the local slack
variables ξ and messages m between cliques for this sample. For brevity of notion in this
example, we drop the dependence on the sample index i in the indexing of the variables (we
also used y

(∗)
j instead of y

(i)
j below). For concreteness, below we use the Hamming loss `H ,

which decomposes into local terms `j(yj) = 1I(yj 6= y
(∗)
j) for each node and is zero for the

edges.
The constraints associated with the node cliques in this sequence are:

w>f1(y
(∗)
1) + ξ1 ≥ w>f1(y1) + 1I(y1 6= y

(∗)
1)−m1,12(y1), ∀y1;

w>f2(y
(∗)
2) + ξ2 ≥ w>f2(y2) + 1I(y2 6= y

(∗)
2)−m2,12(y2)−m2,23(y2), ∀y2;

w>f3(y
(∗)
3) + ξ3 ≥ w>f3(y3) + 1I(y3 6= y

(∗)
3)−m3,23(y3)−m3,34(y3), ∀y3;

27

Taskar, Guestrin, Chatalbashev, Koller

Figure 10: First-order chain shown as a set of cliques (nodes and edges). Also shown are
the corresponding local slack variables ξ for each clique and messages m between
cliques.

w>f4(y
(∗)
4) + ξ4 ≥ w>f4(y4) + 1I(y4 6= y

(∗)
4)−m4,34(y4)−m4,45(y4), ∀y4;

w>f5(y
(∗)
5) + ξ5 ≥ w>f5(y5) + 1I(y5 6= y

(∗)
5)−m5,45(y5), ∀y5.

The edge constraints are:

w>f12(y
(∗)
1 , y

(∗)
2) + ξ12 ≥ w>f12(y1, y2) + m1,12(y1) + m2,12(y2), ∀y1, y2;

w>f23(y
(∗)
2 , y

(∗)
3) + ξ23 ≥ w>f23(y2, y3) + m2,23(y2) + m3,23(y3), ∀y2, y3;

w>f34(y
(∗)
3 , y

(∗)
4) + ξ34 ≥ w>f34(y3, y4) + m3,34(y3) + m4,34(y4), ∀y3, y4;

w>f45(y
(∗)
4 , y

(∗)
5) + ξ45 ≥ w>f45(y4, y5) + m4,45(y4) + m5,45(y5), ∀y4, y5.

7.1 M3N dual and kernels

In the previous section, we showed a derivation of a compact formulation based on LP
inference. In this section, we develop an alternative dual derivation that provides a very
interesting interpretation of the problem and is a departure for special-purpose algorithms
we develop. We begin with the formulation as in Eq. (15):

min
1
2
||w||2 + C

∑

i

ξi (28)

s.t. w>∆fi(y) ≥ `i(y)− ξi, ∀i,y,

where ∆fi(y) ≡ f(x(i),y(i))− f(x(i),y). The dual is given by:

max
∑

i,y

αi(y)`i(y)− 1
2

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,y

αi(y)∆fi(y)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(29)

28

Max-Margin Markov Networks

s.t.
∑
y

αi(y) = C, ∀i; αi(y) ≥ 0, ∀i,y.

In the dual, the exponential number of αi(y) variables correspond to the exponential number
of constraints in the primal. We make two small transformations to the dual that do not
change the problem: we normalize α’s by C (by letting αi(y) = Cα′i(y)), so that they sum
to 1 and divide the objective by C. The resulting dual is given by:

max
∑

i,y

αi(y)`i(y)− 1
2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,y

αi(y)∆fi(y)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(30)

s.t.
∑
y

αi(y) = 1, ∀i; αi(y) ≥ 0, ∀i,y.

As in multi-class SVMs, the solution to the dual α gives the solution to the primal as a
weighted combination: w∗ = C

∑
i,y α∗i (y)∆fi(y).

7.1.1 Dual as a distribution

Our main insight is that the variables αi(y) in the dual formulation Eq. (30) can be inter-
preted as a kind of distribution over y, since they lie in the simplex

∑
y

αi(y) = 1; αi(y) ≥ 0, ∀y.

This dual distribution does not represent the probability that the model assigns to an
instantiation, but the importance of the constraint associated with the instantiation to the
solution. The dual objective is a function of expectations of `i(y) and ∆fi(y) with respect
to αi(y). Since `i(y) =

∑
c `i,c(yc) and ∆fi(y) =

∑
c ∆fi,c(yc) decompose over the cliques

of the Markov network, we only need clique marginals of the distribution αi(y) to compute
their expectations. We define the marginal dual variables as follows:

µi,c(yc) =
∑

y′∼yc

αi(y′), ∀i, ∀c ∈ C(i), ∀yc, (31)

where y′ ∼ yc denotes whether the partial assignment yc is consistent with the full assign-
ment y′. Note that the number of µi,c(yc) variables is small (polynomial) compared to the
number of αi(y) variables (exponential) if the size of the largest clique is constant with
respect to the size of the network.

Now we can reformulate our entire QP (30) in terms of these marginal dual variables.
Consider, for example, the first term in the objective function (fixing a particular i):

∑
y

αi(y)`i(y) =
∑
y

αi(y)
∑

c

`i,c(yc) =
∑
c,yc

`i,c(yc)
∑

y′∼yc

αi(y′) =
∑
c,yc

µi,c(yc)`i,c(yc).

The decomposition of the second term in the objective is analogous.
∑
y

αi(y)∆fi(y) =
∑
c,yc

∆fi,c(yc)
∑

y′∼yc

αi(y′) =
∑
c,yc

µi,c(yc)∆fi,c(yc).

29

Taskar, Guestrin, Chatalbashev, Koller

Let us denote the the objective of Eq. (30) as Q(α). Note that it only depends on
αi(y) through its marginals µi,c(yc), that is, Q(α) = Q′(M(α)), where M denotes the
marginalization operator defined by Eq. (31) . The domain of this operator, D[M], is the
product of simplices for all the m examples. What is its range, R[M], the set of legal
marginals? Characterizing this set (also known as marginal polytope) compactly will allow
us to work in the space of µ’s:

max
α∈D[M]

Q(α) ⇔ max
µ∈R[M]

Q′(µ).

Hence we must ensure that µi corresponds to some distribution αi, which is exactly
what the constraints in the LP for MAP inference enforce (see discussion of Lemma 4.5).
Therefore, when all G(i) are triangulated, the following structured dual QP has the same
primal solution (w∗) as the original exponential dual QP in Eq. (30):

max
∑

i,c,yc

µi,c(yc)`i,c(yc)− 1
2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,c,yc

µi,c(yc)∆fi,c(yc)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(32)

s.t.
∑
yc

µi,c(yc) = 1, ∀i, ∀c ∈ C(i); µi,c(yc) ≥ 0, ∀i, ∀c ∈ C(i), ∀yc;

µi,s(ys) =
∑

y′c∼ys

µi,c(y′c), ∀i, ∀s, c ∈ C(i), s ⊂ c, ∀ys.

The solution to the structured dual µ∗ gives us the primal solution:

w∗ = C
∑

i,c,yc

µ∗i,c(yc)∆fi,c(yc).

In this structured dual, we only enforce that there exists an αi consistent with µi, but do
not make a commitment about what it is. In general, the α distribution is not unique, but
there is a continuum of distributions consistent with a set of marginals. The objective of
the QP Eq. (30) does not distinguish between these distributions, since it only depends on
their marginals. The maximum-entropy distribution αi consistent with a set of marginals
µi, however, is unique for a triangulated model and can be computed using the junction
tree T (i) for the network (Cowell et al., 1999).

Specifically, associated with each edge (c, c′) in the tree T (i) is a set of variables called
the separator s = c ∩ c′. Note that each separator s and complement of a separator c \ s
is also a clique of the original graph, since it is a subclique of a larger clique. We denote
the set of separators as S(i). Now we can define the maximum-entropy distribution αi(y)
as follows:

αi(y) =
∏

c∈T (i) µi,c(yc)∏
s∈S(i) µi,s(ys)

. (33)

Again, by convention 0/0 ≡ 0.

7.1.2 Kernels

Note that the solution is a weighted combination of local basis functions and the objective
of Eq. (32) can be expressed in terms of dot products between local basis functions

∆fi,c(yc)>∆fj,c̄(yc̄) = [f(x(i)
c ,y(i)

c)− f(x(i)
c ,yc)]>[f(x(j)

c̄ ,y(j)
c̄)− f(x(j)

c̄ ,yc̄)].

30

Max-Margin Markov Networks

Figure 11: Diamond Markov network (added triangulation edge is dashed and three-node
marginals are in dashed rectangles).

Hence, we can locally kernelize our models and solve Eq. (32) efficiently. Kernels are
typically defined on the input, e.g. k(x(i)

c ,x(j)
c̄). In our handwriting example, we use a

polynomial kernel on the pixel values for the node cliques. We usually extend the kernel
over the input space to the joint input and output space by simply defining

f(xc,yc)>f(xc̄,yc̄) ≡ 1I(yc = yc̄)k(xc,xc̄).

Of course, other definitions are possible and may be useful when the assignments in each
clique yc have interesting structure. In Sec. 11.1 we experiment with several kernels for
the handwriting example. As in SVMs, the solutions to the max-margin QP are typically
sparse in the µ variables. Hence, each log-potential in the network “remembers” only a
small proportion of the relevant training data inputs.

7.2 Untriangulated models

If the underlying Markov net is not chordal, we must address the problem by triangulating
the graph, that is, adding fill-in edges to ensure triangulation. For example, if our graph
is a 4-cycle Y1—Y2—Y3—Y4—Y1 as in Fig. 11, we can triangulate the graph by adding an
arc Y1—Y3. This will introduce new cliques Y1, Y2, Y3 and Y1, Y3, Y4 and the corresponding
marginals, µ123(y1, y2, y3) and µ134(y1, y3, y4). We can then use this new graph to produce
the constraints on the marginals:

∑
y1

µ123(y1, y2, y3) = µ23(y2, y3), ∀y2, y3;

∑
y3

µ123(y1, y2, y3) = µ12(y1, y2), ∀y1, y2;

∑
y1

µ134(y1, y3, y4) = µ34(y3, y4), ∀y3, y4;

31

Taskar, Guestrin, Chatalbashev, Koller

∑
y3

µ134(y1, y3, y4) = µ13(y1, y3), ∀y1, y3.

The new marginal variables appear only in the constraints; they do not add any new basis
functions nor change the objective function.

In general, the number of constraints introduced is exponential in the number of vari-
ables in the new cliques — the tree-width of the graph. Unfortunately, even sparsely con-
nected networks, for example 2D grids often used in image analysis, have large tree-width.
However, we can still solve the QP in the structured primal Eq. (26) or the structured
dual Eq. (32) defined by an untriangulated graph. Such a formulation, which enforces only
local consistency of marginals, optimizes our objective only over a relaxation of the marginal
polytope. However, the learned parameters produce very accurate approximate models in
practice, as experiments in Sec. 11.2 demonstrate.

Note that we could also strengthen the untriangulated relaxation without introduc-
ing an exponential number of constraints. For example, we can add positive semidefinite
constraints on the marginals µ used by Wainwright and Jordan (2003), which tend to im-
prove the approximation of the marginal polytope. Although this and other more complex
relaxations are a very interesting area of future development, they are often much more
expensive.

The approximate QP does not guarantee that the learned model using exact inference
minimizes the true objective: (upper-bound on) empirical risk plus regularization. But do
we really need these optimal parameters if we cannot perform exact inference? A more
useful goal is to make sure that training error is minimized using the approximate inference
procedure via the untriangulated LP. We conjecture that the parameters learned by the
approximate QP in fact do that to some degree. For instance, consider the separable
case, where 100% accuracy is achievable on the training data by some parameter setting w
such that approximate inference (using the untriangulated LP) produces integral solutions.
Solving the problem as C → ∞ will find this solution even though it may not be optimal
(in terms of the norm of the w) using exact inference. For C in intermediate range, the
formulation trades off fractionality of the untriangulated LP solutions with complexity of
the weights ||w||2.

8. Associative Markov networks

In the previous section, we considered low-treewidth Markov networks, which allow exact
inference and learning. The chief computational bottleneck in applying Markov networks
for other large-scale prediction problems is inference, which is NP-hard in general networks
suitable in a broad range of practical Markov network structures, including grid-topology
networks (Besag, 1986). In this section, we show that in binary AMNs, for which likelihood-
based estimation is believed to be intractable, our margin-based framework provides a
polynomial-time solution. For the non-binary case, we provide and and approximation that
empirical results suggest works well in practice.

The potentials of the AMN are restricted to be associative (i.e. arbitrary node potentials
and attractive clique potentials as described in Definition 5.1). Once again we use log-linear
combinations of basis functions to represent these potentials. We will need the following
assumption to ensure that w>f(x,y) is associative:

32

Max-Margin Markov Networks

Assumption 8.1 Basis functions f are component-wise associative for G(x) for any (x,y).

Recall that this implies that for cliques larger than one, all basis functions evaluate to
0 for assignments where the values of the nodes are not equal and are non-negative for
the assignments where the values of the nodes are equal. To ensure that w>f(x,y) is
associative, it is useful to separate the basis functions with support only on nodes from
those with support on larger cliques.

Definition 8.2 Let ḟ be the subset of basis functions f with support only on singleton
cliques:

ḟ = {f ∈ f : ∀x ∈ X , y ∈ Y, c ∈ C(G(x)), |c| > 1, fc(xc,yc) = 0}.
Let f̈ = f \ ḟ be the rest of the basis functions. Let {ẇ, ẅ} = w be the corresponding subsets
of parameters.

It is easy to verify that any non-negative combination of associative functions is asso-
ciative, and any combination of basis functions with support only on singleton cliques is
also associative, so we have:

Lemma 8.3 w>f(x,y) is associative for G(x) for any (x,y) whenever Assumption 8.1
holds and ẅ ≥ 0.

We must make similar associative assumption on the loss function in order to guarantee
that the LP inference can handle it.

Assumption 8.4 The loss function `(x(i),y(i),y) is associative for G(i) for all i.

In practice, this restriction is fairly mild, and the Hamming loss, which we use in general-
ization bounds and experiments, is associative.

Using the above Assumptions 8.1 and 8.4 and some algebra (see Appendix A.4 for
derivation), we have the following max-margin QP for AMNs:

min
1
2
||w||2 + C

∑

i,v∈V(i)

ξi,v (34)

s.t. w>∆fi,v(k)−
∑
c⊃v

mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V(i), k;

ẅ>∆f̈i,c(k) +
∑
v∈c

mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V(i), k;

mi,c,v(k) ≥ −ẅ>f̈i,c(y(i)
c)/|c|, ∀i, c ∈ C(i) \ V(i), v ∈ c, k;

ẅ ≥ 0;

where fi,c(k) = fi,c(k, . . . , k) and `i,c(k) = `i,c(k, . . . , k).
While this primal is more complex than the regular M3N factored primal in Eq. (24), the

basic structure of the first two sets of constraints remains the same: we have local margin
requirements and “credit” passed around through messages mi,c,v(k). The extra constraints
are due to the associativity constraints on the resulting model.

33

Taskar, Guestrin, Chatalbashev, Koller

The dual of Eq. (34) (see derivation in Sec. A.4) is given by:

max
∑

i,c∈C(i), k

µi,c(k)`i,c(k)− C

2

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,v∈V(i), k

µi,v(k)∆ḟi,v(k)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

− C

2

∣∣∣∣∣∣

∣∣∣∣∣∣
ν̈ +

∑

i,c∈C(i), k

µi,c(k)∆f̈i,c(k)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑

k=1

µi,v(k) = 1, ∀i, ∀v ∈ V(i);

µi,c(k) ≤ µi,v(k), ∀i, ∀c ∈ C(i) \ V(i), v ∈ c, k;
ν̈ ≥ 0.

In the dual, there are marginals µ for each node and clique, for each value k, similar
to Eq. (32). However, the constraints are different, and not surprisingly, are essentially the
constraints from the inference LP relaxation in Eq. (13).

The dual and primal solutions are related by

ẇ =
∑

i,v∈V(i), k

µi,v(k)∆ḟi,v(k); ẅ = ν̈ +
∑

i,c∈C(i), k

µi,c(k)∆f̈i,c(k).

The ν̈ variables simply ensure that ẅ are positive (if any component
∑

i,c∈C(i), k µi,c(k)∆f̈i,c(k)
is negative, maximizing the objective will force the corresponding component of ν̈ to cancel
it out). Note that the objective can be written in terms of dot products of node basis func-
tions ∆ḟi,v(k)>∆ḟj,v̄(k̄), so they can be kernelized. Unfortunately, the edge basis functions
cannot be kernelized because of the non-negativity constraint.

For K = 2, the LP inference is exact, so that Eq. (34) learns exact max-margin weights
for Markov networks of arbitrary topology. For K > 2, the linear relaxation leads to a
strengthening of the constraints on w by potentially adding constraints corresponding to
fractional assignments as in the case of untriangualated networks. Thus, the optimal choice
w, ξ for the original QP may no longer be feasible, leading to a different choice of weights.
However, as our experiments show, these weights tend to do well in practice.

9. Generalization bound

In this section, we show a generalization bound for the task of structured classification that
allows us to relate the error rate on the training set to the generalization error. To the best
of our knowledge, this bound is the first to deal with structured error, such as the Hamming
distance. Our analysis of Hamming loss allows to prove a significantly stronger result than
previous bounds for the 0/1 loss, as we detail below.

Our goal in structured classification is often to minimize the number of misclassified
labels, or the Hamming distance between y and h(x). An appropriate error function is the
average per-label loss

L(w,x,y) =
1
L

`H(y, arg max
y′

w>f(x,y′)),

where L is the number of label variables in y. As in other generalization bounds for margin-
based classifiers, we relate the generalization error to the margin of the classifier. Consider

34

Max-Margin Markov Networks

an upper bound on the above loss:

L(w,x,y) ≤ L(w,x,y) = max
y′: w>f(y)≤w>f(y′)

1
L

`H(y,y′).

This upper bound is tight if y = arg maxy′ w
>f(x,y′), Otherwise, it is adversarial: it

picks from all y′ which are better (w>f(y) ≤ w>f(y′)), one that maximizes the Hamming
distance from y. We can now define a γ-margin per-label loss:

L(w,x,y) ≤ L(w,x,y) ≤ Lγ(w,x,y) = max
y′: w>f(y)≤w>f(y′)+γ`H(y,y′)

1
L

`H(y,y′).

This upper bound is even more adversarial: it is tight if y = arg maxy′ [w>f(x,y′) +
`H(y,y′)], otherwise, it picks from all y′ which are better when helped by γ`H(y,y′), one
that maximizes the Hamming distance from y. Note that the loss we minimize in the max-
margin formulation is very closely related (although not identical to) this upper bound.

We can now prove that the generalization accuracy of any hypothesis w is bounded by
its empirical γ-margin per-label loss, plus a term that grows inversely with the margin.To
state the bound, we need to define several other factors it depends upon. Let Nc be the
maximum number of cliques in G(x), Vc be the maximum number of values in a clique
|Yc|, q be the maximum number of cliques that have a variable in common, and Rc be an
upper-bound on the 2-norm of clique basis functions. Consider a first-order sequence model
as an example, with L as the maximum length, and V the number of values a variable takes.
Then Nc = 2L − 1 since we have L node cliques and L − 1 edge cliques; Vc = V 2 because
of the edge cliques; and q = 3 since nodes in the middle of the sequence participate in 3
cliques: previous-current edge clique, node clique, and current-next edge clique.

Theorem 9.1 For the family of hypotheses parameterized by w, and any δ > 0, there exists
a constant K such that for any γ > 0 per-label margin, and m > 1 samples, the expected
per-label loss is bounded by:

ED[L(w,x,y)] ≤ ES [Lγ(w,x,y)] +

√
K

m

[
R2

c ||w||2q2

γ2
[ln m + ln Nc + ln Vc] + ln

1

δ

]
,

with probability at least 1− δ.

Proof: See Appendix B for the proof details and the exact value of the constant K.
The first term upper bounds the training error of w. Low loss ES [Lγ(w,x,y)] at high

margin γ quantifies the confidence of the prediction model. The second term depends on
||w||/γ, which corresponds to the complexity of the classifier (normalized by the margin
level). Thus, the result provides a bound to the generalization error that trades off the
effective complexity of the hypothesis space with the training error.

The proof uses a covering number argument analogous to previous results in SVMs (Zhang,
2002). However we propose a novel method for covering the space of structured prediction
models by using a cover of the individual clique basis function differences ∆fi,c(yc). This
new type of cover is polynomial in the number of cliques, yielding significant improvements
in the bound. Specifically, our bound has a logarithmic dependence on the number of
cliques (lnNc) and depends only on the 2-norm of the basis functions per-clique (Rc). This
is a significant gain over the previous result of Collins (2001) for 0/1 loss, which has linear

35

Taskar, Guestrin, Chatalbashev, Koller

dependence (inside the square root) on the number of nodes (L), and depends on the joint
2-norm of all of the basis functions for an example (which is ∼ NcRc). Such a result was,
until now, an open problem for margin-based sequence classification (Collins, 2001). Finally,
for sequences, note that if L

m = O(1) (for example, in OCR, if the number of instances is at
least a constant times the length of a word), then our bound is independent of the number
of labels L.

10. Solving the M3N QP

In this section, we describe an efficient algorithm for estimation of low-treewidth networks.
Although the number of variables and constraints in the structured dual in Eq. (32) is
polynomial in the size of the data, unfortunately, for standard QP solvers, the problem is
often too large even for small training sets. Instead, we use a coordinate dual ascent method
analogous to the sequential minimal optimization (SMO) used for SVMs Platt (1999).

Let us begin by considering the primal and dual QPs for multi-class SVMs:

min
1
2
||w||2 + C

∑

i

ξi max
∑

i,y

αi(y)`i(y)− 1
2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,y

αi(y)∆fi(y)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

s.t. w>∆fi(y) ≥ `(y)− ξi, ∀i, y. s.t.
∑

y

αi(y) = 1, ∀i; αi(y) ≥ 0, ∀i, y.

The KKT conditions Bertsekas (1999); Boyd and Vandenberghe (2004) provide sufficient
and necessary criteria for optimality of a dual solution α. As we describe below, these
conditions have certain locality with respect to each example i, which allows us to perform
the search for optimal α by repeatedly considering one example at a time.

A feasible dual solution α and a primal solution defined by:

w = C
∑

i,y

αi(y)∆fi(y) (35)

ξi = max
y

[`i(y)−w∆fi(y)] = max
y

[`i(y) + w>fi(y)]−w>fi(y(i)),

are optimal if they satisfy the following two types of constraints:

αi(y) = 0 ⇒ w>∆fi(y) > `i(y)− ξi; (KKT1)
αi(y) > 0 ⇒ w>∆fi(y) = `i(y)− ξi. (KKT2),

We can express these conditions as

αi(y) = 0 ⇒ w>fi(y) + `i(y) < max
y′

[w>fi(y′) + `i(y′)]; (KKT1)

αi(y) > 0 ⇒ w>fi(y) + `i(y) = max
y′

[w>fi(y′) + `i(y′)]. (KKT2)

To simplify the notation, we define

vi(y) = w>fi(y) + `i(y); vi(y) = max
y′ 6=y

[w>fi(y′) + `i(y′)].

36

Max-Margin Markov Networks

1. Initialize: αi(y) = 1I(y = y(i)), ∀ i, y.

2. Set violation = 0,

3. For each i,

4. If αi violates (KKT1) or (KKT2),

5. Set violation = 1,

6. Find feasible α′i such that Q(α′i, α−i) > Q(αi, α−i) and set αi = α′i.

7. If violation = 1 goto 2.

Figure 12: Block-coordinate dual ascent.

With these definitions, we have

αi(y) = 0 ⇒ vi(y) < vi(y); (KKT1) αi(y) > 0 ⇒ vi(y) ≥ vi(y); (KKT2).

In practice, however, we will enforce KKT conditions up to a given tolerance 0 < ε ¿ 1.

αi(y) = 0 ⇒ vi(y) ≤ vi(y) + ε; αi(y) > 0 ⇒ vi(y) ≥ vi(y)− ε. (36)

Essentially, αi(y) can be zero only if vi(y) is at most ε larger than the all others. Conversely,
αi(y) can be non-zero only if vi(y) is at most ε smaller than the all others.

Note that the normalization constraints on the dual variables α are local to each example
i. This allows us to perform dual block-coordinate ascent where a block corresponds to the
vector of dual variables αi for a single example i. The general form of block-coordinate ascent
algorithm as shown in Fig. 12 is essentially coordinate ascent on blocks αi, maintaining the
feasibility of the dual. When optimizing with respect to a single block i, the objective
function can be split into two terms:

Q(α) = Q(α−i) +Q(αi, α−i),

where α−i denotes all dual αk variables for k other than i. Only the second part of the
objective Q(αi, α−i) matters for optimizing with respect to αi. The algorithm starts with a
feasible dual solution α and improves the objective block-wise until all KKT conditions are
satisfied. Checking the constraints requires computing w and ξ from α according to Eq. (35).

As long as the local ascent step over αi is guaranteed to improve the objective when
KKT conditions are violated, the algorithm will converge to the global maximum in a finite
number of steps (within the precision). This allows us to focus on efficient updates to a
single block of αi at a time.

Let α′i(y) = αi(y) + λ(y). Note that
∑

y λ(y) = 0 and αi(y) + λ(y) ≥ 0 so that α′i is
feasible. We can write the objective Q(α−i) +Q(α′i, α−i) in terms of λ and α:

∑

j,y

αj(y)`j(y) +
∑

y

λ(y)`i(y)− 1
2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

y

λ(y)∆fi(y) +
∑

j,y

αj(y)∆fj(y)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

.

37

Taskar, Guestrin, Chatalbashev, Koller

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

0

0.5

Figure 13: Representative examples of the SMO subproblem. Horizonal axis represents δ
with two vertical lines depicting the upper and lower bounds c and d. Vertical
axis represents the objective. Optimum either occurs at the maximum of the
parabola if it is feasible or the upper or lower bound otherwise.

By dropping all terms that do not involve λ, and making the substitution
w = C

∑
j,y αj(y)∆fj(y), we get:

∑
y

λ(y)`i(y)−w>
(∑

y

λ(y)∆fi(y)

)
− 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑

y

λ(y)∆fi(y)

∣∣∣∣∣

∣∣∣∣∣
2

.

Since
∑

y λ(y) = 0,

∑
y

λ(y)∆fi(y) =
∑

y

λ(y)fi(y(i))−
∑

y

λ(y)fi(y) = −
∑

y

λ(y)fi(y).

Below we also make the substitution vi(y) = w>fi(y)+`i(y) to get the optimization problem
for λ:

max
∑

y

λ(y)vi(y)− 1
2
C

∣∣∣∣∣

∣∣∣∣∣
∑

y

λ(y)fi(y)

∣∣∣∣∣

∣∣∣∣∣
2

s.t.
∑

y

λ(y) = 0; αi(y) + λ(y) ≥ 0, ∀y.

10.1 SMO

We do not need to solve the optimization subproblem above at each pass through the data.
All that is required is an ascent step, not a full optimization. Sequential Minimal Opti-
mization (SMO) approach takes an ascent step that modifies the least number of variables.
In our case, we have the simplex constraint, so we must change at least two variables in

38

Max-Margin Markov Networks

order to respect the normalization constraint (by moving weight from one dual variable to
another). We address a strategy for selecting the two variables in the next section, but for
now assume we have picked λ(y′) and λ(y′′). Then we have δ = λ(y′) = −λ(y′′) in order to
sum to 1. The optimization problem becomes a single variable quadratic program in δ:

max [vi(y′)− vi(y′′)]δ − 1
2
C||fi(y′)− fi(y′′)||2δ2 (37)

s.t. αi(y′) + δ ≥ 0; αi(y′′)− δ ≥ 0.

With a = vi(y′)− vi(y′′), b = C||fi(y′)− fi(y′′)||2, c = −αi(y′), d = αi(y′′), we have:

max [aδ − b

2
δ2] s.t. c ≤ δ ≤ d, (38)

where the optimum is achieved at the maximum of the parabola a/b if c ≤ a/b ≤ d or at
the boundary c or d (see Fig. 10.1). Hence the solution is given by simply clipping a/b:

δ∗ = max(c, min(d, a/b)).

The key advantage of SMO is the simplicity of this update. Computing the coefficients
involves dot products (or kernel evaluations) to compute w>fi(y′) and w>fi(y′′) as well as
(fi(y′)− fi(y′′))>(fi(y′)− fi(y′′)).

10.2 Selecting SMO pairs

How do we actually select such a pair to guarantee that we make progress in optimizing the
objective? Note that at least one of the assignments y must violate (KKT1) or (KKT2),
because otherwise αi is optimal with respect to the current α−i. The selection algorithm is
outlined in Fig. 14.

The first variable in the pair, y′, corresponds to a violated condition, while the sec-
ond variable, y′′, is chosen to guarantee that solving Eq. (37) will result in improving the
objective. There are two cases, corresponding to violation of KKT1 and violation of KKT2.

Case KKT1. αi(y′) = 0 but vi(y′) > vi(y′) + ε. This is the case where i, y′ is a not
support vector but should be. We would like to increase αi(y′), so we need αi(y′′) > 0
to borrow from. There will always be a such a y′′ since

∑
y αi(y) = 1 and αi(y′) = 0.

Since vi(y′) > vi(y′) + ε, vi(y′) > vi(y′′) + ε, so the linear coefficient in Eq. (38) is a =
vi(y′) − vi(y′′) > ε. Hence the unconstrained maximum is positive a/b > 0. Since the
upper-bound d = αi(y′′) > 0, we have enough freedom to improve the objective.

Case KKT2. αi(y′) > 0 but vi(y′) < vi(y′)− ε. This is the case where i, y′ is a support
vector but should not be. We would like to decrease αi(y′), so we need vi(y′′) > vi(y′)
so that a/b < 0. There will always be a such a y′′ since vi(y′) < vi(y′) − ε. Since the
lower-bound c = −αi(y′) < 0, again we have enough freedom to improve the objective.

Since at each iteration we are guaranteed to improve the objective if the KKT conditions
are violated and the objective is bounded, we can use the SMO in the block-coordinate
ascent algorithm to converge in a finite number of steps. To the best of our knowledge,
there are no upper bounds on the speed of convergence of SMO, but experimental evidence
has shown it a very effective algorithm for SVMs Platt (1999). Of course, we can improve
the speed of convergence by adding heuristics in the selection of the pair, as long as we
guarantee that improvement is possible when KKT conditions are violated.

39

Taskar, Guestrin, Chatalbashev, Koller

1. Set violation = 0.

2. For each y,

3. KKT1: If αi(y) = 0 and vi(y) > vi(y) + ε,

4. Set y′ = y and violation = 1 and goto 7.

5. KKT2: If αi(y) > 0 and vi(y) < vi(y)− ε,

6. Set y′ = y and violation = 2 and goto 7.

7. If violation > 0,

8. For each y 6= y′,

9. If violation = 1 and αi(y) > 0,

10. Set y′′ = y and goto 13.

11. If violation = 2 and vi(y) > vi(y′),

12. Set y′′ = y and goto 13.

13. Return y′ and y′′.

Figure 14: SMO pair selection.

10.3 Structured SMO

Clearly, we cannot perform the above SMO updates in the space of α directly for the
structured problems, since the number of α variables is exponential. The constraints on µ
variables are much more complicated, since each µ participates not only in non-negativity
and normalization constraints, but also clique-agreement constraints. We cannot limit our
ascent steps to changing only two µ variables at a time, because in order to make a change in
one clique and stay feasible, we need to modify variables in overlapping cliques. Fortunately,
we can perform SMO updates on α variables implicitly in terms of the marginal dual
variables µ.

The diagram in Fig. 10.3 shows the abstract outline of the algorithm. The key steps in
the SMO algorithm are checking for violations of the KKT conditions, selecting the pair y′

and y′′, computing the corresponding coefficients a, b, c, d and updating the dual. We will
show how to do these operations by doing all the hard work in terms of the polynomially
many marginal µi variables and auxiliary “max-marginals” variables.

10.3.1 Structured KKT conditions

As before, we define vi(y) = w>fi(y) + `i(y). The KKT conditions are, for all y:

αi(y) = 0 ⇒ vi(y) ≤ vi(y); αi(y) > 0 ⇒ vi(y) ≥ vi(y). (39)

Of course, we cannot check these explicitly. Instead, we define max-marginals for each
clique in the junction tree c ∈ T (i) and its values yc, as:

v̂i,c(yc) = max
y∼yc

[w>fi(y) + `i(y)], α̂i,c(yc) = max
y∼yc

αi(y).

40

Max-Margin Markov Networks

select
& lift

SMO
update

project

Figure 15: Structured SMO diagram. We use marginals µ to select an appropriate pair of
instantiations y′ and y′′ and reconstruct their α values. We then perform the
simple SMO update and project the result back onto the marginals.

We also define v̂i,c(yc) = maxy′c 6=yc v̂i,c(y′c) = maxy 6∼yc [w>fi(y) + `i(y)]. Note that we
do not explicitly represent αi(y), but we can reconstruct the maximum-entropy one from
the marginals µi by using Eq. (33). Both v̂i,c(yc) and α̂i,c(yc) can be computed by using
the Viterbi algorithm (one pass propagation towards the root and one outwards from the
root Cowell et al. (1999)). We can now express the KKT conditions in terms of the max-
marginals for each clique c ∈ T (i) and its values yc:

α̂i,c(yc) = 0 ⇒ v̂i,c(yc) ≤ v̂i,c(yc); α̂i,c(yc) > 0 ⇒ v̂i,c(yc) ≥ v̂i,c(yc). (40)

Theorem 10.1 The KKT conditions in Eq. (39) and Eq. (40) are equivalent.

Proof: See Appendix C.

10.3.2 Structured SMO pair selection and update

As in multi-class problems, we will select the first variable in the pair, y′, corresponding
to a violated condition, while the second variable, y′′, to guarantee that solving Eq. (37)
will result in improving the objective. Having selected y′ and y′′, the coefficients for the
one-variable QP in Eq. (38) are a = vi(y′) − vi(y′′), b = C||fi(y′) − fi(y′′)||2, c = −αi(y′),
d = αi(y′′). As before, we enforce approximate KKT conditions in the algorithm in Fig. 16.
We have two cases, corresponding to violation of KKT1 and violation of KKT2.

Case KKT1. α̂i,c(y′c) = 0 but v̂i,c(y′c) > v̂i,c(y′c)+ε. We have set y′ = arg maxy∼yc
vi(y),

so vi(y′) = v̂i,c(y′c) > v̂i,c(y′c)+ε > vi(y′)+ε and αi(y′) = 0. This is the case where i,y′ is a
not support vector but should be. We would like to increase αi(y′), so we need αi(y′′) > 0
to borrow from. There will always be a such a y′′ (with y′′c 6= y′c) since

∑
y αi(y) = 1 and

αi(y′) = 0. We can find one by choosing yc for which α̂i,c(yc) > 0, which guarantees that
for y′′c = arg maxy∼yc

αi(y), αi(y′′) > 0. Since vi(y′) ≥ vi(y′)+ ε, vi(y′) ≥ vi(y′′)+ ε, so the
linear coefficient in Eq. (38) is a = vi(y′)− vi(y′′) > ε. Hence the unconstrained maximum

41

Taskar, Guestrin, Chatalbashev, Koller

1. Set violation = 0.

2. For each c ∈ T (i), yc

3. KKT1: If α̂i,c(yc) = 0, and v̂i,c(yc) > v̂i,c(yc) + ε,

4. Set y′c = yc, y′ = arg maxy∼yc
vi(y) and violation = 1 and goto 7.

5. KKT2: If α̂i,c(yc) > 0, and v̂i,c(yc) < v̂i,c(yc)− ε,

6. Set y′c = yc, y′ = arg maxy∼yc
αi(y) and violation = 2 and goto 7.

7. If violation > 0,

8. For each yc 6= y′c,

9. If violation = 1 and α̂i,c(yc) > 0,

10. Set y′′c = arg maxy∼yc
αi(y) and goto 13.

11. If violation = 2 and v̂i,c(yc) > v̂i,c(y′c),

12. Set y′′ = arg maxy∼yc
vi(y) and goto 13.

13. Return y′ and y′′.

Figure 16: Structured SMO pair selection.

is positive a/b > 0. Since the upper-bound d = αi(y′′) > 0, we have enough freedom to
improve the objective.

Case KKT2. α̂i,c(y′c) > 0 but v̂i,c(y′c) < v̂i,c(y′c)−ε. We have set y′ = arg maxy∼yc
αi(y),

so αi(y′) = α̂i,c(y′c) > 0 and vi(y′) < v̂i,c(y′c) < v̂i,c(y′c) − ε < vi(y′) − ε. This is the
case where i,y′ is a support vector but should not be. We would like to decrease αi(y′),
so we need vi(y′′) > vi(y′) so that a/b < 0. There will always be a such a y′′ since
vi(y′) < vi(y′)− ε. We can find one by choosing yc for which v̂i,c(yc) > v̂i,c(yc)− ε, which
guarantees that for y′′c = arg maxy∼yc

vi(y), vi(y′′) > vi(y′) − ε, Since the lower-bound
c = −αi(y′) < 0, again we have enough freedom to improve the objective.

Having computed new values α′i(y
′) = αi(y′) + δ and α′i(y

′′) = αi(y′) − δ, we need to
project this change onto the marginal dual variables µi. The only marginal affected are the
ones consistent with y′ and/or y′′, and the change is very simple:

µ′i,c(yc) = µi,c(yc) + δ1I(yc ∼ y′)− δ1I(yc ∼ y′′).

11. Experiments

We evaluated our framework on the tasks of handwriting recognition, 3D terrain segmenta-
tion and web page classification. These tasks range over many types of networks: sequences
for handwriting recognition, 3D-grid type AMNs for terrain segmentation and arbitrary
topology AMNs and general MNs for web page classification.

42

Max-Margin Markov Networks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Log-Reg CRF mSVM M^3N

T
es

t e
rr

or
 (

av
er

ag
e

pe
r-

ch
ar

ac
te

r)

linear quadratic cubic

(a) (b)

Figure 17: (a) 3 example words from the OCR data set; (b) OCR: Average per-character
test error for logistic regression, CRFs, multiclass SVMs, and M3Ns, using linear,
quadratic, and cubic kernels.

11.1 Handwriting recognition

We selected a subset of ∼ 6100 handwritten words, with average length of ∼ 8 characters,
from 150 human subjects, from the data set collected by Kassel (1995). Each word was
divided into characters, each character was rasterized into an image of 16 by 8 binary pixels.
(See Fig. 17(a).) In our framework, the image for each word corresponds to x, a label of an
individual character to Yj , and a labeling for a complete word to Y. Each label Yj takes
values from one of 26 classes {a, . . . , z}.

The data set is divided into 10 folds of ∼ 600 training and ∼ 5500 testing examples. The
accuracy results, summarized in Fig. 17(b), are averages over the 10 folds. We implemented
a selection of state-of-the-art classification algorithms: independent label approaches, which
do not consider the correlation between neighboring characters — logistic regression, multi-
class SVMs as described in Eq. (8), and one-against-all SVMs (whose performance was
slightly lower than multi-class SVMs); and sequence approaches — CRFs, and our proposed
M3 networks. Logistic regression and CRFs are both trained by maximizing the conditional
likelihood of the labels given the features, using a zero-mean diagonal Gaussian prior over
the parameters, with a standard deviation between 0.1 and 1. The other methods are
trained by margin maximization. Our features for each label Yj are the corresponding
image of ith character. For the sequence approaches (CRFs and M3), we used an indicator
basis function to represent the correlation between Yj and Yi+1. For margin-based methods
(SVMs and M3), we were able to use kernels (both quadratic and cubic were evaluated) to
increase the dimensionality of the feature space. We used the structured SMO algorithm

43

Taskar, Guestrin, Chatalbashev, Koller

with about 30-40 iterations through the data. Using these high-dimensional feature spaces
in CRFs is not feasible because of the enormous number of parameters.

Fig. 17(b) shows two types of gains in accuracy: First, by using kernels, margin-based
methods achieve a very significant gain over the respective likelihood maximizing methods.
Second, by using sequences, we obtain another significant gain in accuracy. Interestingly,
the error rate of our method using linear features is 16% lower than that of CRFs, and
about the same as multi-class SVMs with cubic kernels. Once we use cubic kernels our
error rate is 45% lower than CRFs and about 33% lower than the best previous approach.
For comparison, the previously published results, although using a different setup (e.g., a
larger training set), are about comparable to those of multiclass SVMs.

11.2 Hypertext classification

We also tried out our framework on the WebKB dataset (Craven et al., 1998). The data
set contains webpages from four different Computer Science departments: Cornell, Texas,
Washington and Wisconsin. Each page is classified as one of course, faculty, student, project
or other. The data set is problematic in that the category other is a grab-bag of pages
of many different types. The number of pages classified as other is quite large, so that
a baseline algorithm that simply always selected other as the label would get an average
accuracy of 75%. We could restrict attention to just the pages with the four other labels, but
in a structured classification setting, the deleted webpages might be useful in terms of their
interactions with other webpages. Hence, we compromised by eliminating all other pages
with fewer than three outlinks, making the number of other pages commensurate with the
other categories. The resulting category distribution is: course (237), faculty (148), other
(332), research-project (82) and student (542). The number of remaining pages for each
school are: Cornell (280), Texas (292), Washington (315) and Wisconsin (454). The number
of links for each school are: Cornell (574), Texas (574), Washington (728) and Wisconsin
(1614).

For each page, we have access to the entire html of the page and the links to other
pages. Our goal is to collectively classify webpages into one of these five categories. In all
of our experiments, we learn a model from three schools and test the performance of the
learned model on the remaining school, thus evaluating the generalization performance of
the different models. We used C ∈ [0.1, 10] and took the best setting for all models.

Unfortunately, we cannot directly compare our accuracy results with previous work
because different papers use different subsets of the data and different training/test splits.
However, we compare to standard text classifiers such as Naive Bayes, Logistic Regression,
and Support Vector Machines, which have been demonstrated to be successful on this data
set (Joachims, 1999).

11.2.1 Flat models

The baseline approach we tried predicts the categories based on just the text content on
the webpage. The text of the webpage is represented using a set of binary attributes that
indicate the presence of different words on the page. We found that stemming and feature
selection did not provide much benefit and simply pruned words that appeared in fewer than
three documents in each of the three schools in the training data. We also experimented

44

Max-Margin Markov Networks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Naïve Bayes Svm Logistic

T
es

t E
rr

or

Words Words+Meta

Figure 18: Comparison of Naive Bayes, Svm, and Logistic on WebKB, with and without
meta-data features. (Only averages over the 4 schools are shown here.)

with incorporating meta-data: words appearing in the title of the page, in anchors of links
to the page and in the last header before a link to the page (Yang et al., 2002). Note that
meta-data, although mostly originating from pages linking into the considered page, are
easily incorporated as features, i.e. the resulting classification task is still flat feature-based
classification. Our first experimental setup compares three well-known text classifiers —
Naive Bayes, linear support vector machines (Svm), and logistic regression (Logistic) — using
words and meta-words. The results, shown in Fig. 18, show that the two discriminative
approaches outperform Naive Bayes. Logistic and Svm give very similar results. The average
error over the 4 schools was reduced by around 4% by introducing the meta-data attributes.

Incorporating meta-data gives a significant improvement, but we can take additional
advantage of the correlation in labels of related pages by classifying them collectively. We
want to capture these correlations in our model and use them for transmitting information
between linked pages to provide more accurate classification. We experimented with several
models that captured such correlations.

11.2.2 Link model

Our first model captures direct correlations between labels of linked pages. These corre-
lations are very common in our data: courses and research projects almost never link to
each other; faculty rarely link to each other; students have links to all categories but mostly
courses. The Link model captures this correlation through links: in addition to the local
bag of words and meta-data attributes, we introduce a pairwise clique between the labels
of any two pages that are linked.We train this model using maximum conditional likelihood
(labels given the words and the links) and maximum margin.

We also compare to a directed graphical model to contrast discriminative and genera-
tive models of relational structure. The Exists-ML model is a (partially) generative model

45

Taskar, Guestrin, Chatalbashev, Koller

0%

5%

10%

15%

20%

25%

30%

Cor Tex Was Wis Average

 E
rr

or

Exists-ML
SVM
Link-ML
Link-MM

Figure 19: Comparison of flat versus collective classification on WebKB: SVM, Exists model
with logistic regression and the Link model estimated using the maximum like-
lihood (ML) and the maximum margin (MM) criteria.

proposed by Getoor et al. (2001). For each page, a logistic regression model predicts the
page label given the words and meta-features. Then a simple generative model specifies a
probability distribution over the existence of links between pages conditioned on both pages’
labels. Concretely, we learn the probability of existence of a link between two pages given
their labels. Note that this model does not require inference during learning. Maximum
likelihood estimation (with regularization) of the generative component is closed form given
appropriate co-occurrence counts of linked pages’ labels. However, the prediction phase is
much more expensive, since the resulting graphical model includes edges not only for the
existing hyperlinks, but also those that do not exist. Intuitively, observing the link structure
directly correlates all page labels in a website, linked or not. By contrast, the Link model
avoids this problem by only modeling the conditional distribution given the existing links.

Fig. 19 shows a gain in accuracy from SVMs to the Link model by using the correlations
between labels of linked web pages. There is also very significant additional gain by using
maximum margin training: the error rate of Link-MM is 40% lower than that of Link-
ML, and 51% lower than multi-class SVMs. The Exists model doesn’t perform very well
in comparison. This can be attributed to the simplicity of the generative model and the
difficulty of the resulting inference problem.

11.2.3 Cocite model

The second structured model uses the insight that a webpage often has internal structure
that allows it to be broken up into sections. For example, a faculty webpage might have
one section that discusses research, with a list of links to all of the projects of the faculty
member, a second section might contain links to the courses taught by the faculty member,
and a third to his advisees. We can view a section of a webpage as a fine-grained version of

46

Max-Margin Markov Networks

0%

5%

10%

15%

20%

25%

Cor Tex Was Wis Average

 E
rr

or

SVM
Cocite-ML
Cocite-MM

Figure 20: Comparison of Naive Bayes, Svm, and Logistic on WebKB, with and without
meta-data features. (Only averages over the 4 schools are shown here.)

Kleinberg’s hub (Kleinberg, 1999) (a page that contains a lot of links to pages of particular
category). Intuitively, if two pages are cocited, or linked to from the same section, they are
likely to be on similar topics. Note that we expect the correlation between the labels in
this case to be positive, so we can use AMN-type potentials in the max-margin estimation.
The Cocite model captures this type of correlation. We defined a section as a sequence of
three or more links that have the same path to the root in the html parse tree. We then
connected the all the label variables of the pages in the section using pairwise cliques.

We compared the performance of SVM, Cocite-ML and Cocite-MM. The results, shown
in Fig. 20, also demonstrate significant improvements of the Markov network models over
the SVM. The improvement is present when testing on each of the schools. Again, maxi-
mum likelihood trained model Cocite-ML achieves a worse test error than maximum margin
Cocite-MM model, which shows a 30% relative reduction in test error over SVM. We note
that, in our experiments, the learned Cocite-MM weights never produced fractional solutions
when used for inference, which suggests that the optimization successfully avoided prob-
lematic parameterizations of the network, even in the case of the non-optimal multi-class
relaxation.

11.3 Terrain segmentation

We also applied associative Markov networks to the task of terrain classification, which is
very useful in real-world environments for path planning, target detection, and as a pre-
processing step for other perceptual tasks. The Stanford Segbot Project3 has provided us
with a laser range maps of the Stanford campus collected by a moving robot equipped with
SICK2 laser sensors (Fig. 21). The data consists of around 35 million points, represented

3. Many thanks to Michael Montemerlo and Sebastian Thrun for sharing the data.

47

Taskar, Guestrin, Chatalbashev, Koller

Figure 21: Segbot: roving robot equipped with SICK2 laser sensors.

as 3D coordinates in an absolute frame of reference (Fig. 22). Thus, the only available
information is the location of points. Each reading was a point in 3D space, represented
by its (x, y, z) coordinates in an absolute frame of reference. Thus, the only available
information is the location of points, which was fairly noisy because of localization errors.

Our task is to classify the laser range points into four classes: ground, building, tree, and

shrubbery. Since classifying ground points is trivial given their absolute z-coordinate (height),
we classify them deterministically by thresholding the z coordinate at a value close to 0.
After we do that, we are left with approximately 20 million non-ground points. Each point
is represented simply as a location in an absolute 3D coordinate system. The features we
use require pre-processing to infer properties of the local neighborhood of a point, such as
how planar the neighborhood is, or how much of the neighbors are close to the ground. The
features we use are invariant to rotation in the x-y plane, as well as the density of the range
scan, since scans tend to be sparser in regions farther from the robot.

Our first type of feature is based on the principal plane around it. For each point
we sample 100 points in a cube of radius 0.5 meters. We run PCA on these points to
get the plane of maximum variance (spanned by the first two principal components). We
then partition the cube into 3 × 3 × 3 bins around the point, oriented with respect to the
principal plane, and compute the percentage of points lying in the various sub-cubes. We
use a number of features derived from the cube such as the percentage of points in the
central column, the outside corners, the central plane, etc. These features capture the local
distribution well and are especially useful in finding planes. Our second type of feature
is based on a column around each point. We take a cylinder of radius 0.25 meters, which
extends vertically to include all the points in a “column”. We then compute what percentage
of the points lie in various segments of this vertical column (e.g., between 2m and 2.5m).
Finally, we also use an indicator feature of whether or not a point lies within 2m of the
ground. This feature is especially useful in classifying shrubbery.

48

Max-Margin Markov Networks

Figure 22: 3D laser scan range map of the Stanford Quad.

For training we select roughly 30 thousand points that represent the classes well: a
segment of a wall, a tree, some bushes. We considered three different models: SVM, Voted-
SVM and AMNs. All methods use the same set of features, augmented with a quadratic
kernel.

The first model is a multi-class SVM with a quadratic kernel over the above features.
This model (Fig. 23, right panel and Fig. 25, top panel) achieves reasonable performance
in many places, but fails to enforce local consistency of the classification predictions. For
example arches on buildings and other less planar regions are consistently confused for trees,
even though they are surrounded entirely by buildings.

We improved upon the SVM by smoothing its predictions using voting. For each point
we took its local neighborhood (we varied the radius to get the best possible results) and
assigned the point the label of the majority of its 100 neighbors. The Voted-SVM model
(Fig. 23, middle panel and Fig. 25, middle panel) performs slightly better than SVM: for
example, it smooths out trees and some parts of the buildings. Yet it still fails in areas like
arches of buildings where the SVM classifier has a locally consistent wrong prediction.

The final model is a pairwise AMN over laser scan points, with associative potentials to
ensure smoothness. Each point is connected to 6 of its neighbors: 3 of them are sampled
randomly from the local neighborhood in a sphere of radius 0.5m, and the other 3 are
sampled at random from the vertical cylinder column of radius 0.25m. It is important to
ensure vertical consistency since the SVM classifier is wrong in areas that are higher off the

49

Taskar, Guestrin, Chatalbashev, Koller

Figure 23: Terrain classification results showing Stanford Memorial Church obtained with
SVM, Voted-SVM and AMN models. (Color legend: buildings/red, trees/green,
shrubs/blue, ground/gray).

ground (due to the decrease in point density) or because objects tend to look different as
we vary their z-coordinate (for example, tree trunks and tree crowns look different). While
we experimented with a variety of edge features including various distances between points,
we found that even using only a constant feature performs well.

We trained the AMN model using CPLEX to solve the quadratic program; the train-
ing took about an hour on a Pentium 3 desktop. The inference over each segment was
performed using min-cut with α-expansion moves as described above. We used a publicly
available implementation of the min-cut algorithm, which uses bidirectional search trees
for augmenting paths (see Boykov and Kolmogorov (2004)). The implementation is largely
dominated by I/O time, with the actual min-cut taking less than two minutes even for the
largest segment. The performance is summarized in Fig. 24, and as we can see, it is roughly
linear in the size of the problem (number of nodes and number of edges).

We can see that the predictions of the AMN (Fig. 23, left panel and Fig. 25, bottom
panel) are much smoother: for example building arches and tree trunks are predicted cor-
rectly. We also hand-labeled around 180 thousand points of the test set (Fig. 26) and
computed accuracies of the predictions shown in Fig. 27 (excluding ground, which was
classified by pre-processing). The differences are dramatic: SVM: 68%, Voted-SVM: 73%
and AMN: 93%. See more results, including a fly-through movie of the data, at
http://ai.stanford.edu/~btaskar/3Dmap/.

50

Max-Margin Markov Networks

0 0.5 1 1.5 2 2.5

x 10
7

0

50

100

150

200

250

Problem size (nodes and edges)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Mincut inference performance

Figure 24: The running time (in seconds) of the min-cut-based inference algorithm for dif-
ferent problem sizes. The problem size is the sum of the number of nodes and
the number of edges. Note the near linear performance of the algorithm and its
efficiency even for large models.

12. Related Work

There is a large body of material related to the work we have presented. We organize it
below in several subsections.

12.1 Structured maximum margin estimation

Our max-margin formulation is related to a body of work called inverse combinatorial
and convex optimization (Burton and Toint, 1992; Zhang and Ma, 1996; Ahuja and Orlin,
2001; Heuberger, 2004). An inverse optimization problem is defined by an instance of an
optimization problem maxy∈Y w>f(y), a set of nominal weights w0, and a target solution
yt. The goal is to find the weights w closest to the nominal w0 in some norm, which make
the target solution optimal:

min ||w −w0||p
s.t. w>f(yt) ≥ w>f(y), ∀y ∈ Y.

Most of the attention has been on L1 and L∞ norms, but L2 norm is also used.
The study of inverse problems began with geophysical scientists (see (Tarantola, 1987)

for in-depth discussion of a wide range of applications). Modeling a complex physical system
often involves a large number of parameters which scientists find hard or impossible to set
correctly. Provided educated guesses for the parameters w0 and the behavior of the system

51

Taskar, Guestrin, Chatalbashev, Koller

as a target, the inverse optimization problem attempts to match the behavior while not
perturbing the “guesstimate” too much.

Although there is a strong connection between inverse optimization problems and our
formulations, the goals are very different than ours. In our framework, we are learning a
parameterized objective function that depends on the input x and will generalize well in
prediction on new instances. Moreover, we do not assume as given a nominal set of weights.
Note that if we set w0 = 0, then w = 0 is trivially the optimal solution. The solution w
depends critically on the choice of nominal weights, which is not appropriate in the learning
setting.

The inverse reinforcement learning problem (Ng and Russell, 2000; Abbeel and Ng,
2004) is much closer to our setting. The goal is to learn a reward function that will cause a
rational agent to act similar to the observed behavior of an expert. A full description of the
problem is beyond our scope, but we briefly describe the Markov decision process (MDP)
model commonly used for sequential decision making problems where an agent interacts
with its environment. The environment is modeled as a system that can be in one of a
set of discrete states. At every time step, the agent chooses an action from a discrete set
of actions and the system transitions to a next state with a probability that depends on
the current state and the action taken. The agent collects a reward at each step, which
generally depends on the on the current and the next state and the action taken. A rational
agent executes a policy (essentially, a state to action mapping) that maximizes its expected
reward. To map this problem (approximately) to our setting, note that a policy roughly
corresponds to the labels y, the state sequence correspond to the input x and the reward
for a state/action sequence is assumed to be w>f(x,y) for some basis functions w>f(x,y).
The goal is to learn w from a set of state/action sequences (x(i),y(i)) of the expert such
that the maximizing the expected reward according to the system model makes the agent
imitate the expert. This and related problems are formulated as a convex program in Ng
and Russell (2000) and Abbeel and Ng (2004).

12.2 M3Ns

The application of margin-based estimation methods to parsing and sequence modeling was
pioneered by Collins (2001) using the Voted-Perceptron algorithm (Freund and Schapire,
1998). He provides generalization guarantees (for 0/1 loss) that hold for separable case and
depend on the number of mistakes the perceptron makes before convergence. Remarkably,
the bound does not explicitly depend on the length of the sequence, although undoubtedly
the number of mistakes does.

Collins (2004) also suggested an SVM-like formulation (with exponentially many con-
straints) and a constraint generation method for solving it. His generalization bound (for
0/1 loss) based on the SVM-like margin, however, has linear dependence (inside the square
root) on the number of nodes (L). It also depends on the joint 2-norm of all of the basis
functions for an example (which is ∼ NcRc). By considering the more natural Hamming
loss, we achieve a much tighter analysis.

Altun et al. (2003) have applied the exponential-size formulation with constraint gen-
eration we described in Sec. 6.1.1 to problems natural language processing. In a follow-up
paper, Tsochantaridis et al. (2004) show that only a polynomial number of constraints are

52

Max-Margin Markov Networks

needed to be generated to guarantee a fixed level of precision of the solution. However,
the number of constraints in many important cases is several orders higher (in L) than
in the the approach we present. In addition, the corresponding problem needs to be re-
solved (or at least approximately resolved) after each additional constraint is added, which
is prohibitively expensive for large number of examples and label variables.

The work of Guestrin et al. (2003) presents LP decompositions based on graphical model
structure for the value function approximation problem in factored MDPs (Markov decision
processes with structure). Describing the exact setting is beyond our scope, but it suffices
to say that our original decomposition of the max-margin QP was inspired by the proposed
technique to transform an exponential set of constraints into a polynomial one using a
triangulated graph.

There has been a recent explosion of work in maximum conditional likelihood estimation
of Markov networks. The work of Lafferty et al. (2001) has inspired many applications in
natural language, computational biology, computer vision and relational modeling (Sha
and Pereira, 2003; Pinto et al., 2003; Kumar and Hebert, 2003; Sutton et al., 2004; Taskar
et al., 2002, 2003). As in the case of logistic regression, maximum conditional likelihood
estimation for Markov networks can also be kernelized (Altun et al., 2004; Lafferty et al.,
2004). However, the solutions are non-sparse and the proposed algorithms are forced to use
greedy selection of support vectors or heuristic pruning methods.

12.3 AMNs

Several authors have considered extensions to the Potts model. Kleinberg and Tardos
(1999) extend the multi-class Potts model to have more general edge potentials, under the
constraints that negative log of the edge potentials form a metric on the set of labels. They
also provide a solution based on a relaxed LP that has certain approximation guarantees.

More recently, Kolmogorov and Zabih (2002) showed how to optimize energy functions
containing binary and ternary interactions using graph cuts, as long as the parameters
satisfy a certain regularity condition. Our definition of associative potentials below also
satisfies the Kolmogorov and Zabih regularity condition for K = 2. However, the structure
of our potentials is simpler to describe and extend for the multi-class case. In fact, we can
extend our max-margin framework to estimate their more general potentials by expressing
inference as a linear program.

Our terrain classification approach is most closely related to work in vision applying
conditional random fields (CRFs) to 2D images. Kumar and Hebert (2003) train CRFs
using a pseudo-likelihood approximation to the distribution P (Y | X) since estimating the
true conditional distribution is intractable. Unlike their work, our learning formulation
provides an exact and tractable optimization algorithm, as well as formal guarantees for
binary classification problems. Moreover, unlike their work, our approach can also handle
multi-class problems in a straightforward manner.

12.4 Structured SMO

The kernel-adatron (Friess et al., 1998) and voted-perceptron algorithms (Freund and
Schapire, 1998) for large-margin classifiers have a similar online optimization scheme. Collins
(2001) have applied voted-perceptron to structured problems in natural language. Although

53

Taskar, Guestrin, Chatalbashev, Koller

head-to-head comparisons have not been performed, it seems that, empirically, less passes
(about 30-40) are needed for our algorithm than in the perceptron literature.

Recently, the Exponentiated Gradient (Kivinen and Warmuth, 1997) algorithm has
been adopted to solve our structured QP for max-margin estimation (Bartlett et al., 2004).
Although the EG algorithm has attractive convergence properties, it has yet to be shown to
learn faster than Structured SMO, particularly in the early iterations through the dataset.

13. Discussion

We present a discriminative framework for labeling and segmentation of structured data
such as sequences, images, etc. Our approach seamlessly integrates state-of-the-art kernel
methods developed for classification of independent instances with the rich language of
graphical models that can exploit the structure of complex data. In our experiments with
handwriting recognition, for example, our sequence model significantly outperforms other
approaches by incorporating high-dimensional decision boundaries of polynomial kernels
over character images while capturing correlations between consecutive characters.

Our formulation for max-margin estimation of Markov networks uses a compact convex
optimization problem. We exploit graph decomposition to derive an exact, compact, con-
vex max-margin formulation for Markov networks with sequence and other low-treewidth
structure. The formulation avoids the exponential blow-up in the number of constraints
in the max-margin QP that plagued previous approaches. We also use approximate graph
decomposition to derive a compact approximate formulation for Markov networks in which
inference is intractable. We show that our approximation performs well in our experiments
on structured hypertext classification.

Although the number of variables and constraints of our QP formulation is polynomial
in the example size (e.g., sequence length), we also address its quadratic growth using an
effective optimization procedure inspired by SMO. This simple procedure uses inference in
the model and analytic updates to solve very large instances without the help of QP solver
software.

We provide an algorithm for max-margin training of associative Markov networks, a sub-
class of Markov networks that allows only positive interactions between related variables,
but makes no restriction on the topology (e.g., low-treewidth). Because our approach only
relies using the MAP in the model for prediction, and does not require a normalized distribu-
tion P (y | x) over all outputs, maximum margin estimation is tractable, although maximum
likelihood is not. Our method is guaranteed to find the optimal (margin-maximizing) so-
lution for any binary-valued AMN, regardless of the clique size or the connectivity. To
our knowledge, this algorithm is the first to provide an effective learning procedure for
Markov networks of such general structure. In the non-binary case, we are not guaranteed
exact solutions, but show that our approximation works well in experiments with hypertext
classification and 3D image segmentation. We present large-scale experiments with terrain
segmentation and classification from 3D range data involving AMNs with tens of millions
of nodes and edges.

We provide theoretical guarantees on the average per-label generalization error of our
models in terms of the training set margin. Our generalization bound significantly tightens

54

Max-Margin Markov Networks

previous results of Collins (2001) and suggests possibilities for analyzing per-label general-
ization properties of graphical models.

Our experiments on the tasks of handwriting recognition, web page classification and 3D
terrain segmentation demonstrate very significant gains over previous approaches. Overall,
we believe that M3 networks will significantly further the applicability of high accuracy
margin-based methods to real-world structured data.

Acknowledgments

This work was supported by ONR Contract F3060-01-2-0564-P00002 under DARPA’s EELD
program.

55

Taskar, Guestrin, Chatalbashev, Koller

Figure 25: Results from the SVM, Voted-SVM and AMN models.

56

Max-Margin Markov Networks

Figure 26: Labeled part of the test set: ground truth (top) and SVM predictions (bottom).

57

Taskar, Guestrin, Chatalbashev, Koller

Figure 27: Predictions of the Voted-SVM (top) and AMN (bottom) models.

58

Max-Margin Markov Networks

Appendix A. AMN proofs and derivations

In this appendix, we present proofs of the LP inference properties and derivations of the
factored primal and dual max-margin formulation from Ch. 8. Recall that the LP relaxation
for finding the optimal maxy g(y) is:

max
∑

v∈V

K∑

k=1

µv(k)gv(k) +
∑

c∈C\V

K∑

k=1

µc(k)gc(k) (41)

s.t. µc(k) ≥ 0, ∀c ∈ C, k;
K∑

k=1

µv(k) = 1, ∀v ∈ V;

µc(k) ≤ µv(k), ∀c ∈ C \ V, v ∈ c, k.

A.1 Binary AMNs

Proof (For Theorem 5.2) Consider any fractional, feasible µ. We show that we can con-
struct a new feasible assignment µ′ which increases the objective (or leaves it unchanged)
and furthermore has fewer fractional entries.

Since gc(k) ≥ 0, we can assume that µc(k) = minv∈c µv(k); otherwise we could increase
the objective by increasing µc(k). We construct an assignment µ′ from µ by leaving integral
values unchanged and uniformly shifting fractional values by λ:

µ′v(1) = µv(1)− λ1I(0 < µv(1) < 1), µ′v(2) = µv(2) + λ1I(0 < µv(2) < 1),
µ′c(1) = µc(1)− λ1I(0 < µc(1) < 1), µ′c(2) = µc(2) + λ1I(0 < µc(2) < 1).

Now consider the smallest fractional µv(k), λ(k) = minv : µv(k)>0 yv(k) for k = 1, 2. Note
that if λ = λ(1) or λ = −λ(2), µ′ will have at least one more integral µ′v(k) than µ. Thus
if we can show that the update results in a feasible and better scoring assignment, we can
apply it repeatedly to get an optimal integer solution. To show that µ′ is feasible, we need
µ′v(1) + µ′v(2) = 1, µ′v(k) ≥ 0 and µ′c(k) = mini∈c µ′v(k).

First, we show that µ′v(1) + µ′v(2) = 1.

µ′v(1) + µ′v(2) = µv(1)− λ1I(0 < µv(1) < 1) + µv(2) + λ1I(0 < µv(2) < 1)
= µv(1) + µv(2) = 1.

Above we used the fact that if µv(1) is fractional, so is µv(2), since µv(1) + µv(2) = 1.
To show that µ′v(k) ≥ 0, we prove minv µ′v(k) = 0.

min
v

µ′v(k) = min
v

[
µv(k)− (min

i:µv(k)>0
µv(k))1I(0 < µv(k) < 1)

]

= min
(

min
i

µv(k), min
i:µv(k)>0

[
µv(k)− min

i:µv(k)>0
µv(k)

])
= 0.

Lastly, we show µ′c(k) = mini∈c µ′v(k).

µ′c(1) = µc(1)− λ1I(0 < µc(1) < 1)

59

Taskar, Guestrin, Chatalbashev, Koller

= (min
i∈c

µv(1))− λ1I(0 < min
i∈c

µv(1) < 1) = min
i∈c

µ′v(1);

µ′c(2) = µc(2) + λ1I(0 < µc(1) < 1)
= (min

i∈c
µv(2)) + λ1I(0 < min

i∈c
µv(2) < 1) = min

i∈c
µ′v(2).

We have established that the new µ′ are feasible, and it remains to show that we can
improve the objective. We can show that the change in the objective is always λD for some
constant D that depends only on µ and g. This implies that one of the two cases, λ = λ(1)
or λ = −λ(2), will necessarily increase the objective (or leave it unchanged). The change
in the objective is:

∑

v∈V

∑

k=1,2

[µ′v(k)− µv(k)]gv(k) +
∑

c∈C\V

∑

k=1,2

[µ′c(k)− µc(k)]gc(k)

= λ

∑

v∈V
[Dv(1)−Dv(2)] +

∑

c∈C\V
[Dc(1)−Dc(2)]

 = λD

Dv(k) = gv(k)1I(0 < µv(k) < 1), Dc(k) = gc(k)1I(0 < µc(k) < 1).

Hence the new assignment µ′ is feasible, does not decrease the objective function, and
has strictly fewer fractional entries.

A.2 Multi-class AMNs

For K > 2, we use the randomized rounding procedure of Kleinberg and Tardos (1999)
to produce an integer solution for the linear relaxation, losing at most a factor of m =
maxc∈C |c| in the objective function. The basic idea of the rounding procedure is to treat
µv(k) as probabilities and assign labels according to these probabilities in phases. In each
phase, we pick a label k, uniformly at random, and a threshold α ∈ [0, 1] uniformly at
random. For each node i which has not yet been assigned a label, we assign the label k
if µv(k) ≥ α. The procedure terminates when all nodes have been assigned a label. Our
analysis closely follows that of Kleinberg and Tardos (1999).

Lemma A.1 The probability that a node i is assigned label k by the randomized procedure
is µv(k).

Proof The probability that an unassigned node is assigned label k during one phase is
1
K µv(k), which is proportional to µv(k). By symmetry, the probability that a node is
assigned label k over all phases is exactly µv(k).

Lemma A.2 The probability that all nodes in a clique c are assigned label k by the procedure
is at least 1

|c|µc(k).

Proof For a single phase, the probability that all nodes in a clique c are assigned label k
if none of the nodes were previously assigned is 1

K mini∈c µv(k) = 1
K µc(k). The probability

that at least one of the nodes will be assigned label k in a phase is 1
K (maxi∈c µv(k)). The

60

Max-Margin Markov Networks

probability that none of the nodes in the clique will be assigned any label in one phase is
1− 1

K

∑K
k=1 maxi∈c µv(k).

Nodes in the clique c will be assigned label k by the procedure if they are assigned label
k in one phase. (They can also be assigned label k as a result of several phases, but we can
ignore this possibility for the purposes of the lower bound.) The probability that all the
nodes in c will be assigned label k by the procedure in a single phase is:

∞∑

j=1

1
K

µc(k)

(
1− 1

K

K∑

k=1

max
i∈c

µv(k)

)j−1

=
µc(k)∑K

k=1 maxi∈c µv(k)

≥ µc(k)∑K
k=1

∑
i∈c µv(k)

=
µc(k)∑

i∈c

∑K
k=1 µv(k)

=
µc(k)
|c| .

Above, we first used the fact that for d < 1,
∑∞

i=0 di = 1
1−d , and then upper-bounded

the max of the set of positive µv(k)’s by their sum.

Theorem A.3 The expected cost of the assignment found by the randomized procedure
given a solution µ to the linear program in Eq. (41) is at least

∑
v∈V

∑K
k=1 gv(k)µv(k) +∑

c∈C\V
1
|c|

∑K
k=1 gc(k)µk

c .

Proof This is immediate from the previous two lemmas.
The only difference between the expected cost of the rounded solution and the (non-

integer) optimal solution is the 1
|c| factor in the second term. By picking m = maxc∈C |c|, we

have that the rounded solution is at most m times worse than the optimal solution produced
by the LP of Eq. (41).

We can also derandomize this procedure to get a deterministic algorithm with the same
guarantees, using the method of conditional probabilities, similar in spirit to the approach
of Kleinberg and Tardos (1999).

Note that the approximation factor of m applies, in fact, only to the clique potentials.
Thus, if we compare the log-probability of the optimal MAP solution and the log-probability
of the assignment produced by this randomized rounding procedure, the terms correspond-
ing to the log-partition-function and the node potentials are identical. We obtain an additive
error (in log-probability space) only for the clique potentials. As node potentials are often
larger in magnitude than clique potentials, the fact that we incur no loss proportional to
node potentials is likely to lead to smaller errors in practice. Along similar lines, we note
that the constant factor approximation is smaller for smaller cliques; again, we observe, the
potentials associated with large cliques are typically smaller in magnitude, reducing further
the actual error in practice.

A.3 Min-cut inference

We can also use efficient min-cut algorithms to perform exact inference on the learned
models for K = 2 and approximate inference for K > 2. For simplicity, we focus on the
pairwise AMN case. We first consider the case of binary AMNs, and later show how to use

61

Taskar, Guestrin, Chatalbashev, Koller

1 2v

1 2v

1

2

u v

Figure 28: Min-cut graph construction of node (left) and edge (right) terms.

the local search algorithm developed by Boykov et al. (1999a) to perform (approximate)
inference in the general multi-class case. For pairwise, binary AMNs, the objective of the
integer program in Eq. (13) is:

max
∑

v∈V
[µv(1)gv(1) + µv(2)gv(2)] +

∑

uv∈E
[µuv(1)guv(1) + µuv(2)guv(2)]. (42)

Graph construction

We construct a graph in which the min-cut will correspond to the optimal MAP labeling
for the above objective. First, we recast the objective as minimization by simply reversing
the signs on the value of each θ.

min −
∑

v∈V
[µv(1)gv(1) + µv(2)gv(2)]−

∑

uv∈E
[µuv(1)guv(1) + µuv(2)guv(2)]. (43)

The graph will consist of a vertex for each node in the AMN, along with the 1 and 2
terminals. In the final (V1,V2) cut, the V1 set will correspond to label 1, and the V2 set
will correspond to label 2. We will show how to deal with the node terms (those depending
only on a single variable) and the edge terms (those depending on a pair of variables), and
then how to combine the two.

Node terms

Consider a node term −µv(1)gv(1)− µv(2)gv(2). Such a term corresponds to the node po-
tential contribution to our objective function for node v. For each node term corresponding
to node v we add a vertex v to the min-cut graph. We then look at ∆v = gv(1) − gv(2),
and create an edge of weight |∆v| from v to either 1 or 2, depending on the sign of ∆v. The
reason for that is that the final min-cut graph must consist of only positive weights. An
example is presented in Fig. A.3.

From Fig. A.3, we see that if the AMN consisted of only node potentials, the graph
construction above would add an edge from each node to its more likely label. Thus if we
run min-cut, we would simply get a cut with cost 0, since for each introduced vertex we

62

Max-Margin Markov Networks

have only one edge of positive weight to either 1 or 2, and we would always choose not to
cut any edges.

Edge terms

Now consider an edge term of the form −µuv(1)guv(1)− µuv(2)guv(2). To construct a min-
cut graph for the edge term we will introduce two vertices u and v. We will connect vertex
u to 1 with an edge of weight guv(1), connect v to 2 with an edge of weight guv(2) and
connect u to v with an edge of weight guv(1)+ guv(2). Fig. A.3 shows an example. Observe
what happens when both nodes are on the V2 side of the cut: the value of the min-cut is
guv(1), which must be less than guv(2) or the min-cut would have placed them both on the
1 side. When looking at edge terms in isolation, a cut that places each node in different
sets will not occur, but when we combine the graphs for node terms and edge terms, such
cuts will be possible.

We can take the individual graphs we created for node and edge terms and merge them
by adding edge weights together (and treating missing edges as edges with weight 0). It
can be shown that the resulting graph will represent the same objective (in the sense that
running min-cut on it will optimize the same objective) as the sum of the objectives of each
graph. Since our MAP-inference objective is simply a sum of node and edge terms, merging
the node and edge term graphs will result in a graph in which min-cut will correspond to
the MAP labeling.

Multi-class case

The graph construction above finds the best MAP labeling for the binary case, but in
practice we would often like to handle multiple classes in AMNs. One of the most effective
algorithms for minimizing energy functions like ours is the α-expansion algorithm proposed
by Boykov et al. (1999a). The algorithm performs a series of “expansion” moves each of
which involves optimization over two labels, and it can be shown that it converges to within
a factor of 2 of the global minimum.

Expansion Algorithm

Consider a current labeling µ and a particular label k ∈ 1, . . . , K. Another labeling µ′ is
called an “α-expansion” move (following Boykov et al. (1999a)) from µ if µ′v 6= k implies
µ′v = µv (where µv is the label of the node v in the AMN.) In other words, a k-expansion
from a current labeling allows each label to either stay the same, or change to k.

The α-expansion algorithm cycles through all labels k in either a fixed or random order,
and finds the new labeling whose objective has the lowest value. It terminates when there
is no α-expansion move for any label k that has a lower objective than the current labeling
(Fig. 29).

The key part of the algorithm is computing the best α-expansion labeling for a fixed
k and a fixed current labeling µ. The min-cut construction from earlier allows us to do
exactly that since an α-expansion move essentially minimizes a MAP-objective over two
labels: it either allows a node to retain its current label, or switch to the label α. In this
new binary problem we will let label 1 represent a node keeping its current label and label
2 will denote a node taking on the new label k. In order to construct the right coefficients

63

Taskar, Guestrin, Chatalbashev, Koller

1. Begin with arbitrary labeling µ

2. Set success := 0

3. For each label k ∈ {1, . . . K}
3.1 Compute µ̂ = arg min−g(µ′) among µ′ within one α-expansion of µ.

3.2 If E(µ̂) < E(µ), set µ := µ̂ and success := 1

4. If success = 1 goto 2.

5. Return µ

Figure 29: α-expansion algorithm

for the new binary objective we need to consider several factors. Below, let θ′ki and θ′k,k
ij

denote the node and edge coefficients associated with the new binary objective:

• Node potentials For each node i in the current labeling whose current label is not
α, we let θ′0i = θyi

i , and θ′1i = θα
i , where yi denotes the current label of node i, and θyi

denotes the coefficient in the multiclass AMN MAP objective. Note that we ignore
nodes with label α altogether since an α-expansion move cannot change their label.

• Edge potentials For each edge (i, j) ∈ E whose nodes have labels different from α,
we add a new edge potential, with weights θ′1ij = θα,α

ij . If the two nodes of the edge
currently have the same label, we set θ′0ij = θ

yi,yj

ij , and if the two nodes currently have
different labels we let θ′0ij = 0. For each edge (i, j) ∈ E in which exactly one of the
nodes has label α in the current labeling, we add θα,α

ij , to the node potential θ′1i of the
node whose label is different from α.

After we have constructed the new binary MAP objective as above, we can apply the
min-cut construction from before to get the optimal labeling within one α-expansion from
the current one. Veksler (1999) shows that the α-expansion algorithm converges in O(N)
iterations where N is the number of nodes. As noted in Boykov et al. (1999a) and as we
have observed in our experiments, the algorithm terminates only after a few iterations with
most of the improvement occurring in the first 2-3 expansion moves.

A.4 Derivation of the factored primal and dual max-margin QP

Using Assumptions 8.1 and 8.4, we have the dual of the LP used to represent the interior
max subproblem maxy w>fi(y) + `i(y) in Eq. (12):

min
∑

v∈V
ξi,v (44)

s.t. −w>fi,v(k)−
∑
c⊃v

mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V(i), k;

64

Max-Margin Markov Networks

−ẅ>f̈i,c(k) +
∑
v∈c

mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V(i), k;

mi,c,v(k) ≥ 0, ∀i, c ∈ C(i) \ V(i), v ∈ c, k;

where fi,c(k) = fi,c(k, . . . , k) and `i,c(k) = `i,c(k, . . . , k). In the dual, we have a variable
ξi,v for each normalization constraint in Eq. (13) and variables mi,c,v(k) for each of the
inequality constraints.

Substituting this dual into Eq. (14), we obtain:

min
1
2
||w||2 + C

∑

i

ξi (45)

s.t. w>fi(y(i)) + ξi ≥
∑

v∈V(i)

ξi,v, ∀i;

−w>fi,v(k)−
∑
c⊃v

mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V(i), k;

−ẅ>f̈i,c(k) +
∑
v∈c

mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V(i), k;

mi,c,v(k) ≥ 0, ∀i, c ∈ C(i) \ V(i), v ∈ c, k;
ẅ ≥ 0.

Now let ξi,v = ξ′i,v + w>fi,v(y
(i)
v) +

∑
c⊃v ẅ>f̈i,c(y

(i)
c)/|c| and mi,c,v(k) = m′

i,c,v(k) +

ẅ>f̈i,c(y
(i)
c)/|c|. Re-expressing the above QP in terms of these new variables, we get:

min
1
2
||w||2 + C

∑

i

ξi (46)

s.t. ξi ≥
∑

v∈V(i)

ξ′i,v, ∀i;

w>∆fi,v(k)−
∑
c⊃v

m′
i,c,v(k) ≥ `i,v(k)− ξ′i,v, ∀i, v ∈ V(i), k;

ẅ>∆f̈i,c(k) +
∑
v∈c

m′
i,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V(i), k;

m′
i,c,v(k) ≥ −ẅ>f̈i,c(y(i)

c)/|c|, ∀i, c ∈ C(i) \ V(i), v ∈ c, k;
ẅ ≥ 0.

Since ξi =
∑

i,v∈V(i) ξ′i,v at the optimum, we can eliminate ξi and the corresponding set
of constraints to get the formulation in Eq. (34), repeated here for reference:

min
1
2
||w||2 + C

∑

i,v∈V(i)

ξi,v (47)

s.t. w>∆fi,v(k)−
∑
c⊃v

mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V(i), k;

ẅ>∆f̈i,c(k) +
∑
v∈c

mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V(i), k;

65

Taskar, Guestrin, Chatalbashev, Koller

mi,c,v(k) ≥ −ẅ>f̈i,c(y(i)
c)/|c|, ∀i, c ∈ C(i) \ V(i), v ∈ c, k;

ẅ ≥ 0.

Now the dual of Eq. (47) is given by:

max
∑

i,c∈C(i), k

µi,c(k)`i,c(k)− 1
2

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,v∈V(i), k

µi,v(k)∆ḟi,v

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(48)

−1
2

∣∣∣∣∣∣

∣∣∣∣∣∣
τ̈ +

∑

i,c∈C(i)\V(i),v∈c, k

λi,c,v(k)f̈i,c(y(i)
c)/|c|+

∑

i,c∈C(i), k

µi,c(k)∆f̈i,c(k)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑

k=1

µi,v(k) = C, ∀i, ∀v ∈ V(i);

µi,c(k)− µi,v(k) = λi,c,v(k), ∀i, ∀c ∈ C(i) \ V(i), v ∈ c, k;

λi,c,v(k) ≥ 0 ∀i, ∀c ∈ C(i) \ V(i), v ∈ c, k,

τ̈ ≥ 0.

In this dual, µ correspond to the first two sets of constraints, while λ and τ̈ correspond
to third and fourth set of constraints. Using the substitution

ν̈ = τ̈ +
∑

i,c∈C(i)\V(i),v∈c, k

λi,c,v(k)f̈i,c(y(i)
c)/|c|

and the fact that λi,c,v(k) ≥ 0 and f̈i,c(y
(i)
c) ≥ 0, we can eliminate λ and τ̈ , as well as divide

µ’s by C, and re-express the above QP as:

max
∑

i,c∈C(i), k

µi,c(k)`i,c(k)− 1
2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,v∈V(i), k

µi,v(k)∆ḟi,v

∣∣∣∣∣∣

∣∣∣∣∣∣

2

− 1
2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
ν̈ +

∑

i,c∈C(i), k

µi,c(k)∆f̈i,c(k)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑

k=1

µi,v(k) = 1, ∀i, ∀v ∈ V(i);

µi,c(k) ≤ µi,v(k), ∀i, ∀c ∈ C(i) \ V(i), v ∈ c, k; ν̈ ≥ 0.

Appendix B. Generalization bound: Proof of Theorem 9.1

The proof of Theorem 9.1 uses the covering number bounds of Zhang (2002) (in the
Data-Dependent Structural Risk Minimization framework (Shawe-Taylor et al., 1998).)
Zhang provides generalization guarantees for linear binary classifiers of the form hw(x) =
sgn(w>x). His analysis is based on the upper bounds on the covering number for the class
of linear functions FL(w, z) = w>z where the norms of the vectors w and z are bounded.
We reproduce the relevant definitions and theorems from Zhang (2002) here to highlight
the necessary extensions for structured classification.

66

Max-Margin Markov Networks

The covering number is a key quantity in measuring function complexity. Intuitively,
the covering number of an infinite class of functions (e.g. parameterized by a set of weights
w) is the number of vectors necessary to approximate the values of any function in the class
on a sample. Margin-based analysis of generalization error uses the margin achieved by a
classifier on the training set to approximate the original function class of the classifier by
a finite covering with precision that depends on the margin. Here, we will only define the
∞-norm covering number.

B.1 Binary classification

In binary classification, we are given a sample S = {x(i), y(i)}m
i=1, from distribution D over

X × Y, where X = IRn and Y is mapped to ±1, so we can fold x and y into z = yx.

Definition B.1 (Covering Number) Let V = {v(1), . . . ,v(r)}, where v(j) ∈ IRm, be a
covering of a function class F(w, S) with ε-precision under the metric ρ, if for all w there
exists a v(j) such that for each data sample z(i) ∈ S:

ρ(v(j)
i ,F(w, z(i))) ≤ ε.

The covering number of a sample S is the size of the smallest covering: N∞(F , ρ, ε, S) =
inf |V| s.t. V is a covering of F(w, S). We also define the covering number for any sample
of size m: N∞(F , ρ, ε,m) = supS: |S|=mN∞(F , ρ, ε, S).

When the norms of w and z are bounded, we have the following upper bound on the
covering number of linear functions under the linear metric ρL(v, v′) = |v − v′|.
Theorem B.2 (Theorem 4 from Zhang (2002)) If ‖w‖2 ≤ a and ‖z‖2 ≤ b, then ∀
ε > 0,

log2N∞(FL, ρL, ε, m) ≤ 36
a2b2

ε2
log2 (2 d4ab/ε + 2em + 1) .

In order to use the classifier’s margin to bound its expected loss, the bounds below use
a stricter, margin-based loss on the training sample that measures the worst loss achieved
by the approximate covering based on this margin. Let f : IR 7→ [0, 1] be a loss function.
In binary classification, we let f(v) = 1I(v ≤ 0) be the step function, so that 0-1 loss of
sgn(w>x) is f(FL(w, z)). The next theorem bounds the expected f loss in terms of the
γ-margin loss, fγ(v) = supρ(v,v′)<2γ f(v′), on the training sample. For 0-1 loss and linear
metric ρL, the corresponding γ-margin loss is fγ(v) = 1I(v ≤ 2γ).

Theorem B.3 (Corollary 1 from Zhang (2002)) Let f : IR 7→ [0, 1] be a loss function
and fγ(v) = supρ(v,v′)<2γ f(v′) be the γ-margin loss for a metric ρ. Let γ1 > γ2 > . . . be
a decreasing sequence of parameters, and pi be a sequence of positive numbers such that∑∞

i=1 pi = 1, then for all δ > 0, with probability of at least 1− δ over data:

ED[f(F(w, z))] ≤ ES [fγ(F(w, z))] +

√
32
m

[
ln 4N∞(F , ρ, γi, S) + ln

1
piδ

]

for all w and γ, where for each fixed γ, we use i to denote the smallest index s.t. γi ≤ γ.

67

Taskar, Guestrin, Chatalbashev, Koller

B.2 Structured classification

We will extend this framework to bound the average per-label loss `H(y)/L for structured
classification by defining an appropriate loss f and a function class F (as well as a metric ρ)
such that f(F) computes average per-label loss and fγ(F) provides a suitable γ-margin loss.
We will bound the corresponding covering number by building on the bound in Theorem B.2.

We can no longer simply fold x and y, since y is a vector, so we let z = (x,y). In
order for our loss function to compute average per-label loss, it is convenient to make our
function class vector-valued (instead of scalar-valued as above). We define a new function
class FM (w, z), which is a vector of minimum values of w>∆fi(y) for each error level `H(y)
from 1 to L as described below.

Definition B.4 (dth-error-level function) The dth-error-level function Md(w, z) for d ∈
{1, . . . , L} is given by:

Md(w, z) = min
y:`H(y)=d

w>∆fi(y).

Definition B.5 (Multi-error-level function class) The multi-error-level function class
FM (w, z) is given by:

FM (w, z) = (M1(w, z), . . . , Md(w, z), . . . ,ML(w, z)) .

We can now compute the average per-label loss from FM (w, z) by defining an appropriate
loss function fM .

Definition B.6 (Average per-label loss) The average per-label loss fM : IR L 7→ [0, 1]
is given by:

fM (v) =
1
L

arg min
d:vd≤0

vd,

where in case ∀d, vd > 0, we define arg mind:vd≤0 vd ≡ 0.

With the above definitions, we have an upper bound on the average per-label loss

fM (FM (w, z)) =
1
L

arg min
d:Md(w,z)≤0

Md(w, z) ≥ 1
L

`H(arg max
y

w>fi(y)).

Note that the case ∀d, Md(w, z) > 0 corresponds to the classifier making no mistakes:
arg maxy w>fi(y) = y. This upper bound is tight if y = arg maxy′ w

>f(x,y′), Otherwise,
it is adversarial: it picks from all y′ which are better (w>f(y) ≤ w>f(y′)), one that
maximizes the Hamming distance from y.

We now need to define an appropriate metric ρ that in turn defines γ-margin loss for
structured classification. Since the margin of the hypothesis grows with the number of
mistakes, our metric can become “looser” with the number of mistakes, as there is more
room for error.

Definition B.7 (Multi-error-level metric) Let the multi-error-level metric ρM : IRL ×
IRL 7→ IR for a vector in IR L be given by:

ρM (v,v′) = max
d

|vd − v′d|
d

.

68

Max-Margin Markov Networks

We now define the corresponding γ-margin loss using the new metric:

Definition B.8 (γ-margin average per-label loss) The γ-margin average per-label loss
fγ

M : IR L 7→ [0, 1] is given by:

fγ
M (v) = sup

ρM (v,v′)≤2γ
fM (v′).

Combining the two definitions, we get:

fγ
M (FM (w, z)) = sup

v:|vd−Md(w,z)|≤2dγ

1
L

arg min
d:vd≤0

vd.

We also define the corresponding covering number for our vector-valued function class:

Definition B.9 (Multi-error-level covering number) Let V = {V(1), . . . ,V(r)}, where
V(j) = (V(j)

1 , . . . ,V(j)
i , . . . ,V(j)

m) and V(j)
i ∈ IRL, be a covering of FM (w, S), with ε-

precision under the metric ρM , if for all w there exists a V(j) such that for each data
sample z(i) ∈ S:

ρM (V(j)
i ,FM (w, z(i))) ≤ ε.

The covering number of a sample S is the size of the smallest covering: N∞(FM , ρM , ε, S) =
inf |V| s.t. V is a covering of FM (w, S). We also define

N∞(FM , ρM , ε, m) = sup
S: |S|=m

N∞(FM , ρM , ε, S).

We provide a bound on the covering number of our new function class in terms of a
covering number for the linear function class. Recall that Nc is the maximum number of
cliques in G(x), Vc is the maximum number of values in a clique |Yc|, q is the maximum
number of cliques that have a variable in common, and Rc is an upper-bound on the 2-norm
of clique basis functions. Consider a first-order sequence model as an example, with L as
the maximum length, and V the number of values a variable takes. Then Nc = 2L−1 since
we have L node cliques and L − 1 edge cliques; Vc = V 2 because of the edge cliques; and
q = 3 since nodes in the middle of the sequence participate in 3 cliques: previous-current
edge clique, node clique, and current-next edge clique.

Lemma B.10 (Bound on multi-error-level covering number)

N∞(FM , ρM , εq, m) ≤ N∞(FL, ρL, ε, mNc(Vc − 1)).

Proof: We will show that N∞(FM , ρM , εq, S) ≤ N∞(FL, ρL, ε, S′) for any sample S
of size m, where we construct the sample S′ of size mNc(Vc − 1) in order to cover the
clique potentials as described below. Note that this is sufficient since N∞(FL, ρL, ε, S′) ≤
N∞(FL, ρL, ε,mNc(Vc − 1)), by definition, so

N∞(FM , ρM , εq, m) = sup
S:|S|=m

N∞(FM , ρM , εq, S) ≤ N∞(FL, ρL, ε,mNc(Vc − 1)).

The construction of S′ below is inspired by the proof technique in Collins (2001), but the
key difference is that our construction is linear in the number of cliques Nc and exponential

69

Taskar, Guestrin, Chatalbashev, Koller

in the number of label variables per clique, while his is exponential in the total number of label
variables per example. This reduction in size comes about because our covering approximates
the values of clique potentials w>∆fi,c(yc) for each clique c and clique assignment yc as
opposed to the values of entire assignments w>∆fi(y).

For each sample z ∈ S, we create Nc(Vc − 1) samples ∆fi,c(yc), one for each clique
c and each assignment yc 6= y(i)

c . We construct a set of vectors V = {v(1), . . . ,v(r)},
where v(j) ∈ IRmNc(Vc−1). The component of v(j) corresponding to the sample z(i) and the
assignment yc to the labels of the clique c will be denoted by v(j)

i,c (yc). For convenience,

we define v(j)
i,c (y(i)

c) = 0 for correct label assignments, as ∆fi,c(y
(i)
c) = 0. To make V an

∞-norm covering of FL(w, S′) under ρL, we require that for any w there exists a v(j) ∈ V
such that for each sample z(i):

|v(j)
i,c (yc)−w>∆fi,c(yc)| ≤ ε; ∀c ∈ C(i), ∀yc. (49)

By Definition B.1, the number of vectors in V is given by r = N∞(FL, ρL, ε,mNc(Vc − 1)).
We can now use V to construct a covering V = {V(1), . . . ,V(r)}, where

V(j) = (V(j)
1 , . . . ,V(j)

i , . . . ,V(j)
m)

and V(j)
i ∈ IRL, for our multi-error-level function FM . Let v(j)

i (y) =
∑

c v(j)
i,c (yc), and

Md(v
(j)
i , z(i)) = miny:`H

i (y)=d v(j)
i (y), then

V(j)
i = (M1(v(j), z(i)), . . . , Md(v(j), z(i)), . . . , ML(v(j), z(i))) . (50)

Note that v(j)
i,c (yc) is zero for all cliques c for which the assignment is correct: yc = y(i)

c .

Thus for an assignment y with d mistakes, at most dq v(j)
i,c (yc) will be non-zero, as each

label can appear in at most q cliques. By combining this fact with Eq. (49), we obtain:
∣∣∣v(j)

i (y)−w>∆fi(y)
∣∣∣ ≤ dqε, ∀i, ∀y : `H

i (y) = d. (51)

We conclude the proof by showing that V is a covering of FM under ρM : For each w,
pick V(j) ∈ V such that the corresponding v(j) ∈ V satisfies the condition in Eq. (49). We
must now bound:

ρM (V(j)
i ,FM (w, z(i))) = max

d

|miny:`H
i (y)=d v(j)

i (y)−miny:`H
i (y)=d w>∆fi(y)|

d
.

Fix any i. Let yv
d = arg miny:`H

i (y)=d v(j)
i (y) and yw

d = arg miny:`H
i (y)=d w>∆fi(y). Con-

sider the case where v(j)
i (yv

d) ≥ w>∆fi(yw
d) (the reverse case is analogous), we must prove

that:

v(j)
i (yv

d)−w>∆fi(yw
d) ≤ v(j)

i (yw
d)−w>∆fi(yw

d) ≤ dqε ; (52)

where the first step follows from definition of yv
d , since v(j)

i (yv
d) ≤ v(j)

i (yw
d). The last step

is a direct consequence of Eq. (51). Hence ρM (V(j)
i ,FM (w, z(i))) ≤ qε.

70

Max-Margin Markov Networks

Lemma B.11 (Numeric bound on multi-error-level covering number)

log2N∞(FM , ρM , ε,m) ≤ 36
R2

c ‖w‖2
2 q2

ε2
log2

(
1 + 2

⌈
4
Rc ‖w‖2 q

ε
+ 2

⌉
mNc(Vc − 1)

)
.

Proof: Substitute Theorem B.2 into Lemma B.10.

Theorem B.12 (Multi-label analog of Theorem B.3) Let fM and fγ
M (v) be as de-

fined above. Let γ1 > γ2 > . . . be a decreasing sequence of parameters, and pi be a sequence
of positive numbers such that

∑∞
i=1 pi = 1, then for all δ > 0, with probability of at least

1− δ over data:

EzfM (FM (w, z)) ≤ ESfγ
M (FM (w, z)) +

√
32
m

[
ln 4N∞(FM , ρM , γi, S) + ln

1
piδ

]

for all w and γ, where for each fixed γ, we use i to denote the smallest index s.t. γi ≤ γ.
Proof: Similar to the proof of Zhang’s Theorem 2 and Corollary 1 Zhang (2002) where
in Step 3 (derandomization) we substitute the vector-valued FM and the metric ρM .

Theorem 9.1 follows from above theorem with γi = Rc ‖w‖2 /2i and pi = 1/2i using an
argument identical to the proof of Theorem 6 in Zhang (2002).

Appendix C. Structured SMO: Proof of Theorem 10.1

We repeat the theorem here for convenience:

Theorem C.1 The KKT conditions in Eq. (39) and Eq. (40) are equivalent.

Eq. (39) ⇒ Eq. (40). Assume Eq. (39). Suppose, we have a violation of KKT1: for
some c,yc, α̂i,c(yc) = 0, but v̂i,c(yc) > v̂i,c(yc). Since α̂i,c(yc) = maxy∼yc αi(y) = 0, then
αi(y) = 0, ∀y ∼ yc. Hence, by Eq. (39), vi(y) ≤ vi(y), ∀y ∼ yc. But v̂i,c(yc) > v̂i,c(yc)
implies the opposite: there exists y ∼ yc such that vi(y) > v̂i,c(yc), which also implies
vi(y) > vi(y), a contradiction.

Now suppose we have a violation of KKT2: for some i,yc, α̂i,c(yc) > 0, but v̂i,c(yc) <
v̂i,c(yc). Then vi(y) < vi(y), ∀y ∼ yc. But α̂i,c(yc) > 0 implies there exists y ∼ yc such
that αi(y) > 0. For that y, by Eq. (39), vi(y) ≥ vi(y), a contradiction.

Eq. (40) ⇒ Eq. (39). Assume Eq. (40). Suppose we have a violation of KKT1: for
some y, αi(y) = 0, but vi(y) > vi(y). This means that y is the optimum of vi(·), hence
v̂i,c(yc) = vi(y) > vi(y) > v̂i,c(yc), ∀c ∈ T (i),yc ∼ y. But by Eq. (40), if v̂i,c(yc) > v̂i,c(yc),
then we cannot have α̂i,c(yc) = 0. Hence all the y-consistent αi max-marginals are positive
α̂i,c(yc) > 0, ∀c ∈ T (i), and it follows that all the y-consistent marginals µi are positive as

well µi,c(yc) > 0, ∀c ∈ T (i) (since sum upper-bounds max). But αi(y) =
∏

c∈T (i) µi,c(yc)∏
c∈S(i) µi,s(ys)

, so

if all the y-consistent marginals are positive, then αi(y) > 0, a contradiction.
Now suppose we have a violation of KKT2: for some y, αi(y) > 0, but vi(y) <

vi(y). Since αi(y) > 0, we know that all the y-consistent αi max-marginals are positive
α̂i,c(yc) > 0, ∀c ∈ T (i). By Eq. (40), v̂i,c(yc) ≥ v̂i,c(yc), ∀c ∈ T (i). Note that triv-
ially maxy′ vi(y′) = max(v̂i,c(y′c), v̂i,c(y′c)) for any clique c and clique assignment y′c. Since

71

Taskar, Guestrin, Chatalbashev, Koller

v̂i,c(yc) ≥ v̂i,c(yc), ∀c ∈ T (i), then maxy′ vi(y′) = v̂i,c(yc), , ∀c ∈ T (i). That is, v̂i,c(yc) is
the optimal value. We will show that vi(y) = v̂i,c(yc), a contradiction. To show that this,
we consider any two adjacent nodes in the tree T (i), cliques a and b, with a separator s,
and show that v̂i,a∪b(ya∪b) = v̂i,a(ya) = v̂i,b(yb). By chaining this equality from the root of
the tree to all the leaves, we get vi(y) = v̂i,c(yc) for any c.

We need to introduce some more notation to deal with the two parts of the tree induced
by cutting the edge between a and b. Let {A,B} be a partition of the nodes T (i) (cliques
of C(i)) resulting from removing the edge between a and b such that a ∈ A and b ∈ B. We
denote the two subsets of an assignment y as yA and yB (with overlap at ys). The value of
an assignment vi(y) can be decomposed into two parts: vi(y) = vi,A(yA) + vi,B(yB), where
vi,A(yA) and vi,B(yB) only count the contributions of their constituent cliques. Take any
maximizer, y(a) ∼ ya with vi(y(a)) = v̂i,a(ya) ≥ v̂i,a(ya) and any maximizer y(b) ∼ yb with
vi(y(b)) = v̂i,b(yb) ≥ v̂i,b(yb), which by definition agree with y on the intersection s. We
decompose the two associated values into the corresponding parts: vi(y(a)) = vi(y

(a)
A) +

vi(y
(a)
B) and vi(y(b)) = vi(y

(b)
A) + vi(y

(b)
B). We create a new assignment that combines the

best of the two: y(s) = y(b)
A ∪ y(a)

B . Note that vi(y(s)) = vi(y
(b)
A) + vi(y

(a)
B) = v̂i,s(ys), since

we essentially fixed the intersection s and maximized over the rest of the variables in A and
B separately. Now v̂i,a(ya) = v̂i,b(yb) ≥ v̂i,s(ys) since they are optimal as we said above.
Hence we have vi(y

(a)
A) + vi(y

(a)
B) = vi(y

(b)
A) + vi(y

(b)
B) ≥ vi(y

(b)
A) + vi(y

(a)
B) which implies

that vi(y
(a)
A) ≥ vi(y

(b)
A) and vi(y

(b)
B) ≥ vi(y

(a)
B). Now we create another assignment that

clamps the value of both a and b: y(a∪b) = y(a)
A ∪ y(b)

B . The value of this assignment is
optimal vi(y(a∪b)) = vi(y

(a)
A) + vi(y

(b)
B) = vi(y(a)) = vi(y(b)).

72

Max-Margin Markov Networks

References

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proc. ICML, 2004.

R.K Ahuja and J.B. Orlin. Inverse optimization, Part I: Linear programming and general
problem. Operations Research, 35:771–783, 2001.

Y. Altun, A. Smola, and T. Hofmann. Exponential families for conditional random fields.
In Proc. UAI, 2004.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector machines. In
Proc. ICML, 2003.

P. Bartlett, M. Collins, B. Taskar, and D. McAllester. Exponentiated gradient algorithms
for large-margin structured classification. In NIPS, 2004.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds.
Technical Report 638, Department of Statistics, U.C. Berkeley, 2003.

D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

D. Bertsimas and J. Tsitsiklis. Introduction to Linear Programming. Athena Scientific,
1997.

J. E. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical
Society B, 48, 1986.

C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK,
1995.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in computer vision. In PAMI, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. In ICCV, 1999a.

Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approximations.
In CVPR, 1999b.

D. Burton and Ph. L. Toint. On an instance of the inverse shortest paths problem. Mathe-
matical Programming, 53:45–61, 1992.

M. Collins. Parameter estimation for statistical parsing models: Theory and practice of
distribution-free methods. In IWPT, 2001.

M. Collins. Parameter estimation for statistical parsing models: Theory and practice of
distribution-free methods. In H. Bunt, J. Carroll, and G. Satta, editors, New Develop-
ments in Parsing Technology. Kluwer, 2004.

73

Taskar, Guestrin, Chatalbashev, Koller

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York, 1991.

R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Probabilistic Networks
and Expert Systems. Springer, New York, 1999.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Research, 2(5):265–292, 2001.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery.
Learning to extract symbolic knowledge from the world wide web. In Proc AAAI98, pages
509–516, 1998.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press, 2000.

M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

L. Devroye, L. Györfi, and G. Lugosi. Probabilistic theory of pattern recognition. Springer-
Verlag, New York, 1996.

Y. Freund and R.E. Schapire. Large margin classification using the perceptron algorithm.
In Computational Learing Theory, 1998.

T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: a fast and simple
learning procedure for support vector machine. In Proc. ICML, 1998.

M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

L. Getoor, E. Segal, B. Taskar, and D. Koller. Probabilistic models of text and link structure
for hypertext classification. In Proc. IJCAI01 Workshop on Text Learning: Beyond
Supervision, Seattle, Wash., 2001.

D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation
for binar images. J. R. Statist. Soc. B, 51, 1989.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms for
factored mdps. Journal of Artificial Intelligence Research, 19, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-
Verlag, New York, 2001.

C. Heuberger. Inverse combinatorial optimization: A survey on problems, methods, and
results. Journal of Combinatorial Optimization, 8, 2004.

Dorit S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing Company, 1997.

M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the ising model.
SIAM J. Comput., 22, 1993.

T. Joachims. Transductive inference for text classification using support vector machines. In
Proc. ICML99, pages 200–209. Morgan Kaufmann Publishers, San Francisco, US, 1999.

74

Max-Margin Markov Networks

R. Kassel. A Comparison of Approaches to On-line Handwritten Character Recognition.
PhD thesis, MIT Spoken Language Systems Group, 1995.

J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1–63, 1997.

J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and Markov random fields. In FOCS, 1999.

J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

V. Kolmogorov and R. Zabih. What energy functions can be minimized using graph cuts?
In PAMI, 2002.

S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies in natural
images. In NIPS, 2003.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In ICML, 2001.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: Representation and clique
selection. In ICML, 2004.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. J. Wiley,
New York, 1999.

A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive Bayes. In NIPS, 2001.

A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In Proc. ICML,
2000.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 1999.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco,
1988.

D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table extraction using conditional
random fields. In Proc. ACM SIGIR, 2003.

J. Platt. Using sparseness and analytic QP to speed training of support vector machines.
In NIPS, 1999.

R. B. Potts. Some generalized order-disorder transformations. Proc. Cambridge Phil. Soc.,
48, 1952.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 2001.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proc. HLT-
NAACL, 2003.

75

Taskar, Guestrin, Chatalbashev, Koller

J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk min-
imization over data-dependent hierarchies. IEEE Trans. on Information Theory, 44(5):
1926–1940, 1998.

C. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic conditional random fields: Fac-
torized probabilistic models for labeling and segmenting sequence data. In Proc. ICML,
2004.

A Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model Parameter
Estimation. Elsevier, Amsterdam, 1987.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational data.
In UAI, 2002.

B. Taskar, M.F. Wong, P. Abbeel, and D. Koller. Link prediction in relational data. In
Proc. NIPS, 2003.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning
for interdependent and structured output spaces. In Twenty-first international conference
on Machine learning, 2004.

L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, New
York, 1995.

A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function predic-
tion from protein-protein interaction networksh. Nature Biotechnology, 6, 2003.

O. Veksler. Efficient Graph-Based Energy Minimization Methods in Computer Vision. PhD
thesis, Cornell University, 1999.

G. Wahba, C. Gu, Y. Wang, and R. Chappell. Soft classification, a.k.a. risk estimation,
via penalized log likelihood and smoothing spline analysis of variance. In Computational
Learning Theory and Natural Learning Systems, 1993.

M. Wainwright, T. Jaakkola, and A. Willsky. Map estimation via agreement on (hyper)trees:
Message-passing and linear programming approaches. In Proc. Allerton Conference on
Communication, Control and Computing, 2002.

M. Wainwright and M. I. Jordan. Variational inference in graphical models: The view from
the marginal polytope. In Proc. Allerton Conference on Communication, Control and
Computing, 2003.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-
TR-98-04, Department of Computer Science, Royal Holloway, University of London, 1998.

Y. Yang, S. Slattery, and R. Ghani. A study of approaches to hypertext categorization.
Journal of Intelligent Information Systems, 18(2), 2002.

76

Max-Margin Markov Networks

J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. In NIPS, 2000.

J. Zhang and Z. Ma. A network flow method for solving inverse combinatorial optimization
problems. Optimization, 37:59–72, 1996.

T. Zhang. Covering number bounds of certain regularized linear function classes. Journal
of Machine Learning Research, 2:527–550, 2002.

J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. In Proc.
NIPS, 2001.

77

