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ABSTRACT

The exponential growth of available computing power opens the door for new capabilities in modeling the objectsin
the high dimensional real world that we live in. Traditionaly we have manipulated data defined on simple entities
such as the red line (e.g. audio), a rectangle in the plane (e.g. images) or a three-dimensional open-ended box (e.g.
video - sequence of planar images). Today graphics cards and accelerators, powerful processors and cheap memory
adlows us to interact with complex 3D and higher dimensional objects. We need to build mathematical
representations, algorithms and software that will allow us to easily represent, compress and manipul ate such objects.

In this paper we will summarize some algorithms designed to that goal and used in the areas of robotics, computer
graphics, 3D haptics (touch interaction with the environment) and data compression,. Those algorithms use novel
methods in evolutionary computation, motion planning and geometric modeling, wavelets and embedded signal
coding.

Part] INTRODUCTION

We are surrounded by objects and signals that are represented in high-dimensional spaces. Modeling of natural tasks
lead to high-dimensional representations. We would like to use mathematical ideas for dealing with the inherent
complexity of high-dimensional data.

There is no one method that can solve all problems, instead we will analyze the problems and try to characterize the
potential methods for solution as appropriate for the problems they solve. Different algorithms and approaches work
best for different goals. We will introduce and illustrate the working of several such approaches without making any
claims for generality. The methods that we are interested in do not even have to work fully automaticaly. In alot of
cases human interaction leads to better, faster and cheaper solution, in particular in the robotics area.

There are several options for trying to solve problems defined in high-dimensional spaces. We can:
- use analogy from nature (model using Evolutionary Computation );

- use higher mathematical techniques (for example topology in wavelets and motion planning);

- use combination of the approaches above.

In what follows we will describe the application of those approaches in several areas. In particular in Part |1 we will
introduce a simple evolutionary computation model. We will illustrate its performance in simulation and anayze
theoretically its features. Part I11 will illustrate the need of high-dimensional modeling in the area of robotics, and in
particular in robotics motion planning and manipulator design. An approach that have been used for high-dimensional
planning in robotics involves the application of algebraic topology and geometry. We have also used that approach in
building compact representations of signals occurring in the real world. Part 1V describes some of our results in that
area. It also illustrates the approach in the case of compression of data defined on the surface of 3 dimensional
objects. The last part summarizes the presented ideas and points out other possible applications.

The results outlined in this paper have been described in detail in several previous publications and the reader is
encouraged to consult the included bibliography if interested.

Part Il EVOLUTIONARY MODELING
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In this section we will use ideas from biology and population genetics to solve problems in computing. We will

introduce simple genetics operations (recombination and mutation), start the system that we are trying to model from a

random initial state; and let it evolve using those operations. At every iteration we will check how well the model

matches the desired performance (the “fitness function” of the system). We will stop when there is no more change
occurring or when the goal has been achieved.

2.1 Problem For mulation.

Evolutionary Algorithm (EA) is a heuristic computation procedure that is inspired by the evolutionary theory. It uses
operators like selective reproduction, crossover (recombination) and mutation for search and optimization. The
elements of the system, on which these operators are applied, are represented by strings of bits, where each bit ca
take finite number of values (in our case two - 0 and 1). The set of all elements (individuals) at any given time
constitute the current population. Every individual in the population has an assdiagsslin the environment
(corresponding to the objective function we want to optimize) and the problem is to find the individual with the
highest fitness.

The stochastic character of the EA operators is one of the reasons why it is difficult to explain that it works well for
certain problems, or to predict whether the same approach will work in some other problem. There have been very
few attempts to theoretically analyze the dynamics of interaction between the different operators and the performance
of EA (e.g. Holland'building blocks andschema [7]).

For an EA analysis the fithess function is especially important and things are very complicated when it is not an
explicit function, it varies with time or it is evaluated at run time only. Thus an interesting question is to analyze the
importance of differenfitness regimes for the viability of a GA system and to include the role of dynamics in this
analysis. The rest is mechanics and parameter optimization. When analyzed, it models in high dimensional spaces.

In [9] and [10] we performed experiments with several different fithess landscapes. We ran a series of fixed number
of cases (100), where the criterion for termination wasation of the population (i.e. the case when all individuals in

the population had exactly the same genotype). Note that this criterion is more characteristic for a population genetic
analysis. In a typical EA system, the simulation runs until the first individual with an optimal fithess value appears. In
nature populations of organisms do not stop their evolution after "the best" individual has appeared. In an effort from
each individual to survive and reproduce, the next generation is formed. The best individual that is created at some
generation might disappear later as a result of the interaction within the system. Thus we study the dynamics of
interaction and look at the evolution process aadaptation, rather than aoptimization.

2.2 Resultsfor suboptimal fixation of populations

Our goal was to compute the rate of fixation on sub-optimal fithess values and to analyze the mechanism of fixation.
As a measure of the fixation level we use the number of cases (out of a 100) that fix on a genotype with a fithess
different than the optimal one. This measure is similar in nature to the notion of genetic drift in population genetics
[22]. In general in finite population models there is always drift due to the statistical nature of the process of sampling
that produces offsprings from the parental types. When genetic drift dominates the selection pressure, the population
may fix on a genotype with fitness different from the optimal. In our case fixation may occur not only due to random
sampling error but also due to the existence of local optima in the fitness landscape. The initial population is selected
at random with equal probability of 0's and 1's. Our model has fixed rates of recombination and mutation. We use
single (one-point) recombination with the break point selected at random, uniformly across the chromosome. The
offspring are subjected to mutation and selection. New offspring are accumulated until the fixed population size is
reached. At that time we have formed the new generation and the current one becomes its parental generation. Thu
we do not have explicit elitism - new generation is entirely formed by applying the genetic operators to the previous
one.
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We would like to point out that this method of constructing the offspring generation where every member of the new
population is added as a result of individual "selection" after application of the genetic operators to the previous
generation, is a characteristic of population genetic analysis [1]. In a typical EA analysis the individuals in the next
population are generated as aresult of "group" competition, i.e. their fithessis compared against each other in order to
select the offspring. In our case an individual is added to the new generation if it is selected at random and if it is
successfully recombined and mutated (based on fixed Recombination and Mutation Rates). In our case, the first
generation (after the initial random one) is the one that takes the most amount of computing time. Typically in that
generation a significant number of good individuals are created, after which it takes fewer generations overal for the
whole population to fixate.

Since every individual in the population is represented by a string of length 20 bits, we can consider the problem as
searching and optimization in 20 dimensional space. Analysis becomes even more complicated when we alow for
diploid genotypes (individual s with two strings of bits each).

Some representative results from [10] are illustrated in figures below. Figure 1 describes the suboptimal fixation for
given type of selection p (assuming the fitness function for an individual with i number of ones is the Gaussian

_w?
F(i)=e ? s ). We can see that the increase of the Population size and the increase of the selection strength (smaller
0) lead to a decrease in the rate of “wrong” (suboptimal) fixation. Similarly in [10] we show that the time to fixation
increases with the size of the population and with the inverse steepness of the fithess function. Stabilizing selection
take longer to fixate than strong directional selection even though it produces less suboptimal fixations.

Figure 2 shows that the number of generations to fixation follows lognormal distribution (similar to the one for the
time to extinction in population genetics [22]). Another interesting conclusion in [10] is that diversity (described by
the heterozigocity shown in Figure 3) is maintained longer in populations with smaller recombination values.
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Figure 1. Suboptimal fixation for Figure 2. Distribution of the generations  Figure 3. Heterozigocity asa
given selection type 1 . to fixation. measure for diversity.

2.3 Theoretical analysisfor large populations

We can aso perform theoretical analysis of the outlined results (see also [9]). Let us denote with F(s) the value of the
fitness function for an individual with s number of 1's. With @ (s) we denote the expected number of individuals with

fitness F(s) in the population at generation k. N denotes the population size and | is the length of the genotype (in our
examplesN = 100 and | = 20 ). Because we always keep constant population size, we have:

|
Zwk(s):N for every k (1)
s=0

The average expected fitness of the population at generation k, is:
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|
®, :%;F(s)wk(s) for every k (2)

We want to find arecursive relation describing the expected number of individuals with fitness F(s) at generation k+1
in terms of the number of individuals with different fithess at generation k.
For simplicity let usfirst consider the case with no recombination, i.e. the recombination rater = 0. We can derive:

F(s)

k
We can also derive arecursive relationship for the expected average fitness of the new generation in terms of the data
from the parental generation:

@1 (8) = @, (s) (3)

1
D, = NG, Z F2 (9@, (9) (4)

We will outline the proof of a simple geometrical conjecture (see [9]) for expected direction of fixation. Let us denote
with p; the initial probability of 1's in the first randomly generated population. In our discussion so far we have

assumed that every alele (bit) for each individual in the initial population has equal chances (0.5) of beingal or a 0.
In general however we can choose different distribution of 1's and O's and we can vary that using p;. Let us aso

denote with X the largest integer smaller than py.l (i.e. X = |_ o .|-|). Then the areas under the fitness curve scaled
by the initial distribution to the left and to the right of point X are given by:

®; :%z F (), (9 and ; —ﬁz F9D(s)  (5)

Thus the condition for fixating to the left of the mean of the initial distribution can be expressed theoretically as
CDS > CD; . However using relationships (2) and (4) we can show that this condition is equivalent to the condition:

iwl(S) > _lzwl(S) (6)

In other words if the scaled areato the left is larger than the one to the right, in the next generation there will be larger
expected number of individuals whose fitness is to the left than those to the right. Using (6) by induction for future
generations we can prove that the population is expected to fixate on average to an individual with number of 1's to
the left of the mean of the initial population X.

The same conjectureis true in the general case when the Recombination Rate I # 0. In that case:

F(s)
ch

R(S):WZZWZX%@[Z X)(( j( )(p = )]-wk(Z)wk(p) (8)

@,a(9 = NIT.P(S + (L-1) < @] (7)

where
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We can add the coefficients for terms that have permuted indices and arrange the resulting coefficients in lower
triangular matrices where each entry r; i of the matrix Ry 1(S) corresponds to the coefficient in (8) in front of the term

i (N (1)

The next formulag illustrate these matrices for the case of [=2.

3 0 0
R.(0=|3 1/4 | R,®=|3 5/2 | R,0=|0 1/4 (9)
2 0 0 2 3 0 2 3 3

Those coefficients correspond to the following arrangement:

&, (0, (0)
0w (1) wOw (1) (10)
w0 (0w, (2) wDw (2 w (2w, (2)

As we can see from (8) and (9) with the increase of s we get less representation in the R-matrices of the ¢, (2) forz

< s and stronger representation of those with z > s. At the same time if CDS > CD; then higher weight is given to the

individuals with fitness less than the mean of the initial population X. Because those individuals are more represented
in the R-matrices to the left of X, that means that in the next generation those individuals will be even more
represented and thus by induction the population will be moving toward a fixation on the left of X. By analogy if

CDS < @, theindividualsto theright of X get more weight and representation than that is the direction of fixation.

For larger | we can clearly see the structure of this argument because for a given X, all the R-matrices for s > X will
have upper left rectangles of zeros. Accordingly the R-matrices for s < X will have zeroes in the bottom right rows.
These properties confirm the validity of our conclusion for the general case.

This conjecture is an attempt of using mathematical theory to analyze complicated high-dimensional systems. In EC
such theory was begun by John Holland’s schema work [7], and continued by Vose [29] and others.

An alternative way to analyze complex problems is to invoke sophisticated mathematics, for example algebraic and
differential topology. In order to better understand that underlying topology, we will first describe two practical
applications and approaches.

Part I11 HIGH-DIMENSIONAL PLANNING IN ROBOTICS
3.1 Motion planning and design in complex environments

The first example has to do with motion and manipulation in the physical world. How do people avoid obstacles and
perform complex tasks? It is a sophisticated coordination of brain activity with sensory inputs - vision, sound, touch
and smell. However there are a number of activities that are unpleasant, dangerous or too expensive to be performec
by humans. In that case we would like to have automation devices (robots) that can perform such tasks effectively.
Depending on the goal that a particular robot serves, there can be a number of sensors that match the human ones
vision (cameras, distance sensors), touch (force sensitive devices), sound (sonars). This is a large and active researt
and development area which we will not cover here.

If we abstract the sensors level out, we are looking at the goal of motion and manipulation of a robot in a complicated
environment. The manipulation tasks are usually performed by attaching a gripper (“hand”) at the end of the robot
structure that allows it to grasp objects , reposition them, do insertions, painting or whatever other tasks are required.
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The manipulation can also be done by several cooperating robots, moving robots, etc. Again for the sake of simplicity
we will omit the actual manipulation part of the problem. Interested reader can refer to [17, 8] for more details.

At this point of abstraction the general problem we are considering is the following: Given an environment with

objects (we call them obstacles) and a robot that is moving in the environment, how can we plan that motion so that

robot moves from a given start point A to a given goa point B without collision with the obstacles. When the robot

has a given structure, this problem is the so-called “motion planning” problem introduced in [19] and well studied in
the robotics literature ([2], [8], [17]).

We have generalized this problem even further in [11] and [12]. In that work we considered the question: given the
complex environment above, what is the most appropriate design of a robot that can reach everywhere in such
environment in an “optimal” manner without collision with the obstacles. We addressed the issues of: what is the most
appropriate type for the structure of the robot; what is the minimum number of structural elements (links) that are
needed to cover every point in the free space (not occupied by the obstacles); what is the best placement for the robo
in the environment, what are the shortest motion paths in the environment. In answering those questions we introducec
“telescoping links” for the structure of the robot (2 degrees of freedom links that rotate and linearly extend from the
joint). We developed algorithms for calculating the set of points in the environment satisfying the requirements above.
That was done for general shapes of the obstacles (2D, 3D, convex, curvilinear, non-convex). We also proved
analytical limits for the optimum number of links given the number and complexity of the obstacles. Further off, we
addressed the problem of simultaneous design of the robot and the environment; the case when the robots are mobil
in the environment; there are a number of robots; and they can have variable structure.

3.2 High-Dimensional Configuration Space obstacles
How does the problem that we just described relate to a multi-dimensional modeling? We will illustrate that in the

following example. Consider the 2D environment in Figure 4 consisting of two polygonal obstacles and the circular
robot moving in it.

Figure 4. Circular robot in cluttered environment. Figure 5. Configuration space obstacles for Figure 4.

Geometrically it is much easier to plan paths for a point in such environment rather than for a circle. Thus we will
represent the circular robot by the center point of the circle. Correspondingly we will grow the obstacles (objects) in
the environment with the radius of the circle, building the so-called C-obstacles (configuration space obstacles) [19].
The planning is now done in this Configuration space (C-space) in Figure 5. Finding shortest paths in such space
between two points is a geometric problem which can be solved in a number of ingenious ways, like: drawing tangents
to obstacles, back propagating from the goal to the start, connecting the two points with an elastic band and fitting it
around the obstacles (see [17] for examples).

In this simple case of a circular 2D robot the dimensions of the robot space and the C-space are the same (2). Let u:
now look at the case when the robot is a 2D regtkar one and it can both translate and rotate in the environment. If
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we consider just trandations of the robot first and represent the robot by its center point , the corresponding C-
obstacles are shown in Figure 6 below.

If we want to account for the rotation of the robot, we need to move to a higher-dimensional (3D) C-space. We can
think of Figure 6 as corresponding to motion of the robot when the angle a between the center horizontal robot axis
and the X-axis, is zero. For every value of a , the corresponding C-space can be looked at as a planar horizontal plane
in 3D. We can stack continuously (with respect to a ) those planes in the vertical direction and the resulting 3D
obstaclesin Figure 7 represent the C-obstacles for that problem.

Figure 6. C-space for arectangular trand ating robot. Figure 7. 3D C-space for arotating and trand ating robot.

In that case planning a path from one point (given position and orientation of the robot) to another reduces to finding

the “best” (shortest, optimal, min. energy, etc.) path in 3D configuration space avoiding the C-obstacles. There are
numerous techniques (quadtree decomposition, 3D backprojection, uncertainty cones, gradient descent, flexible
bubbles, potential fields, etc. ) that have been introduced to solve this problem (see [8, 17]).

3.3 Approachesfor solving high-dimensional problemsin robotics

So far we have considered a planar robot in a planar environment. In reality the robot is 3-dimensional, it moves in a
3D environment and can have multi-link structure (e.g. a manipulator arm with several parts that can move
independently) . In that case we can extend the C-space approach above and the corresponding spaces quickly becon
very high dimensional . For articulated or high-dimensional robot we generally increase the dimensionality of the
space by one for each DOF (degree of freedom) or functionality of the robot.

One way to deal with this dimensionality problem is by projecting in a lower dimensional spaces. Often in an
industrial environment objects tend to be vertically homogeneous and can be approxir’r@ﬂe@ abjects (i.e.
2

correct planar projection that is extended vertically). In that case planning can be done in the projection space and
extended vertically (see [11]).

The problem with multi-link robots can be dealt with in some cases by combining local and global motion planning.
In that case the main (big) structure of the robot is approximated by simpler shapes. The matgn ltrge,

relatively uncluttered space is planned for those shapes. When the robot arrives close to the goal and precise, detaile
motions need to be performed, a fine motion planning is done for much smaller spaces (see [12], [17]).

All approaches above have been well developed for particular cases, but still do not allow to attack the general n-
dimensional problem. For that we need to abstract the geometry of the situation and move to topological modeling. In
topological spaces the obstacles and robots will describe certain subspaces or cellular complexes and appropriate
operators are needed to define the transition in the spaces. There has been very limited research in that area ([2, 12
and further investigations is in order.
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The topological approach for working with high-dimensional data that we developed in the area of data compression
[20] introduces structures which can prove useful for modeling the general motion planning and robot design problem
above. In the next part we will give a brief overview of the data compression problem.

Part IV COMPRESSION OF MULTI-DIMENSIONAL DATA
4.1 Representing data in real environments as functions on manifolds

Topological space modeling can be used in high-dimensional compression for representing, manipulating and
compressing realistic 3D data. We will introduce that application by first describing a system we built for compressing
functions defined on surfaces of 3D objects.

Many of the current topics of computational interest involve the representation of and the computation on continuous
spaces (or approximations of such). Obvious examples are images, video, and audio. In these cases data (e.g. picture
luminance) is distributed over and attached to a continuous rather than a discrete space. A photograph is well
modeled as a reflectance over arectangle. The spaces to which the functions of interest are attached are not aways
exactly the familiar Euclidean 1, 2, or 3 dimensional spaces.

We can aso analyze the description of the functions defined on manifolds by considering the related notion of a
multi-resolution description of afunction [6]. By going to several levels of sub-division, we can use each level as an
approximation to the function being described. If we are careful, we can avoid repeating any information about the
coarser levels, so that we get, subdivision level-by-subdivision level, an increasingly detailed description of the
function. By choosing an application appropriate way of doing this and taking advantage of natura properties of the
function a great deal of function description can be represented in a compact data structure.

Our computer representations are necessarily finitely generated, so we are aways talking about representations that
approximate the real world. Of course, we need to measure and control the degree of approximation appropriate to
our specific application. A good approximation schemes will not only have appropriate and measurable fidelity, but
will aso be economical of both computational and memory resources. Such approximations are often called
compression schemes, because they greatly reduce storage requirements, but often also enable a great reduction in the
computation required. It is generaly under appreciated the extent to which a compressed representation will reduce
computation just by the simple fact that the amount of data to be processed is greatly reduced.

Traditionally, data compression methods have been applied to functions defined on simple manifolds such as the real
line (e.g., audio), a rectangle (e.g., images), or a three-dimensional open-ended box (e.g., video). However, many
conventional data compression technologies, unmodified, are not suitable for compression of data defined on more
complex geometries such as spheres, general polytopes, etc. In [13] we introduced a transform compression
technique for addressing 2-manifold domains using second generation wavel et transforms and zerotree coding.

4.2 High-dimensional compression using spherical wavelets transform and zer otr ee coding

The transform compression of a function involves three steps. a transformation of the function, quantization, and
entropy encoding. During the first step the function is subjected to a reversible linear transformation in order to
concentrate most of its entropy (i.e., information) into alow dimensional subspace, thus simplifying its description. A
wide variety of transformation techniques are currently in use, including the discrete cosine transform (DCT) and
wavelet transforms.

Wavelets supply a basis for the functions we are representing [3, 4]. They decorrelate the data because in some way
they resemble the data we want to represent. More specifically, wavelets have the same correlation structure as the
data. They are local in space and frequency. Typically they have compact support (localization in space), are smooth
(decay towards high frequencies), and have vanishing moments (decay towards low frequencies). More precisely, the
wavelet representation leads to rapidly converging approximations to functions that satisfy mild smoothness
assumptions. Finaly, the wavelet representation of a data set can be found quickly. More precisely, we can switch
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between the original representation of the data and its wavelet representation in a time proportional to the size of the
data. The fast decorrelation power of waveletsis the key to compression applications.

We can not use easily traditional wavelets for the transformation of data defined on complex manifolds. They are
built using translation and dilation of a “mother wavelet” - a process that only makes sense in a Euclidean space.
Instead, we will use the “second generation wavelets” introduced in [26] for building wavelets on a sphere.

The lifting scheme [28] and the spherical wavelets are techniques introduced recently for enabling wavelet
construction for more general cases than the typical 1D or 2D planar spaces. In that, the wavelet coefficients are
generated through a simple linear prediction and update scheme. This is a multi-resolution scheme where in the
coarsest level the object is represented by a simple base complex (e.g. an icosahedron). All the cells of this complex
are subdivided to generate the next level of approximation and the corresponding wavelet coefficients are computed
for the newly generated vertices. This process is continued until appropriate coverage of the data set is achieved. The
result is a refined triangular mesh with subdivision connectivity. We have introduced in [13] a tree structure, called a
G-tree, in which each node represents a cell of the triangular mesh. Second generation wavelets for the specified
function are calculated and scaled, the wavelet coefficients being defined at the vertices in the triangular mesh and at
the vertex correspondent nodes of the G-tree.

The zerotree algorithm was introduced for effective and fast embedded (progressive) compression of images [25, 27].
Research into adaptive N-largest non-linear analysis by DeVore offers a possible theoretical foundation of the
method. In our context that algorithm processes the wavelet coefficients generated from the transform analysis part
based on significance with respect to given threshold. The coefficients are arranged in a tree structure (see [13])
whereby the main premise of the method is that if a certain coefficient is insignificant with respect to the threshold, all
coefficients below that one in the tree are also insignificant. That allows for the tree to be pruned whenever the
premise is true and hence a smaller set of coefficients are written out representing the data. Using a modified zerotree
encoding scheme, the G-tree is processed threshold by descending threshold, outputting bits indicative of significant
G-tree nodes and the corresponding coefficient bits. This results in a bit plane by bit plane embedded encoding.

The decoding algorithm inputs bits according to the modified zerotree scheme into the G-tree structure, refining the
wavelet coefficients. De-scaling and an inverse second generation wavelet transform completes the synthesis of the
original function. The canonical ordering of the bits is similarly generated by both the encoder and the decoder.

In our system the user can interactively select the type of wavelets to be used, the base complex , the number of level:
of subdivision, the function to be compressed, and the desired compression. The program starts with a simple base
representation as a triangular mesh for the object that we are modeling. For example when we model an image the
base complex is a rectangle subdivided in two triangles. We achieve more detail in the representation by subdividing
all the triangles in the current model based on some subdivision rule. In computer graphics the predominant method is
mid-point subdivision. The newly created vertices are projected up on the surface of the model using different
projection methods. For complicated 3D surfaces we often use the “Dyn” (or “butterfly”) [5] projection, where a
stencil of 8 neighboring points are used to compute the position of the new vertex. The coefficients in the newly
created vertices are computed using the wavelet analysis. The number of subdivision levels is determined by the
limitation of the hardware and the complexity of the model.

4.3 Simulation results from modeling data defined on surfaces of 3D objects

The system that we implemented based on the description above achieves significant compression results. In the
examples below the function that we are compressing is defined by the elevation data on a grid for the surface of the
Earth (see [13]). We mapped this function to several different 3D objects. The canonical example maps the function

on the surface of a sphere, thus representing the actual Earth shape and data set. We also experimented with using tl
surface of a multiresolution triangular mesh representation of a cat, teapot, flat rectangle (representing an image in
[13]) and other shapes. While the cat surface described in [16] is still homeomorphic to a sphere, the teapot surface
described in this paper is significantly more complicated.

The types of results we obtained are the first result of a kind, in that there are no other compression data (in terms of
PSNR or bits per pixel results) in 3D to compare our performance with. For comparison with the existing 2D
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compression algorithms, we applied in [13] our method to a flat manifold (an image). The results compared very
favorably with the state of the art in image compression. We obtained even better results in [14] and [15] using
different wavelet predictors; scaling of the coefficients based on the capabilities of the Human Visua System (HVS)
[4]; optimization of the tree structure; and using arithmetic coding [30] rather than straight binary entropy coding.

The simulations were coded in C++ on a UNIX platform (SGI Indigo 2 Impact 10000). For interactive visualization
the implementation requires that the entire data structure be kept in RAM. For the Teapot base complex the 256 MB
RAM of the SGI limits the subdivision level to three. The Earth example in [15] alowed for 8 levels, while a typical
gray-scale image can be completely modeled by 9 levels of subdivision. In this paper we used only 7 levels for the
Earth so that the number of coefficients are comparably to the Teapot example.

For the Teapot example we compressed the topographic function that is the elevation (with respect to sea level) of the
Earth. This function is initialy approximated by the ETOPO5 data set (satellite data available from the National
Geophysical Data Center) which samples the Earth every 5 arc minutes (the entire data file is 6 million points). This
data set was 4:1 sub-sampled to the ETOPO10 data set which samples the Earth every 10 arc minutes (1.5 million
points approximately 11 miles apart). The resulting data set is mapped on the surface of the teapot by a radia
projection. The center of the sphere of the projection islocated at the mass center of the teapot and the data value for
each point on the surface of the teapot is calculated by intersecting the ray from the center to the point with the sphere
wrapped around. . The topographic elevation at each vertex was then determined by interpolation of the ETOPO10
data set. Theresult is color coded based on that elevation value.

| Leapot(@ levels 197826 coeff) JE arth (7 levels, 163842 coeff) s e
Lpum PSNR B biertex § Compress | PSNR 1 bAertex | Compress N :
10 6472 1 606 1.3.1 4401 17 5.1
9 5691 0 467 171 3825 1 073 1.0
8 4999 | 340 231 3392 0.3 261
Z 4435 | 235 3.4 3082 1 0413 631 i
6 3965 | 155 521 2827 | 0.055 1451
5 3559 | 102 7.9:1 2583 | 0.023 348:1
4 3227 0 071 1221 ) 2374 | 0011 7531 | I S
3 2968 1 056 1421 1 2178 1 00055 | 14471 S M//
2 28,04 0 051 15.6:1 1961 1 00032 1 2497.1 — e N
1 27.16 0.5 16.1:1 18.41 | 0.0027 1 29191 e
Figure 8. PSNR data for different compression ratios. Figure 9. Significance Bits Allocation.

When new points are generated via subdivision their function values are calculated with the same procedure. Their
geometrical location is computed using the butterfly scheme over the spatial (x, y, z) coordinates of the coarser level
vertices. The datais wavelet transformed using butterfly lifting and compressed at various ratios. The base complex of
the teapot is a triangular mesh with 3072 vertices and 6182 triangles. After 3 levels of subdivision we generate
197,826 vertices (wavelet coefficients) that cover about one eight of the available data points in ETOPO10 (we aso
have 395,648 triangul ar faces).

For the Earth example we use the same function mapped on the surface of a sphere approximating the Earth. The base
manifold is an icosahedron (12 vertices, 20 triangular faces and 30 edges) and it is subdivided using midpoint
subdivision. Geometrically the newly generated points are projected up on a sphere using geodetic projection. We use
the butterfly scheme as a prediction operator. The data is subdivided 7 times which results in 163,842 vertices, and
327,680 triangular faces (covering about a ninth of the ETOPO10 data points).

Figure 8 summarizes the results for the peak signal-to-noise ratio (PSNR) for the two examples above for several
different compression ratios. Scaling was chosen appropriate to the L, norm. The table reports the results relative to
the interpolated vertex data. PSNR is calculated asin [13] (the range over the mean square error).



Copyright 1998 International Institute of Informatics and Systemics, Published in the Proceedings of the World
Multiconference on Systemics, Cybernetics and Informatics, SCI'98, July 1998, Orlando, USA

Figure 10. Teapot manifold (ETOPO10 data mapped). Figure 11. Earth Manifold (ETOPO10 data mapped).

Each row in the table corresponds to the number of bitplanes read during the decompression. Every coefficient is
represented with 10 bits. In all cases the compression subroutine writes out the significant bits associated with all 10
bits for al the coefficients bitplane by bitplane. The first row in the table corresponds to the case when during
decompression all 10 bitplanes of significant coefficients are read in. In the next row we read only 9 bitplanes (the
most significant ones) for all coefficients, etc. Aswe can see, even when we read in al the bitplanes that we wrote,
thereis still a5:1 compression (for the Earth example) due to the zerotree compression.

The number of significant bits increase exponentialy with the number of bitplanes retained in the representation of
the coefficients. For the Earth example, the most significant bitplane (bitplane 10) have only 54 bits that are
significant for all 163,842 coefficients. In contrast, the least significant bitplane (bitplane 1) have 142,507 significant
bits. For the Teapot example, since we start with quite a large number of coefficients in the base triangular mesh, the
number of bits is relatively similar throughout the bitplanes (about 16,000). Figure 9 illustrates the relationship
between number of significant bits and number of bitplanes used for coefficient representation for the Earth example.
That curve shows that if we select the number of bitplanes for decompression such that we guarantee adequate PSNR,
we can achieve a significant amount of compression. In fact with bitplane reduction we can achieve close to 100:1
compression with the PSNR being in the virtually lossless range. Visualy Figures 10 and 11 illustrate the quality of
the compression. The results ook exactly as what we would expect for good compression given the resolution that we
are achieving.

In practice modeling data or objects in the real world can bring to a need for higher-dimensional representation. For

example if we want to build a complete 3D model of a complex object, we can use a method generalizing the “light
fields” method ( see [18]). In that case two spheres are wrapped around the 3D object and the model is built by
looking at intersection of radial rays with the surface of the object. The resulting model is a cross-product of the two
families of spheres, which is a 4-dimensional object.

Similarly in considering state space problems, a number of high-dimensional spaces arise. In order to efficiently
compress such models, we need to be able to manipulate m-dimensional functions on n-dimensional manifolds.
Similarly to what we described earlier, one way to do this is by abstracting the geometry of the problem and working
in topological spaces. We have developed one such possible approach in [20].

4.4 M odeling and compr essing n-dimensional data

In [20] we generalized the approximation domain for scalar functions described in [15]. In particular we described the
transition from 2-manifolds to n-manifolds (2-simplices to n-cells), from mid-point subdivision to dual-intersection
subdivision. We did that while retaining finite stencils of support for wavelet multi-resolution analysis and
preserving the compression techniques.
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From a mathematical point of view, we introduced the foundations for a computational approximation theory for CW
complexes. We addressed the question: To what extent can approximations of real valued functions defined on curves,
surfaces, manifolds, and other Euclidean type spaces, be effectively and computationally carried out by purely
topological means?

This question is approached by considering domains that are homeomorphic to finite CW complexes (see [21] for
introduction to algebraic topology) , which tessellate alocally Euclidean space into a finite number of cells of various
dimensions. Associated with these cell complexes are the chain complex and boundary homeomorphism that describe
how the cells are linked together. We can build regular CW complexes where the boundary operator can be easily
represented and computed.

A simplistic explanation of CW complexes follows: Consider a 3D triangular mesh representing an object in space.

That mesh has vertices, edges and triangles on the surface. If we also consider the volume of the object, it can be
subdivided into pyramids. In defining the cellular structure, the vertices in the model denote cells of dimension 0. The

edges are cells of dimension 1, the triangles are cells of dimension 2 and the pyramids are cells of dimension 3.

Similarly for an object in n - dimensional space, we can define cells of dimensions 4, 5, ..., n. To build the cellular
complex we need to describe the relationships between the different cells. In particular we need to specify which cells
constitute theboundary of a given cell and which are the neighbors (ordiae) for a given cell. With those two
operations correctly defined, we can describe any m-dimensional object in an n-dimensional space [21].

We used cells rather simplices (which have been used previously in multiresolution approaches) because cell
constructions typically require fewer cells than the equivalent number of simplices. That leads to smaller data
structures and quicker computations. We can also build better subdivision methods and there is no need for
complicated fix-ups upon partial or adaptive subdivision.

Approximation is accomplished by the iterated application of a subdivision operator which can eventually separate
any two points into the interiors of separate cells. Algebraically, a subdivision operator is a 1:1 chain homomorphism
from the CW complex to another CW complex generated by the result of the cell partitioning. The regularity of the
CW complex also enables the calculation of the boundary operator in the subdivided complex. We use a finite
sequence of finite regular CW complexes to approximate continuous functions, to build and compress wavelet
expansions of such functions.

We have developed the Spherical Lifting Wavelet Library SLW (described in [20]) as a set of C++ routines intended
to represent topological objects. That library can be used for a variety of applications like:

- Multidimensional signal compression. When the underlying signal has some notion of geometry, CW complexes
can be used to approximate both the domain and range space of the signal. We would like to be able to build
approximations to continuous functions via the cellular approximation theorem. A systematic approach to refining the
approximation gives rise to a multiresolution scheme and the possibility of efficiently representing the signal, i.e.,

wavelets. The approach should preserve the compression techniques described in [15].

- Efficient representation of texture maps for computer graphics applications. In some computer graphics problems,
thousands of simplices need to be texture mapped to properly display a scene. Efficient storage and rapid usability of
texture maps can be studied using the library.

PartV SUMMARY AND CONCLUSIONS

There are a number of possible approaches for dealing with high-dimensional data obtained in modeling of the real
world. The approaches that we described in this paper try to deal with the data in the space where it lives, rather than
projecting it or reducing it to lower dimensional subspaces. As a result we obtain simpler, faster algorithms that are
easy to implement in practice.

We have also described several application domains for such approaches. In particular we considered: modeling of
population genetics systems using evolutionary algorithms; solving motion planning problems from robotics using
high-dimensional configuration spaces; and compressing data defined in complicated real world environments by
using geometrical and topological modeling.
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The applications that we described so far allow us to interact visually and analytically with high-dimensional data.

Another powerful sensorium that we as humans actively use, is the sense of touch. Using state of the art force-

feedback “haptic” devices we can try to model in the computer complicated 3D objects and explore them virtually
using our hands and our sense of touch. In [23] and [24] we have developed and implemented a system that allow us
to quickly (in a manner of minutes) take complex 3D objects or scenes (defined by tens of thousands to hundreds of
thousands of triangles) and build haptic virtual models. Users can explore and manipulate those models adding a
powerful dimension of interaction created by the force feedback experienced. Using compact representations (built
using the high-dimensional approach that we described) of the environments allows for enhanced experience with
realistic environments.

There is an underlying connection and relationship between the approaches to solving the problems that we described
Clearly different methods are the most appropriate ones for solving each separate problem. Thus instead of
developing a general “universal” approach, for any given problem we have concentrated our efforts on parametric and
theoretical understanding of the problem, classifying it in a general category , classifying the potential solution models
with respect to their strengths and characteristics; and finding and applying the most appropriate method for the given
problem.
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