
Bayesian Network Classification with Continuous Attributes:
Getting the Best of Both Discretization and Parametric Fitting

Nir Friedman
�

Computer Science Division
University of California

Berkeley, CA 94920
nir@cs.berkeley.ed

Moises Goldszmidt
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

moises@erg.sri.com

Thomas J. Lee
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

tomlee@erg.sri.com

Abstract
In a recent paper, Friedman, Geiger, and Goldszmidt [8]
introduced a classifier based on Bayesian networks, called
Tree Augmented Naive Bayes (TAN), that outperforms
naive Bayes and performs competitively with C4.5 and
other state-of-the-art methods. This classifier has several
advantages including robustness and polynomial compu-
tational complexity. One limitation of the TAN classifier
is that it applies only to discrete attributes, and thus, con-
tinuous attributes must be prediscretized. In this paper,
we extend TAN to deal with continuous attributes directly
via parametric (e.g., Gaussians) and semiparametric (e.g.,
mixture of Gaussians) conditional probabilities. The result
is a classifier that can represent and combine both discrete
and continuous attributes. In addition, we propose a new
method that takes advantage of the modeling language of
Bayesian networks in order to represent attributes both in
discrete and continuous form simultaneously, and use both
versions in the classification. This automates the process
of deciding which form of the attribute is most relevant
to the classification task. It also avoids the commitment
to either a discretized or a (semi)parametric form, since
different attributes may correlate better with one version
or the other. Our empirical results show that this latter
method usually achieves classification performance that is
as good as or better than either the purely discrete or the
purely continuous TAN models.

1 INTRODUCTION
The effective handling of continuous attributes is a cen-
tral problem in machine learning and pattern recognition.
Almost every real-world domain, including medicine, in-
dustrial control, and finance, involves continuous attributes.
Moreover, these attributes usually have rich interdependen-
cies with other discrete attributes. Many approaches in
machine learning deal with continuous attributes by dis-
cretizing them. In statistics and pattern recognition, on the
other hand, the typical approach is to use a parametric family
of distributions (e.g. Gaussians) to model the data.

Each of these strategies has its advantages and disadvan-
tages. By using a specific parametric family, we are making
strong assumptions about the nature of the data. If these
assumptions are warranted, then the induced model can be a�

Current address: Institute of Computer Science, The
Hebrew University, Givat Ram, Jerusalem 91904, Israel,
nir@cs.huji.ac.il.

good approximation of the data. In contrast, discretization
procedures are not bound by a specific parametric distribu-
tion; yet they suffer from the obvious loss of information.
Of course, one might argue that for specific tasks, such as
classification, it suffices to estimate the probability that the
data falls in a certain range, in which case discretization is
an appropriate strategy.

In this paper, we introduce an innovative approach for
dealing with continuous attributes that avoids a commit-
ment to either one of the strategies outlined above. This
approach uses a dual representation for each continuous
attribute: one discretized, and the other based on fitting
a parametric distribution. We use Bayesian networks to
model the interaction between the discrete and continuous
versions of the attribute. Then, we let the learning proce-
dure decide which type of representation best models the
training data and what interdependencies between attributes
are appropriate. Thus, if attribute

�
can be modeled as a

linear Gaussian depending on � , then the network would
have a direct edge from � to

�
. On the other hand, if the

parametric family cannot fit the dependency of
�

on � , then
the network might use the discretized representation of �
and

�
to model this relation. Note that the resulting models

can (and usually do) involve both parametric and discretized
models of interactions among attributes.

In this paper we focus our attention on classification tasks.
We extend a Bayesian network classifier, introduced by
Friedman, Geiger, and Goldszmidt (FGG) [8] called “Tree
Augmented Naive Bayes” (TAN). FGG show that TAN out-
performs naive Bayes, yet at the same time maintains the
computational simplicity (no search involved) and robust-
ness that characterize naive Bayes. They tested TAN on
problems from the UCI repository [16], and compared it
to C4.5, naive Bayes, and wrapper methods for feature se-
lection with good results. The original version of TAN
is restricted to multinomial distributions and discrete at-
tributes. We start by extending the set of distributions that
can be represented in TAN to include Gaussians, mixtures
of Gaussians, and linear models. This extension results in
classifiers that can deal with a combination of discrete and
continuous attributes and model interactions between them.
We compare these classifiers to the original TAN on sev-
eral UCI data sets. The results show that neither approach
dominates the other in terms of classification accuracy.

We then augment TAN with the capability of representing

each continuous attribute in both parametric and discretized
forms. We examine the consequences of the dual represen-
tation of such attributes, and characterize conditions under
which the resulting classifier is well defined. Our main hy-
pothesis is that the resulting classifier will usually achieve
classification performance that is as good or better than both
the purely discrete and purely continuous TAN models. This
hypothesis is supported by our experiments.

We note that this dual representation capability also has
ramifications in tasks such as density estimation, cluster-
ing, and compression, which we are currently investigating
and some of which we discuss below. The extension of
the dual representation to arbitrary Bayesian networks, and
the extension of the discretization approach introduced by
Friedman and Goldszmidt [9] to take the dual representation
into account, are the subjects of current research.

2 REVIEW OF TAN
In this discussion we use capital letters such as �����	��

for variable names, and lower-case letters such as ��������
to denote specific values taken by those variables. Sets
of variables are denoted by boldface capital letters such as
X � Y � Z, and assignments of values to the variables in these
sets are denoted by boldface lowercase letters x � y � z.

A Bayesian network over a set of variables X �� � 1 ��������������� is an annotated directed acyclic graph that
encodes a joint probability distribution over X. Formally,
a Bayesian network is a pair

� ���! "��#%$. The first com-
ponent, , is a directed acyclic graph whose vertices cor-
respond to the random variables � 1 �����������&� , and whose
edges represent direct dependencies between the variables.
The second component of the pair, namely # , represents
a set of local conditional probability distributions (CPDs)'

1 ��������� ' � , where the CPD for ��(maps possible values �)(
of � (and pa *+� (-, of Pa *+� (., , the set of parents of � (in ,
to the conditional probability (density) of � (given pa *+� (., .
A Bayesian network

�
defines a unique joint probability

distribution (density) over X given by the product/10 *+� 1 ����������� � , �32 �(54 1

' (�*!��(�6Pa *+�&(,�, � (1)
When the variables in X take values from finite discrete

sets, we typically represent CPDs as tables that contain pa-
rameters 798;:=< pa >@? :!A for all possible values of � (and Pa *+� (., .
When the variables are continuous, we can use various para-
metric and semiparametric representations for these CPDs.

As an example, let X � � � 1 ����������� � ��BC� , where the
variables � 1 ����������� � are the attributes and B is the class
variable. Consider a graph structure where the class variable
is the root, that is, Pa *DB , �FE , and each attribute has the
class variable as its unique parent, namely, Pa *!� (-, � � BC�
for all 1 GIHJGLK . For this type of graph structure, Equa-
tion 1 yields Pr *!� 1 ����������� � ��B , � Pr *.B ,M�2 �(@4 1 Pr *D�N(�6 B , .
From the definition of conditional probability, we get
Pr *DB&6 � 1 �����������N� , �3O M Pr *DB ,PM-2 �(54 1 Pr *!� (6 B , � where O is
a normalization constant. This is the definition of the naive
Bayesian classifier commonly found in the literature [5].

The naive Bayesian classifier has been used extensively
for classification. It has the attractive properties of being
robust and easy to learn—we only need to estimate the CPDs
Pr *DB , and Pr *!� (6QB , for all attributes. Nonetheless, the
naive Bayesian classifier embodies the strong independence

MagnesiumPotassium Barium Iron Silicon Sodium Calcium RefractiveIndex

Class

Aluminum

Figure 1: A TAN model learned for the data set “glass2.” The
dashed lines represent edges required by the naive Bayesian clas-
sifier. The solid lines are the tree augmenting edges representing
correlations between attributes.

assumption that, given the value of the class, attributes are
independent of each other. FGG [8] suggest the removal
of these independence assumptions by considering a richer
class of networks. They define the TAN Bayesian classifier
that learns a network in which each attribute has the class and
at most one other attribute as parents. Thus, the dependence
among attributes in a TAN network will be represented via a
tree structure. Figure 1 shows an example of a TAN network.

In a TAN network, an edge from � (to �%R implies that the
influence of � (on the assessment of the class also depends
on the value of �%R . For example, in Figure 1, the influence
of the attribute “Iron” on the class B depends on the value of
“Aluminum,” while in the naive Bayesian classifier the in-
fluence of each attribute on the class is independent of other
attributes. These edges affect the classification process in
that a value of “Iron” that is typically surprising (i.e.,

/ *+H�6 S ,
is low) may be unsurprising if the value of its correlated
attribute, “Aluminum,” is also unlikely (i.e.,

/ *+H�6 S9��T , is
high). In this situation, the naive Bayesian classifier will
overpenalize the probability of the class by considering two
unlikely observations, while the TAN network of Figure 1
will not do so, and thus will achieve better accuracy.

TAN networks have the attractive property of being learn-
able in polynomial time. FGG pose the learning problem as
a search for the TAN network that has the highest likelihood
LL * � : U , � /V0 *!U , , given the data U . Roughly speaking,
networks with higher likelihood match the data better. FGG
describe a procedure Construct-TAN for learning TAN
models and show the following theorem.
Theorem 2.1: [8] Let U be a collection of W instances ofBJ��� 1 �����������N� . The procedure Construct-TAN builds a
TAN network

�
that maximizes LL * � : U , and has time

complexity X"*+K 2 M W , .
The TAN classifier is related to the classifier introduced

by Chow and Liu [2]. That method learns a different tree
for each class value. FGG’s results show that the TAN and
Chow and Liu’s classifier perform roughly the same. In
domains where there is substantial differences in the inter-
actions between attributes for different class values, Chow
and Liu’s method performs better. In others, it is possible
to learn a better tree by pooling the examples from different
classes as done by TAN. Although we focus on extending
the TAN classifier here, all of our ideas easily apply to clas-
sifiers that learn a different tree for each class value.

3 GAUSSIAN TAN
The TAN classifier, as described by FGG, applies only to
discrete attributes. In experiments run on data sets with

continuous attributes, FGG use the prediscretizion described
by Fayyad and Irani [7] before learning a classifier. In
this paper, we attempt to model the continuous attributes
directly within the TAN network. To do so, we need to learn
CPDs for continuous attributes. In this section, we discuss
Gaussian distributions for such CPDs. The theory of training
such representations is standard (see, for example, [1, 5]).
We only review the indispensable concepts.

A more interesting issue pertains to the structure of the
network. As we shall see, when we mix discrete and contin-
uous attributes, the algorithms must induce directed trees.
This is in contrast to the procedure of FGG, which learns
undirected trees and then arbitrarily chooses a root to define
edge directions. We describe the procedure for inducing
directed trees next.

3.1 THE BASIC PROCEDURE
We now extend the TAN algorithm for directed trees. This
extension is fairly straight forward and similar ideas have
been suggested for learning tree-like Bayesian networks
[12]. For completeness, and to facilitate later extensions,
we rederive the procedure from basic principles. Assume
that we are given a data set U that consists of W identically
and independently distributed (i.i.d.) instances that assign
values to � 1 ����������� � and B . Also assume that we have
specified the class of CPDs that we are willing to consider.
The objective is, as before, to build a network that maxi-
mizes the likelihood function LL * � : U , � log

/ 0 *!U , .
Using Eq. (1) and the independence of training instances,

it is easy to show that

LL * � : U , � Y (Y[ZR 4 1 log
' (*+� R (6 Pa *+� (., R ,

� Y (-\ *+�&(]6 Pa *+�&(, :
' (, � (2)

where � R (and Pa *+� (-, R are the values of � (and Pa *!� (., in the^
th instance in U . We denote by \ *+� (6 Pa *+� (-,�, the value

attained by \ *!�&(�6 Pa *!��(, � ' (, when
' (is the optimal

CPD for this family, given the data, and the set of CPDs
we are willing to consider (e.g., all tables, or all Gaussian
distributions). “Optimal” should be understood in terms of
maximizing the likelihood function in Eq. (2).

We now recast this decomposition in the special class
of TAN networks. Recall that in order to induce a TAN
network, we need to choose for each attribute �_(at most
one parent other than the class B . We represent this selection
by a function `a*!H , , s.t., if `a*+H , � 0, then B is the only parent
of � (, otherwise both �Nb > (A and B are the parents of � (. We
define LL *+` : U , to be the likelihood of the TAN model
specified by ` , where we select an optimal CPD for each
parent set specified by ` . Rewriting Eq. (2), we get

LL *+` : U ,� Y (dc b > (A.e 0 \ *!� (6fBJ���Nb > (A ,QgY (dc b > (A 4 0 \ *!� (6hB ,Qg \ *DBi6hE ,
� Y (dc b > (A.e 0 * \ *D� (6fBJ���Nb > (A ,1j \ *!� (6hB ,�,QgY (.\ *!� (6hB ,Qg \ *DBi6hE ,
� Y (dc b > (A.e 0 * \ *D� (6fBJ���Nb > (A ,1j \ *!� (6hB ,�,Qg S9�

where S is some constant that does not depend on ` . Thus,
we need to maximize only the first term. This maximization

can be reduced to a graph-theoretic maximization by the
following procedure, which we call Directed-TAN:
1. Initialize an empty graph k with K vertices labeled

1 ����������K .
2. For each attribute � (, find the best scoring CPD for/ *!� (6lB , and compute \ *D� (6mB , . For each �nR with^[o�pH , if an arc from �nR to � (is legal, then find the

best CPD for
/ *D� (6qBJ��� (-, , compute \ *!� (6qBJ���%R , ,

and add to k an arc
^"r H with weight \ *D� (6hBJ���%R ,Qj\ *D� (6fB , .

3. Find a set of arcs s that is a maximal weighted branching
in k . A branching is a set of edges that have at most one
member pointing into each vertex and does not contain
cycles. Finding a maximally weighed branching is a
standard graph-theoretic problem that can be solved in
low-order polynomial time [6, 17].

4. Construct the TAN model that contains arc from B to
each �_(, and arc from � R to �_(if ^Cr H is in s . For each� (, assign it the best CPD found in step 2 that matches
the choice of arcs in the branching.

From the arguments we discussed above it is easy to see that
this procedure constructs the TAN model with the highest
score. We note that since we are considering directed edges,
the resulting TAN model might be a forest of directed trees
instead of a spanning tree.
Theorem 3.1: The procedure Directed-TAN constructs
a TAN network

�
that maximizes LL * � : U , given the

constraints on the CPDs in polynomial time.
In the next sections we describe how to compute the op-

timal \ for different choices of CPDs that apply to different
types of attributes.

3.2 DISCRETE ATTRIBUTES
Recall that if � (is discrete, then we model

/ *D� (6 Pa *!� (-,�,
by using tables that contain a parameter 7ht : < pa >@u : A for each
choice of values for � (and its parents. Thus,

\ *D� (6 Pa *!� (=,�, � v R log
/ *!T R (6 pa *D� (=, R ,

� W vt�: c pa >@u :+A
ˆ/ *DTP(�� pa *!�_(,�, log 7ht : < pa >wu : A��

where ˆ/ * Mx, is the empirical frequency of events in the train-
ing data. Standard arguments show that the maximum like-
lihood choice of parameters is

/ *+�y6J� , � ˆ/ *!�y6J� , .
Making the appropriate substitution above, we get a nice
information-theoretic interpretation of the weight of the arc
from � (to �%R , \ *!� (6hBJ���nR ,fj \ *D� (6fB , �zW Mw{ *D� (; �nR|6B , . The { * , term is the conditional mutual information be-
tween � (and �nR given B [3]. Roughly speaking, it
measures how much information � R provides about �N(if
already know the value of B . In this case, our procedure
reduces to Construct-TAN of FGG, except that they use{ *!� (; �nR}6mB , directly as the weight on the arcs, while we
multiply these weights by W .

3.3 CONTINUOUS ATTRIBUTES
We now consider the case where � is continuous. There
are many possible parametric models for continuous vari-
ables. Perhaps the easiest one to use is the Gaussian

distribution. A continuous variable is a Gaussian with
mean ~ and variance � 2 if the pdf of � has the form� *+� : ~a��� 2 , � 1�

2 bh� 2 ���n�����f��� 22 � 2 � If all the parents of a
continuous � (are discrete, then we learn a conditional
Gaussian CPD [11, 15] by assigning to � (different mean~t : < pa >@u : A and variance � 2 t : < pa >@u : A for each joint value of
its parents. Standard arguments (e.g., see [1]) show that we
can rewrite \ *!�_(6 Pa *!�N(,�, as a function of ��� �_(6 pa *D�N(,D�
and ��� � 2(6 pa *!� (-,D� —the expectations of � (and � 2(in
these instances of the data where Pa *!�N(, take a particular
value. Standard arguments also show that we maximize the
likelihood score of the CPD by choosing

~ u : < pa >@u : A�� ��� � (6 pa *!� (.,.�
� 2 u : < pa >@u : A�� ��� � 2(6 pa *!�_(,D�mj � 2 � �_(6 pa *!�_(,.� �
When we learn TAN models in domains with many con-

tinuous attributes, we also want to have families where one
continuous attribute is a parent of another continuous at-
tribute. In the Gaussian model, we can represent such
CPDs by using a linear Gaussian relation. In this case,
the mean of � (depends, in a linear fashion, on the value
of �nR . This relationship is parameterized by three parame-
ters: O u : < u�� c � ��� u : < u�� c � and � 2 u : < u�� c � for each value S of the
class variable. The conditional probability for this CPD is a
Gaussian with mean O u : < u�� c � g � R � u : < u�� c � and variance� 2 u : < u�� c � . Again, by using standard arguments, it is easy to
show that \ *!� (6h�%Rf��B , is a function of low-order statistics
in the data, and that the maximal likelihood parameters are

� u :�< u � c � � �V� u : u�� < �!� � �V� u : < �!� �V� u�� < �!��V� u 2� < �!� � � 2 � u�� < �!�O u : < u�� c � � ��� � (6fS �mj � u : < u�� c ��� ��� �%R�69S �
� 2 u :�< u � c � � ��� � 2(69S �)j � 2 � � (69S �)j

> �a� u : u�� < �!� � �V� u : < �!� �V� u�� < �!� A 2�a� u 2� < �!� � � 2 � u � < �!�
In summary, to estimate parameters and to evaluate the

likelihood, we need only to collect the statistics of each
pair of attributes with the class, that is, terms of the form��� �N(6hT R ��S � and ��� �N(D� R 6hS � . Thus, learning in the case of
continuous Gaussian attributes can be done efficiently in a
single pass over the data.

When we learn TAN models that contain discrete and
Gaussian attributes, we restrict ourselves to arcs between
discrete attributes, arcs between continuous attributes, and
arcs from discrete attributes to continuous ones. If we want
also to model arcs from continuous to discrete, then we need
to introduce additional types of parametric models, such as
logistic regression [1]. As we will show, an alternative
solution is provided by the dual representation approach
introduced in this paper.

3.4 SMOOTHING
One of the main risks in parameter estimation is overfit-
ting. This can happen when the parameter in question is
learned from a very small sample (e.g., predicting �_(from
values of � R and of B that are rare in the data). A standard
approach to this problem is to smooth the estimated param-
eters. Smoothing ensures that the estimated parameters will

not be overly sensitive to minor changes in the training data.
FGG show that in the case of discrete attributes, smoothing
can lead to dramatic improvement in the performance of the
TAN classifier. They use the following smoothing rule for
the discrete case

79t : < pa >@u : A1� ZN� ˆ� > pa >@u : AdA ˆ� > t : < pa >@u : A+Ad�Q � ˆ� > t : A
Z¡� ˆ� > pa >@u :!AdAd�Q

where ¢ is a parameter that controls the magnitude of the
smoothing (FGG use ¢£� 5 in all of their experiments.)
This estimate uses a linear combination of the maximum
likelihood parameters and the unconditional frequency of
the attribute. It is easy to see that this prediction biases the
learned parameters in a manner that depends on the weight
of the smoothing parameter and the number of “relevant”
instances in the data. This smoothing operation is similar to
(and motivated by) well-known methods in statistics such
as hierarchical Bayesian and shrinkage methods [10].

We can think of this smoothing operation as pretending
that there are ¢ additional instances in which � R is dis-
tributed according to its marginal distribution. This imme-
diately suggests how to smooth in the Gaussian case: we
pretend that for these additional ¢ samples � (, � 2(have the
same average as what we encounter in the totality of the
training data. Thus, the statistics from the augmented data
are

ˆ��� �_(6 pa *!�_(,.� � ZN� ˆ� > pa >@u :+AdA �V� u :=<pa >@u :+A � �Q � �a� u : �ZN� ˆ� > pa >@u :+AdAd�
ˆ��� � 2(6 pa *!�_(,.� � ZN� ˆ� > pa >@u :+AdA �V� u 2: < pa >@u :DA � �Q � �a� u 2: �

ZN� ˆ� > pa >@u :+A+Ad�Q
We then use these adjusted statistics for estimating the mean
and variance of � (given its parents. The same basic smooth-
ing method applies for estimating linear interactions be-
tween continuous attributes.

4 SEMIPARAMETRIC ESTIMATION

Parametric estimation methods assume that the data is (ap-
proximately) distributed according to a member of the given
parametric family. If the data behaves differently enough,
then the resulting classifier will degrade in performance.
For example, suppose that for a certain class S , the attribute�N(has bimodal distribution, where the two modes � 1 and� 2 are fairly far apart. If we use a Gaussian to estimate the
distribution of � (given B , then the mean of the Gaussian
would be in the vicinity of ~¤� 8 1 �q8 2

2 . Thus, instances
where � (has a value near ~ would receive a high probabil-
ity, given the class S . On the other hand, instances where �N(
has a value in the vicinity of either � 1 or � 2 would receive a
much lower probability given S . Consequently, the supportS gets from � (behaves exactly the opposite of the way it
should. It is not surprising that in our experimental results,
Gaussian TAN occasionally performed much worse than the
discretized version (see Table 1).

A standard way of dealing with such situations is to al-
low the classifier more flexibility in the type of distribu-
tions it learns. One approach, called semiparametric esti-
mation, learns a collection of parametric models. In this
approach, we model

/ *!� (6 Pa *D� (=,�, using a mixture of
Gaussian distributions:

/ *!�_(¥6 pa *D�N(,�, �¦Y R � *D�N(:

~ u : < pa >wu : A c R ��� 2 u : < pa >@u : A c R ,-§ u : < pa >@u : A c R � where the parame-
ters specify the mean and variance of each Gaussian in the
mixture and § u :�< pa >@u :+A c R are the weights of the mixture com-
ponents. We require that the § u : < pa >@u : A c R sum up to 1, for
each value of Pa *!� (-, .

To estimate
/ *D�N(�6 pa *!�_(,�, , we need to decide on the

number of mixture components (the parameter
^

in the equa-
tion above) and on the best choice of parameters for that mix-
ture. This is usually done in two steps. First, we attempt to
fit the best parameters for different number of components
(e.g.,

^ � 1 � 2 �������), and then select an instantiation for
^

based on a performance criterion.
Because there is no closed form for learning the pa-

rameters we need to run a search procedure such as the
Expectation-Maximization (EM) algorithm. Moreover,
since EM usually finds local maxima, we have to run it
several times, from different initial points, to ensure that we
find a good approximation to the best parameters. This op-
eration is more expensive than parametric fitting, since the
training data cannot be summarized for training the mixture
parameters. Thus, we need to perform many passes over
the training data to learn the parameters. Because of space
restrictions we do not review the EM procedure here, and
refer the reader to [1, pp. 65–73].

With regard to selecting the number of components in the
mixture, it is easy to see that a mixture with ¨ g 1 components
can easily attain the same or better likelihood as any mixture
with ¨ components. Thus, the likelihood (of the data) alone
is not a good performance criterion for selecting mixture
components, since it always favors models with a higher
number of components, which results in overfitting. Hence,
we need to apply some form of model selection. The two
main approaches to model selection are based on cross-
validation to get an estimate of true performance for each
choice of ¨ , or on penalizing the performance on the training
data to account for the complexity of the learned model. For
simplicity, we use the latter approach with the BIC/MDL
penalization. This rule penalizes the score of each mixture
with log Z2 3 ¨ , where ¨ is the number of mixture components,
and W is the number of training examples for this mixture
(i.e., the number of instances in the data with this specific
value of the discrete parents).

Once more, smoothing is crucial for avoiding overfitting.
Because of space considerations we will not go into the de-
tails. Roughly speaking, we apply the Gaussian smoothing
operation described above in each iteration of the EM proce-
dure. Thus, we assume that each component in the mixture
has a preassigned set of ¢ samples it has to fit.

As our experimental results show, the additional flexi-
bility of the mixture results in drastically improved perfor-
mance in the cases where the Gaussian TAN did poorly (see,
for example, the accuracy of the data sets “anneal-U” and
“balance-scale” in Table 1). In this paper, we learned mix-
tures only when modeling a continuous feature with discrete
parents. We note, however, that learning a mixture of linear
models is a relatively straightforward extension that we are
currently implementing and testing.

5 DUAL REPRESENTATION

The classifiers we have presented thus far require us to make
a choice. We can either prediscretize the attributes and use
the discretized TAN, or we can learn a (semi)parametric
density model for the continuous attributes. Each of these
methods has its advantages and problems: Discretization
works well with nonstandard densities, but clearly loses
much information about the features. Semiparametric esti-
mation can work well for “well-behaved” multimodal den-
sities. On the other hand, although we can approximate any
distribution with a mixture of Gaussians, if the density is
complex, then we need a large number of training instances
to learn a mixture with large number of components, with
sufficient confidence.

The choice we are facing is not a simple binary one, that
is, to discretize or not to discretize all the attributes. We can
easily imagine situations in which some of several attributes
are better modeled by a semiparametric model, and others
are better modeled by a discretization. Thus, we can choose
to discretize only a subset of the attributes. Of course, the
decision about one attribute is not independent of how we
represent other attributes. This discussion suggests that we
need to select a subset of variables to discretize, that is, to
choose from an exponential space of options.

In this section, we present a new method, called hybrid
TAN, that avoids this problem by representing both the con-
tinuous attributes and their discretized counterparts within
the same TAN model. The structure of the TAN model deter-
mines whether the interaction between two attributes is best
represented via their discretized representation, their con-
tinuous representation, or a hybrid of the discrete represen-
tation of one and the continuous representation of the other.
Our hypothesis is that hybrid TAN allows us to achieve per-
formance that is as good as either alternative. Moreover,
the cost of learning hybrid TAN is about the same as that of
learning either alternative.

Let us assume, that the first ¨ attributes, � 1 �����������J© ,
are the continuous attributes in our domain. We denote by� �1 ����������� �© the corresponding discretized attributes (i.e., � �1
is the discretized version of � 1), based on a predetermined
discretization policy (e.g., using a standard method, such
as Fayyad and Irani’s [7]). Given this semantics for the
discretized variables, we know that that each � �(is a de-
terministic function of �_(. That is, � �(state corresponds
to the interval � � 1 ��� 2 � if and only if �_(«ªI� � 1 ��� 2 � . Thus,
even though the discretized variables are not observed in the
training data, we can easily augment the training data with
the discretized version of each continuous attribute.

At this stage one may consider the application of one of
the methods we described above to the augmented training
set. This, however, runs the risk of “double counting” the
evidence for classification provided by the duplicated at-
tributes. The likelihood of the learned model will contain
a penalty for both the continuous and the discrete versions
of the attribute. Consequently, during classification, a “sur-
prising” value of an attribute would have twice the (neg-
ative) effect on the probability of the class variable. One
could avoid this problem by evaluating only the likelihood
assigned to the continuous version of the attributes. Unfor-
tunately, in this case the basic decomposition of Eq. (2) no

longer holds, and we cannot use the TAN procedure.

5.1 MODELING THE DUAL REPRESENTATION

Our approach takes advantage of Bayesian networks to
model the interaction between an attribute and its discretized
version. We constrain the networks we learn to match our
model of the discretization, that is, a discretized attribute is
a function of the continuous one. More specifically, for each
continuous attribute �N(, we require that

/V0 *D� �(6l�N(, � 1
iff � (is in the range specified by � �(. It is easy to
show (using the chain rule) that this constraint implies that/ 0 *!� 1 �����������N����� �1 ����������� �© , � / 0 *!� 1 �����������_� , avoiding
the problem outlined in the previous paragraph.

Note that by imposing this constraint we are not requiring
in any way that �N(be a parent of � �(. However, we do need
to ensure that

/ *D� �(6V� (., is deterministic in the learned
model. We do so by requiring that � (and � �(are adjacent
in the graph (i.e., one is the parent of the other) and by
putting restrictions on the models we learn for

/ *!�_(n6�� �(,
and

/ *D� �(69�_(, . There are two possibilities:
If �_(r � �(is in the graph, then the conditional distri-

bution
/ *!� �(6� (��B , is determined as outlined above; it

is 1 if � (is in the range defined by the value of � �(and 0
otherwise.

If � �(r �N(is in the graph, then we require that/ *!�_(_6m� �(��B , � 0 whenever �_(is not in the range spec-
ified by � �(. By Bayes rule

/ *!� �(6a�_(,&¬ Y � / *D�N(�6� �(��B , / *!� �(��B , ; Thus, if � (is not in the range of � �(,
then

/ *!� �(6a� (.,�¬Y � 0 ® / *!� �(��B , � 0. Since the
conditional probability of � �(given � (must sum to 1, we
conclude that

/ *D� �(69�_(, � 1 iff �N(is in the range of � �(.
There is still the question of the form of

/ *!�_(¯6�� �(��B , .
Our proposal is to learn a model for �N(given � �(and B , using
the standard methods above (i.e., a Gaussian or a mixture
of Gaussians). We then truncate the resulting density on
the boundaries of the region specified by the discretization,
and we ensure that the truncated density has total mass 1 by
applying a normalizing constant. In other words, we learn
an unrestricted model, and then condition on the fact that� (can only take values in the specified interval.

Our goal is then to learn a TAN model that includes both
the continuous and discretized versions of each continuous
attribute, and that satisfies the restrictions we just described.
Since these restrictions are not enforced by the procedure of
Section 3.1, we need to augment it. We start by observing
that our restrictions imply that if we include

� r � in the
model, we must also include � r � � . To see this, note that
since � already has one parent (

�
) it cannot have additional

parents. Thus, the only way of making � and � � adjacent
is by adding the edge � r � � . Similarly, if we include the
edge

� r � � , we must also include � � r � .
This observation suggests that we consider edges between

groups of variables,where each group contains both versions
of an attribute. In building a TAN structure that includes
both representations, we must take into account that adding
an edge to an attribute in a group, immediately constraints
the addition of other edges within the group. Thus, the TAN
procedure should make choices at the level groups. Such a
procedure, which we call hybrid-TAN is described next.

B B*

A A*

B B*

A A*

B B*

A A*

(a) (b) (c)

Figure 2: The three possible ways of placing an edge from °�±|²�± ��³
into °�´N²=´ � ³ . The parameterization of possible arcs are as follows:± �¶µ ´ � is a discrete model, both ± �·µ ´ and ± µ ´
are continuous models (e.g., Gaussians), ´ � µ ´ is a truncated
continuous model (e.g., truncated Gaussian), and ´ µ ´ � is a
deterministic model.

5.2 HYBRID-TAN
We now expand on the details of the procedure. As with
the basic procedure, we compute scores on edges. Now,
however, edges are between groups of attributes. Each group
consisting of the different representations of an attribute.

Let � be a continuous attribute. By our restriction, either�Lª Pa *D� � , , or � � ª Pa *D� , . And since each attribute has
at most one parent (in addition to the class B), we have that at
most one other attribute is in Pa *!� ,;¸ Pa *!� � ,hj � ����� � ��BC� .
We define a new function ¹|*!�º6 � , that denotes the best
combination of parents for � and � � such that either

�
or�"�

is a parent of one of these attributes. Similarly, ¹�*!�»6hE ,
denotes the best configuration such that no other attribute is
a parent of � or � � .

First, consider the term ¹|*!�¼6¡E , . If we decide that
neither � nor � � have other parents, then we can freely
choose between � r � � and � � r � . Thus¹|*!�L6hE , � max * \ *!�»6�BJ��� � ,qg \ *D� � 6fB , �\ *!�»6�B ,Qg \ *!� � 6hBJ��� ,�, �
where \ *!�½6aBJ��� � , and \ *!� � 6VBJ��� , are the scores of
the CPDs subject to the constraints discussed in Subsec-
tion 5.1 (the first is a truncated model, and the second is a
deterministic model).

Next, consider the case that a continuous attribute
�

is
a parent of � . There are three possible ways of placing an
edge from the group

� � � � � � into the group
� ����� � � . These

cases are shown in Figure 2. (The fourth case is disallowed,
since we cannot have an edge from the continuous attribute,�

to the discrete attribute, � � .) It is easy to verify that in
any existing TAN network, we can switch between the edge
configurations of Figure 2 without introducing new cycles.
Thus, given the decision that the group

�
points to the group� , we would choose the configuration with maximal score:¹|*D�»6 � , � max * \ *!�»6�BJ� � � ,Qg \ *!� � 6hBJ��� , �\ *!�»6�BJ��� � ,qg \ *!� � 6hBJ� � � , �\ *!�»6�BJ� � ,g \ *D� � 6hBJ��� ,�,

Finally, when
�

is discrete, then ¹|*D�L6 � , is the maximum
between two options (

�
as a parent of � or as a parent of� �

), and when � is discrete, then ¹|*!�L6 � , is equal to one
term (either \ *!�¾6BJ� � , or \ *!�¾6BJ� �"� , , depending on�

’s type).
We now define the Hybrid-TAN procedure:

Magnesium*

Magnesium

Calcium*

Calcium Iron

RefractiveIndex*

Iron*

RefractiveIndex Aluminum* Potassium* Silicon

Aluminum

Barium

Potassium Sodium

Figure 3: A hybrid TAN model learned for the data set “glass2.” For clarity, the edges from the class to all the attributes are not shown.
The attributes marked with asterisks (¿) correspond to the discretized representation. Dotted boxes mark two versions of the same
attribute.

0

1

2

3

4

5

M
6 8 10 12 14 16C

0.2

0.3

0.4

p(C,M)

0

1

2

3

4

5

M
6 8 10 12 14 16C

0.1

0.15

p(C,M)

6

8

10

12

14

16

0 1 2 3 4 5

C

À

M

Mixture Hybrid Training Data

Figure 4: Differences in the modeling of the interaction between attributes, for mixtures of Gaussians and the hybrid model. The graphs
show the interaction between Calcium (Á) and Magnesium (Â) in the “glass2” data set, given a specific value of the class.

1. Initialize an empty graph k with K vertices labeled
1 ����������K .

2. For each attribute �_(, compute the scores of the form\ *D�N(«6QB , , \ *!� �(6qB , , \ *D�N(|6qBJ��� �(, , etc. For each� R with
^io�H , add to k an arc

^Ãr H with weight¹|*D�N(]69� R ,1j ¹�*!�N(]6fE , .
3. Find a maximal weighted branching s in k .
4. Construct the TAN model that contains edges from B to

each �N(and � �(. If
^"r H is in s , add the best configu-

ration of edges (and the corresponding CPDs) from the
group � R into �_(. If H does not have an incoming arc ins , then add the edge between � (and � �(that maximizes¹|*D� (: E , .

It is straight forward to verify that this procedure performs
the required optimization:
Theorem 5.1: The procedure Hybrid-TAN constructs in
polynomial time a dual TAN network

�
that maximizes

LL * � : U , , given the constraints on the CPDs and the
constraint that � (and � �(are adjacent in the graph.

5.3 AN EXAMPLE
Figure 3 shows an example of a hybrid TAN model learned
from one of the folds of the “glass2” data set.1 It is instruc-
tive to compare it to the network in Figure 1, which was
learned by a TAN classifier based on mixtures of Gaussians
from the same data set. As we can see, there are some
similarities between the networks, such as the connections
between “Silicon” and “Sodium,” and between “Calcium”
and “Magnesium” (which was reversed in the hybrid ver-
sion). However, most of the network’s structure is quite

1Some of the discrete attributes do not appear in the figure,
since they were discretized into one bin.

different. Indeed, the relation between “Magnesium” and
“Calcium” is now modulated by the discretized version of
these variables. This fact, and the increased accuracy of hy-
brid TAN for this data set (see Table 1), seem to indicate that
in this domain attributes are not modeled well by Gaussians.

As a further illustration of this, we show in Figure 4 the
estimate of the joint density of “Calcium” and “Magnesium”
in both networks (given a particular value for the class), as
well as the training data from which both estimates were
learned. As we can see, most of the training data is centered
at one point (roughly, when Ä � 3 � 5 and BÅ� 8), but
there is fair dispersion of data points when ÄÆ� 0. In the
Gaussian case, B is modeled by a mixture of two Gaussians
(centered on 8 � 3 and 11 � 8, where the former has most of
the weight in the mixture), and Ä is modeled as a linear
function of B with a fixed variance. Thus, we get a sharp
“bump” at the main concentration point on the low ridge in
Figure 4a. On the other hand, in the hybrid model, for each
attribute, we model the probability in each bin by a truncated
Gaussian. In this case, B is partitioned into three bins andÄ into two. This model results in the discontinuous density
function we see in Figure 4b. As we can see, the bump
at the center of concentration is now much wider, and the
whole region of dispersion corresponds to a low, but wide,
“tile” (in fact, this tile is a truncated Gaussian with a large
variance).

6 EXPERIMENTAL EVALUATION

We ran our experiments on the 23 data sets listed in Table 1.
All of these data sets are from the UCI repository [16], and
are accessible at the MLC g«g ftp site. The accuracy of
each classifier is based on the percentage of successful pre-

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

M
ix

Disc

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

D
is

c
&

 M
ixÇ

H/Mix

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

H
/M

ix
-F

SÈ

H/Mix

(a) (b) (c)

Figure 5: Scatter plots comparing the performance (a) of Disc (É axis) vs. Mix (Ê axis), (b) of H/Mix (É axis) vs. Disc and Mix (Ê axis),
and (c) of H/Mix (É axis) vs. H/Mix-FS (Ê axis). In these plots, each point represents a data set, and the coordinates correspond to the
prediction error of each of the methods compared. Points below the diagonal line correspond to data sets where the Ê axis method is
more accurate, and points above the diagonal line correspond to data sets where the É axis method is more accurate. In (b), the dashed
lines connect points that correspond to the same data set.

dictions on the test sets of each data set. We estimate the
prediction accuracy of each classifier as well as the variance
of this accuracy by using the MLC g«g system [14]. Ac-
curacy was evaluated using 5-fold cross validation (using
the methods described in [13]). Since we do not currently
deal with missing data, we removed instances with missing
values from the data sets. To construct discretizations, we
used a variant of the method of Fayyad and Irani [7], using
only the training data, in the manner described in [4]. These
preprocessing stages were carried out by the MLC g«g sys-
tem. We note that experiments with the various learning
procedures were carried out on exactly the same training
sets and evaluated on exactly the same test sets.

Table 1 summarizes the accuracies of the learning proce-
dures we have discussed in this paper: (1) Disc–TAN clas-
sifier based on prediscretized attributes; (2) Gauss–TAN
classifier using Gaussians for the continuous attributes and
multinomials for the discrete ones; (3) Mix–TAN classifier
using mixtures of Gaussians for the continuous attributes;
(4) H/Gauss–hybrid TAN classifier enabling the dual repre-
sentation and using Gaussians for the continuous version of
the attributes; (5) H/Mix–hybrid TAN classifier using mix-
tures of Gaussian for the continuous version of the attributes;
and (6) H/Mix-FS–same as H/Mix but incorporating a prim-
itive form of feature selection. The discretization procedure
often removes attributes by discretizing them into one inter-
val. Thus, these attributes are ignored by the discrete version
of TAN. H/Mix-FS imitate this feature selection by also ig-
noring the continuous version of the attributes removed by
the discretization procedure.

As we can see in Figure 5(a), neither the discrete TAN
(Disc) nor the mixture of Gaussians TAN (Mix) outper-
forms the other. In some domains, such as “anneal-U” and
“glass,” the discretized version clearly performs better; in
others, such as “balance-scale,” “hayes-roth,” and “iris,” the
semiparametric version performs better. Note that the latter
three data sets are all quite small. So, a reasonable hypothe-
sis is that the data is too sparse to learn good discretizations.

On the other hand, as we can see in Figure 5(b), the hybrid
method performs at roughly the same level as the best of
either Mix or Disc approaches. In this plot, each pair of
connected points describes the accuracy results achieved by
Disc and Mix for a single data set. Thus, the best accuracy of
these two methods is represented by the lower point on each
line. As we can see, in most data sets the hybrid method
performs roughly at the same level as these lower points. In
addition, in some domains such as “glass2,” “hayes-roth,”
and “hepatitis” the ability to model more complex interac-
tions between the different continuous and discrete attributes
results in a higher prediction accuracy. Finally, given the
computational cost involved in using EM to fit the mixture
of Gaussians we include the accuracy of H/Gauss so that
the benefits of using a mixture model can be evaluated. At
the same time, the increase in prediction accuracy due to
the dual representation can be evaluated by comparing to
Gauss.

Due to the fact that H/Mix increases the number of pa-
rameters that need to be fitted, feature selection techniques
are bound to have a noticeable impact. This is evident
in the results obtained for H/Mix-FS which, as mentioned
above, supports a primitive form of feature selection (see
Figure 5(c)). These results indicate that we may achieve bet-
ter performance by incorporating a feature selection mech-
anism into the classifier. We leave this as a topic for future
research.

7 CONCLUSIONS
The contributions of this work are twofold. First, we extend
the TAN classifier to directly model continuous attributes by
parametric and semiparametric methods. We use standard
procedures to estimate each of the conditional distributions,
and then combine them in a structure learning phase by
maximizing the likelihood of the TAN model. The resulting
procedure preserves the attractive properties of the original
TAN classifier—we can learn the best model in polynomial
time. Of course, one might extend TAN to use other para-

Table 1: Experimental Results. The first four column describe the name of the data sets, the number of continuous and discrete attributes,
and the number of instances. The remaining columns report percentage classification error and std. deviations from 5-fold cross validation
of the tested procedures (see text).

Attr. Prediction Errors
Data set C D Size Disc Gauss Mix H/Gauss H/Mix H/Mix-FS
anneal-U 6 32 898 2.45 +- 1.01 23.06 +- 3.49 7.46 +- 3.12 10.91 +- 1.79 4.12 +- 1.78 4.34 +- 1.43
australian 6 8 690 15.36 +- 2.37 23.77 +- 3.26 18.70 +- 4.57 17.10 +- 2.83 16.23 +- 2.38 15.80 +- 1.94
auto 15 10 159 23.93 +- 8.57 28.41 +- 10.44 29.03 +- 10.04 27.10 +- 8.12 26.47 +- 8.44 21.41 +- 4.27
balance-scale 4 0 625 25.76 +- 7.56 11.68 +- 3.56 9.60 +- 2.47 11.84 +- 3.89 13.92 +- 2.16 13.92 +- 2.16
breast 10 0 683 3.22 +- 1.69 5.13 +- 1.73 3.66 +- 2.13 3.22 +- 1.69 4.34 +- 1.10 4.32 +- 0.96
cars1 7 0 392 26.52 +- 2.64 25.03 +- 7.11 26.30 +- 4.44 25.28 +- 6.54 24.27 +- 7.85 25.79 +- 6.21
cleve 6 7 296 18.92 +- 1.34 17.23 +- 1.80 16.24 +- 3.97 16.24 +- 3.97 15.89 +- 3.14 16.23 +- 3.58
crx 6 9 653 15.01 +- 1.90 24.05 +- 4.44 19.76 +- 4.04 17.31 +- 1.60 15.47 +- 1.87 15.47 +- 2.09
diabetes 8 0 768 24.35 +- 2.56 25.66 +- 2.70 24.74 +- 3.74 22.65 +- 3.21 24.86 +- 4.06 24.60 +- 3.45
echocardiogram 6 1 107 31.82 +- 10.34 28.23 +- 13.86 30.13 +- 14.94 29.18 +- 14.05 29.18 +- 14.05 30.95 +- 11.25
flare 2 8 1066 17.63 +- 4.19 17.91 +- 4.34 17.63 +- 4.46 17.91 +- 4.34 17.63 +- 4.46 17.63 +- 4.19
german-org 12 12 1000 26.30 +- 2.59 25.30 +- 2.97 25.60 +- 1.39 25.70 +- 3.47 25.20 +- 1.75 26.60 +- 2.27
german 7 13 1000 26.20 +- 4.13 25.20 +- 2.51 24.60 +- 1.88 25.10 +- 2.07 25.30 +- 3.33 25.70 +- 4.40
glass 9 0 214 30.35 +- 5.58 49.06 +- 6.29 48.13 +- 8.12 32.23 +- 4.63 31.30 +- 5.00 33.16 +- 5.65
glass2 9 0 163 21.48 +- 3.73 38.09 +- 7.92 38.09 +- 7.92 34.39 +- 9.62 31.27 +- 9.63 23.30 +- 6.22
hayes-roth 4 0 160 43.75 +- 4.42 33.12 +- 11.40 31.88 +- 6.01 29.38 +- 10.73 18.75 +- 5.85 14.38 +- 4.19
heart 13 0 270 16.67 +- 5.56 15.56 +- 5.65 15.19 +- 5.46 15.19 +- 3.56 17.41 +- 4.65 15.93 +- 5.34
hepatitis 6 13 80 8.75 +- 3.42 12.50 +- 4.42 10.00 +- 3.42 12.50 +- 7.65 10.00 +- 5.59 11.25 +- 5.23
ionosphere 34 0 351 7.70 +- 2.62 9.13 +- 3.31 9.41 +- 2.98 6.85 +- 3.27 6.85 +- 3.27 7.13 +- 3.65
iris 4 0 150 6.00 +- 2.79 2.00 +- 2.98 2.00 +- 2.98 4.67 +- 1.83 4.67 +- 1.83 4.67 +- 1.83
liver-disorder 6 0 345 41.16 +- 1.94 40.29 +- 5.16 33.33 +- 4.10 36.52 +- 7.63 30.43 +- 5.12 41.74 +- 2.59
pima 8 0 768 24.87 +- 2.82 24.35 +- 1.45 24.35 +- 3.47 22.92 +- 3.96 25.52 +- 2.85 24.48 +- 2.87
post-operative 1 7 87 29.74 +- 13.06 34.38 +- 10.09 30.98 +- 11.64 34.38 +- 10.09 30.98 +- 11.64 29.74 +- 13.06

metric families (e.g., Poisson distributions) or other semi-
parametric methods, (e.g., kernel-based methods). The gen-
eral conclusion we draw from these extensions is that if the
assumptions embedded in the parametric forms “match” the
domain, then the resulting TAN classifier generalizes well
and will lead to good prediction accuracy. We also note
that it is straightforward to extend the procedure to select,
at learning time, a parametric form from a set of parametric
families.

Second, we introduced a new method to deal with differ-
ent representations of continuous attributes within a single
model. This method enables our model learning procedure
(in this case, TAN) to automate the decision as to which rep-
resentation is most useful in terms of providing information
about other attributes. As we showed in our experiments,
the learning procedure managed to make good decisions on
these issues and achieve performance that roughly as good
as both the purely discretized and the purely continuous
approaches.

This method can be extended in several directions. For
example, to deal with several discretizations of the same
attributes in order to select the granularity of discretization
that is most useful for predicting other attributes. Another
direction involves adapting the discretization to the particu-
lar edges that are present in the model. As argued Friedman
and Goldszmidt [9], it is possible to discretize attributes to
gain the most information about the neighboring attributes.
Thus, we might follow the approach in [9] and iteratively
readjust the structure and discretization to improve the score.
Finally, it is clear that this hybrid method is applicable not
only to classification, but also to density estimation and
related tasks using general Bayesian networks. We are cur-
rently pursuing these directions.

Acknowledgments
We thank Anne Urban for help with the experiments. M. Gold-
szmidt and T. Lee were supported in part by DARPA’s High

Performance Knowledge Bases program under SPAWAR contract
N66001-97-C-8548. N. Friedman was supported in part by ARO
under grant DAAH04-96-1-0341.

References
[1] C. M. Bishop. Neural Networks for Pattern Recognition, 1995.
[2] C. K. Chow and C. N. Liu. Approximating discrete probability distributions

with dependence trees. IEEE Trans. on Info. Theory, 14:462–467, 1968.
[3] T. M. Cover and J. A. Thomas. Elements of Information Theory, 1991.
[4] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised dis-

cretization of continuous features. In ICML ’95. 1995.
[5] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis, 1973.
[6] S. Even. Graph Algorithms, 1979.
[7] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-

valued attributes for classification learning. In IJCAI ’93. 1993.
[8] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.

Machine Learning, 29:131–163, 1997.
[9] N. Friedman and M. Goldszmidt. Discretization of continuous attributes while

learning Bayesian networks. In ICML ’96. 1996.
[10] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.

1995.
[11] D. Heckerman and D. Geiger. Learning Bayesian networks: a unification for

discrete and Gaussian domains. In UAI ’95. 1995.
[12] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian net-

works: The combination of knowledge and statistical data. Machine Learning,
20:197–243, 1995.

[13] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In IJCAI ’95. 1995.

[14] R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger. MLC++: A machine
learning library in C++. In Proc. 6’th Inter. Conf. on Tools with AI, 1994.

[15] S. L. Lauritzen and N. Wermuth. Graphical models for associations between
variables, some of which are qualitative and some quantitative. Annals of
Statistics, 17:31–57, 1989.

[16] P. M. Murphy and D. W. Aha. UCI repository of machine learning
databases. http://www.ics.uci.edu/˜mlearn/MLRepository.
html, 1995.

[17] R. Tarjan. Finding optimal branching. Networks, 7:25–35, 1977.

