
Copyright 1999 IEEE, Proc. of the International Conference on Image Processing, ICIP'99, Kobe, 1999.

"© 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE."

Low Cost Video Compression using Fast, Modified Z-Coding of Wavelet Pyramids

William Lynch, Krasimir Kolarov, Bill Arrighi
Interval Research Corporation, 1801-C Page Mill Road, Palo Alto, CA 94304

(lynch@interval.com, kolarov@interval.com)

Abstract

This paper describes a fast, low-complexity, entropy
efficient video coder for wavelet pyramids. This coder
approaches the entropy-limited coding rate of video
wavelet pyramids, is fast in both hardware and software
implementations, and has low complexity (no multiplies)
for use in ASICs. It consists of a modified Z-coder used to
code the zero/non-zero significance function and Huffman
coding for the non-zero coefficients themselves. Adaptation
is not required. There is a strong speed-memory trade-off
for the Huffman tables allowing the coder to be customized
to a variety of platform parameters.

1. Introduction

An image transform codec consists of three steps: 1) a
reversible transform, often linear, of the pixels for the
purpose of decorrelation, 2) quantization of the transform
values, and 3) entropy coding of the quantized transform
coefficients. This paper presents an entropy codec which is
fast, efficient in silicon area, coding-wise efficient, and
practical when the transform is a wavelet pyramid [4]. We
will focus on natural scene images quantized to match the
human visual system (HVS).

We will begin by discussing the statistical characteristics of
quantized wavelet pyramids derived from NTSC video
quantized to be viewed under standard conditions. These
video pyramids have substantial runs of zeros and also
substantial runs of non-zeros.

We will develop a modification of the Z-codec [1] and
explore an application of it to code zero vs. non-zero in
quantized video pyramids. Z-codecs have the advantage of
a simple (no multiplies) and fast implementation combined
with coding performance approximating that of an
arithmetic codec (see [6]). Our Z-coder implementation
approximates adaptive binary arithmetic coder using dyadic
broken line approximation. It has a very short "fastpath"
and is attractive for application to wavelet significance
function.
The non-zero coefficients of the pyramid are coded
(coefficient-by-coefficient) reasonably efficiently with
standard Huffman coding. We will examine the statistics
of this situation and present the results.

2. Wavelet pyramid characteristics

2.1 Wavelet magnitude distribution

The typical wavelet pyramid acts as a filterbank separating
the image into subbands each covering approximately one
octave (factor of 2). At each octave typically there are
three subbands corresponding to horizontal, vertical, and
checkerboard features. Pyramids are typically three to five
levels deep, covering the same number of octaves.

If the original image is at all smooth (images typically have
a Hölder coefficient of 2/3 meaning roughly that the image
has 2/3 of a derivative) the magnitude of the wavelet
coefficients decreases rapidly. If the wavelet coefficients
are arranged in descending order of absolute value, those
absolute values will be seen to decrease as N-s where N is
the position in the sequence and s is the smoothness of the
image (see [2]).

2.2 HVC quantized wavelet pyramids

The wavelet pyramid is further sharpened if the wavelet
pyramid is scaled to match the characteristics of the human
visual system (HVS). We use fewer bits in the chroma
subbands.

We think of quantization as a process of assigning scaling
factors to each subband, multiplying each coefficient in a
subband by the corresponding scaling factor, and fixing the
scaled coefficient to an integer. The HVS contrast
sensitivity function (CSF) peaks (1 part in 28) at 4
cycles/degree of viewing angle, reducing to not noticeable
(0) at 40 cycles/°. The CSF can be found in [7].

In a 300 pixel/in image viewed from a distance of 12 in, a
pixel pair subtends 1/(150x12) of a radian or about 1/30 of
a degree. The CSV justifies reducing the finest scale
wavelets by a factor of 26 (a shift right of 6) with respect to
maximum contrast sensitivity to account for the reduced
visibility of this fine detail. The 7th bit of the fourth level
wavelet (at 3.75 cycles/°) has about equivalent importance
to the first bit of the finest scale wavelet (at 30 cycles/°).
Such shifting by subband should bring bits of the same
relative importance into the same bitplane, enabling
progressive coding by bitplane scanning.

Copyright 1999 IEEE, Proc. of the International Conference on Image Processing, ICIP'99, Kobe, 1999.

Right shifts implement dyadic quantization. Quantization
shifts align coefficient bits of equal importance into the
same bit planes. That also facilitates progressive coding.

2.3 NTSC video pyramids

We consider wavelet pyramids drawn from interlaced video
consisting of fields of 240x640 pixels. A frame consists of
two interlaced fields and is 480x640 pixels. A standard
viewing condition is to view such video from six picture
heights away ([3]) so that each pixel subtends 1/(480x6)
radians or about (1/48)°. There are therefore 24 pixel pairs
(cycles)/° in both the horizontal and vertical directions.

After forming the wavelet pyramid, the wavelet coefficients
are scaled (quantized) consistent with the viewing
conditions above and the CSF. Each block has the
coefficients arranged by subband, with the coarsest
subbands first and the finest subband last. Each subband is
scanned out video-wise, by row, left to right, from the top
row to the bottom row. Thus the magnitude of the
coefficients decrease significantly through a block with the
significant coefficients clustered at the beginning of the
block and the insignificant ones clustered at the end of the
block.

2.4 The significance function run statistics

The video wavelet pyramid coefficients, by block, were
quantized to about 0.5 bits/pixel. About 85% of the
wavelet coefficients are zero. The significance value of a
coefficient is most likely to be the significance value of the
preceding coefficient. Using this rule, 95% of the
significance values are correctly predicted. There is an
asymmetry in that a significant coefficient preceded by an
insignificant coefficient is much more likely than an
insignificant coefficient preceded by a significant one. An
isolated significant coefficient embedded in a (fine
subband) run of insignificant ones is much more likely than
an isolated insignificant one in a (coarse subband) of
significant ones.

Extending the preceding context to more than just the
preceding coefficient does not qualitatively change the
prediction but it does affect the probability of the
significance of the next coefficient. Initially we thought
that a context of 9 coefficients would be useful since this
would allow better prediction due to vertical adjacency. To
our surprise, the “knee” of this effect was after 3 bits so
that just 8 context states are practical.
The resulting statistics are remarkably stable over a wide
range of clips. As a result we have eliminated the
adaptation of the probability tables and used fixed
probabilities.

2.5 Non-Zero coefficient statistics

The histogram of the non-zero coefficients is very spread
out. Even the histogram of the binary exponent,

log2 coeff2 7 , is very spread out, with the largest

probability being about 1/8. There is also surprisingly little
correlation between one coefficient and the next.

3. Requirements – a fast, low complexity
algorithm for ASICs

We are interested in fast algorithms implementable in a
small amount of silicon area, even at some modest cost in
coding efficiency. With only 15% of the coefficients
requiring coding of the coefficient value, speed and
efficiency in identifying that minority of values via the
significance function is clearly the most important problem.

The average run of correct prediction of significance values
is about 20, so efficient run coding is important.
Additionally, the importance of the 3 bits of context and the
asymmetry strongly indicates the use of an arithmetic
coder.

However, the requirement for a fast algorithm
implementable in minimal silicon area demands that
something other than a traditional arithmetic coder be used.
In particular, multiplies are to be avoided as they are very
expensive in silicon area. The chosen algorithm should
have a very good “fast path” for the individual elements of
the runs.

The fact that the significance function has only two values
is a specialization not taken advantage of by arithmetic
coders in general.

4. A modified Z-coder

The Z-coder, described in [1], can be viewed as a coder for
a binary symbol set which approximates an arithmetic
coder. As described in [1] it approximates the coding curve
by a dyadic broken line. This enables a binary coder with a
short "fastpath" and without requiring multiplies. These
properties make it an attractive candidate for coding the
wavelet coefficient significance function.

Familiarity with [1] is assumed in the following
description. Recall that the preceding context (ctx) predicts

with probabilityP ctx P1 6 1 6 MPS the next symbol. The

bit predicted is referred to as MPS (Most Probable Symbol)
whereas the other choice (there are only two symbols in the
set) is referred to as LPS (Least Probable Symbol). We

always have P ctx P ctx P1 6 1 6 1 6t t � 1
2 1 LPS . In

Copyright 1999 IEEE, Proc. of the International Conference on Image Processing, ICIP'99, Kobe, 1999.

[1] ' is given implicitly, as a function of P LPS1 6 , as

P e eLPS1 6 1 6 1 6 1 6 1 6 � � � � �' ' ' '1
2

1
2

1
2

1
2log log (4.0)

Figure 1. ' vs. P(LPS)

The graph of P is in figure 1. We always have 0 1
2� d'

(n. b., sure symbols are eliminated).

As in an arithmetic coder, the code word C is a real binary
number with a normalized lower bound A . The split point
Z computation is given in equation (4.3).

0 1d d �A C (4.1)
A� 1

2 (4.2)

A Z A� � �' 1 (4.3)

In other words a split point Z in (A, 1) is determined by the
probability

prob(MPS|context) = 1-prob(LPS |context)

C in [A, Z) codes MPS while C in [Z, 1) codes LPS. If we
wish to code an MPS we arrange to output code bits so that
Z Cd �1; we have A C Zd � to code an LPS.

On encode we start not knowing any of the bits of C .
However, if the lead (i.e., 2-1) bit ofZ and ofA are
identical then we know that the lead bit of C must agree.
So we shift (normalize) the binary point of everything one
place to the right and subsequently ignore bits to the left of
the binary point as A C, and Z must agree there.

The normalizing shift ensures that (4.2) holds at the
beginning of the next symbol. The MPS case is relatively
easy since the normalizing shifts ensure that
A Z Cnew old new d �1.

A head of C is the codeword for a head of the input
symbol string. It is dyadically normalized into the interval
[0, ½), becoming the lower bound A . A becomes
renormalized C and the process is repeated for the next
symbol (renormalization being a multiplication by 2).

The LPS case is more delicate. Since the correct C is
completely unknown right of the binary point, we must
perform binary point shifts (bits shifted out of A go to the
code string) until we are assured that the C that appears in
the decoder will be not less than the A that appears in the
decoder. Since C is completely unknown at encode time
the only way to ensure this is to shift until A 0. In Z-
coding, the LPS sharp invariants must be maintained, since
not sharp implies coder inefficiency. Here C is in [A, 1), A
is in [0, ½) and Z is in (A, 1).

At this point there are two possible cases. If the shifted out
part of Z does not match the shifted out part of A then
we are assured that Z C A! as it is recomputed in the
decoder and an LPS will be decoded. Otherwise, the
shifted out part of C equals the shifted out part of Z with
the subsequent bits of C unknown. It is possible that
subsequent bits of C will match or exceed Z , resulting in
the incorrect decode of an MPS. To prevent this case we
must translate A up by 1� Z , making use of the C �1
property to keep C Z� . Now (4.2) may not be satisfied
so we need more normalizing shifts to finally ensure (4.2)
and (4.1).

At the end of LPS encode, if C is completely unknown that
implies normalization until A=0 and Z>A as computed by
the decoder. It also means that extra normalization shifts
may be required.

5. Z-encoder and Z-decoder

The resulting algorithms are given in Figure 2, as close to
the style of [1] as possible.

Modified Z-encoder
Z:=A+' ;
if (bit = MPS and Z<½) { A := Z; return ; }
else {
 if (Z>½) { Z := Z/2+¼; }
 if (bit = LPS) {
 Zgtr := false;
 while (A>0) {
 if (A<½ and not Z<½ and Zgtr =false) { Zgtr := true;}
 emit(floor(2A)); A := mod(2A, 1); Z := mod(2Z, 1); }
 if (not Zgtr) {
 A := 1-Z;
 while (not A<½) { emit(0); A := mod(2A, 1); } } }
 else {
 A := Z;
 while (A>½) { emit (1); A := mod(2A, 1); } } }

Copyright 1999 IEEE, Proc. of the International Conference on Image Processing, ICIP'99, Kobe, 1999.

Fast modified Z-decoder
Z:=A+' ;
if (Z<F) { A := Z; bit := MPS; }
else {
 if (Z>½) { Z := Z/2+¼; }
 if (not Z>C) { bit := MPS; A := Z; }
 else { bit := LPS;
 Zgtr := false;
 while (A>0) {
 if (A<½ and not Z<½ and Zgtr =false) { Zgtr := true;}
 A := mod(2A, 1); C := mod(2C, 1); Z := mod(2Z, 1); }
 if (not Zgtr) { A := 1-Z; } } }
 while (A>½) { A := mod(2A, 1); C := mod(2C, 1); }
F := min(C, ½); }

Figure 2. Z-coder Algorithm

6. Huffman coding the non-zero coefficients

6.1 Encoding

The distribution of the values of the non-zero coefficients
demonstrates the preponderance of small values. We also
know that the bits after the first few have little effect on the
distribution and can encode themselves (self-encode). The
sign (non-zeros only) also has nearly a 50-50 probability
and can efficiently self-encode. Encoding can therefore be
done efficiently by table look-up.

We begin by taking the absolute value of the coefficient
and self-encoding the sign. We then take the last few bits
(e.g., bits 0-7) of the coefficient, test to see if the remainder
bits (8-N) are only leading zeros, and if so use the last few
bits to index into a table E1 (28 entries). The table will
contain the Huffman code and the number of bits in the
Huffman code. The Huffman codes can be prepared by
lumping all values greater than 255, making coding room
for the larger values.

If bits 8-N are not zero but bits 14-N are zero, bits 6-13 are
used to index into another table E2. It will also contain the
Huffman code and its length. The codes for this table can
be prepared by separating the lumps described in the
previous paragraph. Appropriate coding room is left for
even larger values (after emitting the Huffman code for
bits 6-13, the self-coded bits 0-5 are emitted).

This process may be iterated as required. The sizes of the
tables and the number of levels can be varied in the obvious
ways.

6.2 Decoding

The decoder is a bit more complicated. The first step is to
input the sign bit. Then the next 8 bits are used to index
into a table D1 (without removing them from the input

string). There is a high probability that the next Huffman
code will be a head of this index, but this is not guaranteed.
A flag in the table will indicate which case holds.

In the first, high probability, (terminal entry) case table D1
needs to contain the decoded bits (8 of them in our
example) and the number of bits in the Huffman code. The
indicated number of bits are removed from the input string.
Table D1 also needs a count of the number of self-coded
bits that follow and these bits must be removed from the
input string and composed with the decoded value and the
sign to recover the coefficient.

In the second case, the table D1 entry must contain the
location and log2 length (k) of a follow-up table Dfi. The 8
bits used to index D1 are but a head of the full Huffman
code and must be removed from the input string. The next
k bits are used to index Dfi. The process is repeated until a
terminal table entry is located. The “k”s may vary from
entry to entry. Optimization of these values will trade off
table space for execution time.

7. Preliminary results

This section presents the results of some initial experiments
we performed using the algorithm described above.

Figure 3. Component wavelet pyramid

We applied our WZD coder on NTSC wavelet video. The
input is a D2 digitization of NTSC video where the
chroma1 and chroma2 are quadrature modulated on a 3.58
MHz sub-carrier. WZD uses a composite 2-6 wavelet
pyramid described in [3] plus two levels of Haar pyramid
in the time direction (4 field GOP). The dyadic
quantization coefficients are powers of 2. The resulting
composite pyramid is depicted in Figure 3.

The algorithm was tested on several NTSC clips which
vary in content and origin. The first one is a cable
broadcast of an interview ("talking heads") without much
motion. The second clip is a clean, high quality sequence
from a laserdisk with a panning motion of a fence with
vertical bars close together and motion of cars on the
background. The next clip is a DSS (satellite) recording of
a basketball game (already MPEG2 compressed
/decompressed) with a lot of motion and detailed crowd
and field. The last clip is a high quality sequence from a
laserdisk with a zooming motion on a bridge with a number

Copyright 1999 IEEE, Proc. of the International Conference on Image Processing, ICIP'99, Kobe, 1999.

of diagonal cables. The size of the frames is 720x486
(standard NTSC) in .tga (targa) format.

The probability values that were used for this experiment
are as follows:

P0=0.0107696; P1=0.2924747; P2=0.5; P3=0.1588221;

P4=0. 2924747; P5=0. 2924747; P6=0.5; P7=0. 1588221

We have used 3 bits of context and the subscripts above
denote the different contexts. We chose this because return
diminish after a few bits of context and we can achieve
95% prediction with 3 bits of context.

In the results described below, we used a very crude
scheme for non-zero coefficients coding. We only code off
leading zeroes, the sign and the other bits are coded as
themselves. Significance bits in the interval (0, 9) are coded
in 9 bits, those in (8, 14) in 23 bits and those in (13,19) in
37 bits. Most non-zeros are coded in 9 bits.

WZD
1.0 bpp

MPEG2
1.0 bpp

WZD
0.5 bpp

MPEG2
0.5 bpp

TalkShow 35.22 dB 37.03 dB 33.90 dB 34.85 dB

Fence 30.33 dB 29.62 dB 26.12 dB 26.00 dB

Basketball 27.37 dB 31.69 dB 24.69 dB 28.42 dB

Bridge 39.31 dB 39.35 dB 36.14 dB 37.34 dB

Figure 4. Our z-coder vs. an MPEG2 coder.

Figure 4 illustrates the PSNR results for two bit rates
(corresponding to 11 Mbs and 5 Mbs resp.) for the four
video sequences. For comparison we have used high
quality commercially available MPEG2 codec from
PixelTools. The MPEG2 was generated using the best
possible settings for high-quality compression. We used 15
frames in a GOP (group of pictures), 3 frames between
anchor frames, 29.97 frame rate, 4:2:0 chroma format,
medium search range double precision DCT prediction,
stuffing enabled, motion estimation sub-sampling by one.
The sequences were compressed at 1.0 bpp and 0.5 bpp.

We have also compared our z-coder (with identity Huffman
tables), with an arithmetic coder that we built (see [3]).
That algorithm used a separate arithmetic coder for each
bitplane. The transform part for both the z-coder and the
arithmetic coder is the same 2-6 wavelet pyramid (see [4]
and [5]). This arithmetic coder is on par with MPEG2 in a
number of sequences in terms of PSNR (signal-to-noise
ratio - mean-square error).

The only sequence that MPEG2 achieves statistically better
PSNR is the basketball sequence in which MPEG can take
advantage of the significant amount of (expensive) motion
estimation characteristic for that method. Also remember
that this sequence was a recording from DSS, i.e. it was

already MPEG compressed and decompressed before being
tested with the coders.

We should also mention that perceptually the quality of
MPEG2 vs. arithmetic vs. z-coder is very similar. For the
fence sequence in particular the quality of MPEG2
compressed video deteriorates significantly for lower
bitrates, even though the PSNR is comparable to our coder.
On the other side even though the basketball sequence
presents an advantage for MPEG in terms of PSNR,
visually the three methods are very comparable.

The other big advantage of the method we describe in this
paper is its simplicity and speed in view of hardware
implementation. In fact even the research version of our
code, non-optimized for speed, is several orders of
magnitude faster than the commercial (well optimized)
MPEG2 software encoder we used for the same quality.
Our optimized coder should achieve 20-30 times
improvement in performance with respect to MPEG2.

Bibliography

[1] L. Bottou, P. G. Howard, and Y. Bengio, The Z-Coder
Adaptive Coder, Proceedings of the Data Compression
Conference, pp. 13-22, Snowbird, Utah, March 1998.
[2] R. DeVore, B. Jawerth and V. Popov, Compression of wavelet
decompositions, American J. of Mathematics 114 (1992), 737-
785.
[3] K. Kolarov, W. Lynch, Very Low Cost Video Wavelet Codec,
SPIE Conference on Applications of Digital Image Processing,
Vol. 3808, Denver, July 1999.
[4] S. Mallat, A Theory for Multiresolution Signal
Decomposition: The Wavelet Representation, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol.11, pp. 674-
693, 1989.
[5] E. Schwartz, A. Zandi, and M. Boliek, Implementation of
Compression with Reversible Embedded Wavelets, Proceedings
of the SPIE 40th Annual Meeting, Vol. 2564-04, July 1995.
[6] L. Stuiver and A. Moffat, Piecewise Integer Mapping for
Arithmetic Coding, Proceedings of the Data Compression
Conference, Snowbird, Utah, March 1998, pp.3-12.
[7] Brian Wandell, "Foundations of Vision", Sinauer Associates,
Inc. Publishers, 1995.

