Motivation: Average Impurity ≠ interesting impurity
Eager and Lazy Learning

- **Eager** decision-tree algorithms (e.g., C4.5, CART, ID3) create a single decision tree for classification. The inductive leap is attributed to the building of this decision tree.

- **Lazy** learning algorithms (e.g., nearest neighbors, and this paper) do not build a concise representation of the classifier and wait for the test instance to be given. The inductive leap is attributed to the classifier; little (if any) is done during the training phase.
Problems with Eager Decision

- **Replication and fragmentation**: As a tree is built, the number of instances in every node decreases. If many features are relevant, we may not have enough data to make the number of splits needed.

- **Unknown values**: Complex methods are usually employed. C4.5 penalizes attributes using induction and does multi-way splits during classification; CART finds surrogate splits.
Lazy DTs: Basic Observation

♦ In theory, we would like to select the best decision tree for each test instance, i.e., pick the best tree from all possible trees.

♦ Observation: only the path the test instance takes really matters.

We don’t need to search or build all possible trees, but at possible paths.
The LazyDT Algorithm (recursive)

- **Input:** training set T of labelled instances. Instance I to classify.
- **Output:** a label for instance I.

1. If T is pure (all instances have same label L), return label L.
2. If all instances have the same feature values, return the majority class in T.
3. Select a test X and let x be the value of the test on instance I. Assign the test of instances with $X=x$ to T and apply the algorithm to T.

Stopping criterion

Recursive step
The Split Measure Isn’t Obvious

- The "obvious" measure, the difference in entropies between the parent and the child node (into which the test instance trickles), is not a good idea:
 - The difference in entropies may be negative. In fact, if A is dominant, for B to be dominant we may need to increase the entropy first.
 - 80/20 and 20/80 have the same entropy, but they are very different.
Our Choice of Splitting Criteria

♦ We chose to reweight the instances at every node so that all classes have equal probability.

♦ The entropy for each child is computed using the weighted instances.

♦ This method ensures that:
 ♦ The difference in entropy is always non-negative.
 ♦ Changes from 80/20 to 20/80 are very significant.
The LazyDT Implementation

- As with standard decision trees, we chose to limit ourselves to univariate splits (single attr).
- We allow splits on single values to fine-tune the partitions and avoid fragmentation.
- To speed the classification, we:
 - Discretize the data (global discretization).
 - Cache the impurity measures as we compute them. Because only a few attributes get chosen at every node, the cache was very effective.
Missing Values

- LazyDT never considers a split on an attribute whose value is unknown.

Contrast with

- C4.5 penalizes attributes with missing values based on the ratio of missing values. An attribute, such as tested-for-AIDS, may be missing from most instance and never chosen by C4.5 because of that. However, if the test instance has a value, it might be extremely useful and LazyDT will use it.
- CART computes surrogates to use instead.
Experiments

LazyDT - C4.5

Accuracy difference vs Dataset
Interesting Observation

♦ For the Anneal dataset, ID3 outperformed both LazyDT and C4.5 (0% error versus 5.9% and 8.4%).

Reason: **unknown handling**. Our ID3 considered unknowns as a **separate value**.

Xref: Schaffer’s paper showing how NN beat C4.5 (encoding for NN was as separate value).

It’s all in the representation.

♦ Changing the "?" to Unknown reduced the C4.5 error from 8.4% to 1.3%
Other Interesting Differences

♦ C4.5 outperformed LazyDT on audiology. Reason: 69 features, 24 classes, 226 instances. LazyDT clearly overfits (variance problem). Note that LazyDT as implemented does no pruning (not obvious how to do it).

♦ LazyDT significantly outperformed C4.5 on tic–tac–toe. Concept is whether X won in an end–game. LazyDT can split on squares that have X’s (or at least are non–blank) while decision trees need to pick the squares in advance.
Related Work

- Lazy learning issue (special issue of AI review to appear).

- Friedman, Flexible metric nearest-neighbor.

- Hastie and Tibshirani, Discriminlicant adaptive nearest neighbor classification.

- Holte, Acker & Porter: small disjuncts (could LazyDT help?); Quinlan, improved estimates for small disjuncts.
Future Work

LazyDT is far from perfect:

♦ There is no regularization (pruning). We proceed until the leaf is pure.

♦ Data is discretized in advance. That’s very eager and local interactions are lost. (without discretization caching won’t work well and classification would be very slow).

♦ Compare dynamic complexity (Holte), i.e., the number of splits until a decision is made.
Summary

♦ LazyDT creates a path in a tree that would be "best" for a given test instance.

♦ The small single–attribute splits coupled with the choice of path reduce fragmentation and allow handling problems with many relevant attributes.

♦ Missing values are naturally handled by avoiding splits on such values.

♦ Disadvantages: no pruning, pre–discretization.