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Abstract

We present a technique to compress data de�ned

as functions in high dimensional spaces. The ob-

jects in the spaces are represented by manifolds.

Traditionally, data compression methods have been

applied to functions de�ned on simple manifolds

such as the real line (e.g., audio), a rectangle (e.g.,

images), or a three{dimensional open{ended box

(e.g., video). However, many conventional data

compression technologies, unmodi�ed, are not suit-

able for compression of data de�ned on more com-

plex geometries such as spheres, general polytopes,

etc. Accordingly, this paper seeks to provide a

transform compression technique for addressing 2{

manifold domains using second generation wavelet

transforms and zerotree coding.

1. Introduction

Many of the current topics of computational inter-

est involve the representation of and the compu-

tation on continuous spaces. Obvious examples are

images, video, and audio. In these cases data is dis-

tributed over and attached to a continuous rather

than a discrete space. A photograph is well mod-

eled as a re
ectance over a rectangle.

The spaces to which data (the functions of interest)

are attached are not always exactly the familiar Eu-

clidean 1, 2, or 3 dimensional spaces. For example,

the photograph is not de�ned on the plane (Eu-

clidean 2{space) but rather on a rectangular subset

of it. And its boundary, while locally Euclidean, is

a closed curve. Such examples lead one naturally

to the notion of a manifold | a space which is lo-

cally Euclidean but which may have a boundary

(yet another manifold) and which may close back

on itself (e.g., the sphere). In many applications,

the primary space of interest is fairly simple, but

its boundary is less simple and the locus of inter-

esting features within it is less simple still.

Another interesting notion is that of subdividing a

manifold. By subdividing a manifold into a larger

number of smaller manifolds (with perhaps a com-

plex boundary | another manifold | between

them) a function attached to the manifold can

be described subdivision{by{subdivision with the

function on each particular subdivision being much

easier to describe. In addition, we can describe a

manifold as a collection of Euclidean balls (called

cells), each with a spherical boundary, and with

the collection joined together by sharing patches of

their spherical boundaries. Such a description is

conventionally called a regular CW complex and is

an abstract description of the geometry of a mani-

fold.

We can analyze the description of the functions de-

�ned on manifolds by considering the related notion

of a multi{resolution description of a function. By

going to several levels of sub{division, we can use

each level as an approximation to the function being

described. If we are careful, we can avoid repeating

any information about the coarser levels, so that

we get an increasingly detailed description of the

function.

One way of doing this is by locally representing

the function as a piecewise polynomial. A tech-

nique for doing this is the subject of \second gen-

eration wavelets" [7]. Another technique that has

been used with great success is \multi{pole," where

functions are represented by the ratios of polyno-

mials.

Our computer representations are necessarily

�nitely generated, so we are always talking about

representations that approximate the real world. Of

course, we need to measure and control the degree

of approximation appropriate to our speci�c appli-

cation. A good approximation schemes will not

only have appropriate and measurable �delity, but

will also be economical of both computational and

memory resources. Such approximations are often

called compression schemes, because they greatly

reduce storage requirements, and often also enable

a great reduction in the computation required.

In this paper we present a technique to compress

functions de�ned on high dimensional manifolds.

Our approach combines discrete wavelet transforms

with zerotree compression, building on ideas from

three previous developments: the lifting scheme,

spherical wavelets, and embedded zerotree coding



methods. x2 of the paper brie
y describes the sec-

ond generation wavelet transforms and the lifting

scheme, as formulated in [8]. x3 reviews our im-

plementation of the zerotree method for general 2{

manifolds described in detail in [3] and [5]. x4 re-

ports the results of applying our method to data de-

�ned on the surface of 3D objects. The function we

used is a topographic elevation data computed on

the surface of the Earth (a 2{sphere) from a satel-

lite. The geometries considered include a sphere

and the surface of a 3D model of a cat.

2. Function Representation with Wavelets

2.1. Wavelets on manifolds

The transform compression of a function involves

three steps: a) transformation of the function, b)

quantization, and c) entropy encoding. During the

�rst step the function is subjected to a reversible

linear transformation in order to concentrate most

of its entropy (i.e., information) into a low dimen-

sional subspace, thus simplifying its description. A

wide variety of transformation techniques are cur-

rently in use, of which we will use wavelets.

Wavelets supply a basis for the functions we are

representing. They decorrelate the data because

in some way they resemble the data we want to

represent. They are local in space and frequency.

Typically they have compact support (localization

in space), are smooth (decay towards high frequen-

cies), and have vanishing moments (decay towards

low frequencies). Finally, the wavelet representa-

tion of a data set can be found quickly. The fast

decorrelation power of wavelets is the key to com-

pression applications.

We can not use easily traditional wavelets for the

transformation of data de�ned on complex mani-

folds. They are built using translation and dila-

tion of a \mother wavelet" | a process that only

makes sense in a Euclidean space. Instead, we will

use the \second generation wavelets" introduced in

[8] for building wavelets on a sphere. The basic

philosophy behind second generation wavelets is to

build wavelets with all desirable properties (basis,

localization, fast transform) adapted to much more

general settings than the real line, e.g., wavelets on

manifolds. Such adaptations will depend on and

vary with the local and global topological and geo-

metric properties of the manifold.The main di�er-

ence with the classical wavelets is that the �lter co-

e�cients of second generation wavelets are not the

same throughout, but can change locally to re
ect

the changing (non{translation invariant) nature of

the manifold.

2.2. The lifting scheme

In order to construct second generation wavelets we

need to use a technique di�erent than the Fourier

transform which uses translation and dilation as al-

gebraic operations. Sweldens [8] introduced one

such technique called \the lifting scheme." A

canonical case of lifting consists of three stages,

which are referred to as: split, predict, and up-

date. Given an abstract data set �0, the �rst stage
of the method splits the data into two smaller sub-

sets �
�1 and 


�1. 
�1 is referred to as the wavelet

subset. The simplest way to do the split is by di-

viding the \odd" and the \even" indexed points

of the data set into two disjoint sets. In a second

stage, the subset �
�1 is used to predict the 


�1

subset based on the correlation present in the orig-

inal data. 

�1 is then replaced with the di�erence

between itself and its predicted value. The wavelet

subset encodes how much the data deviates from

the model on which the prediction operator P was

built. Finally the data subset �
�1 is updated so

that some global properties of the original data set

is maintained in the smaller versions �
�j (e.g. same

overall brightness of an image).

At this moment the original data can be replaced

with the smaller set �
�1 and the wavelet set 


�1.

This scheme can now be iterated. After n steps the

original data have been replaced with the wavelet

representation (�
�n; 
�n; :::; 
�1). Given that the

wavelet sets encode the di�erence with some pre-

dicted value based on a correlation model, this is

likely to give a more compact representation. An

important property of lifting is that once the for-

ward transform is built, one can immediately derive

the inverse.

2.3. High dimensional wavelets

Using the lifting scheme we can construct wavelets

on, e.g., the surface of any 3D object. In this paper

we will use a 3D model of a cat as an illustration.

The base complex was obtained via 3D scanning

of a plastic model with a Cyberware scanner at the

Graphics Lab in the Computer Science Department

of Stanford University. The resulting manifold is a

3D triangular mesh.

Figure 1 illustrates the base manifold for the cat

and �gure 2 is the result (geometrical) of the �rst

subdivision step. We can use di�erent subdivision

methods. For 2D manifolds, midpoint subdivision

(common in graphics) results in the most regular

results and was used throughout this paper. Other

subdivision schemes are possible.

Each vertex of the model has a data value (func-

tion value) attached to it. The \even" vertices used

by the lifting scheme are simply the ones from the

coarser (i.e., pre{subdivision) level while the \odds"



Figure 1: Cat | base model mesh

Figure 2: Cat | one subdivision level mesh

are the remaining ones.

There are a number of possibilities for the predic-

tion operator. The simplest one is to take the mean

of the two endpoint vertices for each \odd" mid-

point generated. If we want however to account for,

e.g. the sharp edges around the cat ears, we need

to use a larger stencil. Here we use the \butter-


y" scheme [2], where the odd values are predicted

by a weighted average of 8 neighboring even values

(depicted in Figure 3) as follows:

m = 1=2(v1+v2)+1=8(f1+f2)�1=16(e1+e2+e3+e4)
(1)

The actual wavelets and scaling functions can now

be constructed by iterating the prediction opera-

tor. This process de�nes the scaling function on a

dense subset of the surface. This function is then

extended to the whole surface by continuity. The

wavelets are simple linear combinations of the scal-

ing functions. The update operator is a result of

the condition of preservation of �rst order vanishing

moments. The process is continued until appropri-

ate coverage of the data set is achieved.

Figure 3: Odd vertex (m) surrounded by even neigh-

bors (v1; v2; f1; f2; e1; e2; e3; e4)

3. Compression of the Wavelet Coe�cients

3.1. Quantization of the coe�cients

Once we generate the wavelet representation of the

function data, we would like to take advantage of

its decorellation properties and build a compressed

description. As a �rst step, the coe�cients of the

transformed function are quantized, i.e., scaled and

truncated appropriately. As it is shown in [1], the

contrast sensitivity curve for the human visual sys-

tem is best approximated by using the L1 norm and

its associated scaling. We have experimented with

using di�erent scaling models the result of which

can be found in [4]. During decompression the

wavelets are descaled by the inverse of the scaling

factor used during compression.

Quantization is performed, after scaling, by thresh-

olding. The minimum quantization is determined

by the encoder and a maximum quantization by

the decoder. The coe�cients are coded out bit

plane by bit plane for descending n. This results

in a progressive, embedded approximation in which

the more important bits appear earlier in the data

stream.

3.2. Entropy encoding | construction of the

G{tree

The remaining coe�cients after the quantization

step are encoded using a suitable entropy encoding

technique. Not all possible values of the coe�cients

are equally likely nor are all sequences of coe�cients

equally likely. Entropy encoding exploits statistics

about the data to use shorter codes for the more

frequent situations and longer codes for the less fre-

quent situations. In particular, the transformation

and quantization steps produce many zero values so

that a major task of an entropy compression tech-

nique is to code the geometric location of these ze-

ros. Most of the bits produced will be leading zeros,

zeros which precede the most signi�cant bit of the

coe�cient. Coe�cients whose bit is signi�cant (not

a leading zero) are so much in the minority that the

problem of designating which coe�cients are signif-

icant far outweighs the problem of the value of those



coe�cients. The locations of the signi�cant coe�-

cients are heavily correlated by location and scale

and are compactly encoded by a quadtree{like tech-

nique known as zerotrees [6].

Zerotrees are based on the observation that insignif-

icant coe�cients are typically clustered spatially

and strongly correlated from between subdivision

levels at the same spatial location. This tree struc-

ture has the property that one coe�cient is below

another if the former represents a subdivision re-

�nement of the latter. The zerotree hypothesis sug-

gests that if a coe�cient is insigni�cant then all

coe�cients below it are also insigni�cant. If the

tree is constructed in a reasonable way the zerotree

hypothesis will be true with very high probability.

Thus, trees for which the hypothesis is true can be

coded with very short codewords while long code-

words can be used in the rare cases where the hy-

pothesis is false.

The zerotree algorithm was introduced for e�ective

and fast embedded (progressive) compression of im-

ages. In our context that algorithm processes the

wavelet coe�cients generated from the transform

analysis part based on signi�cance with respect to

given threshold. The cells (triangles, edges and ver-

tices) of the tessellation of the 2{manifold must be

arranged into a tree, which we call a G{tree. Possi-

ble constructions for G{trees are described in detail

in [5]. The original data and the coe�cients of its

wavelet transform are attached to a subset of the

nodes of the G{tree.

The coded �le begins with a preamble that de-

tails the base complex, the subdivision method, the

number of subdivision levels, and the scaling of the

coe�cients. The preamble information is su�cient

to reconstruct the G{tree and the decoder initial-

izes by reconstructing the tree from the preamble.

Using a modi�ed zerotree scheme, the G{tree is pro-

cessed threshold by descending threshold, encod-

ing bits indicative of signi�cant G{tree nodes and

the corresponding coe�cient bits. The decoding

algorithm inputs bits according to the modi�ed ze-

rotree scheme into the G{tree structure, re�ning the

wavelet coe�cients. The canonical ordering of the

bits is similarly generated algorithmically by both

the encoder and the decoder. De{scaling and in-

verse second generation wavelets complete the syn-

thesis of the original function.

4. Simulation Results and Applications

The simulations below were coded in C++ on a

UNIX platform (SGI Indigo 2 Impact 10000). The

user can interactively select the type of wavelets to

be used, the base complex , the number of levels

of subdivision, the function to be compressed, and

the desired compression.

For the Cat example we compressed the topo-

graphic function that is the elevation (with respect

to sea level) of the Earth. This function is initially

approximated by the ETOPO10 data set which

samples the Earth every 10 arc minutes (1.5 million

points approximately 17 km. apart). The resulting

data set is mapped on the surface of the cat by a

radial projection. The center of the sphere of the

projection is located at the mass center of the cat

and the data value for each point on the surface of

the cat is calculated by intersecting the ray from the

center to the point with the sphere wrapped around.

The topographic elevation at each vertex was then

determined by interpolation of the ETOPO10 data

set. The result is color coded based on that eleva-

tion.

When new points are generated via subdivision

their function values are calculated with the same

procedure. Their geometrical location is computed

using the butter
y scheme over the spatial (x; y; z)
coordinates of the coarser level vertices. The ele-

vation data is wavelet transformed using butter
y

lifting and compressed at various ratios.

The base complex of the cat has 366 vertices, 728

triangles and 1092 edges. After 5 levels of sub-

division (the maximum allowed by the hardware)

we generate 372,738 vertices (wavelet coe�cients)

that cover about 1/4 of the available data points in

ETOPO10 (we also have 745,472 triangular faces

and 1,118,208 edges).

For the Earth example we use the same function

mapped on the surface of a sphere approximat-

ing the Earth. The base manifold is an icosahe-

dron (12 vertices, 20 triangular faces and 30 edges)

that is subdivided using midpoint subdivision. Ge-

ometrically the newly generated points are pro-

jected up on a sphere using geodetic projection. We

use the butter
y scheme as a prediction operator.

The icosahedron is subdivided 8 times which re-

sults in 655,362 vertices (covering about half of the

ETOPO10 data points).

Figure 4 summarizes the results for the peak signal{

to{noise ratio (PSNR) for the two examples above

for several di�erent compression ratios.Each row in

the table corresponds to the number of bitplanes

read during the decompression. Every coe�cient is

represented with 10 bits. In all cases the compres-

sion subroutine writes out, bitplane by bitplane, the

signi�cant bits associated with all 10 bits for all the

coe�cients. The �rst row in the table corresponds

to the case when during decompression all 10 bit-

planes of signi�cant coe�cients are read in. At the

next row we read only 9 bitplanes (the most signif-

icant ones) for all coe�cients, etc. Even when we



Figure 4: PSNR data for di�erent compression ratios.

Figure 5: Signi�cance Bits Allocation.

read in all the bitplanes encoded, there is still a 3:1

compression due to the zerotree structure.

The number of signi�cant bits increase exponen-

tially with the number of bitplanes retained in

the representation of the coe�cients. For the Cat

example, the most signi�cant bitplane (bitplane

10) has only 1871 bits that are signi�cant for all

372,738 coe�cients. In contrast, the least signif-

icant bitplane (bitplane 1) has 369,270 signi�cant

bits. The curve in Figure 5 illustrates the relation-

ship between number of signi�cant bits and num-

ber of bitplanes used for coe�cient representation.

That curve shows that if we select the number of

bitplanes for decompression such that we guaran-

tee adequate PSNR, we can achieve a signi�cant

amount of compression. In fact with bitplane re-

duction we can achieve close to 100:1 compression

with the PSNR being in the virtually lossless range.

Visually Figures 6 and 7 illustrate the quality of

the compression. The results look exactly as what

we would expect for good compression given the

resolution that we are achieving.

Applications of our method lie in the interactive

multiresolution viewing, processing and editing; ef-

�cient storage and rapid transmission of complex

Figure 6: Cat manifold with ETOPO10 data mapped.

Figure 7: Earth manifold with ETOPO10 data

mapped.

data sets. Typical data sets include earth to-

pography, satellite images, and complex surface

parametrizations.
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