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1.  INTRODUCTION
We will present a technique to compress functions defined on
high dimensional manifolds. Many conventional data
compression technologies, unmodified, are not suitable for
compression of data defined on  more complex geometry such
as spheres, general polytopes, etc.  In [3] we have described a
method for representation and compression for addressing 2-
manifold domains using second generation wavelet transforms
and zerotree coding. In this paper we will generalize the
approximation domain for scalar functions described in [3]. In
particular we will describe the transition from 2-manifolds to
n-manifolds (2-simplices to n-cells), from mid-point
subdivision to dual-intersection subdivision. We will do that
while retaining finite stencils of support for wavelet multi-
resolution analysis  and preserving the compression
techniques.

From a mathematical point of view, we will introduce in
Section 2 the foundations for a computational approximation
theory for CW complexes. In developing those we have used
material described in [4] among others. Next, we will address
the question: To what extent can approximations of real valued
functions defined on curves, surfaces, manifolds, and other
Euclidean type spaces, be effectively and computationally
carried out by purely topological means?

This question is approached by considering domains that are
homeomorphic to finite CW complexes, which tessellate a
locally Euclidean space into a finite number of cells of various
dimensions. Associated with these cell complexes are the chain
complex and boundary homeomorphism that describe how the
cells are linked together.  We can build regular CW complexes
where  the boundary operator can be easily represented and
computed.

We use cells rather simplices (which have been used previously
in multiresolution approaches) because cell constructions
typically require fewer cells than the equivalent number of
simplices. That leads to smaller data structures and quicker
computations. We can also build better subdivision methods
and there is no need for complicated fix-ups upon partial or
adaptive subdivision. Related approaches for cells were use in
[1] and [5]

Approximation is accomplished by the iterated application of a
subdivision operator which can eventually separate any two
points into the interiors of separate cells.  Algebraically, a
subdivision operator is a 1:1 chain homomorphism from the
CW complex to another CW complex generated by the result of
the cell partitioning. The regularity of the CW complex also
enables the calculation of the boundary operator in the
subdivided complex.  We can use a finite sequence of finite
regular CW complexes to approximate continuous functions, to
build and compress wavelet expansions of such functions.

In Section 3 we will describe the data structures and a library of
C++ routines that we built intended to represent topological

objects.  Section 4 illustrates our approach and outlines some
further development issues.

2. MATHEMATICAL FOUNDATIONS

2.1 Some relevant definitions from topology

We will start by introducing few key mathematical concepts
with their definitions.

Definition 1: Let p p pm0 1, ,K; @  be an affine independent

subset of ℜn .  The convex set spanned by this set, denoted

p p pm0 1, ,K , is called the (affine) m-simplex with vertices

p p pm0 1, ,K .

Definition 2: Two sets X  and Y  are said to be homeomorphic
if their exists a continuous bijection f X Y: →  with

continuous inverse.  Such a map f  is called a
homeomorphism.

Definition 3: A subset e of a topological space X  is called an
(open) n-cell if it is homeomorphic to the open disk

D Sn n n− ⊂ ℜ−1 .

Definition 4: An n-dimensional manifold M  is a Hausdorff set
such that every point m M∈  has a neighborhood

homeomorphic to D Sn n− −1 .

Definition 5: A continuous map f A B X Y:( , ) ( , )→  is a

relative homeomorphism if the map f A B X YA B| :− − → −
is a homeomorphism.

Definition 6: Let a topological space X  be the disjoint union of

a collection of cells, X e
e E

=
∈
C .  Then for each k ≥ 0 , the k-

skeleton of X  is defined by X ek

e E e k

( )

:dim( )

=
∈ ≤
C , i.e. it consists

of all of the cells of dimension k or less (see Fig. 1).

Definition 7: A CW complex is an ordered triple ( , , )X E Φ ,
where X  is a Hausdorff space, E  is a family of cells in X , and

Φ Φ= ∈e e E:; @ is a family of maps such that:

• X e
e E

=
∈
C  ;

• for each k-cell e E∈ , the map

Φe
k k k kD S e X X: , ,( (− − −→1 1) 1)2 7 3 8C  is a relative

homeomorphism;

• if e E∈  then its closure e  is contained in a finite union of
cells in E ;

• X  has the weak topology determined by e e E: ∈: ?



The “CW” stands for Closure–finite in the Weak topology.
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Figure 1. Skeletons for cells and simplices

2.2 Regular CW complexs and manifolds

A finite regular CW complex (or RCW for short) K , is a finite
collection of elements called cells.  Each cell is assigned a non-
negative dimension n (making it an n-cell) and is
homeomorphic to the unit open ball in Euclidean n-space.  An
n-manifold is a topological space which is locally
homeomorphic to an n-cell.  A compact manifold may be
tessellated as a regular CW complex.  The requirement that
such a tessellation form a regular CW complex is that the
inclusion map of each k-cell into the n-manifold be extendible
to a homeomorphism of the closure of the k-cell (i.e., a closed
k-ball) into the n-manifold.  That is, each k-cell must embed in
the manifold in such a way that its boundary embeds as a k-1-
sphere.
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K K
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n
n

= −

=

α α   is an n cell< A
U

As a notational matter, if α  is a k-cell, then α  is its

topological closure and α
•
}

 is its topological boundary.  Note
that the closure is the disjoint union of the cell and its
boundary.

We will also be interested in various normed function spaces
whose elements are functions from an n-manifold to the reals
(or some other Clifford algebra).  Additionally, we will be
interested in operators from a function space over an RCWD to
a function space over an RCWR. We will consider such
operators to be in a function space over the RCWDxR, the direct
product of D and R.

We define

D R D R× = ∈ ∈

= ×

= −
•

α β α β

α β α β

α β α β α β

, ,

,

, , ,

1 6= B
1 6

1 6 1 6 1 6
678

It is clear that if α ∈ Dn
 is an n-cell and β ∈ Rm  is an m-cell

then α β,1 6 1 6∈ × +D R
n m  is an n+m-cell.  Less obvious but

still true is that α β,1 6
•

678

 is homeomorphic to an n+m-1-sphere.

This latter fact allows a proof that D R×  is an RCW.

2.3 Faces, Stars and the Boundary Operator

Definition 8: e
1
 is a face of e

m
 iff there is a sequence of cells e

1
,

e
2
, . . ., e

m
 with e

i
 µ �(e

i+1
)

Definition 9: The star of a cell e is the sum of all cells a where a
is a face of e. Stars give the basis for a topology, which in turn
“glues” the space together.
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Figure 2. Faces and stars of a cell.

C
k

(X, Z
2
) is a vector space with the k-cells as unit vectors and

the integers mod 2 as coefficients. The direct product C
k

(X, Z
2
)

across k gives the chain space of C(X, Z
2
) .  The elements of a

chain space are called chains. We will denote a chain a in the
subspace generated by a chain b by a µ b.

A chain complex C K1 6  is a free module over a ring G  with

a distinguished nil-potent homomorphism ∂  called the
boundary operator.  Nilpotence means that

∂∂ = 0

The Abelian group of C K1 6  is generated by the cells of some

RCW K.  Thus, we can think of the elements of  C K1 6  as
linear combinations

c c G
K

α α
α

αi
∈
∑ ∈  of the cells α  of K .

As for direct products we have the obvious

C K K c
K K

1 2

1 2

× =
%&K'K

()K*K∈ ×
∑1 6 1 6 1 6

1 6
α β α β

α β
, ,

,

i

so that we have the usual situation that the chain complex of
the direct product of the RCWs is the tensor product of the
chain complexes. It is easy to verify that

∂∂ α β,1 62 7 = 0



We can also consider the boundary operator  �
k 

: C
k

(X, Z
2
) �

C
k-1

(X, Z
2
) as a distinguished endomorphism. For a cell it can

be defined as:  �
k 

(e
k

) = S[e
k

, e
k-1

] e
k-1

  where [e
k

, e
k-1

] is in

Z
2
 and [e

k
, e

k-1
] =1 if e

k-1 
is on the boundary of 

 
e
k 

and is

equal to zero otherwise. In that case �
k-1 

�
k 

= 0 , i.e. the

boundary of the boundary is zero.

2.4 Topological and algebraic subdivisions

In the subdivision process, we think of an RCW (or sub-RCW)
K  as being subdivided into partition pieces.  We often write
ΣK  for the set of cells into which K  has been partitioned.

In the case that K  is a cell, we expect that the cells of Σ K
•


, the
boundary cells of Σ K  , already are in a subdivided form so
that geometrically, as sets of cells

Σ ΣK K
• •

=

 }

This requires that, topologically, the boundary of the
subdivision is the subdivision of the boundary. Note that, in
effect this rule requires that subdivisions proceed from lower
dimensions to higher dimensions, with the boundary of a cell
being acceptably subdivided before the cell itself is subdivided.
As for direct products we have

Σ Σ ΣK K K K1 2 1 2× = ×1 6 1 6 1 6
The topological subdivision process generates a new chain
complex C KΣ1 6  .  It is immediately clear that there is a 1:1
into algebraic homomorphism

Σ Σ

Σ
Σ

:C K C K

c c
K K

1 6 1 6→

�
��

�
�� =

�
��

�
��∈ ∈∈

∑ ∑∑α α
α

α β
β αα

i i

The overloading of the symbol Σ   for both topological and
algebraic subdivision is unfortunate but of long-standing
establishment. In the algebraic domain the rule of "the
subdivision of the boundary is the boundary of the
subdivision" becomes a lot crisper:

Σ Σ∂ ∂=

There are a number of different schemes for performing the
actual cell subdivision.  One example is the barycentric
subdivision (see Fig. 3) which subdivides an m-cell into a
(central) 0-cell and a k+1 cell for each k-cell of the subdivided
boundary of the m-cell.  Each of the k-cells in the subdivision
have k+1 0-cells on their boundary and is a k-dimensional
generalization of the triangle (called a simplex   - a 2-simplex is
a triangle, a 3-simplex is a pyramid).  Note that the barycentric
subdivision of a triangle has 13 cells (the central 0-cell, six 1-
cells from the six vertices of the subdivided boundary, and six
2-cells from the six edges of the boundary).

Another novel scheme for the actual cell subdivision is bi-conic
subdivision.  Bi-conic subdivision subdivides an m-cell into a
(central) 0-cell and a m-k cell for each k-cell of the un-

subdivided boundary of the m-cell.  Each of the k-cells in the
subdivision have at least k+1 0-cells on their boundary.  A 2-
cell in the subdivision will be a quadrilateral so that the bi-
conic scheme is different from the barycentric scheme.

   A triangle cell Edge Mid-point SD

Barycentric SD Dual Intersection SD

      Figure 3. Examples of different subdivision schemes.

In [3] we used the edge mid-point subdivision which is
common in computer graphics.

3. IMPLEMENTATION OF THE TOPOLOGY WITH
DATA STRUCTURES

A regular CW complex enables effective computation and is
easily achieved with one subdivision. In this section we will
describe the data structures we build to model the topological
entities described above. We will remember that the boundary
of each k-cell is a k-1 sphere and the regularity of the CW
complex allows lifting to the chain group over the integers.

There are a finite number of cells in any approximation. Cells
are objects - there is one object for each cell. The dimension of
the cell is stored with the cell. The values of any functions
defined on the cells of the CW complex are stored with the cell.
A chain is an object and is represented by  a linked list of
pointers to those cells of the chain with non-zero coefficients.
(The coefficient may be recorded.) Chain operator methods are
implemented in terms of coefficient arithmetic.  The boundary
operator is representable by one finite matrix for each
dimension.  The coefficients are 0 or 1. The boundary operator
is sparse.  The value of the boundary operator (a chain object)
at a cell is stored with that cell object.  The value (a chain object)
of the adjoint of the boundary operator at a cell is stored with
that cell object. The adjoint is a chain representing all of the
cells for which the given cell is on the boundary. The adjoint,
while redundant from an information point of view, allows for
rapid calculation of stars.

The value (again a chain object) of the subdivision operator at a
cell is stored with that cell object. Each cell not in the original
CW complex has a parent pointer to the cell whose subdivision
created it. A manifold is represented as just another chain.
There is an ASCII file format for constructing, internalizing,
and externalizing manifolds. External cell names provide an
ordering which is retained in the internal representations. The
subdivision functor is applied cell-by-cell and may be applied
adaptively. When the subdivision functor is applied, new cells
in the subdivision are created.  The boundary of a cell must be
subdivided before a cell is subdivided. It is the responsibility of
the subdivision functor to consistently construct all of the data
structures. Cells in the subdivision usually correspond to a pair
of previous cells, the cell being subdivided and a cell on the



subdivided boundary. Knowing which cells to subdivide, and
subdividing according to their ordination, an encoder and
decoder can arrive at the same resulting data structure
(including ordination). Therefore, the actual information
content in a subdivision is minimal. Several different
subdivision functors may be adaptively intermixed and the
result requires only a small amount of information to describe.

The dual intersection subdivision subdivides by intersection
the dimensional dual of a complex with itself. In it most cells
are hypercubes. The number of cell increases a 2dq, where d is
the dimension and q is the subdivision level.  (Barycentric
subdivision increases as (d!)q). Edge mid-point subdivision of a
tetrahedron results in an octahedron in the center. An k-cell in
the subdivision of an n-cell corresponds (1:1) to an n-k-cell face
on the subdivided boundary of the n-cell. The boundary of a k-
cell in the subdivision corresponds to the adjoint of the
corresponding n-k-cell face in the subdivided boundary of the
n-cell. Dual intersection subdivision is stationary and only a
finite number of compact support wavelet prediction stencils
are required.

Dual Intersection SubdivisionOriginal

Figure 4. Dual Intersection Subdivision

The wavelet analysis attaches function values to cells and
identifies unique compactly supported wavelet stencil. The
stencil topology must match local topology of the cell complex
and the stencil coefficients must have at least the symmetries of
the local of application. We can use stencil to predict function
values at cells introduced by subdivision. We can also record at
new cells the difference between the predicted and actual
values and “lift” back corrections to values at old cells.

The compression thresholds the wavelet values. It elides
subdivisions where wavelet values are uniformly zero and
progressively encodes wavelet analysis by successively finer
thresholds. For real valued functions we can work in some
Besov space. It has been shown ([2]) that the number of non-
zero wavelet values will increase much more slowly than the
number of cells in the subdivided complex. The 2-D results that
we have reported previously [3] indicate that this technique
produces practically competitive algorithms. It also shows (for
the first time) that  compact topological spaces can be
approximated in a computationally feasible manner.

4.  SIMPLE TOPOLOGICAL EXAMPLE AND
FUTURE STUDIES

We are developing a set of C++ classes for working with
manifolds.  The code is being developed for an SGI using the
GNU g++ compiler and a PC using Visual C++.  Among other
things, the code allows for the construction of arbitrary finite–
dimensional manifolds.  A manifold can either be constructed
on–the–fly during code execution or from a static specification
in a file (the file must adhere to a predetermined format, an
example of which follows).

4.1 Simple example (topological cube):

; Describes the surface of a cube.

Dimension 2

; Enumerates the 2-cells in the manifold and their orientation.

Manifold { 1 2 3 4 -5 -6 }

; This section describes the boundary of all the 2-Cells by
enumerating the bounding 1-Cells of each 2-Cell. Each record
in this section maps a 2-cell to its boundary chain. If a cell index
in the chain field is negative, the cell will have a coefficient of -
1. If the cell index is positive, the cell will have a coefficient of
+1.

Cell 2 { (1) 1 2 3 4  (2) -3 5 6 7  (3) -6 8 9 10  (4) -9 11 -1 12
(5) 7 10 12 4  (6) 2 11 8 5 }

; The boundary of each 1-cell.

Cell 1 { (1) 2 -1  (2) 3 -2  (3) 4 -3  (4) 1 -4  (5) 5 -3  (6) 6 -5
(7) 4 -6  (8) 7 -5  (9) 8 -7  (10) 6 -8  (11) 2 -7  (12) 8 -1 }

; 0-cells don’t have a boundary. We just specify the
coordinates of  the 0-cells.

Vertices { (1)  -1  -1  -1  (2)  1  -1  -1  (3)  1  1  -1  (4)  -1  1  -1
(5)  -1  -1   1  (6)  1  -1   1  (7)  1  1   1  (8)  -1  1   1 }

The classes in the library are extensible through the standard
C++ inheritance mechanisms.  They can be used to solve a
variety of topological coding problems.  For example, function
values could be attached to a cell in an application studying
multidimensional signal compression.

4.2 Future studies

Multidimensional signal compression.  When the underlying
signal has some notion of geometry, CW complexes can be
used to approximate both the domain and range space of the
signal. We would like to be able to build approximations to
continuous functions via the cellular approximation theorem. A
systematic approach to refining the approximation gives rise to
a multiresolution scheme and the possibility of efficiently
representing the signal, i.e., wavelets. The approach should
preserve the compression techniques in [3]. We would like to
prove for that case a theorem of  the type described in [2].

Efficient representation of texture maps for computer graphics
applications.  In some computer graphics problems, thousands
of simplices need to be texture mapped to properly display a
scene.  Efficient storage and rapid usability of texture maps can
be studied using the library.
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