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Abstract

In the wrapper approach to feature subset selection, a

search for an optimal set of features is made using the

induction algorithm as a black box. The estimated

future performance of the algorithm is the heuristic

guiding the search. Statistical methods for feature

subset selection including forward selection, backward

elimination, and their stepwise variants can be viewed

as simple hill-climbing techniques in the space of fea-

ture subsets. We utilize best-�rst search to �nd a good

feature subset and discuss over�tting problems that

may be associated with searching too many feature

subsets. We introduce compound operators that dy-

namically change the topology of the search space to

better utilize the information available from the eval-

uation of feature subsets. We show that compound

operators unify previous approaches that deal with

relevant and irrelevant features. The improved fea-

ture subset selection yields signi�cant improvements

for real-world datasets when using the ID3 and the

Naive-Bayes induction algorithms.

1 Introduction

Practical algorithms in supervised machine learning

degrade in performance (prediction accuracy) when

faced with many features that are not necessary for

predicting the desired output. An important question

in the �elds of machine learning, knowledge discovery,

statistics, and pattern recognition is how to select a

good subset of features. The problem is especially se-

vere when large databases, with many features, are

searched for patterns without �ltering of important

features by human experts or when no such experts

exist.

Common machine learning algorithms, including

top-down induction of decision trees, such as CART,

ID3, and C4.5 (Breiman, Friedman, Olshen & Stone

1984, Quinlan 1993), and nearest-neighbor algorithms,

such as IB1, are known to su�er from irrelevant fea-

tures. Naive-Bayes classi�ers, which assume indepen-

dence of features given the instance label, su�er from

correlated and redundant features. A good choice of

features may not only help improve performance ac-

curacy, but also aid in �nding smaller models for the

data, resulting in better understanding and interpre-

tation of the data.

In the �lter approach to feature subset selection, a

feature subset is selected as a preprocessing step where

features are selected based on properties of the data it-

self and independent of the induction algorithm. In the

wrapper approach, the feature subset selection is found

using the induction algorithm as a black box. The fea-

ture subset selection algorithm conducts a search for

a good feature subset using the induction algorithm

itself as part of the evaluation function.

John, Kohavi & P
eger (1994) used the wrapper

method coupled with a hill-climbing search. Kohavi

(1994) showed that best-�rst search improves the ac-

curacy. One problem with expanding the search (i.e.,

using best-�rst search and not hill-climbing) is that of

over�tting: the accuracy estimation (cross-validation

in both papers) guides the search toward feature sub-

sets that will be good for the speci�c cross-validation

folds; however, overusing the estimate can lead to over-

�tting, a problem we discuss in Section 4.

In the common organization of the state space

search, each node represents a feature subset, and each

operator represents the addition or deletion of a fea-

ture. The main problem with this organization is that

the search must expand (i.e., generate successors of)

every node from the empty subset or from the full sub-

set on the path to the best feature subset, which is very

expensive. In Section 5 we introduce a way to change

the search space topology by creating dynamic opera-

tors that directly connect to nodes considered promis-

ing given the evaluation of the children. These opera-

tors better utilize the information available in all the

evaluated children. Our experimental results, shown

in Sections 5 and 6, indicate that compound operators

help identify better feature subsets faster and that fea-

ture subset selection can signi�cantly improve the per-

formance of induction algorithms.



2 Relevant and Optimal Features

The input to a supervised learning algorithm is a train-

ing set D of m labelled instances independently and

identically distributed (i.i.d.) from an unknown distri-

bution D over the labelled instance space. An unla-

belled instance X is an element of the set F
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, where F

i

is the domain of the ith feature. La-

belled instances are tuples hX; Y i where Y is the label,

or output.

Let I be an induction algorithm using a hypothesis

space H; thus I maps D to h 2 H and h 2 H maps

an unlabelled instance to a label. The prediction ac-

curacy of a hypothesis h is the probability of correctly

classifying the label of a randomly selected instance

from the instance space according to the probability

distribution D. The task of the induction algorithm

is to choose a hypothesis with the highest prediction

accuracy.

We now de�ne relevance of features in terms of a

Bayes classi�er|the optimal classi�er for a given prob-

lem. A feature X is strongly relevant if removal of X

alone will result in performance deterioration of an op-

timal Bayes classi�er. A feature X is weakly relevant if

it is not strongly relevant and there exists a subset of

features, S, such that the performance of a Bayes clas-

si�er on S is worse than the performance on S[ffg.

A feature is irrelevant if it is not strongly or weakly

relevant. The set of strongly relevant features is called

the core. Formalized versions of the above de�nitions

can be found in John et al. (1994).

There are three main problems with these de�nitions

that make them hard to use in practice. First, many

hypothesis spaces are parametric (e.g., perceptrons,

monomials) and the best hypothesis approximating the

target concept from the familymay not even use all the

strongly relevant features. Second, practical learning

algorithms are not always consistent: even with an in-

�nite amount of data they might not converge to the

best hypothesis. Third, even consistent learning pro-

cedures may be improved for �nite samples by ignoring

relevant features. These reasons motivated us to de-

�ne the optimal features, which depend not only on

the data, but also on the speci�c induction algorithm.

An optimal feature subset, S

�

, for a given induction

algorithm and a given training set is a subset of the

features, S

�

, such that the induction algorithm gener-

ates a hypothesis with the highest prediction accuracy.

The feature subset need not be unique.

The relation between relevant and optimal features

is not obvious. In Section 5, we show how compound

operators improve the search for optimal features us-

ing the ideas motivated by the above de�nitions of rel-

evance.

3 Feature Subset Selection as

Heuristic Search

The statistical and pattern recognition literature on

feature subset selection dates back a few decades, but

the research deals mostly with linear regression. We

refer the reader to the related work section in John et

al. (1994) for key references. Langley (1994) provides

a survey of recent feature subset selection algorithms,

mostly in machine learning.

Most criteria for feature subset selection from the

statistics and pattern recognition communities are al-

gorithm independent and do not take into account the

di�erences between the di�erent induction algorithms.

For example, as was shown in John et al. (1994), fea-

tures with high predictive power may impair the overall

accuracy of the induced decision trees.

The task of �nding a feature subset that satis�es a

given criteria can be described as a state space search.

Each state represents a feature subset with the given

criteria used to evaluate it. Operators determine the

partial ordering between the states.

In this paper, we use the wrapper method wherein

the criteria to optimize is the estimated prediction ac-

curacy. Methods that wrap around the induction algo-

rithm, such as holdout, bootstrap, and cross-validation

(Weiss & Kulikowski 1991) are used to estimate the

prediction accuracy. To conduct a search, one needs

to de�ne the following:

Search Space Operators The operators in the

search space are usually either \add feature" or

\delete feature" or both. In the statistics literature,

the term forward selection refers to a space contain-

ing only the \add feature" operator; the term back-

ward elimination refers to a space containing only

the \delete feature" operator. The stepwise meth-

ods use both operators. In our experiments, we used

both operators.

Accuracy Estimation The heuristic function in the

wrapper approach is the estimated prediction accu-

racy. In our experiments, we used ten-fold cross-

validation as the accuracy estimation function.

Search Algorithm Any heuristic search algorithm

can be used to conduct the search. In our experi-

ments, we used best-�rst search, which at every it-

eration generates the successors of the the best un-

expanded node (the node with the highest estimated

accuracy). The termination condition was �ve con-

secutive non-improving nodes. The initial node de-

termines the general direction of the search. One

typically starts forward selection from the empty set

of features and backward elimination from the full

set of features.
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Figure 1: Over�tting in feature subset selection using ID3. The left graph shows accuracies for a random dataset. The solid

line represents the estimated accuracy for a training set of 100 instances, the thick grey line for a training set of 500 instances,

and the dotted line shows the real accuracy. The middle and right graphs show the accuracy for real-world datasets. The

solid line is the estimated accuracy and the dotted line is the accuracy on an independent test set.

4 Over�tting

An induction algorithm over�ts the dataset if it mod-

els the given data too well and its predictions are poor.

An example of an over-specialized hypothesis, or clas-

si�er, is a lookup table on all the features. Over�tting

is closely related to the bias-variance tradeo� (Geman

& Bienenstock 1992, Breiman et al. 1984): if the algo-

rithm �ts the data too well, the variance term is large,

and hence the overall error is increased.

Most accuracy estimation methods, including cross-

validation, evaluate the predictive power of a given hy-

pothesis over a feature subset by setting aside instances

(holdout sets) that are not shown to the induction al-

gorithm and using them to assess the predictive ability

of the induced hypothesis. A search algorithm that ex-

plores a large portion of the space and that is guided by

the accuracy estimates can choose a bad feature sub-

set: a subset with a high accuracy estimate but poor

predictive power.

If the search for the feature subset is viewed as part

of the induction algorithm, then overuse of the accu-

racy estimates may cause over�tting in the feature-

subset space. Because there are so many feature sub-

sets, it is likely that one of them leads to a hypothesis

that has high predictive accuracy for the holdout sets.

A good example of over�tting can be shown using a

no-information dataset (Rand) where the features and

the label are completely random. Figure 1 (left) shows

the estimated accuracy versus the true accuracy for

the best node the search has found after expanding k

nodes. One can see that especially for the small sample

of size 100, the estimate is extremely poor (26% opti-

mistic), indicative of over�tting. The middle and right

graphs in the �gure show over�tting in small real-world

datasets.

Recently, a few machine learning researchers have

reported the cross-validation estimates that were used

to guide the search as a �nal estimate of performance,

thus achieving overly optimistic results. Experiments

using cross-validation to guide the search must report

the accuracy of the selected feature subset on a sepa-

rate test set or on holdout sets generated by an external

loop of cross-validation that were never used during the

feature subset selection process.

The problem of over�tting in feature subset space

has been previously raised in the machine learning

community byWolpert (1992) and Scha�er (1993), and

the subject has received much attention in the statis-

tics community (cf. Miller (1990)).

Although the theoretical problem exists, our exper-

iments indicate that over�tting is mainly a problem

when the number of instances is small. For our ex-

periments, we chose reasonably large datasets and our

accuracies are estimated on unseen instances. In our

reported experiments, there were 70 searches for fea-

ture subsets. Ten searches were optimistically biased

by more than two standard deviations and one was

pessimistically biased by more than two standard de-

viations.

5 Compound Operators

In this section we introduce compound operators, a

method that utilizes the accuracy estimation computed

for the children of a node to change the topology of the

search space.

The motivation for compound operators comes from

Figure 2 that partitions the feature subsets into core

features (strongly relevant), weakly relevant features,

and irrelevant features. An optimal feature subset for

a hypothesis space must be from the relevant feature

subset (strongly and weakly relevant features). A back-

ward elimination search starting from the full set of

features (as depicted in Figure 2) that removes one

feature at a time, will have to expand all the children

of each node before removing a single feature. If there

are i irrelevant features and f features, (i � f) nodes

must be evaluated. In domains where feature subset

selection might be most useful, there are many features
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Figure 3: Comparison of compound (dotted line) and non-compound (solid line) searches. The accuracy (y-axis) is that of

the best node on an independent test set after a given number of node evaluations (x-axis).
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Figure 2: The state space. If a feature subset contains

an irrelevant feature, it is in the irrelevant area; if it con-

tains only strongly relevant features it is in the core region;

otherwise, it is in the relevant region. The dotted arrows

indicate compound operators.

but such a search may be prohibitively expensive.

Compound operators are operators that are dynami-

cally created after the standard set of children, created

by the add and delete operators, have been evaluated.

Intuitively, there is more information in the evaluation

of the children than just the node with the maximum

evaluation. Compound operators combine operators

that led to the best children into a single dynamic op-

erator. If we rank the operators by the estimated ac-

curacy of the children, then we can de�ne compound

operator c

i

to be the combination of the best i+1 op-

erators. For example, the �rst compound operator will

combine the best two operators.

The compound operators are applied to the parent,

thus creating children nodes that are farther away in

the state space. Each compound node is evaluated

and the generation of compound operators continues

as long as the estimated accuracy of the compound

nodes improves.

Compound operators generalize a few suggestions

previously made. Kohavi (1994) suggested that the

search might start from the set of strongly relevant

features (the core). If one starts from the full set of

features, removal of any single strongly relevant fea-

ture will cause a degradation in performance, while re-

moval of any irrelevant or weakly relevant feature will

not. Since the last compound operator connects the

full feature subset to the core, the compound opera-

tors from the full feature subset plot a path leading to

the core. The path is explored by removing one feature

at a time until estimated accuracy deteriorates. Caru-

ana & Freitag (1994) implemented a SLASH version

of feature subset selection that eliminates the features

not used in the derived decision tree. If there are no

features that improve the performance when deleted,

then (ignoring orderings due to ties) one of the com-

pound operators will lead to the same node that slash

would take the search to. While the SLASH approach

is only applicable for backward elimination, compound

operators are also applicable to forward selection.

In order to compare the performance of the feature

subset selection algorithmwith and without compound

nodes, we ran experiments comparing them on di�er-

ent datasets. Figure 3 compares a search with and

without compound operators. Compound operators

improve the search by �nding nodes with higher ac-

curacy faster; however, whenever it is easy to over�t,

they cause over�tting earlier.

6 Experimental Results

In order to compare the feature subset selection,

we used ID3 and Naive-Bayes, both implemented

in MLC

++

(Kohavi, John, Long, Manley & P
eger

1994). The ID3 version does no pruning by itself;

pruning is thus achieved by the feature subset selec-

tion mechanism. The Naive-Bayes algorithm assumes

the features are independent given the instance label.

The use of feature subset selection in Naive-Bayes was

�rst suggested in Langley & Sage (1994). The data

for Naive-Bayes was discretized using the discretiza-

tion algorithm presented in Fayyad & Irani (1993) and

implemented in MLC

++

.



Dataset Feat- Train Test Majority Dataset Feat- Train Test Majority

ures sizes Accuracy ures sizes Accuracy

anneal 24 898 CV-5 76.17�1.4 australian 14 690 CV-5 55.51�1.9

breast (L) 9 286 CV-5 70.28�2.7 breast (W) 10 699 CV-5 65.52�1.8

chess 36 2130 1066 52.22�0.9 cleve 13 303 CV-5 54.46�2.9

crx 15 690 CV-5 55.51�1.9 DNA 180 3186 2000 51.91�0.9

heart 13 270 CV-5 55.56�3.0 horse-colic 22 368 CV-5 63.04�2.5

hypothyroid 25 2108 1055 95.23�0.4 mushroom 22 5416 2708 51.80�0.6

pima 8 768 CV-5 65.10�1.7 sick-euthyroid 25 2108 1055 90.74�0.5

soybean-lrg 35 683 CV-5 13.47�1.3 vehicle 18 846 CV-5 25.77�1.5

vote 16 435 CV-5 61.38�2.3 vote1 15 435 CV-5 61.38�2.3

Table 1: Datasets and baseline accuracy (majority). CV-5 indicates accuracy estimation by 5-fold cross-validation. The

number after the � denotes one standard deviation of the accuracy.

Dataset ID3 ID3-FSS p-val C4.5 Naive-Bayes NB-FSS p-val

anneal 99.55�0.2 99.33�0.2 0.23 91.65�1.6 97.66�0.4 96.66�1.0 0.18

australian 80.43�1.0 85.94�1.7 1.00 85.36�0.7 86.09�1.1 85.90�1.6 0.47

breast (L) 68.20�2.9 73.43�2.3 0.92 71.00�2.3 70.99�2.3 70.63�2.1 0.45

breast (W) 94.42�0.8 94.28�0.8 0.45 94.71�0.4 97.14�0.5 96.57�0.4 0.19

chess 98.69�0.3 98.87�0.3 0.65 99.50�0.3 87.15�1.0 94.28�0.7 1.00

cleve 71.99�3.2 77.87�2.0 0.94 73.62�2.3 82.87�3.1 83.20�2.6 0.53

crx 79.86�1.7 84.35�1.6 0.97 85.80�1.0 86.96�1.2 85.07�0.8 0.08

DNA 90.39�0.9 92.50�0.8 0.97 92.70�0.8 93.34�0.7 93.42�0.7 0.53

heart 72.22�3.0 81.48�2.8 0.99 77.04�2.8 81.48�3.3 84.07�2.0 0.75

horse-colic 75.32�3.8 84.79�2.0 0.99 84.78�1.3 80.96�2.5 83.70�1.2 0.84

hypothyroid 98.58�0.4 98.77�0.3 0.65 99.20�0.3 98.58�0.4 99.24�0.3 0.93

mushroom 100.00�0.0 100.00�0.0 0.50 100.00�0.0 96.60�0.3 99.70�0.1 1.00

pima 71.75�2.1 68.36�3.0 0.18 72.65�1.8 75.51�1.6 73.56�2.2 0.24

sick-euth 96.49�0.6 95.83�0.6 0.22 97.70�0.5 95.64�0.6 97.35�0.5 0.98

soybean-lrg 91.94�1.0 93.27�1.3 0.80 88.28�2.0 91.36�2.0 93.41�0.8 0.83

vehicle 73.76�2.0 69.86�0.9 0.04 69.86�1.8 59.22�1.6 61.23�1.3 0.84

vote 94.02�0.4 95.63�0.8 0.97 95.63�0.4 90.34�0.9 94.71�0.6 1.00

vote1 84.60�1.2 86.44�1.2 0.87 86.67�1.1 87.36�2.1 90.80�2.0 0.88

Average 85.68 87.83 87.01 86.63 87.97

Table 2: The accuracies for ID3, ID3 with feature subset selection (FSS), C4.5, Naive-Bayes, and Naive-Bayes with FSS.

The numbers after the � indicate the standard deviation of the reported accuracy. The �rst p-val column indicates the

probability that FSS improves ID3 and the second column indicates the probability that FSS improves Naive-Bayes. The

p-values were computed using a one-tailed t-test.

Because small datasets are easier to over�t using

our approach, we chose real-world datasets from the

U.C. Irvine repository (Murphy & Aha 1994) that had

at least 250 instances. For datasets with over 1000

instances, a separate test set with one-third of the in-

stances was used; for datasets with fewer than 1000

instances, 5-fold cross-validation was used. Table 1

describes general information about the datasets used.

The initial node for our search was the empty set

of features mainly because the search progresses faster

and because in real-world domains one would expect

many features to be irrelevant or weakly relevant. The

best-�rst search is able to overcome small local maxima

caused by interacting features, whereas hill-climbing

cannot.

Table 2 shows that feature subset selection signif-

icantly (over 90% con�dence) improves ID3 on eight

out of the eighteen domains and signi�cantly degrades

the performance only on one domain. Performance of

Naive-Bayes signi�cantly improves on �ve domains and

signi�cantly degrades on one domain. The average er-

ror rate for the datasets tested decreased (relatively)

by 15% for ID3 and by 10% for Naive-Bayes. Both

ID3 and Naive-Bayes were inferior to C4.5, but both

outperformed C4.5 after feature subset selection.

A similar experiment (not shown) with C4.5 showed

that C4.5 with feature subset selection slightly im-

proved C4.5: the average accuracy went up from

87.01% to 87.60%, a 4.5% reduction in error.

The execution time on a Sparc20 for feature subset

selection using ID3 ranged from under �ve minutes for

breast-cancer (Wisconsin), cleve, heart, and vote to



about an hour for most datasets. DNA took 29 hours,

followed by chess at four hours. The DNA run took so

long because of ever increasing estimates that did not

really improve the test-set accuracy.

7 Conclusions

We reviewed the wrapper method and discussed the

problem of over�tting when the search through the

state space is enlarged through the use of best-�rst

search. While over�tting can occur, the problem is

less severe for large datasets, so we have restricted our

experiments to such datasets. One possible way to deal

with over�tting is to reevaluate the best nodes using

di�erent cross-validation folds (i.e., shu�e the data).

Initial experiments indicate that re-evaluation of the

best nodes indeed leads to lower estimates for those

nodes, partially overcoming the over�tting problem.

We introduced compound operators that change the

search topology based on information available from

the evaluation of children nodes. The approach gen-

eralizes previous suggestions and was shown to speed

up discovery of good feature subsets. Our results indi-

cated signi�cant improvement both for ID3 and Naive-

Bayes and some improvement for C4.5. The average

error rate for the datasets tested decreased (relatively)

by 15% for ID3, by 10% for Naive-Bayes, and by 4.5%

for C4.5.

An issue that has not been addressed in the liter-

ature is whether we can determine a better starting

point for the search. For example, one might start

with the feature subset used by a learning algorithm

when the subset is easy to identify, such as when using

decision trees.
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